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Abstract Globally exponentially stabilizing a class
of underactuated mechanical systems (UMS) with
nonaffine nonlinear dynamics is investigated in this
paper. The considered UMS has a nonaffine non-
linear subsystem that can be globally asymptotically
stabilized by saturated feedbacks, but the saturated
feedback cannot be analytically expressed in closed-
form. This obstacle limits the real-time applications
of most controllers presented in literatures. In this
paper, a hybrid feedback strategy is presented to glob-
ally exponentially stabilize the UMS with nonaffine
and strict-feedback canonical forms. The hybrid feed-
back strategy is characterized by the composition of
partial states feedback and partial virtual outputs feed-
back based on a higher-order finite-time stabilizing
observer. The presented hybrid feedback controller
can be synthesized by applying Lyapunov stability
theory. Some numerical simulations associated with
two underactuated nonlinear systems, the Acrobot sys-
tem and the Inertia-Wheel-Pendulum (IWP) system,
are employed to demonstrate the effectiveness of the
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proposed controller. The presented control strategy
can be applied in real time, thus providing a new feasi-
ble dynamic model other than the differential flatness
systems for synthesizing the mechanical systems of
general underactuated legged robots.
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1 Introduction

The control problems of the affine nonlinear sys-
tems including both macro and micro mechanical
systems have been given much attention over the past
three decades [1, 2]. Unfortunately, most dynamically
mechanical systems could just be modeled as non-
affine nonlinear systems in practice. In the past couple
of decades, a few researches were involved in the con-
trol problems for nonaffine systems with some special
properties. Some typical examples of the relevant
results include the Nonlinear Small Gain Theorem
presented by Teel [3] for a class of nonlinear systems
with feedforward normal form [4]. Based on the non-
affine passive systems theory—feedback equivalence
and the technique of bounded state feedback, Lin [5]
presented a systematic method for globally asymptot-
ically stabilizing (GAS) a class of nonaffine systems
including the polynomial systems with stable free
dynamics (or zero-input stable in [3]). For the UMS
[6, 7], Olfati-Saber [7] showed that the dynamics of
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almost all of this class of mechanical systems could
be transformed into a certain kind of nonaffine form.
Li and Qian [8] (and some references therein) studied
the global finite-time stabilization by dynamic output
feedback for a class of power form nonlinear sys-
tems with nonsmooth continuous property. Moulay
and Perruquent [9] presented a constructive method
for stabilizing a class of polynomial nonaffine sys-
tems with the control variables up to the third order.
Because of the difficulties in finding the analytical
feedback for stabilizing the general nonaffine sys-
tems, the approximation methods have also been given
much attention. For instance, Zhao and Farrell [10]
investigated the control method based on the locally
weighted online approximation for a class of uncer-
tain nonaffine systems. More recently, Dong et al. [11]
presented a self-organizing approximation approach
for the purpose of tracking control of the single-input
single-output (SISO) nonaffine systems.

Motivated by the potentially significant applica-
tions in complex robotic systems [12–16], we are
interested in the global stabilization of a class of
nonaffine system with strict feedback form

ż1 = ψ1(ξ1)z2
ż2 = ψ2(z1, ξ1)

ξ̇1 = ξ2
ξ̇2 = u

(1)

where z1, z2, ξ1, ξ2, u ∈ Rr , r ≥ 1, and ψ1(ξ1) be
positive definite matrix in a diagonal form. The non-
affine nonlinear systems (1) represent large classes of
robotic systems and UMS. Examples of relevant sys-
tems includes the dynamically legged robots [12–16],
Acrobot [17], Inertia-Wheel-Pendulum (IWP) [18,
19], and TORA [19] etc. In the relevant researches,
most of the presented controllers employed switched-
based control methods [15, 17], and some researches
only showed a local stabilization effect [20]. Ortega
et al. [18] presented the interconnection and damping
assignment (IDA) method based on the well-known
passivity-based control (PBC) to stabilize a class of
UMS, which is roughly limited to a special class of
UMS due to the difficulties in solving the match-
ing partial differential equations (PDFs). To solve the
global stabilization problem of system (1), Olfati-
Saber [19] presented the control scheme composed of
saturated feedback followed by a backstepping proce-
dure. However, as it will be shown in the next section,
the saturated feedback cannot be generally obtained in
the closed-form of the nonaffine subsystem of Eq. 1,
so that the followed backstepping procedure using the

numerical approximation as it applied in [19] cannot
be realized in real time.

Inspired by these relevant works [15–20], a hybrid
feedback strategy composed of partial states feedback
and partial virtual outputs feedback on the basis of
a finite-time stabilizing observer is proposed in this
paper. To the best knowledge of the authors, it is the
first time that this kind of controller to be presented
to stabilize the nonaffine system given by Eq. 1, of
which the saturated feedback for the nonaffine sub-
system cannot be analytically obtained. The presented
novel control strategy can be realized in real time, thus
providing a new feasible dynamic model other than the
differential flatness systems [16, 32] for synthesizing
the UMSs of general legged robots.

The remainder of this paper is organized as follow.
In Section 2, the saturated feedback for the nonaffine
subsystem of Eq. 1 is concisely reviewed, and some
important Lemmas are presented. Section 3 provides
a third-order finite-time stabilizing observer for the
second order linear subsystem of Eq. 1. In section 4,
we present a output feedback finite-time stabilizing
controller on the basis of the higher-order finite-time
stabilizing observer provided in Section 3 to realize
the trajectory tracking tasks. Section 5 contains the
simulation results associated with two UMS, Acrobot
and IWP, in order to demonstrate the effects of the pre-
sented controller. We conclude this paper in Section 6.

2 The Saturated Controller for the Non-Affine
Subsystem and Some Key Lemmas

Consider the nonaffine subsystem of Eq. 1

ż1 = ψ1(ξ1)z2
ż2 = ψ2(z1, ξ1) (2)

Some assumptions are provided as follows to define
the range of the addressed problem in this paper. Actu-
ally, the UMS in potential field always satisfy these
assumptions.

A1. Both the matrix ψ1(ξ1) and its inverse matrix
ϕ1(ξ1) = ψ−1

1 (ξ1) are positive definite and
diagonal matrices.

A2. The vector ψ2(z1, ξ1) is smooth, and satisfies

ψ2(0, 0) = 0 and det
∣
∣
∣
∂ψ2(z1,ξ1)

∂ξ1

∣
∣
∣ �= 0.

A3. There exists an isolated root ξ1 = μ(z1) of
ψ2(z1, μ(z1)) = 0 with the property μ(0) = 0.
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On the basis of the assumptions A1-A3, one can define
the virtual input

ξ1 = μ(z1) + v

and a local diffeomorphism around a neighborhood of
v = 0

w = Φ(z1, v) := ϕ1(ξ1) ψ2(z1, ξ1)
∣
∣
ξ1=μ(z1)+v

Since the assumption A2 states det
∣
∣
∣
∂ψ2(z1,ξ1)

∂ξ1

∣
∣
∣ �= 0,

that means ψ2(z1, ξ1)
∣
∣
ξ1=μ(z1)+v

is invertible at v =
0, and ϕ1(ξ1) is also invertible due to the assump-
tion A1. According to the implicit function theorem,
w = Φ(z1, v) has unique inverse function v =
β(z1,w)that satisfies equation w = Φ(z1, β(z1, w)),
then the dynamics (2) equivalents to

ż1 = ψ1(ξ1)z2
ż2 = ψ1(ξ1)w

(3)

for all z1 ∈ Rr . It is closely related to the liter-
atures [3–5], and the following saturated feedback
controller was presented in [19] for globally asymp-
totically stabilizing the origin of Eq. 3 as well as the
system (2).

Lemma 1 Considering the assumptions A1-A3, the
controller

ξ1 = μ(z1) + β(z1, w) (4)

where

w = −k1
z1 + z2

(

1 + (z1 + z2)T (z1 + z2)
)1/2

(5)

and k1 = ksign
(

∂ψ2(z1,ξ1)
∂ξ1

)

, k > 0 is a con-

stant, globally asymptotically stabilize the origins of
both equivalent system (3) and its original nonaffine
system (2).

Proof Since it will be used in the sequel, the Lemma
1 can be concisely proved as follows.

Define a positive definite function

V1 = k1

[(

1 + (z1 + z2)T (z1 + z2)
)1/2−1

]

+1

2
zT2 z2

(6)

time derivative of Eq. 6 can be written as

V̇1 = −wT [

ψ1(ξ1)z2 + ψ1(ξ1)w
] + zT2ψ1(ξ1)w

where w is given by Eq. 5. Thus it is followed that

V̇1 = −wTψ1(ξ1)w (7)

As ψ1(ξ1) is a positive definite and diagonal matrix,
then

V̇1 < 0

for all z1 + z2 �= 0. Based on the LaSalle’s invari-
ance principle, all the solutions of the closed-loop
system converge to the largest invariant set � =
{

(z1, z2) : V̇1 = 0
}

. For the system (3), the largest
invariant set is given by � = (0, 0). Therefore,
the origin (z1, z2) = (0, 0)is globally asymptotically
stable.

Remark 1 The expression (5) is a vector sig-
moidal function, and can be expressed as w =
[w1(z1), ..., wr (zr )]T, where wi (zi ), i = 1, 2, . . . , r
denote the scalar sigmoidal functions. Besides the sat-
urated function given by Eq. 5, both tanh(·) and atan(·)
are additional saturated functions that are commonly
used in literatures.

As the solution ξ1 = μ(z1) of ψ2(z1, μ(z1)) =
0 cannot be obtained in the closed forms of a gen-
eral nonlinear equation, the backstepping procedure
on the basis of the saturated feedback (4) cannot be
used directly. In the literature [19], a piece-wise lin-
ear approximation method is used to get the solution
of equation ψ2(z1, μ(z1)) = 0 by a constructed look
up table of pairs (z1, μ(z1)) for globally asymptoti-
cally stabilizing the Acrobot system. Even though the
numerical solution μ(z1)and the time derivates μ̇(z1)
and μ̈(z1)can be accurately obtained by the look up
table method, the calculation efficiency would obsta-
cle the method to be applied in real time. In the next
section, a new finite-time stabilizing observer is intro-
duced to get the time-derivates μ̇(z1)and μ̈(z1)that
can be realized in real time.

As the last part of this section, several Lemmas are
provided as following since they will be used in the
next sections.

Lemma 2 [21] For any real numbers ai , i =
1, 2, . . . , n and 0 < γ ≤ 1, the following inequality
holds
(

n
∑

i=1

|ai |
)γ

≤
n

∑

i=1

|ai |γ . (8)
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For x ∈ R, y ∈ R, when 0 < γ = p/q ≤ 1, where
p > 0 and q > 0 are odd integers, then
∣
∣xγ − yγ

∣
∣ ≤ 21−γ |x − y|γ ≤ 2 |x − y|γ . (9)

When γ > 1 is a constant, then

|x − y|γ ≤ 2γ−1
∣
∣xγ − yγ

∣
∣ . (10)

Lemma 3 [21]: Let a, b be positive real numbers and
β(x, y) > 0 be a real-valued function, then

|x |a |y|b ≤ aβ(x, y)

a + b
|x |a+b + bβ−a/b(x, y)

a + b
|y|a+b

(11)

Remark 2 Lemma 3 can be proved by the Young’s
inequality |xy| ≤ |x |m

m + |y|n
n , where 1

m + 1
n = 1, and

m > 0, n > 0.

Lemma 4 [22]: Given 0 < γ = p/q ≤ 1, where p >

0 and q > 0 are odd integers, and ξ �= α, then the
following inequality holds:
∫ ξ

α

(s1/γ − α1/γ )2−γ ds > 0 (12)

Remark 3 Lemma 4 can be proved by Eq. 10 and
equality (x)γ = sign(x) |x |γ . The power-integrator
(12) will be used to design the Lyapunov function
candidate in the next section.

3 The Third Order Finite-Time Stabilizing
Observer

Consider the linear subsystem of Eq. 1

ξ̇1 = ξ2
ξ̇2 = u

(13)

where ξ1, ξ2, u ∈ Rr . To stabilize the system (1),
the control problem for the linear subsystem (13) is
to track the trajectory presented by Eq. 4, namely
α1 = ξ1 = μ(z1)+β(z1, w). On the basis of assump-
tion A1, and in order to simplify the formulations
while without lose any generality, the control problem
of the system (13) can be simplified to a single input
second-order linear system

ξ̇1 = ξ2
ξ̇2 = u

(14)

where ξ1, ξ2, u ∈ R. To obtain the time derivates α̇1

and α̈1 of the virtual input α1(t), the third-order finite-
time stabilizing observer can be given as follows.

Proposition 1 Suppose the α1(t) is aC2 function, then
the observer
˙̂α1 = α̂2 − k̂1(α̂1 − α1)

5/7

˙̂α2 = α̂3 − k̂2(α̂2 − ˙̂α1)
3/7

˙̂α3 = −k̂3(α̂3 − ˙̂α2)
1/7

(15)

stabilizes in finite settling time T ∗ > 0. When t ≥
T ∗is satisfied, then the following equations hold

α̂1 = α1(t), α̂2 = α̇1(t), α̂3 = α̈1(t) (16)

Proof The main steps are only provided in this proof.
For a detailed proving procedure, the readers are
encouraged to refer the relevant paper [21] or [22] to
which the detailed proof is provided for synthesizing
the finite time controllers.

Define e1 = α̂1 − α1, e2 = α̂2 − α̇1, and e3 = α̂3 −
α̈1to be the output errors of the observer, where α̂2 =
˙̂α1, α̂3 = ˙̂α2. It is obvious that the errors dynamics can
be expressed as

ė1 = e2
ė2 = e3
ė3 = v

(17)

For the subsystem e1 of Eq. 17, select the positive def-
inite function U1 = 1

2e
2
1, then the time derivate of it is

given by

U̇1 = e1
(

e2 − β̂1

)

+ e1β̂1 (18)

If define

β̂1 = −k̂1e
5/7
1 (19)

where k̂1 > 0, then Eq. 17 can be written as

U̇1 = −k̂1e
12/7
1 + e1

(

e2 − β̂1

)

(20)

For the subsystem (e1, e2) of Eq. 17, define a new
positive definite function U2 = U1 + W1, where

W1 =
∫ e2

β1

(s7/5 − β̂
7/5
1 )9/7ds > 0

due to Lemma 4. Then it follows that

U̇2 = −k̂1e
12/7
1 +e1

(

e2 − β̂1

)

+ ∂W1

∂e2
e3+ ∂W1

∂β̂1

∂β̂1

∂e1
e2

(21)
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By applying inequalities (9) and (11), it is not diffi-
cult to show that the second term of right hand side of
Eq. 21 satisfies
∣
∣
∣e1(e2 − β̂1)

∣
∣
∣ ≤ δ1 |e1|12/7+δ2

∣
∣
∣e

7/5
2 − β̂

7/5
1

∣
∣
∣

12/7
(22)

where δ1 > 0 and δ2 > 0 are two constants. The third
term of the right hand side of Eq. 21 can be expressed
as
∂W1

∂e2
e3 =

(

e7/52 − β̂
7/5
1

)9/7 (

e3 − β̂2 + β̂2

)

(23)

where β̂2 is a virtual input that will be determined later.
The fourth term of right hand side of Eq. 21 satisfies

∣
∣
∣
∂W1

∂β̂1

∂β̂1
∂e1

e2
∣
∣
∣ ≤ 9

7k
7/5
1

∣
∣
∣
∣

∫ e2
β1

(

s7/5 − β̂
7/5
1

)2/7
ds

∣
∣
∣
∣
|e2|

≤ 9
7k

7/5
1

∣
∣
∣e

7/5
2 − β̂

7/5
1

∣
∣
∣

2/7 ∣
∣
∣e2 − β̂1

∣
∣
∣ |e2|

(24)

Using the inequalities (9) and (11) once more, it can
be shown that Eq. 24 satisfies inequality
∣
∣
∣
∣
∣

∂W1

∂β̂1

∂β̂1

∂e1
e2

∣
∣
∣
∣
∣
≤ δ3 |e1|12/7+δ4

∣
∣
∣e

7/5
2 − β̂

7/5
1

∣
∣
∣

12/7
(25)

Substitute (22), (23) and (25) into Eq. 21, then
Eq. 21 has the form

U̇2 ≤
(

−k̂1 + δ1 + δ3

)

e12/71

+ (δ2 + δ4)
(

e7/52 − β̂
7/5
1

)12/7

+
(

e7/52 − β̂
7/5
1

)9/7
β̂2

+
(

e7/52 − β̂
7/5
1

)9/7 (

e3 − β̂2

)

(26)

It is obvious that there exists a constant

k̂2 = −k2 + δ2 + δ4 > 0

where k2 > 0, and another constant k1 = k̂1 − δ1 −
δ3 > 0, if given the virtual input

β̂2 = −k̂2
(

e7/52 − β̂
7/5
1

)3/7
(27)

then Eq. 26 follows that

U̇2 ≤ − k1e
12/7
1 − k2

(

e7/52 − β̂
7/5
1

)12/7

+
(

e7/52 − β̂
7/5
1

)9/7 (

e3 − β̂2

)

(28)

As to the overall system (17), if one selects U =
U2 + W2 where W2 = ∫ e3

β2
(s7/3 − β̂

7/3
2 )11/7ds > 0,

then proceeding along similar lines as the derivations

given above, it can be shown that there exists a con-
stant k̂3 > 0, and if one selects the virtual input

v = −k̂3
(

e7/33 − β̂
7/3
2

)1/7
(29)

then the time derivative of the positive definite func-
tion Ucan be written as

U̇ ≤−k̂e12/71 −k̂
(

e7/52 −β̂
7/5
1

)12/7−k̂
(

e7/33 −β̂
7/3
2

)12/7

(30)

where k̂ > 0 is a constant. On the other hand, accord-
ing to the definition of the positive definite function
U , it can be shown that

U ≤ 2e21 + 2
(

e7/52 − β̂
7/5
1

)2 + 2
(

e7/33 − β̂
7/3
2

)2

Using the inequality (8), it is not difficult to show that

U̇ ≤ −k

2
U6/7

According to the Theorem 4.2 of [23], if the time
satisfies

t ≥ T ∗ = 14

k
U (t0)

1/7

then the errors ei = 0, i = 1, 2, 3, hence the equations
of Eq. 16 are satisfied. This completes the proof of
Proposition 1.

Remark 4 Although the third order finite-time stabi-
lizing observer is presented by Eq. 15, the (n + 1)-th
order observer can be intuitionally provided as

˙̂α1 = α̂2 − k̂1(α̂1 − α1)
(2n+1)/(2n+3)

. . .
˙̂αi = α̂i+1 − k̂i (α̂i − ˙̂αi−1)

[2(n−i)+3]/(2n+3)

. . .
˙̂αn+1 = −k̂n+1(α̂n+1 − ˙̂αn)

1/(2n+3)

(31)

For the n-th order Brunovsky’s canonical system

ė1 = e2, . . . , ėi = ei+1, . . . , ėn = v

Remark 5 As that pointed out by Levant et al. in
[24], the accuracy of a nonsmooth feedback observer
reduces when n > 4. For the linear system with order
less than five, the observer (31) will provide an effec-
tive method to obtain the time-derivates in real time
for constructing a backstepping based closed-loop
controller.

For the purpose of clarity, we show the stability of
the finite-time stabilizing observer presented in Eq. 15
by an example as follow.
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0 1 2 3
-4

-2

0

2

4

time(s)

Fig. 1 The function y(t)and the output ŷ(t) of the observer (15)

Example Consider the smooth function

y(t) = 2sin (π t) + 0.5cos(2.4π t).

Let’s solve the time-derivates ẏ(t) and ÿ(t) using
observer (15).

Given α1(t) = y(t) and use the observer (15), the
outputs ŷ(t), ˙̂y(t), and ¨̂y(t) are plotted in Figs. 1, 2
and 3, which show the finite-time stability of the
presented nonsmooth feedback nonlinear observer.

4 The Finite-Time Stabilizing Controller Based
on the Finite-Time Stabilizing Observer

This section considers the globally exponentially sta-
bilization problem of the nonlinear system (1) on the
basis of the saturated feedback (4) of the nonaffine
subsystem (2) and the finite-time stabilizing observer
(15) of the linear subsystem (13). It is intuitional that

0 1 2 3
-20

-10

0

10

20

time(s)

Fig. 2 The first order time-derivate ẏ(t) and the output ˙̂y(t)of
the observer (15)

0 1 2 3
-100

-50

0

50

100

time(s)

Fig. 3 The second order time-derivate ÿ(t) and the output¨̂y(t)of the observer (15)

the control task of the linear subsystem (13) of Eq. 1
is actually a trajectory-tracking problem. To this end,
let’s define the error variables

ζ1 = ξ1 − α1

ζ2 = ξ2 − α̇1
(32)

where α1 = α1(t)is the desired trajectory of the virtual
control input ξ1 of the nonaffine subsystem (2), then
the dynamics of the errors system can be written as

ζ̇1 = ζ2
ζ̇2 = u − α̈1

(33)

To stabilize the linear system (33), a finite-time stabi-
lizing controller is provided in proposition 2.

Proposition 2 There exists constants k1 > 0 and k2 >

0, such that the state feedback controller

u = α̈1 − k2(ζ
7/5
2 − β

7/5
1 )3/7 (34)

where β1 = −k1ζ
5/7
1 , stabilizes the origin of (33) in

finite settling-time.

Proof Using the lemmas 2-4, and referring to the
proof of proposition 1, then the proposition 2 fol-
lows.

Remark 6 As the desired trajectory α1 = α1(t)for
the linear system (33) cannot be obtained generally
in a closed-form, one has to make use of an observer
to get the time derivates of the numerical trajectory
α1 = α1(t). For a linear system, it is well known
that the observers and the controllers can be sepa-
rately designed due to the “Separation Principle” [1,
25], which is commonly adopted in output feedback
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control such as [20, 25]. However, in this paper we
will directly prove the stability of the observer-based
finite-time stabilizing controller, which will be used to
stabilize the trajectory-tracking control system (33).

Proposition 3 Using the finite-time stabilizing
observer (15), the finite time stabilizing controller
(34) stabilizes the origin of the linear system (33) in
finite settling-time.

Proof Replace the desired trajectory (α1(t), α̇1(t),
α̈1(t)) of the linear system (32)–(33) by the outputs
(

α̂1(t), ˙̂α1(t), ¨̂α1(t)
)

of the observer (15), and then the

errors dynamics (33) can be written as

ζ̇1 = ζ2
ζ̇2 = u − (α̈1 + e3)

(35)

where the error variables are given by

ζ1 = ξ1 − (α1 + e1)
ζ2 = ξ2 − (α̇1 + e2)

(36)

The finite-time stabilizing controller (34) can be
rewritten as

u = (α̈1 + e3) − k2(ζ
7/5
2 − β

7/5
1 )3/7 (37)

whereβ1 = −k1ζ
5/7
1 . Select the positive definite

function

V̂ (ζ , e) = V (ζ ) +U (e)

for the closed-loop system (35)-(37)-(17), and V (ζ )is
given by

V (ζ ) = 1

2
ζ 2
1 +

∫ ζ2

β1

(

s7/5 − β
7/5
1

)9/7
ds

≤ 2ζ 2
1 + 2

(

ζ
7/5
2 − β

7/5
1

)2
(38)

and the function U (e) that was defined in the proof of
Proposition 1, is given by

U (e) = 1

2
e21 +

∫

β

1e2(s7/5 − β̂
7/5
1 )9/7ds

+
∫ e3

β2

(s7/3 − β̂
7/3
2 )11/7ds

≤ 2e21+2
(

e7/52 −β̂
7/5
1

)2+2
(

e7/33 −β̂
7/3
2

)2
(39)

Considering the controller (37), and using the Lemma
2-4, it is easy to show that

V̇ ≤ −kζ 12/7
1 − k

(

ζ
7/5
2 − β

7/5
1

)12/7
(40)

where k > 0is a constant. In the proof of Proposition
1, it is also shown that

U̇ ≤−k̂e12/71 −k̂
(

e7/52 −β̂
7/5
1

)12/7−k̂
(

e7/33 −β̂
7/3
2

)12/7

(41)

where k̂ > 0 is also a constant. Then it follows that

V̇ ≤ −k

2
V 6/7, U̇ ≤ −k

2
U6/7 (42)

Thus the following inequality holds

V̇ + U̇ ≤ −k

2

(

V 6/7 +U 6/7
)

(43)

By the inequality (8) of lemma 2, it is easy to show
that

V̇ + U̇ ≤ −k

2
(V +U )6/7 (44)

According to the Theorem 4.2 in reference [23], the
controller (37) renders the origin of the linear system
(35) to stabilize in finite settling-time.

Remark 7 Esfandiari, Khalil and Atassi et al.
[25–27] have been given much attention on the robust-
ness analysis of high-gain- observer-based controllers.
They also generalized the “Separation Principle” to
a class of nonlinear system [27]. For the nonlin-
ear systems, the closed-loop control system based
on the high-gain-observer tends to show us the so-
called peaking phenomenon [1], which will damage
the stability of the observer-based closed-loop con-
trol system. However, as to the linear systems, the
peaking phenomenon does not happen in the high-
gain-observer-based closed-loop control systems.

Remark 8 The finite-time stabilizing observer pre-
sented by proposition 1 uses Hölder continuous feed-
back, which belongs to a class of nonsmooth feedback.
The Hölder continuous feedback not only shows a
finite settling time but also inherits the robustness of
a discontinuous feedback, such as the higher order
sliding mode [24]. The literatures [22, 28] devote to
the robustness analysis for some kinds of finite-time
stabilizing controllers.

As the last part of this section, we will present the
main result of the paper.

Proposition 4 Suppose the nonaffine systems (1) sat-
isfy the assumptions A1-A3, and there exists a satu-
rated feedback (4) such that the origin of the nonaffine
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subsystem (2) globally asymptotically stabilize. then
there exists rdimensional third-order finite-time stabi-
lizing observers (15) and rdimensional second order
finite-time stabilizing controllers (34) rendering the
origin of the nonaffine system (1) to globally asymp-
totically stabilize.

Proof Based on the assumption A1, to prove the
proposition 4, we only need to prove the stability of
the single input system

ż1 = ψ1(ξ1)z2
ż2 = ψ2(z1, ξ1)

ξ̇1 = ξ2
ξ̇2 = u

(45)

where z1, z2, ξ1, ξ2, u ∈ R, controlled by the scalar
controller

u = α̈1 − k2
(

ζ
7/5
2 − β

7/5
1

)3/7

on the basis of observer (15). According to the
assumptions A1-A3 and Lemma 1, there exists satu-
rated feedback

ξ1 = μ(z1) + β(z1, w) (46)

where

w = −k1
z1 + z2

(

1 + (z1 + z2)2
)1/2

(47)

globally asymptotically stabilizing the origin of the
nonaffine subsystem (z1, z2) of Eq. 1. Consider the
error system of Eq. 45

ż1 = ψ1(α1)z2
ż2 = ψ2(z1, α1)

ζ̇1 = ζ2
ζ̇2 = u − (α̈1 + e3)

(48)

where (ζ1, ζ2) is defined by Eq. 36. Let’s define a
positive definite function for the system (48), Ṽ =
V1 + V +U , where

V1=k1

[(

1 + (z1 + z2)
T (z1 + z2)

)1/2− 1

]

+ 1

2
zT2 z2

(49)

and the functions V and U are defined by Eqs. 38
and 39 respectively. Due to the proposition 3, the
controller (37) with making use of the observer (15)
renders the virtual input to satisfy

α1(t)|t>T ∗ = ξ1(t)

where ξ1(t) is given by Eq. 46, and

T ∗ = 14

k
(V +U ) (t0)

1/7

where k > 0is a constant. Therefore, when t > T ∗, the
motion of the linear subsystem accurately tracks the
virtual input ξ1(t)while the virtual input ξ1(t) glob-
ally asymptotically stabilize the nonaffine subsystem
(z1, z2) of Eq. 45 to its origin. Based on the lemma
1 and proposition 3, for all (z1, z2, ζ1, ζ2) �= 0, it
follows that

Ṽ ≤ −wTψ1(ξ1)w − k

2
(V +U )6/7 < 0 (50)

Thus, the controller (37)-(46)-(15) globally asymptot-
ically stabilize the system (45) to its origin.

Remark 9 Due to the saturated feedback (47), the vir-
tual input (46) is bounded at the neighborhood of
all pointsμ(z1)that satisfy ψ2(z1, μ(z1) = 0. Rela-
tively large errors during the transition process of the
observer (15) can not be enlarged by the virtual con-
troller (46). This is helpful for stabilizing the overall
system.

Remark 10 Even though the system (1) is a class of
strict feedback form system [19], the backstepping-
based control method cannot be directly used since the
virtual input (46) cannot be obtained in a closed-form.
By introducing the higher-order finite-time stabilizing
observer for the cascade linear subsystem of Eq. 45,
then the standard backstepping procedure can be uti-
lized to stabilize the nonaffine system (45) on the basis
of the saturated feedback for the nonaffine subsystem
of Eq. 45.

5 Examples of Application

In this section, two benchmark UMS: Acrobot [17,
19] and IWP [18, 19, 30] are employed to verify the
feasibility of the presented hybrid feedback controller.
The main property of this class of UMS is that the
passive coordinates of the system possess the kinetic
symmetry [19]. The dynamics of an UMS belong-
ing to this case can be rigorously transformed into
the nonaffine system (1) with strict feedback form.
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Essentially, under this case, the dynamics of the UMS
can be expressed as

d
dt

(
∂T
∂θ̇1

)

+ ∂H
∂θ1

= 0

d
dt

(
∂T
∂ θ̇2

)

− ∂T
∂θ2

+ ∂H
∂θ2

= τ
(51)

where Tdenotes the kinetic energy, H the potential
energy, θ1 ∈ Rthe passive generalized coordinate,
θ2 ∈ Rn−1the actuated generalized coordinates, τ ∈
Rn−1the generalized actuation forces, andn the degree
of freedoms (DOFs) of the mechanical systems . In
the equations (51), ∂T /∂θ1 = 0is considered since the
kinetic energy is symmetric about the passive general-
ized coordinate θ1. For the Acrobot and IWP system,
the DOFs satisfyn = 2, and then the dynamics (51)
can be written as a matrix form

m11θ̈1 + m12θ̈2 + h1 = 0
m21θ̈1 + m22θ̈2 + h2 = τ

(52)

where M =
[

m11 m12

m21 m22

]

is the inertia matrix, h1 and

h2are the speed product terms and potential forces
respectively. By the partial feedback linearization [30]
and the coordinates transformation

z1 = θ1 + γ (θ2)

z2 = ∂T /∂θ̇1
ξ1 = θ2
ξ2 = θ̇2

(53)

where

γ (θ2) =
∫ θ2

0

m12(s)

m11(s)
ds (54)

the dynamics (51) can be written as

ż1 = m−1
11 (ξ1)z2 = ψ1(ξ1)z2

ż2 = −∂H/∂θ1 = ψ2(z1, ξ1)
ξ̇1 = ξ2
ξ̇2 = u

(55)

where u = θ̈2 is defined to be the new input. It is obvi-
ous that Eq. 55 is a special case of Eq. 1 and satisfies
the assumptions A1-A3 in Section 1.

5.1 Acrobot system

Let Li , lci ,mi , Ii , i = 1, 2be the links length, the
mass center length, the mass, and the inertia momen-
tum about the axiszat the mass center of the two links,

respectively. Then the dynamics of the Acrobot system
(Fig. 4) can be written as Eq. 52, where

m11 = a + 2b cos θ2
m12 = m21 = c + b cos θ2
m22 = c

and the relevant parameters are given by

a = m1l2c1 + m2(L2
1 + l2c2) + I1 + I2

b = m2L1lc2
c = m2l2c2 + I2

h1 = −m2L1lc2 sin θ2
(

2θ̇1θ̇2 + θ̇22

) + g1
h2 = m2L1lc2 sin θ2θ̇

2
1 + g2

where

g1 = −(m1lc1 + m2L1)g sin θ1 − m2glc2 sin(θ1 + θ2)

g2 = −m2glc2 sin(θ1 + θ2)

and gis the acceleration of gravity. The potential
energy for the Acrobot system is given by

H = (m1lc1 + m2L1) g cos θ1 +m2lc2g cos(θ1 + θ2).

Then the partial derivate in Eq. 55 can be written as

∂H/∂θ1 = d sin θ1 + e sin(θ1 + θ2)

where d = (m1lc1 + m2L1) g, and e = m2lc2g. For
the Acrobot system, if one defines

y = tan
x

2
, cos x = 1 − y2

1 + y2
, dx = 2

1 + y2
dy

(56)

1

2

x

y

o
1cl

1
L

2
L

2cl

Fig. 4 The Acrobot system
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Fig. 5 The motion trajectories of z1and z2 for the Acrobot

then the integration (54) can be analytically expressed
as

γ (θ2) =
∫ θ2

0

c + b cos x

a + 2b cos x
dx

= θ2

2
+ 2c − a√

a2 − 4b2
arctan

(√

a − 2b

a + 2b
tan

(
θ2

2

))

(57)

forθ2 ∈ [−π, π ]. With this in mind, the functions
ψ1(ξ1)and ψ2(z1, ξ1) of Eq. 55 can be explicitly
expressed as

ψ1(ξ1) = m−1
11 (ξ1)

ψ2(z1, ξ1) = d sin (z1 − γ (ξ1))

+e sin(z1 − γ (ξ1) + ξ1) (58)

For the purpose of clarity, we present the controller
for the Acrobot system in the following. Let’s define
the error variables for the observer

e1 = α̂1 − α1

e2 = α̂2 − α̇1 = ˙̂α1 − α̇1

e3 = α̂3 − α̈1 = ¨̂α1 − α̇1

(59)

time(s)
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Fig. 6 The motion trajectories of ζ1and ζ2 for the Acrobot
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Fig. 7 The observer’s output α̂11 and
˙̂α1 for the Acrobot

and define the error variables for the linear subsystem
of Eq. 55

ζ1 = ξ1 − (α1 + e1) = ξ1 − α̂1

ζ2 = ξ2 − (α̇1 + e2) = ξ2 − ˙̂α1
(60)

The error dynamics for the Acorobt system can be
written as

ż1 = ψ1(α1)z2
ż2 = ψ2(z1, α1)

ζ̇1 = ζ2

ζ̇2 = u − ¨̂α1

(61)

and the observer (15) for the Acrobot can also be
rewritten as

˙̂α1 = α̂2 − k̂1(e1)5/7˙̂α2 = α̂3 − k̂2(α̂2 − ˙̂α1)
3/7

˙̂α3 = −k̂3(α̂3 − ˙̂α2)
1/7

(62)

To stabilize the Acorobot system (61)-(62), the fol-
lowing Corollary can be given by the Lemma 1 and
Propositions 1-4.

Corollary 1 (Acrobot) For the observer-based
Acorobt system (61)–(62), there exists a group control
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-5

0

5

10

15

time(s)

)
dar(

,
2

1

2

1

Fig. 8 The angular position of the joints for the Acrobot
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Fig. 9 The angular speed of the joints for the Acrobot

parameters ki > 0 and k̂i > 0, i = 1, 2, 3, the
controller

u = ¨̂α1 − k2
(

ζ
7/5
2 − β

7/5
1

)3/7
(63)

where

β1 = −k2ζ
5/7
1 (64)

α1 = μ(z1) + w (65)

w = k1
z1 + z2

(

1 + (z1 + z2)2
)1/2

(66)

and μ(z1)satisfies ψ2(z1, μ(z1)) = 0,
globally exponentially stabilize the origin
(z1, z2, ζ1, ζ2, e1, e2, e3) = 0 of the dynamic system
(61)–(62).

Given the structure parameters of the Acrobot sys-
tem to be L1 = L2 = 1(m), lc1 = lc2 = 0.5(m),
m1 = m2 = 1(Kg), I1 = I2 = 1/3(Kgm2), and
the acceleration of gravity is g = 9.81 (N/Kg), then
the numerical simulations results of swinging up the
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-40
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time(s)

)
s/

dar(
2

2

Fig. 10 The angular acceleration of the actuated joint for the
Acrobot
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Fig. 11 The IWP system

Acorobt system from the initial state
(

θ1, θ̇1, θ2, θ̇2
) =

(π, 0, 0, 0) and then stabilizing the system to its unsta-
ble inverted position are illustrated in Figs. 5, 6, 7, 8,
9 and 10.

It is worth pointing out that, to get the root μ(z1)of
ψ2(z1, μ(z1)) = 0 for every given z1in Eq. 65, we
use the “fzero” function in the Matlab software, which
utilizes the inverse quadratic interpolation methods to
get the zero point of a continuous function.

5.2 IWP

The dynamic parameters for the IWP system [30]
(Fig. 11) can be given by

m11 = m1l2c1 + m2L2
1 + I1 + I2

m12 = m21 = m22 = I2
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Fig. 12 The motion of variables z1 and z2 for the IWP system
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Fig. 13 The motion of error variables ζ1 and ζ2 for IWP system

and the potential forces can be written as

h1 = −(m1lc1 + m2L1)g sin θ1
h2 = 0

The potential energy of the IWP system can be
expressed as

H = (m1lc1 + m2L1) g cos θ1

By the coordinates transformations (53), the control
equations for the IWP system are given by

ż1 = ψ1z2
ż2 = ψ2(z1, ξ1),

ξ̇1 = ξ2
ξ̇2 = u

(67)

where,

ψ1) = 1/m11

ψ2(z1, ξ1) = (m1lc1 + m2L1)g sin (z1 − γ (ξ1))

(68)

γ (ξ1) =
∫ ξ1

0

m12

m11
dx = m12

m11
ξ1 (69)

Because of the special simple structure, it has been
shown that the IWP is a kind of differentially flat UMS
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Fig. 14 The observer’s output α̂1 and ˙̂α1 for the IWP system

0 2 4 6 8
-20

0

20

40

60

)
dar(

2
1

2

1

time(s)

Fig. 15 The angular position of the joints for the IWP system

[29–32], which can be globally stabilized by output
feedback controller. Whereas, we apply the hybrid
feedback method presented in this paper to verify the
effectiveness of the presented new controller.

It is different from that of the Acrobot system, the
zero solution of the smooth function ψ2(z1, ξ1)for the
IWP can be obtained in a closed-form. For all givenz1,
the solution of ψ2(z1, μ(z1)) = 0 can be expressed as

μ(z1) = m11

m12
(z1 − nsπ) (70)

for the IWP system, where ns is a constant. We con-
sider the absolute zero position control for both the
generalized coordinates θ1 and θ2 of the IWP sys-
tem. Towards this end, let ns = 0, then Eq. 70 is
simplified to

μ(z1) = m11

m12
z1 (71)

Using Eq. 71 and the corollary 1, the numerical sim-
ulations results of swinging up the IWP system from
the initial state

(

θ1, θ̇1, θ2, θ̇2
) = (π, 0, 0, 0) and then

stabilizing the system to its unstable inverted position
are illustrated in Figs. 12, 13, 14, 15, 16 and 17, where
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Fig. 16 The angular speed of the joints for the IWP system
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Fig. 17 The angular acceleration of the actuated joint for the
IWP system

the structure parameters of the IWP are given by L1 =
1(m), lc1 = 0.5(m), m1 = 1(Kg), m2 = 2(Kg), I1 =
1/3(Kgm2), I2 = 2/3(Kgm2), and the acceleration of
gravity is also supposed to beg = 9.81 (N/Kg).

6 Conclusion

For the purpose of providing more selections to design
an UMS or legged robotic system, globally exponen-
tially stabilizing a class of nonaffine nonlinear sys-
tems with strict feedback forms is investigated in this
paper. A finite-time stabilizing observer is presented
to get the time-derivates of the virtual input so that the
backstepping–based controller can be applied to stabi-
lize the considered nonaffine nonlinear system in real
time. It is also shown that a finite-time controller on
the basis of a finite-time observer can be realized for
the high-order linear systems. By constructing a par-
tial states feedback for the nonaffine subsystem and a
finite-time stabilizing virtual outputs feedback for the
cascade linear subsystem, it is shown that the consid-
ered class of nonaffine systems with strict feedback
form can be globally exponentially stabilized to the
origin.

On the basis of the methodology presented in this
paper, some dynamically legged robots, such as the
hopping robots, biped robots and other dynamically
mechanical systems, will have more selections than a
differentially flat system in designing the UMS [16,
32], such that the robotic systems can show both better
controllability and larger design space [15] which will
greatly improve the energy-efficiency of the UMS.
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