
J Intell Robot Syst (2017) 86:153–173
DOI 10.1007/s10846-017-0468-y

Survey of Model-Based Reinforcement Learning:
Applications on Robotics

Athanasios S. Polydoros ·Lazaros Nalpantidis

Received: 14 March 2016 / Accepted: 5 January 2017 / Published online: 26 January 2017
© Springer Science+Business Media Dordrecht 2017

Abstract Reinforcement learning is an appealing
approach for allowing robots to learn new tasks. Rel-
evant literature reveals a plethora of methods, but at
the same time makes clear the lack of implementations
for dealing with real life challenges. Current expecta-
tions raise the demand for adaptable robots. We argue
that, by employing model-based reinforcement learn-
ing, the—now limited—adaptability characteristics of
robotic systems can be expanded. Also, model-based
reinforcement learning exhibits advantages that makes
it more applicable to real life use-cases compared
to model-free methods. Thus, in this survey, model-
based methods that have been applied in robotics are
covered. We categorize them based on the deriva-
tion of an optimal policy, the definition of the returns
function, the type of the transition model and the
learned task. Finally, we discuss the applicability of
model-based reinforcement learning approaches in
new applications, taking into consideration the state of
the art in both algorithms and hardware.

A. S. Polydoros (�) · L. Nalpantidis
Department of Mechanical and Manufacturing
Engineering, Aalborg University, AC Meyers Vaenge 15,
2450 Copenhagen SV, Denmark
e-mail: athapoly@m-tech.aau.dk

L. Nalpantidis
e-mail: lanalpa@m-tech.aau.dk

Keywords Intelligent robotics · Machine learning ·
Model-based reinforcement learning · Robot
learning · Policy search · Transition models ·
Reward functions

1 Introduction

Reinforcement Learning (RL) constitutes a significant
aspect of the Artificial Intelligence field with numer-
ous applications ranging from finance to robotics and
a plethora of proposed approaches. Robotics is a very
challenging application for RL since it involves inter-
actions between a mechanical system and its environ-
ment. Such interactions can harm both the mechanical
system and humans, especially in service and indus-
trial robots which are expected to operate close to
humans. On the other hand, RL can increase the adapt-
ability of robotics systems, which is an important
feature in order to deal with a complex and dynamic
environment. Naturally, the use of RL for robot con-
trol is gaining popularity over the last few years [1,
2] in a broad spectrum of robotics applications [3].
This fact comes as no surprise considering that in
the years to come robots are expected to become
more intelligent than just being capable of repeat-
ing an explicit set of simple actions. The motivation
behind this work is based on the observation that
numerous survey papers on RL for robotics have been

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-017-0468-y&domain=pdf
http://orcid.org/0000-0002-4597-0567
mailto:athapoly@m-tech.aau.dk
mailto:lanalpa@m-tech.aau.dk

154 J Intell Robot Syst (2017) 86:153–173

published [1–3], but all of them are mainly focused
on model-free approaches. However, during the recent
years there is an increasing interest in applications of
model-based RL in robotics [4–11]. Another motivat-
ing factor for this survey has been the observation
that robots themselves are changing; low-cost collab-
orative manipulators have established themselves as
a big part of the robotics market and are expected to
gain even more popularity in the years to come. The
lower cost of such robots inevitably dictates compro-
mises in their accuracy and repeatability, as well as in
the quality of their internal sensing apparatuses. Thus,
one needs to reconsider the characteristics of learning
techniques to be applied on this new breed of robots.

The goals of this work are two-fold:

1. to give an up-to-date overview of RL for robotics
focusing on model-based methods and showcas-
ing their relative advantages;

2. to investigate the appropriateness of RL methods
for handling the challenges of low-cost robotic
manipulators and to conclude on a suggestion, in
Section 7, of a robust and reliable model-based
RL approach for performing tasks with low-cost
manipulators.

To achieve the first goal, we examine the literature
for applications of model-based RL both on simulated
and real robotic systems. We present value-function
and policy search methods alongside with strategies
for setting the returns function and learning the tran-
sition model which have been successfully applied on
robotic systems. We address our second goal only after
the analysis of the state-of-the-art, and in conjunction
with the outcomes that derive from our first goal.

This survey is organized as follows. After this
introductory section, in Section 2 we present the
value function methods used for model-based RL.
In Section 3 we discuss returns functions, while in
Section 4 the policy search methods are covered. Fur-
thermore, in Section 5 we present the approaches for
modeling the transition dynamics. Section 6 reviews
cases of model-based RL methods applied on robotic
platforms for learning various tasks. Finally, we sum-
marize the outcomes of this survey in Section 7
and discuss the applicability of model-based RL in
applications beyond the ones already reported in the
literature.

1.1 Background on Model-Based RL

The main difference between RL and other types
of machine learning, is that the learning procedure
involves interactions between the agent and its envi-
ronment, thus the agent learns the desired task by
gathering experience directly from its environment
and does not need an external teacher. However, the
discrimination between those two components (agent
and environment) is not always straightforward and
depends on the application. For example, in applica-
tions such as bipedal walking and UAV control, the
environment is assumed to include the motors of the
robot.

The state of the robot s can be described either in
a continuous or a discrete manner. In each state the
robot controller applies an action a (motor command)
that results in a change of its state. Those actions are
derived from a policy function π(·) which maps – in
the deterministic case – the state to a single action
π(s) �→ a. In the stochastic case, the policy func-
tion depends on a random variable ε and the mapping
is written as a probability distribution over actions
π(a|s, ε).

The goal of a reinforcement learning algorithm is
to find the policy that maximizes the expected return
which is defined by a reward function r . The main
types of functions that indicate the agent’s return can
be either discounted or averaged and are calculated
on a a finite or infinite horizon. The finite horizon is
used when the learned task has a known end state,
otherwise infinite functions are more appropriate. The
interaction between the robot and the environment is
modeled as a Markov Decision Process (MDP), a tuple[
S, A, ε, P

(
s ′|s, a)

, R(s, s′, a), γ
]
. Where S is the

set of possible robot states, A is the set of actions,
P

(
s ′|s, a)

is the probability of transition at a future
state s′ when the robot is at state s and applies action a.
R(s, s′, a) is the reward that the robot expects when it
transits to state s′ and depends on the applied action a,
state s and is calculated through the reward function.
Finally, γ the discount factor of the reward function.

RL approaches are distinguished in two main
classes, the model-free (also known as direct) and the
model-based (also known as indirect) methods. The
main difference between model-based and model free
RL is whether a model of the interactions between the

J Intell Robot Syst (2017) 86:153–173 155

Fig. 1 Pipeline of a model-based RL algorithm

robot and the environment is employed. In model-free
methods there is not a model and thus the rewards and
the optimal actions derive by trial-and-error approach
with the physical system. In model-based methods
there exists a model of the transition dynamics which
is used for the derivation of the rewards and opti-
mal actions. Thus the policies are optimized at the
model and the optimal policy is applied at the phys-
ical system. Figure 1 illustrates a model-based RL
pipeline.

Model-free methods attracted the most scientific
interest, but sampling trajectories for the derivation of
the optimal policy can be a disadvantage when applied
on real robots. An alternative is the use of a model-
based approach. In this context, the optimal policy is
derived based on internal simulations of a learned for-
ward model that corresponds to a representation of
the robot’s dynamics. This characteristic significantly
reduces the physical interactions between the robot
and its environment, which results in significantly less
mechanical wear. On the other hand, its main disad-
vantage is that model-based RL algorithms heavily
depend on the model’s ability to accurately represent
the transition dynamics. The pros and cons of the two
classes of RL algorithms are summarized in Table 1.

The solution of a RL problem can be derived from
two alternative method families. The most widely
used one is the value function approaches, which esti-
mate the future expected return of an agent that is
in a given state and performs actions according to
a policy. The value functions are distinguished in
state-value function V π (s) = Eπ {Rt |st = s}, which
is the expected return of being in state s follow-
ing policy π , and action-value function Qπ (s, a) =
Eπ {Rt |st = s, at = a}, which is equivalently defined
as the future expected return of applying action a in
state s and following policy π from then on. The
returns function, in the cases of finite learning hori-
zon H , is a sum of rewards Rt = ∑T

t=0 r (st , at).
In the case of infinite horizons, the returns function
can either be in discounted (12) or averaged form
(13).

Value function approaches estimate an optimal
value function—either state-value or action-value—
in order to derive the optimal actions in each state.
Thus, the policy that maximizes the long-term reward
is derived from the optimal actions in each state. The
value function methods are sorted in four classes: i)
Dynamic Programming (DP) methods that require a
model of the transition dynamics, ii) Monte Carlo
(MC) methods that are based on sampling, iii)
Temporal Difference Learning (TDL) methods that
take into account the difference of the value function
between two state transitions, and iv) Differential
Dynamic Programming methods (DDP).

An alternative to the use of value function methods
is using policy search methods. Instead of recon-
structing a policy from the optimal value function, in
policy search methods the optimal policy is learned
directly. This fact allows state-of-the-art policy search
methods to converge faster in the case of high-DOF

Table 1 Advantages and disadvantages of model-free and model-based RL methods

RL Methods Advantages Disadvantages

Model-based RL – Small number of interactions between robot & environment –Depend on transition models

– Faster convergence to optimal solution – Model accuracy has a big impact on learning tasks

Model-free RL – No need for prior knowledge of transitions – Slow learning convergence

– Easily implementable – High wear & tear of the robot

– High risk of damage

156 J Intell Robot Syst (2017) 86:153–173

robotic systems, compared to value-function methods
[2, Sec. 2.3]. Policies are represented by a wide vari-
ety of approaches ranging from simple linear func-
tions to sophisticated Dynamic Movement Primitives
[1]. Their common characteristic is that they are all
parametrized by a set of parameters, which has to be
optimized so as to maximize the cumulative reward.
Policy search involves approaches such as: i) gradient-
based methods that update the parametrized set using
hill-climbing approaches on the gradient of the reward
function, ii) Expectation-Maximization (EM) methods
that infer the parameters by maximizing the log-
likelihood probability of the rewards, iii) Information
Theory (Inf.Th.) methods that exploit concepts such
as entropy for the derivation of optimized policies,
iv) Bayesian optimization methods, and v) Evolu-
tionary computation. Figure 2 summarizes the main
approaches for solving a RL problem. This taxonomy
will be followed in the remainder of this survey to
explore the state-of-the-art of the field.

2 Value Function Methods

The state-value function of a RL problem can be
written in a recursive form as shown in Eq. 1, thus
the value function of a state depends on the imme-
diate reward of the possible future states and their
discounted value function weighted by the transition
probabilities.

V π (s) =
∑

a

π (s, a)
∑

s′
P

(
s′|s, a)

× [
R(s, s′, a) + γV π

(
s′)] (1)

Equivalently, the action-value function can be written
in a recursive form as:

Qπ (s, a)=
∑

s′
P

(
s′|s, a)[

R(s, s′, a)+γQπ
(
s′, a′)]

(2)

Equations 1 and 2 are the Bellman equations for state-
value and action-value respectively. The goal of value
function methods is to compute the value function and
to derive the best policy by maximizing the value func-
tions in each state. It can be shown that there exists an
optimal policy π∗ for which the value function is max-
imized, the optimal state-value function V ∗ is written
as and given by:

V π∗(s) = max
a∈A(s)

∑

s′
P

(
s′|s, a) [

R(s, s′, a) + γV π∗ (
s′)]

(3)

This corresponds to Bellman’s optimality equation for
the state-value function. Similarly, the optimal action-
value function is a Bellman’s optimality equation and
is written as:

Qπ∗ (s) =
∑

s′
P

(
s′|s, a) [

R(s, s′, a) + γ max
a′ Qπ∗ (

s′, a′)
]

(4)

The value function methods provide the means for
the derivation of the optimal value function that is
used for the reconstruction of the optimal policy. This
class of methods is quite popular in the context of
model-based RL [9, 10, 12–26] [27–30] and espe-
cially dynamic programming methods which require

Fig. 2 Categorization of approaches for solving a model-based reinforcement learning problem

J Intell Robot Syst (2017) 86:153–173 157

a known model of the transition dynamics. Other
methods, such as Monte-Carlo and Temporal Differ-
ence, are mainly used in model-free RL since they
don’t require a known model. Figure 3 summarizes
and categorizes works in the relevant literature, where
value function methods have been applied on robotic
systems for model-based RL.

Dynamic Programming (DP) methods are iterative
algorithms and can be distinguished as policy iteration
[34] and value iteration approaches [35]. The policy
iteration consists of two steps; the first step is the pol-
icy evaluation, where the state or action value function
is calculated for a given policy. This is derived from an
iterative procedure that calculates the value function
for each state until a convergence criterion is met. Pol-
icy evaluation is followed by the policy improvement
step, where the best action for each state is derived.

Policy Iteration In [11, 12] the authors employ a pol-
icy iteration approach using the Natural Actor-Critic
algorithm [36]. In the critic part, the policy evaluation
is performed using a temporal difference approach,
namely the LSTD-Q(λ) [37], while the actor part per-
forms the improvement of policy using the natural
gradient approach [38]. An actor-critic algorithm is
also used in [6] where the authors improve the pol-
icy derivation using the gradient of the value function
in the critic part of the algorithm. In [13] a modifi-
cation of the Least-Square Policy Iteration algorithm
[39, 40] is used for performing the evaluation and
improvement steps. In the evaluation step, a para-
metric approximation of the action-value function is
used in order to reduce the state space. The policy
is improved by solving a system of linear equations
for the derivation of the parameters that characterize
the approximated action-value function. The predic-
tion and time efficiency of the algorithm are increased
by employing the prioritized sweeping (PS) technique,
introduced in [41], which focuses the updates of the
state values on “interesting” states. In [9] the authors

use a Gaussian Process [42] model for approximat-
ing the action-value function. The policy evaluation
is based on samples generated from the transition
model, which are used for the approximation of the
action-value. The improvement of the policy can be
performed either by a greedy approach using the opti-
mal action-value for each state, or taking into account
the entire set of possible action samples for each
state.

Value Iteration In policy iteration methods, the pol-
icy is updated only after the evaluation step has
converged, which can be a time and resource con-
suming task. In contrast, the value iteration methods
do not wait until the convergence of the evaluation
procedure for updating the policy. In [20] the value
iteration approach is used in conjunction with PS.
The algorithm is optimized for online learning due
to its parallel execution. The authors of [21] use the
R-Max algorithm, introduced in [43]. It uses value
iteration for planning on the relocatable action model,
which is a decomposed MDP [44]. R-MAX is a sim-
ple but powerful model-based RL algorithm since it
can achieve near-optimal performance with polyno-
mial computational complexity [43]. The algorithm
applies the approach of “optimism under uncertainty”,
assuming that all the unknown states return the max-
imum possible reward and unknown transitions drive
to a fictitious new state. The algorithm consist of two
repeated steps, the compute and act and the observe
and update. At the first step the agent is based to its
knowledge in order to compute and apply the optimal
policy which is executed until the end of the episode
or until a new state is reached. This step is followed by
the observe and update step where the agent updates,
for each taken action, the rewards and the transition
probabilities of the model and recomputes an opti-
mal policy. Thus, R-MAX forces the agent to explore
its domain which leads to an accurate model and
a near-optimal policy. An extension of the R-MAX

Fig. 3 Overview of value function methods literature

158 J Intell Robot Syst (2017) 86:153–173

algorithm, the Relational explorer (REX), that can
handle relational state-spaces is presented in [45], the
authors in [46] expand REX so that it can also handle
demonstrations from experts and also avoid dangerous
policy executions and create safer models [47].

In [22], the authors propose a value iteration algo-
rithm, the RL-DT, which reduces the interactions with
the environment by performing a targeted exploration.
Finally, in [23] the authors also employ value iteration
in order to derive the optimal policy.

DifferentialDynamicPrograming Differential Dynamic
Programing (DDP) is a widely used approach in
model-based RL for the derivation of an optimal pol-
icy. DDP algorithms have their roots in the field of
optimal control. They perform local trajectory opti-
mization and thus they require an initial trajectory in
order to employ a two-step optimization procedure.
DDP algorithms are initialized by specifying a local
quadratic model of the value function and a linear
model of the policy function that corresponds to the
initial trajectory. In the first step of the optimization
procedure the current policy is applied on the dynam-
ics model, which generates a simulated trajectory. In
the second step, the generated trajectory is used for the
calculation of the components of the modeled value
function at each point; then the parameters of the
policy function are updated accordingly.

DDP is employed in [32], where the local quadratic
model of the state-value function is parametrized by
the first and second derivative of the value function
and the model of the local policy depends on the
policy’s gradient. In [17] the authors introduce the
Minimax DDP where a local model of the action-value
function is used. Additionally to traditional DDP, in
Minimax DDP the existence of disturbances is rep-
resented by a disturbance term in the local model of
state value. This approach makes the algorithm capa-
ble of dealing with more inaccurate dynamics models
compared to traditional DDP. A stochastic extension
of DDP, is presented in [33] where the states are
described by probability distributions. Its advance-
ment over conventional DDP methods is that the opti-
mal actions derive from a first-order gradient descent
algorithm and that their convergence is faster [48].
In [49] the authors perform trajectory optimization
in real time by optimizing a constrained utility func-
tion using sequential quadratic programming. Their
approach allows for real-time planning of trajectories

and does not require the computation or storage of
policies.

Linear Quadratic Regulator (LQR) is a special case
of DDP where the transition dynamics are modeled by
a linear approximation, as in Eq. 5, parametrized by A

and B. Where A is a m × m matrix and B is a m × k

matrix and m, k are the dimensions of the state s and
control a vectors respectively. In LQR, the optimal
policy is a linear combination of the state and matrix
Pi (6) which derives from Eq. 11. The reward func-
tion, in the LQR case, represents the cost for being
at state s and applying action a at time step t and it
is represented in a quadratic form, as in Eq. 6, with
parameters Q and W which are positive symmetric
matrices with dimensions m×m and k×k respectively.

s ′ = As + Ba (5)

r (s, a) = sT Qs + aT Wa (6)

By applying Eqs. 5 and 6, the value function that has
to be optimized can be written as:

V π (s) = min
a∈A(s)

[
sT Qs + aT Wa + V π (As + Ba)

]

(7)

which can be optimized by following the value itera-
tion procedure. This yields the optimal policy at each
i-step (8) and the optimal state-value function (9).

π (s) = Kis (8)

V ∗(s) = sT Pis (9)

where matrices K and P (10) and (11) are derived
using DDP as follows:

Ki = −
(
W + BT Pi−1B

)−1
BT Pi−1A (10)

Pi = Q+KT
i WKi+(A+BKi)

T Pi−1(A+BKi) (11)

A more detailed presentation of DDP and LQR can be
found in [50, 51] and [52, Ch. 5].

In [28] the authors use a LQR controller for learn-
ing the required trajectory with a small amount of data.
Furthermore, LQR methods can speed-up the trajec-
tory execution when used in conjunction with iterative
learning control approaches [10, 24]. The authors of
[27] use demonstrated trajectories from experts in
order to further improve the learned optimal policy.
The authors in [4] employ a variant of LQR—the

J Intell Robot Syst (2017) 86:153–173 159

iterative LQR—whose objective is to minimize the
KL divergence between an optimal trajectory and the
trajectory created by the current policy. The minimiza-
tion is subject to constrains ensuring that the algorithm
converges to optimized trajectories and policies that
match. A disadvantage of LQR is the assumption of
linear deterministic state transitions; this can be over-
come by extensions, such as Gauss-Newton LQR, that
have been proposed for handling such cases [25].

Other Approaches Other alternatives to DP are Tem-
poral Difference (TD) and Monte-Carlo (MC) algo-
rithms. Although they are considered to be model-free
methods, since they do not require a model of the
transition dynamics, they are used in model-based RL
in cases where the transition model is not a priori
known and instead is learned online. MC algorithms
are sample-based and use the generated samples for
the estimation of the expected reward. TD learning
algorithms estimate the value function based on other
estimates in an incremental way (bootstrapping) and
thus they don’t require the completion of the RL task.

In [30] the authors employ a Monte Carlo Tree
search algorithm for the estimation of the action-value
function within a multi-thread architecture for achiev-
ing real time learning. A TD learning algorithm—the
SARSA introduced in [53]— is used in [29]. There,
the model is learned on-line from the state transitions
and then is used for the estimation of the action-value
function. In [14] the authors are using the Dyna-Q
algorithm, which combines the Q-learning [54] with
the Dyna framework [55] that integrates model learn-
ing, value estimation and the agent’s reacting. Dyna-Q
has also been employed in [18, 19] for on-line model
updates in order to achieve time efficient learning of
the required task.

3 Return Functions

The selection of the appropriate returns function can
have a significant impact on the performance of
the model-based RL algorithm. The returns function
affects both the convergence and the feasibility of the
learned task, since the derivation of the optimal pol-
icy relies on it. The goal of RL algorithms is to find
the set of actions at each time step that optimizes the
returns function in the long run. The returns func-
tion aggregates rewards or punishments over a whole

episode, i.e. from the initial state s0 until the end of the
task.

The returns functions are classified according to
the length of the task that they accumulate into
finite and infinite horizon functions. The first ones
are more applicable to goal-oriented tasks with an
a priori known target state; thus, they are com-
monly used in robotics applications. Another discrim-
ination among returns functions R is whether the
rewards/punishments r at each step are accumulated
equivalently. Discounted returns functions, as shown
in Eq. 12

R =
∞∑

t=0

γ t r (st , at) (12)

put large influence on early rewards and the influence
is exponentially decreasing with respect to the time
steps of the horizon. On the other hand, in averaged
returns functions, as shown in Eq. 13

R = 1

T

T −1∑

k=0

r (st , at) (13)

all the rewards received during the learning episode
are equivalently accumulated. Figure 4 organizes the
relevant literature of returns functions according to
this criterion.

The discount factor represents the uncertainty
about future rewards that will be obtained by follow-
ing a policy and since the uncertainty rises with time,
the influence of future reward declines. The discount
factor γ has to be selected according to the learned
task and represents a trade-off between the conver-
gence time and the quality of the learned task. Thus,
small discount factors lead to fast convergence of the
RL algorithm. However, then the learned solution can
have unsatisfactory quality since the rewards received
at the end of the horizon have very small influence on
the returns function.

Discounted returns functions are the most popu-
lar on robotics applications of model-based RL. The
choice of the reward function strongly depends on
the goal of the learned task, the constraints of the
robot, and the selection of the policy optimization
procedure. In numerous proposed approaches [5, 7,
10–12, 20, 58, 59, 67] the reward is a distance met-
ric between the target and the current state. In some
other cases it is a cost function that penalizes the devi-
ation from a demonstrated trajectory [6, 16, 24, 25,

160 J Intell Robot Syst (2017) 86:153–173

Fig. 4 Overview of returns functions literature

27, 56]. Furthermore, the reward has to be approx-
imated in quadratic form when applying differential
dynamic programing for the derivation of the optimal
policy [16, 24]. In applications where the state space
is discretized the reward has the form of a step func-
tion [13, 20, 22]. The constraints of the robot and the
environment can also be introduced in a reward func-
tion; e.g. as a cost component that penalizes states
that are in collision or close to one [62]. Finally, there
exist approaches that add a small penalty on all actions
taken by the robot that do not drive it towards the
target state [18, 23]. This happens to achieve faster
convergence of the learning algorithm.

4 Policy Search Methods

Policy search methods constitute an alternative way
of deriving the optimal policy. While value function
methods construct the policy indirectly by finding the
actions that maximize the value function at each state,
policy search methods directly calculate the optimal
policy by modifying its parameters. The algorithms
for the derivation of the optimal parameters can be
classified in three major groups and in a couple of less
popular ones. Gradient-based approaches try to opti-
mize the parametrized policy function by employing
a gradient ascent approach. Their main disadvantage
is that the gradient step parameter needs to be set,

which can affect the convergence of the algorithm. On
the other hand, sampling-based methods do not suffer
from this issue—the policy is parametrized with latent
variables that are inferred using iterative algorithms.
However, their drawbacks are that convergence to the
optimal trajectory is not guaranteed and that they can
create trajectories far from the training data of the
used transition model. On the other hand, Information
Theory methods deal with those problems by bound-
ing the trajectory exploration. Last, approaches based
on Bayesian optimization and evolutionary computa-
tion have also been employed. A taxonomy of policy
search methods is illustrated in Fig. 5.

Gradient-Based In [57], the direct gradient algo-
rithm [74] is used for policy optimization. The pol-
icy is parametrized as an artificial neural network
whose weights are modified during policy search.
The authors speed-up the learning time by training
a simulation-optimal policy and transferring it to the
real system which performs further modifications. In
[59] the authors use a gradient ascent method for the
maximization of the expected reward. The Probabilis-
tic Inference for Learning Control (PILCO) frame-
work, introduced in [67] and applied in [5, 62, 63, 68],
is the state of the art approach for solving RL problems
since it requires small amount of data for learning the
policy and is time efficient. The key characteristic of

Fig. 5 Overview of policy search approaches literature

J Intell Robot Syst (2017) 86:153–173 161

the algorithm is the ability of the transition dynamics
model to handle uncertainty on its inputs [75]. This
characteristic makes more accurate the prediction for
long trajectory horizons and therefore the impact of
modeling errors is reduced.

PILCO employs a gradient method for the policy
improvement. The controller’s optimization criterion
is the minimization of the long term expected return
which penalizes the distance from the target. For the
derivation of the gradient the authors exploit the chain
rule of partial derivatives.

In more detail, PILCO utilizes Gaussian Process as
a method for learning transition dynamics (see further
in Section 5) which yields a set of predictive distribu-
tions for the state of the robot at each time step of the
horizon. Thus, the predictions about the state of the
robot are stochastic and described by normal distri-
butions (p (s1) , p (s2) , . . . , p (sk)) ∼ N (sk|μk, �k).
The next step is to calculate the expected return at each
step of the horizon, as in Eq. 14. Thus, the expected
reward of a trajectory derives from the reward func-
tion r (·) at each state sk of the trajectory. The reward
is weighted by the probability of being at that state
N (sk|μk, �k) as it derives from the transition model
of the algorithm.

Rk = Es [r (sk)] =
∫

r (sk)N (sk|μk, �k) dsk (14)

In this case, the reward function represents the one-
step cost of the applied policy and has to be selected
in order to make the integral in Eq. 14 analytically
tractable.

Given that the policy is a linear mapping and
parametrized by a set of parameters θ = [A, b],
π (sk|θ) as shown in Eq. 15, the goal is to apply a
gradient-descent approach for the derivation of param-
eters θ that minimize the expected return Rk .

π (sk) = Ask + b (15)

Thus, by applying the chain rule, the derivatives in
Eq. 16 remain to be calculated.

dRk

dθ
= dRk

dp (sk)

dp (sk)

dθ
(16)

Since p (sk) is normally distributed, it depends on two
parameters, the mean μk and the covariance matrix
Σk of the normal distribution. Thus, Eq. 16 can be
written as:
dRk

dθ
= ∂Rk

∂μk

dμk

dθ
+ ∂Rk

∂Σk

dΣk

dθ
(17)

The derivatives in Eq. 17 can be computed analytically
by iteratively applying the chain rule, which makes
the use of gradient-based method applicable. Further
details about their derivation can be found in [76].

In [63], PILCO was successfully applied in order
to learn a policy on a high dimensional system in con-
junction with dimensionality reduction. The authors
in [68] employ PILCO for the derivation of a policy
within an imitation learning problem. In this context
the objective function is based on Kullback–Leibler
(KL) divergence, which is a measure of similarity
between a trajectory demonstrated by an expert and
the trajectory created by the controller. PILCO has
also been used in [5] for learning a policy that is able
to generalize to unknown tasks. Moreover, the authors
in [69] employ a neural network control policy where
the network’s weights correspond to the learned pol-
icy parameters. The goal of the network’s stochastic
optimization is the derivation of such parameters that
best correspond to the optimal trajectory. The opti-
mal trajectory is the one that minimizes a defined cost
function using the Newton’s method.

Another gradient-based method for policy opti-
mization is presented in [70], where the authors extend
the model-free policy gradients with parameter-based
exploration (PGPE) method to the model-based sce-
nario (M-PGPE). In this case the policy is deter-
ministic and represented as a linear function. Thus,
for dealing with the agent’s exploration, the policy’s
parameters are sampled from a probability distribution
which depends on a set of hyper-parameters. The goal
of the algorithm is to calculate the hyper-parameters
that maximize the expected return by employing a
gradient ascent method.

Sampling-Based The sampling based approaches that
have been applied for policy search on model-based
RL employ the PEGASUS (Policy Evaluation-of-
Goodness And Search Using Scenarios) algorithm
introduced in [77]. PEGASUS deals with the prob-
lem of sampling variance by transforming a stochastic
MDP or POMDP into an approximated determinis-
tic one. When a stochastic model is used for the
transition dynamics, the model’s prediction is a prob-
ability distribution over the next state p(st+1). Thus,
when a fixed policy is evaluated using the stochastic
model, the predictions for the next state vary because
they are drawn from a probability distribution. As a
result, the expected payoff of the policy is affected.

162 J Intell Robot Syst (2017) 86:153–173

This drawback is solved in PEGASUS by augmenting
the (PO)MDP with a set of fixed predefined random
numbers (stable seeds) which transform the stochas-
tic to a deterministic transition model. The algorithm
is iterative and initialized by the approximated deter-
ministic transition model, the reward function, the
random numbers, the distribution that describes the
belief about the initial state and the policy parame-
ters. The goal is to identify the policy parameters that
maximize the reward function.

PEGASUS has been applied in [60] for learning a
neural network controller consisting of four tunable
parameters. The policy parameters that maximize the
reward derive from a hill-climbing algorithm that can
be either a gradient ascent or a random-walk. The per-
formance of the learned policy using this approach
was found better compared to the one derived from
the demonstrations of a human expert. Moreover, a
neural network controller was also presented in [71].
Its weights are the policy parameters that are tuned
according to the PEGASUS algorithm. In [72] the
authors apply PEGASUS for learning a controller of
six parameters based on the output of a vision system
that is able to identify collision hazard from a monoc-
ular camera. In [56] PEGASUS is used as well for
learning a policy with ten free parameters in conjunc-
tion with the Nelder-Mead method for updating the
parameters.

Information Theory Information theory approaches
exploit the concept of entropy which is used as the
basis for optimizing the parameters of the policy.
Entropy, in the field of information theory, is a mea-
sure of the uncertainty related to an event. In the
context of model-based RL, entropy is used for the
evaluation of a trajectory generated from a policy
compared to a reference trajectory—usually obtained
from an external demonstrator. The authors in [66]
introduce the variational guided policy search algo-
rithm for the derivation of a suitable policy for high-
dimensional complex tasks. The algorithm consists of
two steps, the policy exploration and the policy opti-
mization step. In the first step, differential dynamic
programming is used for trajectory exploration which
penalizes large deviations from the current policy.
In the next step, the parameters of the policy are
optimized based on the trajectory derived from the
exploration step. The optimization is based on the
minimization of KL divergence, an entropy measure,

which is performed using stochastic gradient descent.
In [65] and [8] the model-free Relative Entropy Pol-
icy Search (REPS) algorithm, as introduced in [78], is
extended to model-based RL for learning generalized
upper-level policies that can be used for learning tasks
with slight variations in their context. Upper-level
policies alongside with low-level are applied for learn-
ing generalizations of tasks. Thus, low-level policies
are responsible for a specific context, such as motion
at a specified location, while upper-level policies
generalize this specific context of lower-level poli-
cies. The use of a Gaussian Process transition model
decreases the amount of data required for training, by
generating artificial data that are used for updating
the policy. Even better, it also reduces the interactions
between the robot and the environment. The goal of
the REPS algorithm is to optimize the generalized pol-
icy without deviating significantly from the observed
data. Furthermore, the Trust Region Policy Optimiza-
tion (TRPO) algorithm is presented in [61] where an
objective function is optimized subject to KL diver-
gence constraints. The objective function represents
the expected reward of a stochastic policy while the
KL divergence puts an upper-bound constraint on the
policy’s parameters. Both the objective function and
the divergence constraints are approximated by Monte
Carlo simulation while the optimization problem is
solved by the conjugate gradients method.

The Policy Improvement with Path Integral (PI2)
algorithm is introduced in [79] which derives from the
stochastic optimal control framework and employs the
quantum mechanic’s concept of path integrals for per-
forming policy improvements. The PI2 algorithm has
only one tunable parameter, the exploration noise and
also can scale well on high-dimensional robot learning
problems, such as learning of humanoid robots. Also
its comparison with information theoretic methods
indicate that the later can be anticipated as an approxi-
mation to stochastic optimal control. Furthermore PI2

can be used both on model-based [80, 81] and model-
free RL approaches [82] where the concept of motor
primitives [83] is used for policy parametrization. An
extended presentation of the PI2 algorithm can be
found in the survey by Deisenroth et al. [1].

Another path integral based approach is presented
in [73], the Model Predictive Path Integral Control
(MPPI) for achieving stochastic optimization of tra-
jectories. MPPI, contrary to standard path integral
methods, does not assume that there is noise only on

J Intell Robot Syst (2017) 86:153–173 163

the states that the robot controls through its actions
but also assumes noisy indirectly control states. In
addition, the algorithm provides a clearly formulated
expression of the optimal controls for the entire learn-
ing horizon. Those advancements are achieved by
exploiting the information theory concept of relative
entropy. Thus, MPPI minimizes the entropy between
the optimal and the followed trajectory of the robot by
exploiting the concepts of Radon-Nikodym derivative
and Girsanov’s theorem.

Other Approaches Other methods for policy search
include Bayesian optimization [7] and evolution-
ary computing [64]. In [7] Bayesian optimization is
employed for decreasing the number of evaluations
that are performed on the objective function for the
derivation of the optimal parameters. This can be
achieved by modeling the objective function with a
Gaussian Process model and use this model for eval-
uating the objective function. On the other hand, the
authors in [64] employ an evolutionary computing
approach for the derivation of the optimized policy by
optimizing the weights of an artificial neural network.

5 Transition Models

A transition model is a mapping f (s, a) �→ s′ from
the state s of the robot at a given time step of the hori-
zon, and the applied commands a to the state s′ at the
next time step. Transition models have a large impact
on the performance of model-based RL algorithms
since the policy learning step relies on the accuracy of
their predictions. We distinguish the transition mod-
els that have been employed for model-based RL into

two main classes—the deterministic and the stochastic
models. Deterministic models do not depend on a ran-
dom variable for the prediction of the next state, thus
the prediction of the model will always be the same
for given state and action. On the other hand, stochas-
tic models result in predictions that are defined by a
probability distribution over the future state. Figure 6
illustrates and classifies the models that have been
used in the literature for model-based RL.

Deterministic Models Physics-based models that
describe the transition dynamics are widely used as
deterministic models [4, 12, 16, 26, 57, 81]. The
main disadvantage of such models is that they con-
tain many factors that are difficult to be analytically
expressed, such as friction and dynamics of elas-
tic joints. Another disadvantage is that these models
do not take into account potential changes of the
robot’s environment. To deal with such problems the
authors in [15, 64] enhance the physics models of the
transition with linear regression for inferring param-
eters of the models that are hard to be calculated. A
combination of a physics-based and learning model
is also employed in [17], where a Receptive Field
Weighted Regression (RFWR) is used for modeling
the error between the physics model and the real
robot. RFWR—introduced in [85]—is a local non-
parametric model that is updated incrementally. Its
predictions are based on triggering receptive fields
that define the similarity between the input and the
learned data.

Another method, Locally Weighted Linear Regres-
sion (LWLR), has been applied for learning the tran-
sition model directly from sensory data without any
knowledge about the model of the robot [6, 32, 60].

Fig. 6 Overview of transition models literature

164 J Intell Robot Syst (2017) 86:153–173

LWLR was introduced in [86] and is a nonparamet-
ric model that fits linear regression models locally
on the training data. The predictions of the model’s
regression coefficients are made using the ordinary
least square estimator, weighted by a kernel that pro-
vides a measurement of the similarity between new
input and learned data. Thus, the data-points that are
closer to the input affect the prediction more. Also
online updates of a local linear regression model have
been proposed employed in [69] for learning contact
dynamics of a bipedal robot.

Decision Trees have also been used because of
their ability to generalize the learned model well [22,
30]. They comprise a divide-and-conquer approach,
since they partition the learned data space in order to
make predictions for the inputs. The partition is made
according to the C4.5 algorithm [87], which divides
the training data using the concept of information
gain—an information theory concept—for splitting
the data to different nodes until each node is as “pure”
as possible.

Stochastic Models The state-of-the-art approach for
learning the transition models—and in particular
stochastic models—are the Gaussian Processes (GP),
applied in [5, 8–10, 49, 59, 63, 65, 68, 71]. Gen-
erally, probabilistic models build a distribution over
random variables while GP build one over functions.
Thus, there is not any assumption about the function
f that maps current states and actions to future states.
This fact makes GP a powerful learning method. A
GP is defined by its mean and a kernel (covariance
function). The mean of the GP is assumed to be zero
in most cases and a very common choice for ker-
nels are those that belong to the exponential family.
There exists a variety of methods for setting the ker-
nel’s parameters (hyper-parameters) including greedy
search over the hyper-parameters’ space and marginal
likelihood based methods, which are more widely
used.

In more detail, the objective of a GP in the con-
text of transition models, is to infer the function f

that generates the noisy observations s ′. Assuming
Gaussian noise: s′ = f (s, a) + N(0, σ 2

n I) and for
notation simplicity x = (s, a). Quoting Rasmussen in
[88], a Gaussian Process can be defined as “a collec-
tion of random variables, any finite number of which
have (consistent) joint Gaussian distributions.” Given
a dataset of N training samples which are described by

D attributes and a set of N� testing samples, the mean
μμμ(x) and the covariance �(x, x�) of a GP f are given
in Eqs. 18 and 19 respectively.

μμμ(x) = E [f (x)] (18)

�(x, x�) = E
[
(f (x) − μμμ(x))(f (x�) − μμμ(x�))

]
(19)

In the majority of the applications the mean function
of the GP is zero and the focus is given on the selection
of the appropriate covariance function — also known
as kernel — and its parameters. Kernel functions have
an important role since the performance of the GP
strongly depends on them. They are classified as sta-
tionery or not stationery depending on their invariance
to translations in input space. The most used kernel
is the squared exponential, given in Eq. 20, which
depends on two parameters; the variance σ 2 and the
length-scale λ. The latter controls the distance that the
algorithm extrapolates away from the training data.

�(x, x�) = σ 2exp

(

−||x − x�||22
2λ2

)

(20)

The selection of the kernel’s parameter is usually per-
formed by optimizing the log-likelihood of the GP
given the training data, as in Eq. 21 where constant
β = −n

2 log 2π . This process corresponds to the min-
imization of the partial derivative, w.r.t. the covariance
parameters θ , of the negative log likelihood. Thus, the
minimization of Eq. 22, where a = (

�(x, x) + σ 2
n I

)
s′

yields the optimal parameters of the kernel and can
be achieved by a variety of function optimization
approaches.

log p(s′|X) = −1

2
s′T

(
�(x, x) + σ 2

n I
)−1

s′

−1

2
log |�(x, x) + σ 2

n I| − β (21)

− ∂ log p(s′|X)

∂θ
= −1

2
tr

((
ααT −

(
�(x, x) + σ 2

n I
)−1

)

×∂
(
�(x, x) + σ 2

n I
)

∂θ

)

(22)

Given a new test input x� its predicted target value
s′� corresponds to the mean of the posterior predic-
tive distribution, given in Eq. 23. On the other hand,

J Intell Robot Syst (2017) 86:153–173 165

the covariance, as given in Eq. 24, represents the
uncertainty of that prediction.

s′� = �(x�, x)
(
�(x, x) + σ 2

n I
)−1

s (23)

cov
(
s′�

)=�(x�, x�)−�(x�, x)
(
�(x, x)+σ 2

n I
)−1

�(x�, x)

(24)

A common approach for stochastic modeling, espe-
cially in the early years of model-based RL, is the
partition of the robot’s state-space into grids where an
action results in a transition on a neighbor grid accord-
ing to a probability distribution. In [13] the transition
model is build online based on empirical estimates
derived from the interaction between the robot and the
environment. The model is based on statistics about
the frequency of visits to each state, the transitions and
the immediate rewards. The predictions of the next
state are derived by solving a linear system of equa-
tions. The Cerebellar Model Articulation Controller
(CMAC), a grid-based approach, is used in [15] for
learning the transition model. CMAC was introduced
in [89] and is a value approximation technique that
relies on overlapping grids. The prediction for a new
input is based on relevant data of each grid. In [29] the
state aggregation method is employed for partitioning
the state space. A grid partitions the space and each
action can lead to several neighbor grids according to
the frequency of occurrence on the training data. The
authors in [18, 19] use the CACM algorithm [90] for
the discretization of the state space into cells. CACM
is based on the adjoining property which ensures
transitions only between neighbor cells. Furthermore,
table lookup approaches are used in [14, 20].

Locally Weighted Bayesian Regression (LWBR),
introduced in [91], is employed in [28, 56] as a model
learning algorithm that combines Bayesian inference
and LWLR. The regression coefficients are given
a Gaussian prior and the noise is assumed to be
described as a gamma distribution. The prediction for
each input is made based on its similarity with the
trained data as defined by a weight function and is
described by a t distribution.

In [24] the authors assume that the transition
model is described by a linear combination of the
current state and the applied commands with addi-
tive Gaussian noise. The unknown parameters of the

linear equation are optimized through an Expectation-
Maximization (EM) algorithm based on a refer-
ence trajectory created by an expert. An EM based
approach was also used in [27], where the learn-
ing algorithm does not only predict the future state
but also the actions that are required in order to fol-
low an optimal trajectory, which is introduced by an
expert. The goal of the EM algorithm is to infer the
latent variables that describe both the optimal state
and actions in each time-step. Another approach that
has been used for discrete state-action space is the
use of Dynamic Bayesian Networks (DBN) [23]. In
that approach the learning of MDPs’ transition prob-
abilities corresponds to learning the local structure of
DBN. A variant of multinomial logistic regression is
used for online training of the DBN.

Deep Learning approaches have been also proposed
for learning dynamics models [33, 84]. In [33] the
authors propose the use of two deep feed-forward net-
work architectures where the one is responsible for
modeling the dynamics and the other for modeling
the error and noise. The network’s activation func-
tion is chooses to be the rectified linear units (ReLU)
due to its stability compared to common choices such
as the hyperbolic tangent. Another advantage of this
approach is the network can handle uncertainty on
its inputs and the learning rule derives analytically.
Another method for learning forward dynamics of
industrial manipulators, the PC-ESN++, is presented
in [84] where the authors employ a recurrent neu-
ral network with fixed weights as hidden layer. The
inputs are decorrelated with an unsupervised learning
rule, the predictions derive by performing Bayesian
regression and the noise is inferred directly from data.
The advantage of the algorithm is that it is memory-
less and hence it is much computationally efficient
compared to other methods.

A density estimation method for learning transi-
tion dynamics has been proposed in [92] and applied
in model-based RL [92, 93]. The least-squares con-
ditional density estimation (LSCD) models the tran-
sition probabilities as a linear combination of basis-
functions and model’s parameters. Thus, the algorithm
learns those parameters by minimizing a squared dif-
ference. The advantage of LSCD is that it allows more
generic assumptions about the transition probabilities
compared to GP. On the other hand it is not data
efficient since it requires much data to learn the tran-
sitions. In [93], the authors deal with this problem

166 J Intell Robot Syst (2017) 86:153–173

Fig. 7 Overview of literature on applications that use model-based RL for learning robotic tasks

by performing a supervised dimensionality reduction
approach.

6 Applications on Robotics

Model-based RL has been applied to a wide vari-
ety of robotics applications ranging from surgical
to underwater robotic tasks. Figure 7 organizes the

relevant literature around the various types of consid-
ered robotic systems.

Autonomous Vehicles The majority of applications
deal with autonomous platforms [13, 14, 18–21,
25–27, 30, 56–58, 60, 64, 66, 71–73], including
unmanned aerial (UAV), ground (UGV), and under-
water (UUV) vehicles. In [56, 60] the authors train
a real helicopter’s controller to perform hovering and

Fig. 8 Categorization of model-based RL applications on autonomous vehicles. Each proposed approach is categorized according to
the type of the employed modules

J Intell Robot Syst (2017) 86:153–173 167

acrobatic maneuvers. The state of the helicopter is
described by a 12 dimensional vector and its action
space is 6 dimensional. A simulated helicopter is also
trained for learning the hovering task in [26, 64]. Other
applications include even more challenging tasks,
such as the execution of complex aerobatic maneuvers
both on real [25, 27] and simulated UAVs [16, 26].
Furthermore, model-based RL has been used for the
control of a blimp [71] whose state is parametrized by
a 12 dimensional vector representing the position, ori-
entation and translational and angular velocities. The
action space is 3 dimensional and continuous, rep-
resenting the motor commands on each of the three
motors.

Model-based RL has also been used on UGVs
for learning navigation and docking tasks. In [14]
a Khepera robot is trained to avoid obstacles using
8 infrared sensors. A more complex nonholomonic
platform is used in [19] equipped with an on-board

microcontroller for processing its infrared and sonar
sensors. In [21, 23] the authors used a platform con-
structed with the Lego Mindstorm NXT kit and tested
the navigation ability on different types of terrain.
The state of the robot is captured from an exter-
nal localization system. Furthermore, images from a
monocular camera are used in [72] for inferring the
distance of obstacles. The control commands are the
throttle of the motors and the steering of the car. A
real world application is presented in [30], where a
car is navigated autonomously in real-time. Besides
obstacle avoidance, UGVs are also capable of learn-
ing docking tasks. In [13] a Roomba robot is equipped
with a camera for receiving information about the
environment. Its state is described by two continu-
ous variables—the distance and the angle from the
docking location, while the action is a binary vari-
able. Authors in [20], additionally to [13], equipped
their platform with sonar sensors for perceiving state

Fig. 9 Categorization of model-based RL applications on bipedal robots. Each proposed approach is categorized according to the type
of the employed modules

168 J Intell Robot Syst (2017) 86:153–173

information. The state-space of the robot is discrete
with 189 states and the action-space is six dimen-
sional. Another interesting application is presented
in [73] where an AutoRally vehicle equipped with
an on-board GPU learns aggressive driving. Finally,
model-based RL has also been used on both real and
simulated UAVs for learning cable tracking tasks [57,
58] and swimming gaits [66]. A categorization of the
applications on autonomous vehicles is presented in
Fig. 8.

Bipedal Robots Bipedal applications include learn-
ing penalty kicks [22] and walking gaits [4, 17, 59,
61, 63]. Penalty kicks are learned on an Aldebaran
NAO bipedal robot [22] for use at the RoboCup
competition. The action space is three dimensional,
two of them move the leg parallel to the ball and
the third is the kick action. The state of the robot is
two dimensional and described by the relative posi-
tion of the leg w.r.t the ball which is captured from the
robot’s head camera. In [4] the authors train a simu-
lated bipedal robot to execute a walking task both on
even and uneven terrains; they also tested the ability of
the robot to recover after a push. In [31] a model-based

RL approach is presented for achieving intrinsically
motivated exploration on the iCub humanoid robot.
Also in [17], a five degrees of Freedom (DOF) sim-
ulated bipedal robot learns a walking task with the
ability to cope with disturbances caused from the
controller. In [59] and [63] the authors apply the
learning algorithms on real bipedal platforms using
continuous state and action spaces. Furthermore, in
[61] the authors evaluate their proposed algorithm
with locomotion experiments where a simulated 18-
DOF bipedal learns walking gaits. A categorization
of model-based RL applications on bipedal robots is
presented in Fig. 9.

Robotic Manipulators Another popular field of appli-
cations deals with the control of robotic manipulators.
Task fields range from surgical robotics to motion
control of underactuated manipulators [5–12, 15, 24,
28, 32, 62, 65, 67, 68]. The authors in [24] train two
Berkeley Surgical Robots to perfom a knot-tie task
in high-speed. Furthermore, there exist applications
where the authors train robotic manipulators on ball-
hitting tasks [5, 8, 11, 68]. In [5, 8] the used platform
is a compliant bio-inspired manipulator with spring

Fig. 10 Categorization of model-based RL applications on robotic manipulators. Each proposed approach is categorized according to
the type of the employed modules

J Intell Robot Syst (2017) 86:153–173 169

Fig. 11 State-of-the-art collaborative robots

joints. The state space is continuous and contains
positions and velocities of each joint, while the action-
space is three dimensional and contains the applied
torques. In both cases the robot is trained to per-
form table-tennis related tasks. Also, in [11] a 3 DOF
robot is trained to perform badminton swings. Learn-
ing to perform motion control of a robotic manipulator
has been applied on multiple types of platforms such
as underactuated manipulators [7, 15, 28], low DOF
manipulators (2 or 3 DOF) [6, 7, 9, 10], and more
complex high DOF systems [12, 32, 67]. The learned
tasks include position control [6, 7, 10, 15], pouring
with the PR-2 robot [33], pendulum swinging [28,
32] and more complex manipulation tasks with obsta-
cle avoidance [12, 62]. The manipulators’ state-space
in the majority of the applications, is continuous and
described by the position and acceleration of each
joint. The action-space is also continuous and cor-
responds to the torques applied on actuated joints.
A categorization of model-based RL applications on
robotic manipulators is presented in Fig. 10.

7 Discussion and Conclusion

The previous section reveals the successful deploy-
ment of model-based RL in a variety of robotics
applications. However, what most—if not all—the
surveyed works have in common is that they are deal-
ing with simplistic or “playful” tasks, such as play-
ing table tennis, badminton and pendulum swinging.
Even when more challenging tasks are addressed, e.g.
maneuvering of autonomous vehicles, what is actually
reported is successful tests of very limited practical
applicability. Relevant literature evidently lacks usage
examples of model-based RL in more “serious” fields
requiring reliability and robustness, such as in service

or industrial robotics. This observation is not only
relevant to model-based RL, but extends to machine
learning in general. However, such applications could
be greatly benefited by the ability of robotic manip-
ulators to learn and execute tasks in collaboration (or
just coexistence) with humans, while always adapting
to changes of the environment or the manipulated
objects.

A large portion of the adaptability issues can be
resolved by employing RL algorithms for teaching
robots. Naturally, the most preferable approach for
such tasks appears to be model-based RL, since it
requires much fewer interactions with the environ-
ment compared to model-free RL. This is due to the
use of transition models and is preferable because by
minimizing the interactions with the environment the
hazard of accidents and the robot’s wear and tear are
also minimized. As a result, we build upon the analysis
of the previous sections to illustrate how model-based
RL approaches can be applied to robotic manipulators
in the service, industrial and other robotics fields. Take
as an example pick and place; a very common (found
in many tasks) and potentially challenging (one can
consider assembly as a special case of pick and place)
operation.

To learn an adaptable pick and place operation
the manipulator should be equipped with sensors for
perceiving the environment in order to recognize the
manipulated object and possible collisions. The colli-
sion avoidance is a crucial feature of the system and
can be achieved by appropriately defining the returns
function which can be a mixture of rewards and costs.
The rewards can represent the distance between the
current state and the goal state and also the smoothness
of the trajectory which derives by the policy optimiza-
tion method. Costs can be introduced for undesired
states such as collisions. Another desirable feature is
the fast convergence of the policy learning procedure;
thus policy iterations are not preferable since they suf-
fer from slow convergence as described in Section 2.
On the other hand, the value iteration methods are
not appropriate for large continuous state and action
spaces because they require computing a state-based
or state-action-based value function which is infinite.
The same disadvantage also holds for sampling and
TD learning methods, in addition to their assumption
that there is no prior knowledge about the transition
model. DDP from the class of value function methods
could be a possible solution, but its requirement for

170 J Intell Robot Syst (2017) 86:153–173

initial demonstrated trajectories reduces the autonomy
of the system. Furthermore, Information Theory algo-
rithms, depend on the existence of an initial trajectory
which also reduces the autonomy of the system. Thus,
policy search methods appear to be more capable of
dealing with the requirements posed by collabora-
tive robotics applications. This is due to their ability
to reduce the dimensionality of the policy learning
problem by parameterizing the policy function and
inferring the appropriate parameters. Among these
methods, the most promising are the gradient and
sampling-based ones.

Given that the transition models are important for
the performance of the learning algorithm they should
be carefully chosen according to the task. Currently, in
the robotics market, there is a trend towards low cost,
compliant robotic manipulators. These characteristics
make them more affordable and safer for humans, but
at the same time pose significant challenges on tran-
sition modeling. One of those challenges, is the use
of elastic joints that are extremely difficult to model
using physics-based approaches—the Baxter robot by
Rethink Robotics (Fig. 11a) is a typical example of
this case. Another challenge is the low quality of the
used internal sensors, which—even if it lowers the
cost—results in noisy measurements. To make things
even more difficult, there also exist manipulators that
are not equipped with force/torque sensors, but instead
use approximation methods in order to estimate the
applied torques—Universal Robots (Fig. 11b) models
being representative examples. The impact of those
issues on model learning is investigated in [94], where
the need for a stochastic transition model that is able to
learn from noisy sensory data and handle uncertainty
in inputs is explored.

Summarizing, in this paper we presented methods
that have been proposed in the literature for learning
robotic tasks using model-based RL. Those meth-
ods have been classified according to the approach
used for the derivation of the policy, which can
be based on computing value-functions or policies.
Furthermore, different approaches for modeling the
transition dynamics have been presented and also
methods for defining the returns function. Finally we
have proposed a possible outline of a model-based RL
approach that could be applied on robotic manipula-
tors for learning new tasks and adapting to changes.
The main goal of such an approach is to achieve safer
robot-human interaction and lower wear and tear by

reducing the interactions between the robot and its
environment. It is the strong belief of the authors of
this survey that model-based RL can pave the way
to more intelligent and adaptive robots. The rich-
ness of the relevant literature reveals the maturity of
the underlying concepts, as well as their potential in
applications requiring more reliability and robustness.

Acknowledgments This work has been supported by the
European Commission through the research project “Sustain-
able and Reliable Robotics for Part Handling in Manufacturing
Automation (STAMINA)”, FP7-ICT-2013-10-610917.

References

1. Deisenroth, M.P.: A survey on policy search for robotics.
Foundations and Trends in Robotics 2(1–2), 1–142 (2011)

2. Kober, J., Bagnell, J.A., Peters, J.: Reinforcement learning
in robotics: a survey. Int. J. Robot. Res. 32(11), 1238–1274
(2013)

3. Kormushev, P., Calinon, S., Caldwell, D.G.: Reinforcement
learning in robotics: applications and real-world challenges.
Robotics 2(3), 122–148 (2013)

4. Levine, S., Koltun, V.: Learning complex neural network
policies with trajectory optimization. In: Proceedings of
the 31St International Conference on Machine Learning
(ICML-14), pp. 829–837 (2014)

5. Deisenroth, M.P., Englert, P., Peters, J., Fox, D.: Multi-task
policy search for robotics. In: IEEE International Confer-
ence on Robotics and Automation, IEEE, pp. 3876–3881
(2014)

6. van Rooijen, J., Grondman, I., Babuška, R.: Learning rate
free reinforcement learning for real-time motion control
using a value-gradient based policy. Mechatronics 24(8),
966–974 (2014)

7. Wilson, A., Fern, A., Tadepalli, P.: Using trajectory data to
improve bayesian optimization for reinforcement learning.
J. Mach. Learn. Res. 15(1), 253–282 (2014)

8. Kupcsik, A., Deisenroth, M.P., Peters, J., Loh, A.P.,
Vadakkepat, P., Neumann, G.: Model-based contextual pol-
icy search for data-efficient generalization of robot skills.
Artif. Intell. (2014)

9. Strahl, J., Honkela, T., Wagner, P.: A gaussian process
reinforcement learning algorithm with adaptability and
minimal tuning requirements. In: Artificial Neural Net-
works and Machine Learning–ICANN 2014, pp. 371–378.
Springer (2014)

10. Boedecker, J., Springenberg, J.T., Wulfing, J., Riedmiller,
M.: Approximate real-time optimal control based on sparse
gaussian process models. In: 2014 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement
Learning (ADPRL), IEEE, pp. 1–8 (2014)

11. Depraetere, B., Liu, M., Pinte, G., Grondman, I., Babuška,
R.: Comparison of model-free and model-based methods
for time optimal hit control of a badminton robot. Mecha-
tronics 24(8), 1021–1030 (2014)

J Intell Robot Syst (2017) 86:153–173 171

12. Guenter, F., Hersch, M., Calinon, S., Billard, A.: Reinforce-
ment learning for imitating constrained reaching move-
ments. Adv. Robot. 21(13), 1521–1544 (2007)

13. Shaker, M.R., Yue, S., Duckett, T.: Vision-based rein-
forcement learning using approximate policy iteration. In:
International Conference on Advanced Robotics (2009)

14. Touzet, C.F.: Neural reinforcement learning for behaviour
synthesis. Robot. Auton. Syst. 22(3-4), 251–281 (1997)

15. Boone, G.: Efficient reinforcement learning: model-based
Acrobot control. In: Proceedings of International Confer-
ence on Robotics and Automation, p. 1 (1997)

16. Abbeel, P., Quigley, M., Ng, A.Y.: Using inaccurate mod-
els in reinforcement learning. In: Proceedings of the 23rd
International Conference on Machine Learning - ICML ’06,
pp. 1–8. ACM Press, New York, USA (2006)

17. Morimoto, J., Atkeson, C.G.: Minimax differential dynamic
programming: an application to robust biped walking. Adv.
Neural Inf. Proces. Syst. 15, 1539–1546 (2003)

18. Martı́nez-Marı́n, T., Duckett, T.: Fast reinforcement learn-
ing for vision-guided mobile robots. In: Proceedings - IEEE
International Conference on Robotics and Automation,
vol. 2005, pp. 4170–4175 (2005)

19. Martinez-Marin, T.: On-line optimal motion planning for
nonholonomic mobile robots. In: Proceedings 2006 IEEE
International Conference on Robotics and Automation,
2006. ICRA 2006, pp. 512–517. IEEE (2006)

20. Bakker, B., Zhumatiy, V., Gruener, G., Schmidhuber, J.:
Quasi-online reinforcement learning for robots. In: Pro-
ceedings - IEEE International Conference on Robotics and
Automation, vol. 2006, pp. 2997–3002 (2006)

21. Leffler, B.R., Littman, M.L., Edmunds, T.: Efficient rein-
forcement learning with relocatable action models. In:
Proceedings of the 22nd AAAI Conference on Artificial
Intelligence, pp. 572–577 (2007)

22. Hester, T., Quinlan, M., Stone, P.: Generalized model learn-
ing for reinforcement learning on a humanoid robot. In:
IEEE International Conference on Robotics and Automa-
tion (ICRA), 2010, pp. 2369–2374. IEEE (2010)

23. Nguyen, T., Li, Z., Silander, T., Leong, T.Y.: Online feature
selection for model-based reinforcement learning. Proceed-
ings of the 30th International Conference on Machine
Learning (ICML-13), 498–506 (2013)

24. Van Den Berg, J., Miller, S., Duckworth, D., Hu, H.,
Wan, A., Fu, X.Y., Goldberg, K., Abbeel, P.: Superhu-
man performance of surgical tasks by robots using iterative
learning from human-guided demonstrations. In: Proceed-
ings - IEEE International Conference on Robotics and
Automation, pp. 2074–2081 (2010)

25. Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter
aerobatics through apprenticeship learning. Int. J. Robot.
Res. 29(13), 1608–1639 (2010)

26. Ross, S., Bagnell, J.A.: Agnostic system identification for
model-based reinforcement learning. In: Proceedings of
the 29th International Conference on Machine Learning,
pp. 1703–1710 (2012)

27. Coates, A., Abbeel, P., Ng, A.Y.: Apprenticeship learn-
ing for helicopter control. Commun. ACM 52(7), 97–105
(2009). doi:10.1145/1538788.1538812

28. Schneider, J.G.: Exploiting Model Uncertainty Estimates
for Safe Dynamic Control Learning. In: Neural Informa-
tion Processing Systems 9, pp. 1047–1053. The MIT Press
(1996)

29. Kuvayev, L., Sutton, R.: Model-based reinforcement learn-
ing with an approximate, learned model. In: Proceedings
of the Ninth Yale Workshop on Adaptive and Learning
Systems, pp. 101–105 (1996)

30. Hester, T., Quinlan, M., Stone, P.: RTMBA: a real-time
model-based reinforcement learning architecture for robot
control. In: IEEE International Conference on Robotics and
Automation, pp. 85–89 (2012)

31. Frank, M., Leitner, J., Stollenga, M., Förster, A.,
Schmidhuber, J.: Curiosity driven reinforcement learning
for motion planning on humanoids. Frontiers in neuro-
robotics 7, 25 (2014)

32. Atkeson, C.G.: Nonparametric model-based reinforcement
learning. In: Advances in Neural Information Processing
Systems, pp. 1008–1014 (1998)

33. Yamaguchi, A., Atkeson, C.G.: Neural networks and differ-
ential dynamic programming for reinforcement learning prob-
lems. In: 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5434–5441. IEEE (2016)

34. Howard, R.: Dynamic Programming and Markov Pro-
cesses. Technology Press of the Massachusetts Institute of
Technology (1960)

35. Bellman, R.E.: Dynamic Programming. Princeton Univer-
sity Press, Princeton (1957)

36. Peters, J., Schaal, S.: Natural actor-critic. Neurocomputing
71(7), 1180–1190 (2008)

37. Peters, J., Vijayakumar, S., Schaal, S.: Reinforcement learn-
ing for humanoid robotics. In: Proceedings of the Third
IEEE-RAS International Conference on Humanoid Robots,
pp. 1–20 (2003)

38. Amari, S.I.: Natural gradient works efficiently in learning.
Neural Comput. 10(2), 251–276 (1998)

39. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration.
J. Mach. Learn. Res. 4, 1107–1149 (2003)

40. Lagoudakis, M., Parr, R., Littman, M.: Least-squares meth-
ods in reinforcement learning for control. In: Vlahavas, I.,
Spyropoulos, C. (eds.) Methods and Applications of Arti-
ficial Intelligence. Volume 2308 of Lecture Notes in Com-
puter Science, pp. 249–260. Springer, Berlin, Heidelberg
(2002)

41. Moore, A.W., Atkeson, C.G.: Prioritized sweeping: rein-
forcement learning with less data and less time. Mach.
Learn. 13(1), 103–130 (1993)

42. Rasmussen, C.E.: Gaussian Processes for Machine Learn-
ing. MIT Press (2006)

43. Brafman, R.I., Tennenholtz, M.: R-max-a general polyno-
mial time algorithm for near-optimal reinforcement learn-
ing. J. Mach. Learn. Res. 3, 213–231 (2003)

44. Sherstov, A.A., Stone, P.: Improving Action Selection in
Mdp’s via Knowledge Transfer. In: AAAI, vol. 5, pp. 1024–
1029 (2005)

45. Lang, T., Toussaint, M., Kersting, K.: Exploration in rela-
tional domains for model-based reinforcement learning. J.
Mach. Learn. Res. 13, 3725–3768 (2012)

46. Martı́nez, D., Alenya, G., Torras, C.: Relational reinforce-
ment learning with guided demonstrations. Artif. Intell.
(2015)

47. Martı́nez, D., Alenya, G., Torras, C.: Safe robot execu-
tion in model-based reinforcement learning. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 2015, pp. 6422–6427 (2015)

http://dx.doi.org/10.1145/1538788.1538812

172 J Intell Robot Syst (2017) 86:153–173

48. Yamaguchi, A., Atkeson, C.G.: Differential dynamic pro-
gramming with temporally decomposed dynamics. In:
IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids), 2015, pp. 696–703 (2015)

49. Andersson, O., Heintz, F., Doherty, P.: Model-based
reinforcement learning in continuous environments using
real-time constrained optimization. In: Twenty-Ninth
AAAI Conference on Artificial Intelligence (AAAI15)
(2015)

50. Anderson, B.D., Moore, J.B.: Optimal control: linear
quadratic methods. Courier Corporation (2007)

51. Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P., Bertsekas,
D.P.: Dynamic Programming and Optimal Control, vol. 1.
Athena Scientific Belmont, MA (1995)

52. Bradtke, S.J.: Incremental dynamic programming for on-
line adaptive optimal control. Phd thesis, Amherst, MA,
USA. UMI Order No. GAX95-10446 (1995)

53. Rummery, G.A., Niranjan, M.: On-line Q-learning using
connectionist systems. Technical Report 166 Cambridge
University Engineering Department (1994)

54. Watkins, C., Dayan, P.: Technical note: Q-learning. Mach.
Learn. 8(3–4), 279–292 (1992)

55. Sutton, R.S.: Dyna, an integrated architecture for learning,
planning, and reacting. ACM SIGART Bull. 2(4), 160–163
(1991)

56. Bagnell, J., Schneider, J.: Autonomous helicopter control
using reinforcement learning policy search methods. In:
IEEE International Conference on Robotics and Automa-
tion, vol. 2, pp. 1615–1620 (2001)

57. El-Fakdi, A., Carreras, M.: Policy gradient based rein-
forcement learning for real autonomous underwater cable
tracking. In: 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3635–3640. IEEE
(2008)

58. El-Fakdi, A., Carreras, M.: Two-step gradient-based rein-
forcement learning for underwater robotics behavior learn-
ing. Robot. Auton. Syst. 61(3), 271–282 (2013)

59. Morimoto, J., Atkeson, C.G.: Nonparametric representa-
tion of an approximated poincaré map for learning biped
locomotion. Auton. Robot. 27(2), 131–144 (2009)

60. Ng, A.Y., Kim, H.J., Jordan, M.I., Sastry, S.: Autonomous
helicopter flight via reinforcement learning. Adv. Neural
Inf. Proces. Syst. 16(16), 363–372 (2004)

61. Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz,
P.: Trust region policy optimization. In: Proceedings of
the 32nd International Conference on Machine Learning,
pp. 1889–1897 (2015)

62. Deisenroth, M., Rasmussen, C., Fox, D.: Learning to con-
trol a low-cost manipulator using data-efficient reinforce-
ment learning. RSS (2011)

63. Deisenroth, M.P., Calandra, R., Seyfarth, A., Peters, J.:
Toward fast policy search for learning legged locomotion.
In: IEEE International Conference on Intelligent Robots
and Systems, pp. 1787–1792 (2012)

64. Koppejan, R., Whiteson, S.: Neuroevolutionary reinforce-
ment learning for generalized helicopter control. In: Pro-
ceedings of the 11Th Annual Conference on Genetic and
Evolutionary Computation - GECCO ’09, p. 145. ACM
Press, New York, USA (2009)

65. Kupcsik, A., Deisenroth, M., Peters, J., Neumann, G.:
Data-efficient generalization of robot skills with contextual

policy search. In: Proceedings of the National Conference
on Artificial Intelligence (AAAI) (2013)

66. Levine, S., Koltun, V.: Variational policy search via tra-
jectory optimization. In: Advances in Neural Information
Processing, pp. 207–215 (2013)

67. Deisenroth, M., Rasmussen, C.E.: PILCO: a model-based
and data-efficient approach to policy search. In: 28th Inter-
national Conference on Machine Learning, pp. 465–472
(2011)

68. Englert, P., Paraschos, A., Peters, J., Deisenroth, M.P.:
Model-based imitation learning by probabilistic trajectory
matching. In: IEEE International Conference on Robotics
and Automation, pp. 1922–1927 (2013)

69. Mordatch, I., Mishra, N., Eppner, C., Abbeel, P.: Combin-
ing model-based policy search with online model learning
for control of physical humanoids. In: 2016 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 242–248 (2016)

70. Tangkaratt, V., Mori, S., Zhao, T., Morimoto, J., Sugiyama,
M.: Model-based policy gradients with parameter-based
exploration by least-squares conditional density estimation.
Neural Netw. 57, 128–140 (2014)

71. Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian pro-
cesses and reinforcement learning for identification and
control of an autonomous blimp. In: Proceedings 2007
IEEE International Conference on Robotics and Automa-
tion, pp. 742–747 (2007)

72. Michels, J., Saxena, A., Ng, A.Y.: High speed obstacle
avoidance using monocular vision and reinforcement learn-
ing. In: Proceedings of the 22nd International Conference
on Machine Learning, ACM, pp. 593–600 (2005)

73. Williams, G., Drews, P., Goldfain, B., Rehg, J.M.,
Theodorou, E.A.: Aggressive driving with model predictive
path integral control. In: 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1433–1440
(2016)

74. Baxter, J., Bartlett, P.L.: Direct gradient-based reinforce-
ment learning. In: The 2000 IEEE International Symposium
on Circuits and Systems, 2000. Proceedings. ISCAS 2000
Geneva, vol. 3, pp. 271–274. IEEE (2000)

75. Girard, A., Rasmussen, C.E., Candela, J.Q., Murray-Smith,
R.: Gaussian process priors with uncertain inputs appli-
cation to multiple-step ahead time series forecasting. In:
Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in
Neural Information Processing Systems 15, pp. 545–552.
MIT Press (2003)

76. Deisenroth, M.P.: Efficient Reinforcement Learning Using
Gaussian Processes, vol. 9. KIT Scientific Publishing
(2010)

77. Ng, A.Y., Jordan, M.: PEGASUS: a policy search method
for large MDPs and POMDPs. In: Sixteenth Conference on
Uncertainty in Artificial Intelligence, pp. 406–415. Morgan
Kaufmann Publishers Inc (2000)

78. Peters, J., Mulling, K., Altun, Y.: Relative entropy policy
search. In: Twenty-Fourth AAAI Conference on Artificial
Intelligence (2010)

79. Theodorou, E., Buchli, J., Schaal, S.: A generalized path
integral control approach to reinforcement learning. J.
Mach. Learn. Res. 11(Nov), 3137–3181 (2010)

80. Pan, Y., Theodorou, E., Kontitsis, M.: Sample effi-
cient path integral control under uncertainty. In: Cortes,

J Intell Robot Syst (2017) 86:153–173 173

C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett,
R. (eds.) Advances in Neural Information Processing
Systems 28, pp. 2314–2322. Curran Associates, Inc
(2015)

81. Colomé, A., Planells, A., Torras, C.: A friction-model-
based framework for reinforcement learning of robotic
tasks in non-rigid environments. In: 2015 IEEE Interna-
tional Conference on Robotics and Automation, (ICRA),
pp. 5649-5654. IEEE (2015)

82. Theodorou, E., Buchli, J., Schaal, S.: Reinforcement learn-
ing of motor skills in high dimensions: a path integral
approach. In: IEEE International Conference on Robotics
and Automation (ICRA), 2010, IEEE, pp. 2397–2403
(2010)

83. Kober, J., Peters, J.R.: Policy search for motor primitives
in robotics. In: Advances in Neural Information Processing
Systems, pp. 849–856 (2009)

84. Polydoros, A.S., Nalpantidis, L.: A reservoir comput-
ing approach for learning forward dynamics of indus-
trial manipulators. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016, IEEE,
pp. 612–618 (2016)

85. Schaal, S., Atkeson, C.G.: Constructive incremental learn-
ing from only local information. Neural Comput. 10, 2047–
2084 (1997)

86. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted
learning for control. In: Lazy Learning, pp. 75–113.
Springer (1997)

87. Quinlan, J.: Induction of decision trees. Mach. Learn. 1(1),
81–106 (1986)

88. Rasmussen, C.E.: Gaussian processes in machine learning.
In: Advanced Lectures on Machine Learning, pp. 63–71.
Springer (2004)

89. Albus, J.S.: A new approach to manipulator control: the
cerebellar model articulation controller (CMAC). J. Dyn.
Syst. Meas. Control. 97(3), 220–227 (1975)

90. Zufiria, P., Martı́nez-Marı́n, T.: Improved optimal control
methods based upon the adjoining cell mapping technique.
J. Optim. Theory Appl. 118(3), 657–680 (2003)

91. Andrew Moore, J.S.: Memory-based stochastic optimiza-
tion. In: Touretzky, D., Mozer, M., Hasselm, M. (eds.)
Neural Information Processing Systems 8, vol. 8, pp. 1066–
1072. MIT Press (1996)

92. Sugiyama, M., Takeuchi, I., Suzuki, T., Kanamori, T.,
Hachiya, H., Okanohara, D.: Least-squares conditional den-
sity estimation. IEICE Trans. Inf. Syst. 93(3), 583–594
(2010)

93. Tangkaratt, V., Morimoto, J., Sugiyama, M.: Model-based
reinforcement learning with dimension reduction. Neural
Netw. 84, 1–16 (2016)

94. Polydoros, A.S., Nalpantidis, L., Kruger, V.: Real-time
deep learning of robotic manipulator inverse dynamics. In:
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 3442–3448 (2015)

Athanasios S. Polydoros is Ph.D. Candidate at the Robotics
Vision and Machine Intelligence (RVMI) group of the Depart-
ment of Mechanical and Manufacturing Engineering at Aalborg
University, Denmark. He holds a M.Sc. (2013) with Distinction
from The University of Edinburgh, School of Informatics and a
Dip.Eng (2011) in Production Engineering from the Democri-
tus University oh Thrace, Greece. His research interests include
robot learning and artificial intelligence.

Lazaros Nalpantidis (Male) is Associate Professor of Robotics
within the Department of Mechanical and Manufacturing Engi-
neering at Aalborg University. Before that, he was a post-
doctoral researcher at the Computer Vision & Active Perception
Lab. (CVAP) of the Royal Institute of Technology (KTH), Swe-
den. He holds a Ph.D. (2010) in Robot Vision from the Dem-
ocritus University of Thrace, Greece. He holds a B.Sc. (2003)
in Physics and a M.Sc. degree (2005) in Electronic Engineer-
ing both from the Aristotle University of Thessaloniki, Greece.
He has been involved in several EU projects, projects funded
by the European Space Agency (ESA), as well as in numer-
ous national projects. His current research interests include
cognitive robotics and active robot vision systems.

	Model-based RL for robotics
	Abstract
	Introduction
	Background on Model-Based RL

	Value Function Methods
	Policy Iteration
	Value Iteration
	Differential Dynamic Programing
	Other Approaches

	Return Functions
	Policy Search Methods
	Gradient-Based
	Sampling-Based
	Information Theory
	Other Approaches

	Transition Models
	Deterministic Models
	Stochastic Models

	Applications on Robotics
	Autonomous Vehicles
	Bipedal Robots
	Robotic Manipulators

	Discussion and Conclusion
	Acknowledgments
	References

