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Abstract In this study, design and implementation
of a multi sensor based brain computer interface for
disabled and/or elderly people is proposed. Devel-
oped system consists of a wheelchair, a high-power
motor controller card, a Kinect camera, electromyo-
gram (EMG) and electroencephalogram (EEG) sen-
sors and a computer. The Kinect sensor is installed on
the system to provide safe navigation for the system.
Depth frames, captured by the Kinect’s infra-red (IR)
camera, are processed with a custom image process-
ing algorithm in order to detect obstacles around the
wheelchair. A Consumer grade EMG device (Thalmic
Labs) was used to obtain eight channels of EMG
data. Four different hand movements: Fist, release,
waving hand left and right are used for EMG based
control of the robotic wheelchair. EMG data is first
classified using artificial neural network (ANN), sup-
port vector machines and random forest schemes.
The class is then decided by a rule-based scheme
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constructed on the individual outputs of the three clas-
sifiers. EEG based control is adopted as an alternative
controller for the developed robotic wheelchair. A
wireless 14-channels EEG sensor (Emotiv Epoch) is
used to acquire real time EEG data. Three different
cognitive tasks: Relaxing, math problem solving, text
reading are defined for the EEG based control of the
system. Subjects were asked to accomplish the rela-
tive cognitive task in order to control the wheelchair.
During experiments, all subjects were able to control
the robotic wheelchair by hand movements and track
a pre-determined route with a reasonable accuracy.
The results for the EEG based control of the robotic
wheelchair are promising though vary depending on
user experience.

Keywords Robotic wheelchair · EEG · EMG ·
Navigation · Brain-computer interface

1 Introduction

Disabled people, who suffer from amyotrophic lateral
sclerosis (ALS) or tetraplegia, can lose their motor
ability functions. Consequently, such people may not
easily control conventional wheelchairs. Therefore,
researchers have an interest in converting wheelchairs
to robotic forms by using various techniques [1, 2].
Kim and his team developed a tongue-driven system to
control a powered wheelchair [3]. The authors devel-
oped a headset, which consists of magnetic sensor
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boards and a control unit. A piercing is placed on
the tongue of each subject. The magnetic sensor on
the headset senses the motion of the tongue. Six dif-
ferent tongue movements were defined in the study:
up, down, left, right, neutral, left select and right
select. The authors applied k-nearest neighbor (KNN),
Mahalonobis and Euclidian distance based methods
for classifying the tongue movements. The tongue
movement was determined based on majority of vot-
ing. Carlson and Jose developed a brain-computer
interface (BCI) based robotic wheelchair system [4].
The proposed system consists of encoders for each
wheel, a joystick, webcams, ultrasonic sensors and a
power distribution unit. They developed a computer
vision based obstacle detection algorithm with stereo
vision and ultrasonic sensors. A 16-channel EEG sys-
tem having a sample rate of 512 Hz was utilized in
the study. In the pre-processing step, a Laplacian filter
was applied to EEG data to improve the signal to noise
ratio (SNR). Power spectral densities (PSD) of com-
monly used EEG bands were selected as features for
classifying EEG signals. Since EEG could vary among
people, the authors preferred to use subject-dependent
features in their classification scheme. They used
canonical variate analysis to select subject-specific
features to maximize the classification performance.
Kim and his team developed a bio-signal based robotic
wheelchair [5]. The authors developed a BCI system
based on EMG artifact detection in EEG signals. Four
cognitive tasks were defined to control the system:
clenching of the teeth, blinking of the eyes, wrin-
kling of the forehead and frowning. Linear predictive
coding (LPC) coefficients were used as features in
a hidden Markov model (HMM) based classification
scheme. Grasse and his team developed an assisted
navigation system based on path recognition [6]. The
authors used simultaneous localization and mapping
(SLAM) method for the localization of the wheelchair.
Particle filtering was used for path recognition. Four
different types of paths were tracked by the subjects.
Noda and his team proposed a mechatronics vision
for smart robotic wheelchairs [7]. They used omni-
directional wheels to increase the maneuverability of
the wheelchair. The proposed system could sense the
environment by means of ultrasonic and infrared sen-
sors installed on the system. In addition, a 6 axis force
sensor based haptic was also installed on the system.
Gulrez and Tongetti developed a body-machine inter-
face to control a simulated robotic wheelchair system

in the 3D virtual Matlab environment [8]. The authors
developed a sensor shirt, which includes 52 piezore-
sistive sensors, to detect the local movements of the
users’ upper body. They used principal component
analysis (PCA) to reduce the dimensions of 52 sig-
nal data space obtained from the sensor shirt. The
developed system was tested by three subjects over
six months. The position errors of each subject in path
tracking task were seen to decrease in time by training.

Wearable technology devices consist of sensors,
which could detect the movements in the muscles
and convert them to the electrical signals. In this
study, commercial wearable devices based robotic
wheelchair was developed. The developed system
consists of a wheelchair, a computer, a motor con-
troller, a Kinect sensor, an EMG armband and a
portable wireless EEG device. The devices used on the
system were selected as low cost commercial devices.
One can control the proposed robotic wheelchair sys-
tem by means of either an EMG armband or an EEG
headset. Kinect based image processing algorithm
was developed in order to provide safe navigation
for the system. The proposed system was tested on
four (2 experienced, 2 unexperienced) 20-30 aged
healthy subjects. To test the real-time performance of
the system, subjects were asked to track three dif-
ferent routes: sinusoidal, circular, rectangular. During
the route tracking experiments, exact position mea-
surements were taken with a laser meter. In separate
two experiments, each subject was asked to track the
routes controlling the wheelchair using either EMG
or EEG. It was observed that, subjects could success-
fully track the three different routes with EMG based
control. The route tracking performance for the EEG
based control was promising, though depended on
user experience and environmental conditions.

2 Technical Background

2.1 Support Vector Machines (SVM)

SVM is one of the statistical learning theory based
supervised machine learning methods. Having better
generalization performance and robustness compared
to classical learning procedures, SVM has success-
fully been applied to various fields in recent years
[9–11]. The main goal of an SVM classifier is to find
the optimum hyper plane that separates two classes
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from each other. The hyper plane, which has the high-
est margin between the two classes, is called as the
optimum hyper plane. The illustration of SVM based
binary classification and the optimum hyper plane is
depicted in Fig. 1.

The points that are closest to the separating hyper
plane are referred to as support vectors. Since the
hyper plane lies on the middle of support vectors,
the Euclidian distance between two support vectors,
also known as the SVMs margin, can be calculated
as 2/ ‖w‖ by simple vector geometry. The orientation
of the optimal hyperplane is set such that this mar-
gin is maximized. If the training data is fully linearly
separable, the optimization problem can be stated as,

min
1

2
‖w‖2 s.t. yi(wϕ(xi) + b) ≥ 1 (1)

where w is the weight vector, b is the bias and ϕ is
the SVM’ s kernel function. In non-linear optimiza-
tion problems, the optimal solution must respect the
Kuhn-Tucker conditions [12] and can be determined
by minimizing the Lagrangian function given by,

Lp(w, b, α) = 1

2
‖w‖2 −

N∑

i=1

αi [yi(wϕ(xi)) + b]

+
N∑

i=1

αi (2)

where α is a vector of Lagrange multipliers. The
Lagrange multipliers, which have values higher than
0, are referred to as support vectors. In this study, the
kernel function, ϕ, for the SVM classifier was selected
as the quadratic function.

2.2 Random Forests (RF)

Although the decision tree technique was originally
proposed by Morgan and Sonquiest in 1963, the tech-
nique only started to be used frequently for classifica-
tion applications after a study published by Breiman in
1984 [13, 14]. In a decision tree, training data is sep-
arated into two groups according to features till pure
class samples are obtained.

Figure 2 illustrates the principle behind the random
forest classification algorithm. Initially, the training
data is split into left and right nodes based on a
threshold applied to the first feature. The threshold
is selected to minimize the residual sum of squares,
called as the regression criteria, given below.

Rss =
∑

lef t

(yi − yl)
2 +

∑

right

(yi − yr)
2 (3)

yi is the value for the corresponding feature for the
i-th sample, yl and yr are the mean values for the
feature given the samples assigned to the left and the
right nodes, respectively. This splitting procedure is
applied to all nodes repeatedly using the next feature
at each level of the decision tree. Splitting procedure
is not applied to nodes for which pure class samples
are obtained. Data separation is accomplished for the
other nodes until pure class samples are obtained for
all the end nodes in the binary decision tree. The Gini
index is defined by,

Gini = Nl

K∑

k=1

pkl(1 − pkl) + Nr

M∑

k=1

pkr(1 − pkr)

(4)

Fig. 1 SVM based binary
classification
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Fig. 2 Random Forest based classification

Nl and Nr are the total number of samples assigned to
the left and the right nodes respectively. pkl and pkr

are the proportions of k-th class in the left and right
nodes. Each time the data is split into left and right
nodes based on a feature, the Gini index for the two
nodes is less than the one of the parent node. Adding
up the Gini decreases for each individual feature over
all trees in the forest gives a measure for feature
importance that is consistent with the permutation
importance measure.

Since the classification accuracy of a decision tree
is highly dependent on the training data, in a random
forest structure several decision trees are constructed
from random subsets of the training data. The out-
put of the random forest classifier is computed as
the average outputs of the individual trees, that is
defined by,

RO = 1

M

M∑

i=1

T i (5)

where M is the number of the grown trees, and Ti is
the output of i-th tree.

2.3 Approximate Entropy (ApEn)

ApEn is a time-domain based feature which measures
the predictability of a signal. It is widely used for EEG
analysis [15]. Unpredictable signals have higher ApEn
values than predictable signals. Steps for calculating
ApEn of anN point time series yi , i=1,. . . ,N is given
below. First, the state vectors in the embedded space
are defined as,

xi = {
yi,yi+τ , yi+2τ ....., yi+(m−1)τ

}
,

1 ≤ i ≤ N − (m − 1)τ (6)

where m represents the embedding dimension and τ

represents the time delay. For each i, we define

Cm
i (r) = 1

N − (m − 1)τ

N−(m−1)τ∑

j=1

θ(r − d(xi, xj ))

(7)

θ is the standard Heavyside function and is defined as,

θ(x) =
{
1, x ≥ 0
0, otherwise

(8)
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r is the vector comparison distance that is used to
compare state vector in the embedding space and
d(xi , xj ) is a distance measure defined as,

d(xi, xj ) = max
k=1,2....m

(
∣∣yi+(k−1)τ − yj+(k−1)τ

∣∣) (9)

ϕm(r) is be defined as,

ϕm(r) = 1

N − (m − 1)τ

∑

i=1

logCm
i (r) (10)

Finally, ApEn of a signal for fixed m, r, τ can be
calculated as,

ApEn = ϕm(r) − ϕm+1(r) (11)

In this study, the embedding dimension (m), vector
comparison distance (r) and time delay (τ ) were set to
2, 0.15 times the standard deviation of the data and 1,
respectively based on suggestions given in [15].

3 Experimental Setup and System Architecture

In this study, design and navigation of a robotic
wheelchair system is proposed. A powered wheelchair
system was purchased and modified through the main
concerns of the study. An industrial computer was
placed on the robotic wheelchair to run the developed
algorithms. The wheelchair’s built-in DC motor con-
troller was replaced with the custom ones designed
and manufactured by the authors. Users have an option
to control the system through EMG or EEG signals.
A wireless consumer grade EMG armband (Thalmic
Labs Myo-Armband) was used for the EMG based
control of the system. For the EEG based control
on the other hand, a 14 channel (AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) Emotiv
EEG device was used. Kinect based image process-
ing algorithm was employed to ensure collision-free
navigation. The general system architecture is given in
Fig. 3.

The armband consists of eight EMG sensors, a
gyroscope, an accelerometer and a magnetometer. The
device communicates with a computer via Bluetooth.
Developers can access raw EMG and gyro data using
the software development kit distributed by Thalmic
Labs [16, 17]. In this study, raw data acquired from the
EMG armband was streamed to MATLAB environ-
ment in real time through a Bluetooth connection with
115200 baud rate. Subjects were required to undergo
training prior to using the robotic wheelchair system.

In the training phase, they were asked to accom-
plish four different hand movements: making a fist,
hand release, waving hand left and right. The sam-
pling period for the Myo-Armband was set to 1 kHz
for each channel. Fifty milliseconds of data (50 mea-
surements) were obtained from each channel in real
time to be classified into one of the pre-defined hand
movements.

A commercial Emotive headset was used for the
EEG based control of the system. The sampling rate
and the resolution for the device were set to 128 Hz
and 14 bits by the manufacturer, respectively. Emo-
tive headset has serious advantages compared to the
conventional EEG devices such as portability, hav-
ing wireless connection and no expert requirement for
usage [18–20]. On the other hand, the sensors of the
Emotive device can easily oxidize which could affect
the EEG data quality. Each sensor should be wetted
with a saline solution to enhance conductivity before
each usage. Sensors should be cleaned with alcohol
after each usage in order to prevent the oxidation.
Developers can record raw EEG data in ‘.edf’ format
using the test-bench program which is installed auto-
matically with Emotiv Research Edition SDK. Similar
to EMG based control the subjects were required to
undergo training prior to using the robotic wheelchair
system. In the training phase, they were asked to
accomplish three different cognitive tasks: relaxing,
math problem solving and text reading. Real time EEG
data was obtained through a third party application
developed by the authors in Visual Studio environ-
ment. EEG data was then streamed from the developed
program to MATLAB via a UDP connection.

4 Methods

4.1 Vision Based Safe Navigation

Providing safe navigation is very crucial in robotic
wheelchair applications. Researchers used various
techniques such as ultrasonic sensors, light detection
and ranging sensor (LIDAR) to ensure safe navigation
[3]. In this study, an image processing based safe nav-
igation scheme was developed. Although Kinect was
initially developed by Microsoft in 2010 for gaming
technology, its content has increased the researchers’
interest on Kinect [21–23]. Kinect can construct depth
images by using IR projector. In this study Kinect’s
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Fig. 3 The system architecture

depth camera was used to provide safe navigation
for the system. Depth images were obtained and pro-
cessed by the developed image processing algorithm.
Prior to executing a command received from either
the EMG or EEG based controller, the system checks
the environment to avoid any collusion. If an obstacle
is detected by the developed image processing algo-
rithm, the safe navigation routine overwrites all other
commands and the wheelchair is stopped. As illus-
trated in Fig. 4, Kinect’s field of view is highly related
with the mounting angle between Kinect’s line of sight
and the workspace floor. When the mounting angle is
very small, the depth camera is unable to record any
data on the floor surface. On the other hand, if mount-
ing angle is very large the depth camera records only
a limited area around the sit area of the wheelchair.
The x-y plane of the Kinect’s coordinate system and
the floor plane are not parallel due to mounting angle.
Therefore, it is necessary to make a coordinate trans-
formation so that the x-y planes of the two coordinate

systems are parallel. Following this transformation, all
points on the floor should have the same depth value.
To make this transformation, Kinect’s coordinate sys-
tem should be rotated with respect to x and y axes by
using camera calibration.

Camera calibration is a major problem in image
processing applications [24–26]. For calibrating a
given camera, intrinsic and extrinsic matrices should
be calculated. The intrinsic matrix depends on the
camera’s internal parameters such as focal length (f ),
principal point (cx, cy), pixel width (sx) and pixel
height (sy). The intrinsic matrix, M, of a camera is
given in Eq. 11.

Mint =
⎡

⎢⎣
− f

sx
0 −cx

0 − f
sy

−cy

0 0 1

⎤

⎥⎦ (12)

In this study, internal parameters of Kinect were
obtained by using Kinect SDK. The parameters are
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Fig. 4 The Kinect’s
placement

given in Table 1. Real world coordinates of a pixel can
be calculated using Eq. 12.

⎡

⎣
xk

zk
yk

zk

1

⎤

⎦ = M−1

⎡

⎣
i

j

1

⎤

⎦ (13)

The Extrinsic matrix on the other hand depends on
the camera placement. The depth value of a point on
the floor as measured by Kinect varies depending on
the location due to the mounting angle between the
Kinect’s line of sight and the workspace floor. There-
fore Kinect’s coordinate system should be rotated with
respect to x and y axes to make a coordinate trans-
formation. Rotation matrices around the x and y axes
(Rx , Ry) are given in Eq. 13.

Rx =
⎡

⎣
1 0 0
0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)

⎤

⎦ ,

Ry =
⎡

⎣
cos(φ) 0 sin(φ)

0 1 0
− sin(φ) 0 cos(φ)

⎤

⎦ (14)

Table 1 Kinect parameters

Parameter Value

f/sx 591.040

f/sy 594.21

cx 242.73

cy 339.30

Combined rotation matrix (R = RxRy) is then given
in Eq. 14. Rz is neglected since rotation around z-axis
does not affect the depth measurements.

R =
⎡

⎣
cos(φ) 0 sin(φ)

sin(θ) sin(φ) cos(θ) − sin(θ) cos(φ)

− cos(θ) sin(φ) sin(θ) cos(θ) cos(φ)

⎤

⎦

(15)

A point in Kinect coordinate system pk = [xk yk zk]
can be transformed to a corresponding point in the
new coordinate system parallel to x-y plane of the
workspace floor pm = [xm ym zm] with R by Eq. 15.

pm = Rpk (16)

Equation 15 can be rewritten as

xm = r11xk + r12yk + r13zk

ym = r21xk + r22yk + r23zk

zm = r31xk + r32yk + r33zk = dm

(17)

where rij is the i-th row and the j -th column element
of R. The depth value dm must be constant for any
point on the workspace floor. The third row of Eq. 16
can be rewritten as follows,

rT
3 pm = dm (18)

where r3 is equal to the third row of the rotation matrix
R and dm is equal to the depth value of the workspace
floor. All the points on the floor plane must satisfy
Eq. 17. To solve for r3 and dm, N points were taken on
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the floor. The system of N equations was then written
in matrix form as follows;

⎡

⎢⎢⎢⎢⎢⎢⎣

pT
k1 −1

pT
k2 −1

pT
k3 −1
. .

. .

pT
kN −1

⎤

⎥⎥⎥⎥⎥⎥⎦

[
rT
3

dm

]
= 0 (19)

Equation 18 can be expressed as Ax = 0 format,
where;

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

pT
k1 −1

pT
k2 −1

pT
k3 −1
. .

. .

pT
kN −1

⎤

⎥⎥⎥⎥⎥⎥⎦
and x =

[
rT
3

dm

]
(20)

Figure 5 shows an original depth map acquired from
the Kinect sensor and the corrected depth map com-
puted based on Equation 16. In the original depth map,
the depth values of points on the workspace floor vary
with the distance to wheelchair. On the other hand,
the depth values of points on the workspace floor are
approximately the same for the corrected depth image.

In the initial stage of the collision avoidance mod-
ule, the background depth image is obtained by aver-
aging the first acquired twenty images at the initializa-
tion of the system. Averaging is performed to reduce
the amount of noise present in depth measurements.
Images are captured from Kinect per 3.3 ms (30 fps)

and when an image is captured, difference of the
current captured image and the background image is
calculated to be the foreground image. If the number
of foreground pixels exceeds a pre-determined thresh-
old, obstacle control is triggered. Since the presence
of an obstacle around the wheelchair would reduce the
depth values of the corresponding pixels with respect
to Kinect sensor, a pixel is assumed to be part of
an obstacle if the difference between its current and
background values is higher than a threshold. Pixels
located within the close vicinity of the sitting area are
neglected since any motion in this region would mean
the movement of the subject operating the wheelchair.
A black and white (BW) image is constructed with the
detected foreground pixels. Morphological opening is
applied to the image for noise removal. Morphologi-
cal closing and region filling is then applied to fill the
gaps and holes. After these morphological operations,
connected components algorithm is used to segment
the image. A sample background image and resulting
foreground image after morphological operations are
given in Fig. 6.

5 Bio-Signal based control of Robotic Wheelchair

In the developed robotic wheelchair system, users are
given the option to control the wheelchair through
either the EMG armband or the Emotiv EEG headset.
Four pre-defined tasks (making a fist, hand release,
waving hand left and right) are used in EMG based
control. The wheelchair is steered to the left, right and
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Fig. 5 The original (left) and corrected (right) depth map
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Fig. 6 Background image
and morphological
operations applied image

forward by making a fist, hand release and waving
the hand right, respectively. The user waves his hand
left to stop the wheelchair. The classification accu-
racies for the making a fist and hand release tasks
are observed to be higher compared to other tasks.
Therefore, these tasks are selected for steering the
wheelchair to the left and right. Three pre-defined
tasks are used in EEG based control. The wheelchair
is steered to left, right and forward through accom-
plishing the relaxing, math problem solving and text
reading tasks, respectively. The wheelchair is stopped
when continuous head movement is detected. An open
loop control is applied on the wheelchair due to lack
of encoders.

In the first phase of this study, EMG and EEG
data was recorded and classified offline in MATLAB
environment. Parameters of classifiers were deter-
mined using the trial and error method based on the
offline data analysis. Two seconds of EMG data was
recorded from each subject while accomplishing the
pre-defined four tasks. For the EEG case, ten sec-
onds of data was recorded from each subject while
accomplishing the pre-defined three cognitive tasks.
Ten trials were conducted for each EMG and EEG
task.

In the offline data processing the EEG signals
were divided into one second time windows. Head
movements can affect the EEG data and are usually
referred to as artifacts. EEG data windows containing
head movement artifacts were detected and discarded
through gyro data analysis based elimination method.
The mean value of the first order derivative of gyro
data in time domain (GYROX and GYROY) was cal-
culated for each window. Gyro data windows, which
had a mean value lower than a certain threshold, were
regarded as artifact free data. The remaining windows
were discarded and not used for the task classification.
In the real time experiments, continuous head move-
ments were used to stop the wheelchair. Sample EEG

data in AF3, gyro data and artifact detection results are
given in Fig. 7.

5.0.1 Feature extraction

In feature extraction the input signal is transformed
into a new smaller space of variables that simpli-
fies analysis [27]. Time domain based features are
frequently used for EMG signal classification since
time domain features can be implemented and com-
puted easily [28]. In addition to time domain features,
frequency domain and wavelet transform based fea-
tures are utilized for EMG signal classification [29].
In this study, time domain features were used in
order to define EMG movements. The features used
in this study consisted of mean absolute value, stan-
dard deviation, number of zero crossing, line-length
and approximate entropy. The line-length quantifies
the predictability of a signal and can be calculated as
follows,

L =
N∑

j=1

∣∣xj+1 − xj

∣∣ (21)

In the literature, EEG band energies are commonly
used for EEG signal classification applications. In
this study energies contained in theta, alpha and beta
bands were included in the feature vector for EEG
signal classification. The features used in bio-signal
classification are summarized in Table 2. The EMG
feature vector consists of 40 elements extracted from
8 channels and the EEG feature vector consists of 98
elements extracted from 14 channels.

5.0.2 Bio-Signal Classification

Combination of classifiers is often used in the litera-
ture to improve classification performance in complex
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Fig. 7 EEG, GYRO data and detected artifacts

problems [30]. In this study, classification is per-
formed based on the combined decisions of ANN,
SVM and random forest classifiers.

As mentioned in the previous section, two seconds
of EMG data were acquired during each task. Ten tri-
als were conducted by four subjects for each task.
The EMG data was segmented into 50 ms time win-
dows resulting in a dataset of 1600 epochs for each
task. For EEG based classification, 10 seconds of EEG
data were acquired for each cognitive task. Ten tri-
als were conducted by three subjects for each task.
The EEG data was segmented into 1 second time win-
dows resulting in a dataset of 300 epochs for each task.
Randomly selected 70 % of the dataset was used for
training the classifiers while the remaining 30 % was
used for testing the classifiers’ performance.

Table 2 Selected features for bio-signal classification

Feature EEG classification EMG classification

Mean absolute value
√ √

Standard deviation
√ √

Line Length
√ √

Number of zero cross
√

Ap-En
√ √

Band energies (theta,
alpha and beta)

√

For the ANN based classifier, the number of hid-
den layers and neurons were set to 2 and 40 (for each
hidden layer), respectively. The classifier was trained
with the back-propagation algorithm. Tansig function
was selected as the activation function of the neu-
ral network. For the random forest tree classifier, the
number of trees was set to. The parameters of all three
classifiers were determined by trial and error method
during offline data analysis.

In the training phase, for each subject, each clas-
sifier was trained with features extracted from the
training data set. The signal class was decided accord-
ing to most voted task. Since SVM classifiers can only
separate two different classes with one model, two
different strategies are used in multiclass classifica-
tion. Building a one versus all SVM classifier model
for each class is a commonly used strategy in prac-
tice. Building a set of one versus one SVM models is
another strategy used in literature. In this study, one
versus all strategy was adopted in SVM based signal
classification. In bio-signal data processing, the clas-
sification result of the ANN classifier was assumed to
be valid if the absolute difference between the actual
output and any of the desired outputs is less than a
threshold. If the ANN model outputs a valid result,
the classification is performed based on the major-
ity of vote. Otherwise the proposed algorithm checks
the results of the SVM and RF classifiers. If both
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Fig. 8 Flow-chart for the
proposed rule-based scheme
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classifiers agree on a class, the proposed algorithm
accepts the decision. If this is not the case, the clas-
sification result of the SVM is checked. If the SVM
classifies EMG data into fist class, the data is clas-
sified as fist. This decision is based on the fact that
the performance of the SVM classifier is much better
than the RF classifier for the related class. Similarly,
if the SVM classifies EEG the data into relax class,
the data is classified as relax. If the data is still not

classified, the output of the RF classifier is checked. In
case the output is waving-left or waving right for the
EMG data, the algorithm’s final decision agrees with
the RF classifier. Similarly, in case the output of the
RF classifier is text reading or math problem solving
for the EEG data, the algorithm’s final decision agrees
with the RF classifier. Data that is not classified at this
stage is assumed to be unclassified. The flow-chart of
the developed algorithm is given in Fig. 8.

Table 3 Confusion table and the sensitivity values for EMG classifiers

Predicted actual Classifier Fist Release Left Right Un-classified

Fist ANN 220 (.458) 130 79 20 31

SVM 407 (.848) 1 25 34 13

RF 385 (.802) 0 44 51 0

Proposed 408 (.850) 1 20 25 26

Release ANN 0 474 (.988) 6 0 0

SVM 3 472 (.983) 2 2 1

RF 0 478 (.996) 2 0 0

Proposed 0 479 (.998) 1 0 0

Waving left ANN 11 122 328 (.683) 19 0

SVM 82 2 335 (.698) 10 51

RF 51 0 400 (.833) 29 t0

Proposed 28 2 405 (.844) 37 8

Waving Right ANN 8 48 141 282 (.588) 1

SVM 85 3 32 323 (.673) 37

RF 41 0 37 402 (.838) 0

Proposed 28 1 35 407 (.848) 9
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Table 4 Specificity values for the EMG based classifiers

Fist Release Left Right Average

ANN 0.987 0.689 0.797 0.966 0.860

SVM 0.882 0.994 0.947 0.959 0.945

RF 0.936 1 0.920 0.923 0.945

Proposed 0.961 0.996 0.946 0.940 0.961

6 Results and Discussion

The performance of the proposed system was eval-
uated in two different ways. First, bio-signal data
acquired from four different subjects were processed
offline in MATLAB environment. The data was clas-
sified using ANN, SVM, random forest and the pro-
posed schemes. The performance of the classifiers was
evaluated based on sensitivity and specificity defined
by,

Sensitivity = T P

(T P + FN)
(22)

Specif ity = T N

(T N + FP)
(23)

TP, TN, FP and FN stands for true positives, true neg-
atives, false positives and false negatives, respectively.
True positives are the correctly classified data sam-
ples in a related class whereas true negatives are the

correctly classified data samples belonging to other
classes. False negatives are the data samples in a class
incorrectly classified as belonging to one of the other
classes. False positives on the other hand are the data
samples in other classes incorrectly classified as the
class of interest.

The developed wheelchair systemwas also tested in
real-time by four different subjects. The subjects were
asked to track a sinusoidal route drawn on a floor by
controlling their EMG and EEG activity.

6.1 Offline Classification Results

Offline EMG classification results for the four pre-
defined tasks are provided in Table 3. The table
illustrates the confusion table and the classifier sen-
sitivities for the ANN, SVM, RF and the proposed
classifiers. The rows and columns in the table repre-
sent the actual and the predicted classes, respectively.
Results provided are the totals for all subjects. It was
observed that all classifiers including the proposed
scheme showed better performance in classifying fist
and hand release tasks. This is expected since EMG
signals become noticeably strong for all 8 channels
when a subject makes a fist. Similarly, EMG sig-
nals become noticeably weak for all 8 channels when
a subject releases his hand. The SVM classification
accuracy for the making fist task was higher than
that of the other classifiers’ accuracies. On the other
hand, the RF classifier has a better performance in

Table 5 Confusion table and the sensitivity values for EEG classifiers

Classifier Relax Text reading Math problem solving Un-classified

Relax ANN 43 (.478) 40 4 3

SVM 75 (.833) 7 6 2

RF 72 (.800) 10 8 0

Proposed 81 (.900) 0 0 9

Text reading ANN 0 69 (.767) 12 9

SVM 0 65 (.722) 7 18

RF 2 73 (.811) 15 0

Proposed 5 74 (.822) 11 0

Math problem solving ANN 3 20 64 (.711) 3

SVM 0 15 65 (.722) 10

RF 6 15 69 (.767) 0

Proposed 0 14 76 (.844) 0
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Table 6 Specificity values for the EEG based classifiers

Relax Text reading Math problem
solving

Average

ANN 0.978 0.459 0.862 0.767

SVM 1 0.809 0.887 0.899

RF 0.926 0.766 0.793 0.828

Proposed 0.950 0.868 0.894 0.904

classifying the remaining three hand movements. The
proposed method as discussed earlier makes a decision
based on rules constructed on the individual outputs of
the ANN, SVM and RF classifiers.

Out of the 480 EMG test epochs corresponding to
fist, 408 (sensitivity: 0.85) were correctly classified by
the proposed scheme. The classifier sensitivities for
the release, waving left and waving right were 0.998,
0.844 and 0.848, respectively. The classifier sensitiv-
ities over all classes were 0.679, 0.801, 0.867 and
0.885 for the ANN, SVM, RF and proposed scheme,
respectively. The unclassified data was included in
false negatives when computing the sensitivities. The
proposed method’s misclassification percentage, dis-
carding the unclassified data, was 9.3 % as compared
to 30.4 %, 14.6 % and 13.3 % misclassification rates
for the ANN, SVM and RF classifiers. Results con-
firm that the proposed method outperforms all three
classifiers.

Table 4 depicts the specificity values computed for
the EMG based classifiers. The average specificities
of ANN, SVM, RF and the proposed classifiers were

0.860, 0.945, 0.945 and 0.961, respectively. Having
the highest average specificity, the proposed classifier
outperformed the other classifiers.

Offline EEG classification results for the three
pre-defined tasks are provided in Table 5. The table
illustrates the confusion table for the ANN, SVM, RF
and the proposed classifiers. The rows and columns
in the table represent the actual and the predicted
classes, respectively. Results provided are the totals
for all subjects. The SVM classification sensitivity for
the relaxing cognitive task is higher than that of the
other classifiers’ sensitivities. The RF classifier on
the other hand has a better performance in classify-
ing text reading and math problem solving tasks. Out
of the 90 epochs corresponding to relaxing class, 81
(sensitivity: 0.90) were correctly classified by the pro-
posed scheme. The classification sensitivities for the
text reading and math problem solving were 0.822 and
0.844, respectively. The classifier sensitivities over all
classes were 0.651, 0.759, 0.792 and 0.855 for the
ANN, SVM, RF and proposed scheme, respectively.
The proposed method’s misclassification percentage
was 11.11 % as compared to 30.7 %, 12.9 % and
20.7 % misclassification rates for the ANN, SVM and
RF classifiers. Similar to the results for EMG based
control, the proposed method outperforms all three
classifiers.

Table 6 depicts the specificity values computed for
the EEG based classifiers. The average specificities
of ANN, SVM, RF and the proposed classifiers were
0.767, 0.899, 0.828 and 0.904, respectively. Besides
having the highest sensitivity, the proposed scheme
also had the highest specificity.
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Fig. 9 Rectangular route results for EMG based control
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Fig. 10 Sinusoidal route
results for EMG based
control
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6.2 Real-time Performance Results

Three benchmark routes were used to observe the real-
time system performance of EMG based control of
the developed wheelchair. The subjects were asked to
track a rectangular, sinusoidal and an elliptic route
by controlling the robotic wheelchair through accom-
plishing the related tasks. During the experiments,
the wheelchair was stopped at regular intervals and
exact position measurements were taken with a laser
sensor. Position measurements were performed with
respect to the center point of the wheelchair. The route
tracking performance of the four subjects for the rect-
angular route is provided in Fig. 9. Turning with zero
radius to left and in counter clockwise is the chal-
lenging movement in the rectangular route. As it is
clearly seen from the figure, position errors increased
during the 90 degree turns at the corners. It is challeng-
ing to keep the wheelchair on the route right after the

wheelchair turns the corners. The obvious difference
between the tracking performances of the subjects is
highly related to the experience level. The stopping
of the wheelchair at regular intervals to take posi-
tion measurements negatively affected the subjects’
performances and increased position errors.

The route tracking performance of the subjects for
the sinusoidal route is provided in Fig. 10. Turning at
the local extreme points is the challenging movement
in the sinusoidal route. As it is clearly seen from the
figure, position errors increase when the wheelchair
turns these points at which there is a sharp change in
the route’s direction. Subjects should make an imme-
diate turn at the related points to keep wheelchair on
the route.

The route tracking performance of the subjects for
the elliptic route is provided in Fig. 11. In the ellip-
tic route, subjects should turn continuously to keep
the wheelchair on the route. The subjects tracked the
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Fig. 11 Elliptic route results for EMG based control
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Fig. 12 Sinusoidal route
results for EEG based
control
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elliptic route in clockwise manner. Compared to the
other routes, subjects were challenged at every single
point of the route.

The performance of the EMG based control of
robotic wheelchair system was observed to be affected
by fatigue. Fatigue time varied between 45 minutes
and one hour among subjects. On the other hand, EEG
based control was not robust against environmental
effects which caused distraction. Thus, EEG based
experiments were performed in a controlled environ-
ment. During the experiments, a transition period was
observed during task switching. Therefore, the user
command was assumed to be valid only if the algo-
rithm evaluated to same result for the two consecutive
EEG epochs. Once a valid command was detected,
the wheelchair was then navigated through corre-
sponding direction; otherwise the wheelchair was
stopped. Thus, at least two seconds was required to
send a new command through EEG. Consequently,
it was very challenging to keep the wheelchair on
the route through EEG control for the paths that fre-
quently change direction and require high degrees of
maneuverability. Therefore, only sinusoidal route was
tracked in EEG based control of the

Table 7 EMG based control route tracking errors

Rectangular
route (in meters)

Sinusoidal route
(in meters)

Elliptic route
(in meters)

Subject 1 0.1294 0.1154 0.1154

Subject 2 0.1816 0.1546 0.1088

Subject 3 0.1585 0.1607 0.1473

Subject 4 0.1654 0.1468 0.1187

wheelchair. The route tracking performance of the
three subjects for the sinusoidal route is provided in
Fig. 12.

Root mean square (RMS) of position errors
between desired positions (xdesired) and actual posi-
tions (xactual) were calculated based on the following
equation.

eRMSE =

√√√√√
N∑

n=1

(
xdesired
n − xactual

n

)2

N
(24)

EMG route tracking performances for the four sub-
jects is illustrated in Table 7. RMS of position
errors for the rectangular, sinusoidal and the elliptic
route for the most experienced user (subject 1) were
0.1294m, 0.1154m and 0.1154m, respectively. The
performances of the other users were slightly worse as
compared to subject 1.

EEG route tracking performances for the three sub-
jects is illustrated in Table 8. RMS of position errors
for the sinusoidal route were 0.2804m, 0.5180m and
0.3258m for the three subjects. The RMS of errors
for EEG experiments was observed to be higher as
compared to the ones computed for the EMG case.
This was expected since controlling brain signals is

Table 8 EEG based control route tracking errors

Sinusoidal route (in meters)

Subject 1 0.2804

Subject 3 0.5180

Subject 4 0.3258
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more challenging than controlling muscles. In addi-
tion, users performing EEG tasks were more easily
distracted by external disturbances. As mentioned ear-
lier, the stopping of the wheelchair at regular intervals
to take position measurements also negatively affected
the subjects’ performances and increased position
errors. The subjects were observed to perform consid-
erably better when the wheelchair was not stopped for
position measurements.

7 Conclusions and Future Work

In this study, EMG and EEG based control of a
robotic wheelchair was proposed. Safe navigation of
the developed system was provided through process-
ing depth images acquired from widely available and
low-cost Kinect sensor. In addition to Kinect sensor,
LIDAR and ultrasonic sensors can be installed on the
wheelchair system to improve safety. An open loop
control was applied on motors since encoders could
not be mounted on the motors due to mechanical
constraints.

Thalmic Labs wearable low-cost arm-band was
used for real time EMG data collection. The per-
formance of EMG based control of the system was
satisfactory. The armband can be used in EMG based
control of real time systems instead of expensive
professional EMG devices. Emotive EEG headset
was used in real time EEG data collection. Robotic
wheelchair was controlled by processing two seconds
EEGwindows. Due to resulting delay, the cruise speed
of the robotic wheelchair system was limited to 20
cm/s. The cruise speed was set to 60 cm/s for the EMG
based control since shorter windows were required for
task classification. To improve the EEG based con-
trol performance of the robotic wheelchair system, a
professional EEG system should be used.

In addition to bio-signal based control, a vision
based eye ball tracking system will be developed and
installed on the system.
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