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Abstract Unmanned vehicles, both aerial and ground,
are being used in several monitoring applications to
collect data from a set of targets. This article addresses
a problem where a group of heterogeneous aerial
or ground vehicles with different motion constraints
located at distinct depots visit a set of targets. The
vehicles also may be equipped with different sensors,
and therefore, a target may not be visited by any vehi-
cle. The objective is to find an optimal path for each
vehicle starting and ending at its respective depot such
that each target is visited at least once by some vehi-
cle, the vehicle–target constraints are satisfied, and
the sum of the length of the paths for all the vehi-
cles is minimized. Two variants of this problem are
formulated (one for ground vehicles and another for
aerial vehicles) as mixed-integer linear programs and
a branch-and-cut algorithm is developed to compute
an optimal solution to each of the variants. Computa-
tional results show that optimal solutions for problems
involving 100 targets and 5 vehicles can be obtained
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within 300 seconds on average, further corroborating
the effectiveness of the proposed approach.
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Reeds-Shepp vehicles

1 Introduction

Unmanned aerial vehicles, ground vehicles and under-
water vehicles are being used routinely in military
applications such as border patrol, reconnaissance and
surveillance expeditions. They are also being used
for civilian applications like remote sensing, traffic
monitoring, weather and hurricane monitoring [1–3].
The missions employing these vehicles operate with
constraints on time and resource. Often, a heteroge-
neous fleet of vehicles differing in either structure or
function or both is employed for the completion of a
mission. This article addresses a commonly encoun-
tered path planning problem for such missions. We
classify the heterogeneity of these vehicles into two
categories: structural and functional heterogeneity.
Vehicles are said to be structurally heterogeneous if
they differ in design and dynamics. This can lead to
differences in fuel consumption, maximum speed at
which they can travel, payload capacity, etc [4, 5]. This
is a realistic assumption as some structural differences
are always present between any pair of vehicles. A
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collection of vehicles is said to be functionally hetero-
geneous if not all vehicles may be able to visit a target.
Functional heterogeneity results because vehicles may
occasionally be equipped with disparate sensors due to
payload restrictions. In this case, we partition the set
of targets into disjoint subsets: (i) targets to be visited
by specific vehicles, and (ii) common targets that can
be visited by any of the vehicles.

This article considers two variants of the following
heterogeneous, multiple depot, multiple unmanned
vehicle path planning problem: given a set of targets
and a fleet of heterogeneous vehicles located at dis-
tinct depots, an heading angle for visiting each target
and each depot, find a path for each vehicle that starts
and ends at its depot such that each target is visited
by at least one vehicle, the vehicle–target constraints
are satisfied, the paths satisfy the motion constraints
of the respective vehicles, and the total length of the
paths traveled by all the vehicles is a minimum. The
first variant of the problem considers ground vehicles
where each vehicle can move forwards and backwards
at a constant velocity with a bound on its minimum
turning radius; a vehicle which satisfies these motion
constraints is commonly referred to as the Reed-Shepp
vehicle [6] in the literature. The second variant of the
problem considers aerial vehicles where each vehicle
can only move forwards at a constant velocity with a
bound on its minimum turning radius; a vehicle which
satisfies these motion constraints is called a Dubins

vehicle [7] in the literature. Given the desired head-
ing angles of the vehicles at the target locations, one
can compute the length of the shortest path between
any two targets for a Reed-Shepp vehicle and a Dubins
vehicle using the results in [6] and [7], respectively.
The main difference between solving the two variants
of the path planning problem lies in the fact that these
lengths are symmetric for ground vehicles and asym-
metric for aerial vehicles, i.e., for any two targets i and
j , if dij denotes the length of traveling from the ith

target to the j th target, then dij = dji for the ground
vehicle, and dij may not be equal to dji for the aerial
vehicle. Refer to Figs. 1 and 2 for an illustration of
a feasible solution to the ground and aerial vehicle
problems, respectively. The ground vehicle variant is
referred to as the Multiple Ground Vehicle Path plan-
ning Problem (MGVPP) and the aerial vehicle variant
is referred to as the Multiple Around Vehicle Path
planning Problem (MAVPP).

The MGVPP and MAVPP are generalizations of
the multiple depot symmetric [8] and asymmetric
multiple traveling salesmen problems, respectively,
which are known to be NP-hard. The main contri-
butions of this article are as follows: (i) we develop
mixed-integer linear programming formulations for
the MGVPP and MAVPP, respectively, (ii) the linear
programming relaxation of both the formulations are
then strengthened by introducing new valid inequal-
ities, (iii) a transformation method to transform any

Fig. 1 A feasible solution
for a MGVPP with the
ground vehicles modeled as
Reeds-Shepp vehicles
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Fig. 2 A feasible solution
for a MAVPP with the
aerial vehicles modeled as
Dubins vehicles

result of the MVAPP to the MVGPP is presented,
(iv) a branch-and-cut algorithm to compute an opti-
mal solution to any instance of the MGVPP and
MAVPP based on the formulations is elaborated, and
(v) finally, extensive computational results to corrob-
orate the effectiveness of the proposed algorithms
are presented. To the best of our knowledge, this is
the first article to develop algorithms to compute an
optimal solution for these variants of the problem.
The reminder of the article is organized as follows.
In Section 2, we discuss the relevant literature. In
Sections 3–4, we formulate the two problems as a
mixed-integer linear programs and present additional
valid inequalities to strengthen the linear program-
ming relaxations. A branch-and-cut algorithm based
on the formulations is described in Section 5, and
Section 6 presents computational results on several
classes of test instances.

2 Related Work

The single vehicle variant of the MGVPP and MAVPP
is the symmetric and asymmetric traveling salesman
problem (STSP and ATSP), respectively. Over the past
two decades, several methods including exact algo-
rithms, heuristics, and approximation algorithms have
been developed to address the STSP and the ATSP [9].
The MGVPP and MAVPP reduce to the multiple depot

symmetric and asymmetric multiple traveling sales-
men problems (MDSMTSP and MDAMTSP) when
all the vehicles are homogeneous. Authors in [8, 10]
present an algorithm to solve the symmetric version
to optimality. Another variant of the MDSMTSP that
has received considerable attention in the literature is
the single depot symmetric multiple traveling sales-
man problem, which we abbreviate as MSTSP. In the
MSTSP, there are m homogeneous ground vehicles
that have to visit a set of customers from a single
depot, and every vehicle must at least visit one target.
For a homogeneous MSTSP and its variations, Kara
and Bektas present some integer linear programming
formulations in [11]. Bektas reviews the applications,
exact and heuristic solution procedures and transfor-
mations of MSTSP to the STSP in [12]. A branch-
and-bound-based method for large-scale MSTSP may
be found in [13]. To the best of our knowledge, there
are no computationally efficient algorithms in the lit-
erature to solve any variant of the multiple vehicle
asymmetric versions, discussed thus far, to optimality.
The asymmetric travel distances is a specific feature
of the aerial vehicles, in particular, fixed wing aircrafts
that feature in applications pertaining to surveillance
missions using Dubins vehicle models (see [14–19]
and references therein).

The MGVPP can also be considered as a special
case of the multiple depot vehicle routing problem
(MDVRP). The MDVRP consists of finding a set of
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routes for based on a set of given depots to serve the
demand of a set of customers with multiple homo-
geneous vehicles of limited capacity. Laporte et al.
[20] study variants of this problem with asymmet-
ric travel distances and propose branch-and-bound
algorithms to solve the problem to optimality. More
recently, authors in [21] have developed an exact
solution framework to solve different vehicle rout-
ing problems that can be applied to the MDVRP
as well. Taillard introduced and developed a column
generation heuristic for the vehicle routing problems
(VRPs) using an heterogeneous ground vehicle fleet
in [22]. He assumed the fleet of vehicles to be struc-
turally heterogeneous. Since then, a wide range of
heuristics, exact algorithms, and approximation algo-
rithms have been developed for routing problems with
structurally heterogeneous fleet of vehicles. To our
knowledge, there is no algorithm available in the lit-
erature to solve any variant of heterogeneous VRPs to
optimality.

Baldacci et al. [23] give an overview of approaches
to solve heterogeneous VRPs. In particular, they clas-
sify the variants described in the literature, review the
lower bounds and the heuristics and compare the per-
formance of the different algorithms on benchmark
instances. Routing problems with functionally het-
erogeneous vehicles have also been addressed in the
vehicle routing literature. They are often referred to
as site-dependent vehicle routing problems. The site-
dependent vehicle routing problem generalizes the
classical VRP in order to represent the compatibility
relationship between customer sites and vehicle types.
In this problem, we have a functionally heterogeneous
fleet of vehicles with vehicle–target constraints. A
variety of heuristics based on local search methods,
tabu search etc. are available in the literature for solv-
ing the site dependent VRP and some of its variants
[24, 25].

Riddhi et al. present an approximation algorithm
for the 2-depot heterogeneous hamiltonian path prob-
lem in [26]. This is the first paper that considers
both functional and structural heterogeneous ground
vehicles. Apart from [26], we are not aware of any lit-
erature that addresses multiple depot routing problem
with a functional and structural heterogeneous fleet of
ground or aerial vehicles and develops algorithms to
solve them to optimality. The main focus of this arti-
cle is the development of an exact algorithm based
on a branch-and-cut method [27, 28] for solving the

MGVPP and MAVPP. We also present a computa-
tional study for the algorithm in order to evaluate its
performance.

3 Mathematical Formulation

This section is presented in two parts: the first part
develops an integer linear programming formulation
for the MGVPP after introducing the relevant notation
and the second part develops a similar formulation for
the MAVPP. Let T denote the set of targets and we
have a heterogeneous fleet of n vehicles initially sta-
tioned at distinct depots. Let D = {d1, d2, . . . , dn}
represent the set of the depots. We will refer to the set
V = D ∪ T as the set of vertices. Associated with
each vertex i ∈ V is an orientation angle δi which is
the angle at which any vehicle has to arrive and depart
from the vertex. Furthermore, we also assume that
there are vehicle–target constraints where each vehicle
v is required to visit a subset of targets Rv ⊆ T with
∩iRi = ∅. We refer to these targets as functional het-
erogeneous targets. Note that the sets R1, . . . , Rn are
specified a priori and only a common target present in
T \(∪iRi) can be visited by any vehicle. The notations
that are introduced thus far are common to both aerial
and ground vehicles.

3.1 Ground Vehicle Problem Formulation

Each vehicle in the heterogeneous fleet of ground
vehicles is modeled as Reed-Sheep vehicles with dis-
tinct value for its minimum turn radius. The kinematic
constraints of a Reeds-Shepp vehicle stationed at
depot dk is given by: vx = v cos θ, vy = v sin θ, θ̇ ≤
uk , where vx and vy are the x and y components of
the velocities, respectively, and θ̇ and uk are the angu-
lar velocity and the maximum yaw-rate of the vehicle.
uk is different across vehicles and |v| is assumed to
be a constant across vehicles. When |v| is constant
across vehicles the uk’s can be mapped bijectively to
the vehicles’ minimum turn radius values. Given these
vehicles, the problem is formulated on an undirected
graph G = (V , E), where V = T ∪ D and E is a set
of edges joining any two vertices1 in V . We assume G

does not have any self-loops. For each (i, j) = e ∈ E

1We remark that an edge between any pair of depots is not
present in the edge set E.
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for each vehicle v ∈ {1, . . . , n}, let cv
e be the length

of the minimum distance path for the vehicle v to tra-
verse the edge E subject to its kinematic constraints
and with an angle of departure and arrival of δi and
δj at i and j , respectively. The length can be com-
puted either using geometry [6] or as a solution to an
optimal control problem [29]. Since a ground vehicle
can move both forward and backward, the length of
the path from i to j is equal to the path from j to i

for fixed orientations δi and δj ; hence, the problem is
formulated on an undirected graph.

We now present a mathematical formulation for
the MGVPP, inspired by the models for the standard
routing problems in [9, 30]. For each vehicle v ∈
{1, . . . , n}, we associate with each edge e a variable
xv
e , whose value is the number of times e appears in

a feasible solution. Note that for some edges e ∈ E,

xv
e ∈ {0, 1, 2} i.e., we permit the degenerate case

where a vehicle can start at its depot and return to the
depot after visiting a single target. If e connects two
vertices i and j , then (i, j) and e will be used inter-
changeably to denote the same edge. We also remark
that for a vehicle v, we do not have any decision
variables xv

e for edges connecting depot dv′ such that
v 	= v′. Similarly, for each vehicle v ∈ {1, . . . , n}, we
associate with each target i ∈ T a binary variable yv

i ,
which takes a value 1 when the target i is visited by
vehicle k and 0 otherwise.

For any S ⊂ V , we define δ(S) = {(i, j) ∈ E : i ∈
S, j /∈ S} and γ (S) = {(i, j) ∈ E : i, j ∈ S}. If S =
{i}, we simply write δ(i) instead of δ({i}). Finally, for
any Ē ⊆ E, we define xk(Ē) = ∑

(i,j)∈Ē xk
ij . Using

the above notations, the MGVPP is formulated as an
integer linear program as follows:

min
n∑

k=1

∑

e∈E

ck
ex

k
e subject to: (1)

xk(δ(i)) = 2yk
i ∀i ∈ T , k ∈ {1, . . . , n}, (2)

xk(δ(S)) ≥ 2yk
i ∀i ∈ S, S ⊆ T , k ∈ {1, . . . , n}, (3)

n∑

k=1

yk
i = 1 ∀i ∈ T , (4)

yk
i = 1 ∀k ∈ {1, . . . , n}, i ∈ Rk, (5)

xk
e ∈ {0, 1, 2} ∀e ∈ {(dk, j) : j ∈ T }, k ∈ {1, . . . , n}, (6)

xk
e ∈ {0, 1} ∀e ∈ {(i, j) : i ∈ T , j ∈ T }, k ∈ {1, . . . , n} and (7)

yk
i ∈ {0, 1} ∀i ∈ T , k ∈ {1, . . . , n}. (8)

In the above formulation, the constraints in Eq. 2
ensure the number of edges of vehicle k, incident
on a target i ∈ T is equal to 2 if and only if tar-
get i is visited by the vehicle k. The constraints in
Eq. 4 ensure that each target i ∈ T is visited by
some vehicle. The constraints in Eq. 3 are the con-
nectivity or sub-tour elimination constraints. They
ensure a feasible solution has no sub-tours of any
subset of targets in T . The constraints in Eq. 5 are
the vehicle–target assignment constraints for the func-
tional heterogeneous targets. Constraints in Eqs. 6,
7, and 8 are the integrality restrictions on the deci-
sion variables. If the integrality restrictions in con-
straints (6), (7), and (8) are relaxed, then we call
that model a linear programming relaxation of the
formulation.

3.2 Aerial Vehicle Problem Formulation

Similar to the ground vehicle model, each aerial vehi-
cle is assumed to have a different value of its minimum
turn radius and all the n vehicles are assumed to travel
with the same velocity. Given these assumptions, the
problem is formulated on a directed graph G̃ =
(V , A), A is a set of directed edges between any two
vertices. We remark that unlike the formulation for the
ground vehicles, here (i, j) and (j, i) are two different
edges in the set A. For each directed edge (i, j) ∈ A

and each vehicle v, let dv
ij denote the minimum length

path for v to traverse the edge from i to j with angles
of departure and arrival δi and δj respectively. This
length can be computed using the well-known result
of Dubins [7]. Similar to the ground vehicle, for each
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vehicle v ∈ {1, . . . , n}, we associate with each edge
(i, j) a variable xv

ij , whose value is 1 when the vehi-
cle traverses the edge and 0 otherwise. Similarly, for
each vehicle v ∈ {1, . . . , n}, we associate with each
target i ∈ T a binary variable yv

i , which takes a
value 1 when the target i is visited by vehicle v and 0
otherwise.

Apart from the notations introduced for ground
vehicles, for any S ⊂ V , we define δ+(S) = {(i, j) ∈
A : i ∈ S, j /∈ S}, δ−(S) = {(i, j) ∈ A : i /∈ S, j ∈
S}. If S = {i}, we simply write δ+(i) and δ−(i)

instead of δ+({i}) and δ−({i}), respectively. Using the
above notations and those introduced in Section 3.1,
the MAVPP is formulated as an integer linear program
as follows:

min
n∑

k=1

∑

(i,j)∈A

dk
ij x

k
ij subject to: (9)

xk(δ+(i)) = yk
i ∀i ∈ T , k ∈ {1, . . . , n}, (10)

xk(δ−(i)) = yk
i ∀i ∈ T , k ∈ {1, . . . , n}, (11)

xk(δ+(S)) ≥ yk
i ∀i ∈ S, S ⊆ T , k ∈ {1, . . . , n}, (12)

n∑

k=1

yk
i = 1 ∀i ∈ T , (13)

yk
i = 1 ∀k ∈ {1, . . . , n}, i ∈ Rk, (14)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A, k ∈ {1, . . . , n} and (15)

yk
i ∈ {0, 1} ∀i ∈ T , k ∈ {1, . . . , n}. (16)

The constraints in Eqs. 10 and 11 ensure that the
in-degree and out-degree of a target visited by vehi-
cle k is one. The remaining constraints in Eqs. 12–16
are similar to the constraints introduced for the ground
vehicle. The linear programming relaxation of the
above integer linear program is obtained by relaxing
the integrality restrictions on the constraints (15) and
(16). In the following section, we strengthen the linear
programming relaxations of the formulations corre-
sponding to ground and aerial vehicles by introducing
additional valid inequalities (a valid inequality is a
linear inequality in the variables defining the prob-
lem that does not remove any feasible solutions to the
problem).

4 Additional Valid Inequalities

In this section, we develop different classes of valid
inequalities for the MGVPP and MAVPP. First, we

introduce a transformation method to convert any
valid inequality for the MAVPP to a valid inequal-
ity for the MGVPP. Suppose, we are given a valid
inequality for the MAVPP, we can construct an
MGVPP counterpart by setting xk

e = xk
ij + xk

ji for all
e ∈ E, e = (i, j). Hence, throughout the rest of the
article we will present proof of validity for inequalities
only for the MAVPP, unless otherwise stated. Now,
we present an alternate characterization of the sub-
tour elimination constraints in Eqs. 3 and 12 for the
MGVPP and MAVPP, respectively.

Proposition 1 The sub-tour elimination constraints in
Eqs. 3 and 12 for each vehicle k and any S ⊆ T can
be equivalently stated as xk(γ (S)) ≤ ∑

j∈S\{i} yk
j for

every i ∈ S and k ∈ {1, . . . , n}. This alternate form is
also referred to as the cycle form of the sub-tour elim-
ination constraints and holds for the both the aerial
and ground vehicles.

Proof We present the proof for the constraints corre-
sponding to MAVPP. The proof for MGVPP can be
obtained by the transformation method. For a fixed
vehicle k and a fixed subset S ⊆ T , any feasi-
ble solution to the MAVPP satisfies the following
equality:

∑

j∈S

(
xk(δ+(j)) + xk(δ−(j))

)
= xk(δ+(S))

+ xk(δ−(S)) + 2xk(γ (S))

⇒
∑

j∈S

2yk
j = xk(δ+(S)) + xk(δ−(S))

+ 2xk(γ (S)) (using Eq. (10) and (11))

⇒ 2xk(γ (S)) ≤
∑

j∈S

2yk
j

− 2yk
i ∀i ∈ S (from Eq. (12))

⇒ xk(γ (S)) ≤
∑

j∈S\{i}
yk
j ∀i ∈ S.

We remark that the cycle form of the sub-tour elimi-
nation constraints is very sparse and performs compu-
tationally better.

We first derive trivial inequalities that are special
cases of the sub-tour elimination constraints in Eqs. 3
and 12 for the MGVPP and MAVPP, respectively.
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Proposition 2 The sub-tour elimination in Eq. 12
reduces to the following constraints when S = {i, j}
i.e., |S| = 2:

xk
ij + xk

ji ≤ yk
i and xk

ij + xk
ji ≤ yk

j . (17)

Proof When S = {i, j}, xk(δ+(S)) = xk(δ+(i)) +
xk(δ+(j)) − xk

ij − xk
ji . Using the above equality and

Eq. 10, we obtain the required inequalities.

Similarly for the MGVPP, when S = {i, j}, the
constraint in Eq. 3 reduces to xk

e ≤ yk
i and xk

e ≤ yk
j

where e = (i, j).
The inequalities that are valid for a ATSP (STSP)

are also valid for the MAVPP (MGVPP) when suitably
modified for the multiple vehicle setting. We partic-
ularly examine the 2-matching inequalities available
for the STSP [8, 9]. Specifically, we consider the fol-
lowing inequality for every vehicle k for the MAVPP:

xk(γ (H)) + xk(T ) ≤
∑

i∈H

yk
i + |T | − 1

2
(18)

for all H ⊆ T and T ⊂ (
δ+(H) ∪ δ−(H)

)
. Here H

is called the handle, and T the teeth. H and T satisfy
the following conditions:

– the edges in the teeth are not incident to any
depots in the set D,

– no two edges in the teeth are incident on the same
target,

– |T | ≥ 3 and odd.

The proof of validity of the above inequality for the
MAVPP is given by the following proposition:

Proposition 3 The 2-matching inequality in Eq. 18 is
valid for any feasible solution to the MAVPP.

Proof For any H ⊆ T and T ⊂ (
δ+(H) ∪ δ−(H)

)

satisfying the conditions stated previously, we have
the following equality that is satisfied by any feasible
solution to the MAVPP:

2xk(γ (H)) + xk(δ+(H))+ xk(δ−(H))

=
∑

i∈H

xk(δ(i))

⇒ 2xk(γ (H)) + xk(T )

+ xk
(
(δ+(H) ∪ δ−(H)) \ T

)

= 2
∑

i∈H

yi.

We also have xk(T ) ≤ |T | for the set T (since xk
ij ≤ 1

for any (i, j), i, j ∈ T ). Adding this inequality to the
above equality, we obtain,

2xk(γ (H)) + 2xk(T ) + xk
(
(δ+(H) ∪ δ−(H)) \ T

)

≤ 2
∑

i∈H

yk
i + |T |

⇒ 2xk(γ (H)) + 2xk(T ) ≤ 2
∑

i∈H

yk
i + |T |.

The last inequality follows because
xk

(
(δ+(H) ∪ δ−(H)) \ T

) ≥ 0. Further simpli-
fication using the facts that the L.H.S. of the last
inequality is even and |T | is odd yields:

2xk(γ (H)) + 2xk(T ) ≤ 2
∑

i∈H

yk
i + (|T | − 1)

⇒ xk(γ (H)) + xk(T ) ≤
∑

i∈H

yk
i + |T | − 1

2
.

Hence the 2-matching inequality is valid for the
MAVPP.

The above 2-matching constraints are also valid for
the MGVPP; the proof follows from the transforma-
tion method. The constraints in Eq. 18 are also equiv-
alent to the blossom’s inequality for the 2-matching
problem and a special case of the comb inequality
for the STSP [31]. Equation 18 is a comb inequality
where the cardinality of every tooth is two and both the
handle and the teeth contain only vertices from set T .

5 Branch-and-Cut Algorithm

In this section, we briefly present the main ingredients
of a branch-and-cut algorithm that is used to solve the
two formulations presented in the Section 3 to opti-
mality. The formulations developed in the Section 3
can be provided to off-the-shelf commercial branch-
and-cut solvers to obtain an optimal solution to the
MGVPP and MAVPP. But, observe that MGVPP and
MAVPP contain the sub-tour elimination constraints
((3) and (12), respectively) which enforce any feasible
solution to the corresponding problems not to con-
tain any sub-tours of the targets. The number of such
constraints is exponential and it may not be compu-
tationally efficient to enumerate all these constraints
and provide them to these solvers. Furthermore, the
2-matching valid inequalities developed to tighten the
linear programming relaxations of the MGVPP and
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MAVPP are also exponential in number. To address
this issue, we use the following approach: we relax
these constraints from the formulation, and whenever
the solver obtains an integer solution feasible to this
relaxed problem (or a fractional solution with integral-
ity constraints dropped), we check if any of these con-
straints are violated by the feasible solution, integer or
fractional. If so, we add the infeasible constraint and
continue solving the original problem. This process

of adding constraints to the problem sequentially has
been observed to be computationally efficient for the
STSP and some of its variants [10, 32]. The algorithms
used to identify violated constraints are referred to as
separation algorithms. For the sake of completeness,
a detailed pseudo-code of the branch-and-cut algo-
rithm for the MAVPP is given in Algorithm 1. The
pseudo-code for the MGVPP is similar and hence, is
not presented.
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In the following paragraphs, we detail the separa-
tion algorithms used to dynamically identify violated
constraints given a fractional solution. We present
the algorithms for the MAVPP and the transforma-
tion method in Section 4 enables using the algorithms
without any modification on a transformed graph for
the MGVPP. For every vehicle k, G∗

k = (V ∗
k , A∗

k)

denotes the support graph associated with a given
fractional solution (x∗, y∗), i.e., V ∗

k := {i ∈ T :
yk∗
i > 0} ∪ {dk} and A∗

k := {(i, j) ∈ A : xk∗
ij > 0}.

Here, x and y are the vectors of the decision variable
values in MAVPP.

Separation of Constraints (12) and (17): As shown
previously Section 4, the inequalities in Eq. 12 reduce
to Eq. 17 when |S| = 2. For every vehicle k, the vio-
lation of the inequality in Eq. 17 can be verified by
examining the inequality for every pair of targets in
the set V ∗

k . Next, we examine the strongly connected
components in G∗

k . Each strongly connected compo-
nent C that does not contain the depot dk generates a
violated sub-tour elimination constraint for S = C and
for each i ∈ S. If a connected component C contains
the depot dk the following procedure is used to find
the largest violated sub-tour elimination constraint in
xk(δ+(S)) ≥ 2yk

i . Given a strongly connected com-
ponent C that contains a depot dk , i ∈ C \ {dk}, and
a fractional solution (x∗, y∗), the most violated con-
straint of the form xk(δ+(S)) ≥ 2yk

i can be obtained
by computing a minimum s − t cut on a capacitated
directed graph Ḡk = (V̄k, Āk), with V̄k = V ∗

k . The
vertex s denotes the source vertex and s = dk . The
vertex t denotes the sink vertex and t = i. The edge
set Āk = A∗

k . Every edge (i, j) ∈ Āk is assigned a
capacity xk∗

ij . We now compute the minimum s − t cut

(S, V̄k \ S) with t ∈ V̄k \ S. The vertex set S′ = V̄k \ S

defines the most violated inequality if the capacity of
the cut is strictly less than 2yk∗

i . Clearly, the targets
i with yk∗

i = 0 need not be considered. This algo-
rithm can be repeated for every vehicle to generate
the violated sub-tour elimination constraints. Once the
set S′ that defines a violated sub-tour elimination con-
straint is obtained, its corresponding cycle form given
by Proposition 1 is added back to the formulation and
the branch-and-cut algorithm is continued.

Separation of 2-Matching Constraints (18): We dis-
cuss exact and heuristic separation procedures for the
2-matching constraints. Using a construction similar

to the one proposed in [34] for the b-matching prob-
lem, the separation problem for 2-matching inequal-
ities can be transformed into a minimum capacity
odd cut problem; hence this separation problem is
exactly solvable in polynomial time. This procedure
is computationally intensive, so we use the following
simple heuristic proposed by the authors in [35, 36].
We consider each connected component H of G∗

k as

a handle of a possibly violated 2-matching inequal-
ity whose two-node teeth correspond to the edges
(i, j) ∈ (

δ+(H) ∪ δ−(H)
)

with xk∗
ij = 1. We reject

the inequality if the number of teeth is even. The pro-
cedure can be implemented in O(|V ∗

k | + |A∗
k |) time

and can be repeated for each vehicle k.

6 Computational Results

The branch and cut algorithm was implemented in
C++ (clang++ 7.0.2) using the elements of Standard
Template Library (STL) and CPLEX 12.4 framework.
The internal CPLEX cut generation was disabled and
hence, CPLEX was used only to manage the enu-
meration tree. All the simulations were performed
on a Macbook Pro, 2.9 GHz Intel Core i5 processor
with 16 GB RAM. The computation times reported
are expressed in seconds, and we imposed a time
limit of 3600 seconds for each run of the algo-
rithm. The performance of the algorithm was tested
on instances generated using the traveling salesman
problem library [37].

Instance Generation We generated 36 MGVPP and
36 MAVPP instances using four TSPLIB instances
[37] namely, bays29, eil51, eil76, and eil101. These
instances have |T | = 29, 51, 76, and 101 respec-
tively. We performed a computational study on these
instances with the number of vehicles n ∈ {3, 4, 5}.
The depot locations for the vehicles and their desired
heading angles at the vertices were uniformly ran-
domly generated. The minimum turn radius of the
vehicles were generated according to the following
procedure: for each instance, the grid size g was com-
puted to be the maximum of the coordinates of all
the vertices in the instances; now the minimum turn
radius was computed using the formula 3 · k · g/100
where k = 1, · · · , n. For a given instance, we had
the same cardinality for all the functional heteroge-
neous target sets Ri . The cardinality of each Ri was
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Table 1 MGVPP computational results

name n |R| %-LB nodes time time-2% cuts

bays29 3 1 100.00 1 0.26 0.25 716

bays29 3 3 100.00 1 0.38 0.37 992

bays29 3 5 100.00 1 0.14 0.14 521

bays29 4 1 100.00 1 0.45 0.44 1108

bays29 4 3 100.00 1 0.35 0.34 834

bays29 4 5 100.00 1 0.11 0.11 498

bays29 5 1 99.92 4 0.83 0.73 1190

bays29 5 3 99.90 4 0.55 0.51 946

bays29 5 5 100.00 1 0.06 0.06 228

eil51 3 1 99.86 4 2.81 2.48 1185

eil51 3 3 99.45 10 6.03 4.74 2001

eil51 3 5 99.63 7 1.84 1.76 1415

eil51 4 1 99.56 23 4.71 2.35 1655

eil51 4 3 99.61 6 6.46 4.58 2530

eil51 4 5 99.72 5 5.05 3.99 2121

eil51 5 1 99.40 15 9.53 5.85 2699

eil51 5 3 99.63 6 7.88 6.96 3175

eil51 5 5 99.74 4 3.86 3.78 2158

eil76 3 1 99.41 23 68.34 52.74 4605

eil76 3 3 99.25 8 24.86 22.97 3926

eil76 3 5 99.28 27 28.10 16.55 3531

eil76 4 1 99.05 95 125.50 57.54 5600

eil76 4 3 99.51 24 47.06 38.59 4443

eil76 4 5 99.29 20 32.63 21.29 4624

eil76 5 1 99.10 5 201.10 99.49 7220

eil76 5 3 98.92 104 114.57 86.30 5669

eil76 5 5 100.00 1 14.01 17.65 4396

eil101 3 1 99.95 4 12.42 12.32 2697

eil101 3 3 99.70 15 50.00 57.82 4295

eil101 3 5 99.48 87 178.34 93.68 7310

eil101 4 1 99.53 91 271.73 138.51 9360

eil101 4 3 99.36 141 310.26 277.73 8448

eil101 4 5 99.48 100 279.12 122.10 9102

eil101 5 1 99.83 18 53.82 47.14 5496

eil101 5 3 99.33 1092 1168.27 286.52 16849

eil101 5 5 99.28 119 267.61 232.26 10634

chosen from the set {1, 3, 5}. The minimum length
path for each pair of vertices was computed using
the results of Reeds-Shepp [6] and Dubins [7] for the

ground and aerial vehicles, respectively. Hence, for
each TSPLIB instance, we generated 9 MGVPP and 9
MAVPP instances with all possible combinations of n
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Table 2 MAVPP computational results

name n |R| %-LB nodes time time-2% cuts

bays29 3 1 98.83 34 2.68 0.87 524

bays29 3 3 97.47 49 0.27 0.22 186

bays29 3 5 96.60 52 0.75 0.72 239

bays29 4 1 94.43 68 1.72 1.61 575

bays29 4 3 95.62 112 1.08 0.66 275

bays29 4 5 97.72 63 0.33 0.20 180

bays29 5 1 92.26 600 6.17 3.48 1554

bays29 5 3 97.21 45 0.69 0.49 243

bays29 5 5 99.52 2 0.05 0.03 86

eil51 3 1 99.69 17 0.66 0.32 686

eil51 3 3 97.93 1347 10.80 1.12 1660

eil51 3 5 98.52 369 3.88 4.00 1530

eil51 4 1 98.65 473 8.87 7.63 3446

eil51 4 3 98.55 106 5.97 3.16 850

eil51 4 5 98.52 266 3.95 2.54 546

eil51 5 1 97.17 1096 15.66 4.59 3065

eil51 5 3 97.77 91 4.45 0.92 811

eil51 5 5 97.92 670 7.61 0.83 1286

eil76 3 1 99.18 57 1.70 0.84 361

eil76 3 3 98.55 166 5.08 4.76 955

eil76 3 5 98.99 254 3.79 2.06 1038

eil76 4 1 97.34 2472 149.87 26.96 7075

eil76 4 3 98.22 2726 234.22 14.30 9097

eil76 4 5 99.08 543 12.40 12.20 2285

eil76 5 1 97.83 1394 60.30 25.62 3647

eil76 5 3 97.84 3684 410.46 105.29 9333

eil76 5 5 98.13 1243 41.66 26.33 3299

eil101 3 1 99.03 83 4.92 1.24 576

eil101 3 3 98.22 3368 1373.00 25.10 15479

eil101 3 5 98.82 236 26.43 10.40 2620

eil101 4 1 99.12 25 3.17 2.95 412

eil101 4 3 98.38 1428 164.66 5.81 3927

eil101 4 5 99.07 257 22.94 4.26 1913

eil101 5 1 99.51 51 14.33 6.53 305

eil101 5 3 98.31 421 95.90 6.67 5208

eil101 5 5 97.77 487 147.38 52.03 3413

and |Ri | which resulted in a total for 72 instances. The
Tables 1–2 summarize the computational behavior of
the branch-and-cut algorithm for all the 72 instances.
The column headings are defined as follows:

name: instance name;
n: number of vehicles;

|R|: number of functional heterogeneous tar-
gets per vehicle;
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%-LB: percentage LB/opt, where LB is the
objective value of the linear program-
ming relaxation computed at the root
node of the enumeration tree and opt is
the cost of the optimal solution to the
instance;

nodes: total number of nodes examined in the
enumeration tree;

time: time taken to compute the optimal solu-
tion in seconds;

time-2%: time taken in seconds to compute a fea-
sible solution that is within 2 % of the
optimal;

cuts: total number of violated sub-tour elim-
ination and 2-matching constraints that
were added to the formulation dynami-
cally.

The results show that the proposed branch-and-
cut algorithm can solve instances involving up to 101
targets with modest computation times. The %-LB
column in Tables 1 and 2 indicate that the lower bound
obtained at the root node of the enumeration tree is
very tight, typically within 0.5 % and 1.5 % of the
optimum for the MGVPP and MAVPP, respectively.
Hence the proposed integer linear programming for-
mulations for the MGVPP and MAVPP is by itself
very tight. The optimal solution for the instance eil76
with n = 3 and |R| = 3 is shown in the Figs. 1
and 2. Though the maximum computation over all the
instances for the MGVPP and MAVPP are 1168 and
1373 seconds, respectively, a feasible solution for all

Fig. 3 Average time taken to obtain a feasible solution that is
within 2 % of the optimal for the MGVPP and MAVPP

Fig. 4 Convergence plot for the MGVPP instance eil101-5-
3. This instance was chosen since the time taken to solve this
instance to optimality was the maximum among all the MGVPP
instances. Iteration count is the cumulative iteration count of the
algorithm solving the subproblems

the instances that is within 2 % of the optimal solu-
tion can be obtained relatively fast, typically within
300 seconds for any instance of the problem with up
to 100 targets. The average time taken in seconds for
each instance to compute a feasible solution within
2 % of the optimal is shown in the Fig. 3. The plot
indicates that even in cases where the computational
time is a constraint, the algorithm can give near opti-
mal feasible solutions within a couple of minutes. A
convergence plot showing the objective values and the
lower bound for the MGVPP instance eil101-5-3 is
shown in the Fig. 4; initially, for around 37,000 iter-
ations, no feasible solutions were generated by the
branch-and-cut algorithm, as illustrated by the blue
curve in the figure. This behaviour varies with the
instances – for many an instance a feasible solu-
tion with a very small objective value was generated
much earlier in the branch-and-cut algorithm. Over-
all, we were able to solve all the 72 TSPLIB based
instances, with the largest instance involving 101 tar-
gets, 5 vehicles and 5 functional heterogeneous targets
per vehicle.

7 Conclusion

In this paper, we have presented an exact algorithm for
the heterogeneous multiple depot multiple unmanned
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vehicle path planning problems that arises in the con-
text of monitoring a set of targets and collecting
relevant data. Two integer linear programming formu-
lations, one for the ground vehicles and one of the
aerial vehicles, including classes of valid inequalities
was proposed. A customized branch-and-cut algo-
rithm was also developed using the proposed for-
mulation. The algorithm was tested on a wide class
of benchmark instances from a standard library. The
largest solved instance involved 101 targets. Future
work can be directed towards balancing the distances
that each vehicle travels i.e., a min-max version of
the problem and developing similar algorithms for
problems involving both aerial and ground vehicles
working together on the same mission.
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