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Abstract In this paper, the problem of identification-
based robust motion control of an Autonomous Under-
water Vehicle (AUV) is investigated. The unknown
system parameters are estimated by using an adap-
tive parameter identifier, whose gains are optimized
by Particle Swarm Optimization (PSO) algorithm.
Removing the trial and error procedure and ensuring
the convergence property together with fast response,
are the benefits of such identification scheme. On
the other hand, the system uncertainties, hydrody-
namic parameter variations and external disturbances
which affect the identified dynamical model, are
also taken into account. The cross-coupling effects
between subsystems are also considered as model
uncertainties. Such uncertain model is then adopted
in control synthesis procedure, in the steering and
diving modes. In order to achieve the robust stabil-
ity and performance, two robust control strategies are
presented here to solve the motion control problem.
First, an H∞ mixed sensitivity problem is formu-
lated in which the weighting functions are selected
based on an optimization criterion, by using PSO algo-
rithm. Controller order reduction is also applied to
the resulting diving and steering controllers, using
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the Hankel norm approximation. Then, an Adaptive
Sliding Mode Control (ASMC), whose sliding sur-
face coefficients are optimized by PSO algorithm, is
developed for the identified AUV model. Possess-
ing the robustness properties with respect to system
perturbations, the developed Sliding Mode Control
(SMC) removes the complexity of uncertain model
representation and the limitations on choosing the
weighting functions in the H∞ control problem. The
upper bounds of perturbations are not required to be
known in the proposed control schemes. The simula-
tion results are also presented to demonstrate the per-
formance of the proposed identification-based control
methods.

Keywords Autonomous underwater vehicle · Robust
control · Adaptive identification · Model uncertainty ·
PSO algorithm

1 Introduction

Motion control of underwater vehicles is one of the
main topics in oceanic research and engineering, as
AUVs play an important role in deep-water missions,
oil and gas extraction and exploration [1], commercial
and scientific missions [2], and geological and bio-
logical investigations [3, 4]. Controller design for an
AUV is a challenging problem, due to some reasons as

1) Non-linear dynamics of the vehicle subject to
hydrodynamic forces and moments.
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2) Model uncertainties, due to unmodelled dynam-
ics and poor knowledge of hydrodynamic and
damping coefficients.

3) External disturbances such as underwater cur-
rents.

The performance of model-based control algo-
rithms depends mainly on the precision of system
modeling and the accuracy of the model parameters.
Although a six degree-of-freedom (DOF) model is
commonly used to describe the nominal behavior of
AUVs, but from a practical viewpoint, various kinds of
uncertainties and disturbances may perturb the system
and form an uncertain nonlinear model. In the most of
applications, parameter variations and environmental
disturbances make the motion deviate from the desired
trajectory [5].

As a preliminary step to control design procedure,
various investigations have been devoted to iden-
tify the dynamical model of AUVs, such as least
square method [6], extended Kalman filter [7, 8],
maximum likelihood method [8], and adaptive iden-
tification technique [9]. Such algorithms, committed
to approximating the hydrodynamic parameters in the
mathematical model, suffer from some restrictions as
dependency to the initial conditions, ill-conditioned
solutions and simultaneous drift. Removing such
drawbacks, some novel algorithms, e.g. neural net-
works [10] and neurofuzzy [11], are proposed to
identify the hydrodynamic parameters in some spe-
cial classes of AUVs. However, the nonlinearities and
coupled terms make the identification of the whole
hydrodynamic coefficients quite complicated and time
consuming. Thus, the general structure of AUV model
usually needs to be simplified prior to the identifi-
cation process. A set of decoupled AUV subsystems,
concerning with different degrees of freedom can be
set up based on Kalman filter identification [12].
Furthermore, adaptive parameter identifiers may be
also adopted to obtain the linear model of decoupled
AUV subsystems [13], in which the adaptation gains
have an important role in the speed of convergence.
Some metaheuristic or evolutionary algorithms may
be used to remove the trial and error procedure for
gain selection. To this end, the PSO algorithm as an
intelligent optimization technique, is used here to opti-
mally determine the adaptation gains Compared with
some other naturally inspired methods, such as genetic

algorithm, the PSO technique gives faster convergence
with a few parameters to be adjusted. In addition,
unlike the heuristic methods as simulated anneal-
ing and evolutionary algorithms, the PSO includes
a flexible and well-balanced mechanism to enhance
the global and local exploration with a rather short
processing time.

During the past years, complete, decoupled, and
linearized models of AUVs have been used to design
motion control algorithms. Adopting the linearized
dynamics, various linear control techniques such as
PID controller [14], LQR and LQG algorithms [14,
15] have been developed. Some more recent investi-
gations have decoupled the diving plane and steering
system states [13, 16], to develop the depth, pitch,
and yaw controllers [17, 18]. By taking the complete
model, some six DOF controllers, based on adaptive
identification and intelligent algorithms, have been
reported to achieve the desired performance [19, 20].
The previous works suffer from at least one of the
following restrictions, (i) the conservative assump-
tions make the algorithm be applicable for a special
class of AUVs, (ii) unmodelled dynamics, parame-
ter variations and environmental disturbances are not
incorporated in dynamical equations altogether, (iii)
robust closed-loop stability and performance are not
ensured analytically.

Concerning with robust motion control of AUVs,
H∞ control strategy may take the unstructured
uncertainties into account, to guarantee the desired
stability and performance. Robust stability, fast track-
ing response and disturbance attenuation can be well
suited in an H∞ design framework. In fact, the control
problem is expressed as a mathematical optimization
problem whose solution minimizes the H∞ norm of
the closed-loop transfer function and internally sta-
bilizes the system. Weighting function selection and
high order of the resulting controller may be the
main problems in developing an H∞ control algo-
rithm [21]. The weighting functions have no general
structure and should be assigned in each specific
design. The SMC, as a less conservative nonlinear
robust control technique, is then adopted to solve
the underlying control problem [22]. Selection of the
sliding surface and its coefficients are usually the
main issues of the SMC, as the closed loop perfor-
mance and transient response are affected by such
selections.
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Fig. 1 Coordinate systems for an AUV [23]

In general, the benefits of the proposed techniques
for identification and motion control of an AUV,
compared with some previous works, can be stated as

1) An optimal performance is obtained by selecting
the coefficients of weighting functions, the sliding
surface and adaptation gains, by using the PSO
algorithm.

2) The coupling effects, as model uncertainties, may
be compensated in robust motion control.

3) No prior knowledge about the upper bound of
perturbations is required in control design.

4) The chattering phenomenon of the conventional
SMC is removed here by the proposed PSO-based
ASMC.

5) Simple structure of the identification mechanism
and control laws may provide easy real-time
implementation with low computations

The remainder of this paper is organized as fol-
lows. Introducing the nonlinear equations of motion,

the steering and diving subsystems are decomposed
in Section 2. The PSO-based adaptive identification
algorithm is constructed in Section 3 to optimally
determine the unknown parameters of the AUV
model. Adopting the identified model, two robust
motion control algorithms are developed based on
the H∞ control scheme and sliding mode strategy in
Section 4. From a comparison point of view, the effec-
tiveness of the developed algorithms is discussed by
giving various simulation results in Section 5. The
concluding remarks are finally given in Section 6.

2 Dynamic Motion Equations of AUV

The dynamic model of an underwater vehicle can be
developed through the Newton-Euler formulation. The
motion of an AUV in a three-dimensional space may
be analyzed by defining a frame, including the posi-
tion and orientation of the rigid body. In general, the
AUV model may be written either in a body-fixed
frame, as in this work, or in an earth-fixed (inertial)
coordinate, as demonstrated in Fig. 1.

2.1 General Mathematical Model Structure

The nonlinear dynamic equations of motion for a 6-
DOF AUV can be written in the body-fixed frame as
[14]

M(ν)ν̇ + C(ν)ν + D(ν)ν + g(η) = τ + τD (1)

η̇ = J (η)ν (2)

where v = [u v w p q r]T is the AUV spatial veloc-
ity state vector, and η = [x y z φ θ ψ]T includes
the position and orientation states, as introduced in
Table 1. The spatial transformation matrix between

Table 1 Notation used for marine vehicle

DOF Motion descriptions Positions and orientations Linear and angular velocities Forces and moments

1 Motion in the x-direction (Surge) x u X

2 Motion in they-direction (Sway) y v Y

3 Motion in thez-direction (Heave) z w Z

4 Rotations about thex-axis (Roll) φ p K

5 Rotations about they-axis (Pitch) θ q M

6 Rotations about thez-axis (Yaw) ψ r N
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the inertial frame and the body-fixed frame is denoted
by J (η). Moreover, M (v) is the inertia matrix, C (v)

is the matrix of centrifugal and Coriolis terms, due
to the rigid body and the added mass, D (v) is a
diagonal matrix of damping or drag terms, and g (η)

represents the vector of gravity and buoyancy forces
and moments. The control forces and moments are
included in τ = [X Y Z K M N ]T , and τD is the
vector of external disturbances.

2.2 Model Decomposition for AUV

Based on the rigid-body motion principle, a 6-DOF
model of AUV can be decomposed into three non-
interaction subsystems control, as [14]

1) Steering subsystem, used to control the yaw
(heading) angle ψ by using the rudder angle δr as
the control input variable.

2) Diving subsystem, to control the depth z and pitch
angle θ by the elevator (stern plane) angle δs as
the control input variable.

3) Speed subsystem (surge velocity), to control the
vehicle speed by varying the propeller speed.

In practice, the surge speed is constant and only
the steering and diving subsystems should be taken in
designing the identification-based motion controllers.

2.2.1 Steering Mode

Neglecting the motion of vehicle in the vertical plane,
the heading direction may be controlled by the rudder
angle. In the steering mode, a linear model is obtained
for the vehicle as [14]

⎡
⎣

m − Yν̇ mxG − Yṙ 0
mxG − Nν̇ IZ − Nṙ 0
0 0 1

⎤
⎦

⎡
⎣

ν̇

ṙ

ψ̇

⎤
⎦

+
⎡
⎣

−Yν mu0 − Yr 0
−Nν mxGu0 − Nr 0
0 −1 0

⎤
⎦

⎡
⎣

ν

r

ψ

⎤
⎦ =

⎡
⎣

Yδr

Nδr

0

⎤
⎦ (3)

where m, Iz, u0 and xG respectively are the mass
of the vehicle, the vehicle inertia around the yaw
axis, the surge velocity and the position of the cen-
ter of gravity. The other parameters are the hydro-
dynamic parameters including the cross-flow drag
coefficients (YvYrNvNr), the added mass coefficients
(Yv̇YṙNv̇Nṙ ), the fin lift force (Yδr ) and moment (Nδr )

[14].

2.2.2 Diving Mode

For a vehicle in the vertical plane, it is assumed that
the forward speed is constant, the heave velocity is
small and xG = 0. This is quite realistic, as the most
of small underwater vehicles move slowly in the verti-
cal direction. Thus, the vehicle can be modeled in this
mode by a linear form as [14]

⎡
⎣

q̇

θ̇

ż

⎤
⎦=

⎡
⎢⎣

Mq

Iy−Mq̇
− (zG−zB)W

Iy−Mq̇
0

1 0 0
0 −u0 0

⎤
⎥⎦

⎡
⎣

q

θ

z

⎤
⎦+

⎡
⎢⎣

Mδr

Iy−Mq̇

0
0

⎤
⎥⎦ δs

(4)

where Iy , u0, W and (zG − zB) respectively are the
vehicle inertia around the pitch axis, the surge veloc-
ity the weight of the vehicle and the distance between
the gravity and the body center. The remainder of
parameters are the hydrodynamic parameters, includ-
ing the cross-flow drag coefficient (Mq), the added
mass coefficient (Mq̇) and the fin lift moment (Mδs )

[14].

3 PSO-Based Adaptive Identification

Various system identification techniques, classified to
parametric and nonparametric techniques have been
successfully applied for the vehicle model identifi-
cation. The parametric approaches commonly adopt
a mathematical structure whose unknown parameters
are estimated. Adaptive identification as a parametric
scheme, is used here to identify the unknown matrices
of the model in the steering and diving modes. Fur-
thermore, the PSO algorithm can be used to improve
the design specifications.

3.1 Overview of Particle Swarm Optimization

The particle swarm optimization approach, as a
population-based stochastic searching technique, was
proposed by Kennedy and Eberhart in 1995 [24]. Each
individual (named particle) of the population (called
swarm), adjusts its trajectory towards its own previous
best solution and the previous best solution attained
by any particle of its topological neighborhood. The
particles in PSO are specified by two main char-
acteristics, including the position and velocity. The
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current position and velocity vector of the ith parti-
cle in the search space are respectively denoted by
Xi = (xi1, xi2, ..., xid) and Vi = (vi1, vi2, ..., vid).
The best earlier position of the ith particle is repre-
sented by Pbest i = (pbest i1, pbest i2, ..., pbest id )

and the global best position in the swarm, up to
iteration k, is called Gbestk .

The PSO update formula is given by

V k+1
i = wIV

k
i + c1r1(P bestki − Xk

i )

+c2r2(Gbestk − Xk
i ) (5)

Xk+1
i = Xk

i + V k+1
i 	t (6)

where c1 (cognitive parameter) and c2 (social param-
eter) are two positive constants, r1 and r2 are two
random functions in [0 1], 	t is time increment in dis-
cretization,wI is the inertia weight and k is the pointer
of iterations (generations), which plays an important
role in convergence behavior. Due to the importance of
the inertia weight in handling the global/local search
behavior of the PSO algorithm, a dynamic improve-
ment has been proven to be useful by decreasing the
inertia weight, based on a fraction multiplier kw (0
< kw <1) as [26]

wk+1
I = kwwk

I (7)

In fact, PSO algorithm performs faster in find-
ing solutions, compared with some other evolutionary
computation techniques [25]. Some reasons for such
property, can be stated as [24–26]

1) In PSO, the momentum effects on particle move-
ment can allow faster convergence (e.g. when
a particle is moving in the direction of a
gradient) with more variety/diversity in search
trajectories.

2) PSO does not need reproduction or mutation to
produce the next generation. Instead, the particles,
as the potential solutions, fly through the problem
space by following the current optimum particles.
Meanwhile, all of particles share the obtained
information, and such interactive behavior makes
the search efficient.

3) In some techniques, e.g. genetic algorithm the
whole population moves like one group towards
an optimal area, while in PSO each particle com-
monly tends to converge to the best solution.

4) In PSO, the particles update themselves with the
internal velocity. They also have memory, as an
important tool in finding the solutions fast.

3.2 Adaptive Model Parameter Identifier Optimized
by PSO

In order to use an identification algorithm the steer-
ing and diving subsystems may be represented in a
state space form, by ignoring the index of subsystems
symbols, as

ẋ = Apx + Bpu (8)

in which Ap is stable, u is a bounded input. To esti-
mate Ap and Bp, the so-called series-parallel model
may be introduced by [13]

˙̂x = Amx̂ + (Âp − Am)x + B̂pu (9)

where Am is an arbitrary stable matrix, x̂ is the esti-
mate of x and Âp and B̂p denote the estimates of Ap

and Bp respectively.
By defining the estimation error ε = x − x̂, one can

derive the adaption mechanisms

˙̂
Ap = γA ∈ xT (10)

˙̂
Bp = γB ∈ uT (11)

where γA, γB> 0 are the adaption gains [13].
The convergence of Âp and B̂p to their true val-

ues Ap and Bp, depends on the properties of the input
u. More precisely, if u belongs to the class of suf-
ficiently rich inputs, i.e., u has enough frequencies
to excite all the modes of the plant, then the vector[
xT , uT

]T
has the Persistent Excitation (PE) property

and the exponentially fast convergence is guaranteed
[13].

The parametric structures of the steering subsystem
(3) and diving subsystem (4) are specified respectively
by

Ap S =
⎡
⎣

a11 S a12 S 0
a21 S a22 S 0
0 1 0

⎤
⎦ ,

Bp S =
⎡
⎣

b1 S

b2 S

0

⎤
⎦ ,

xS = [v r ψ]T , uS = δr , yS = ψ (12)
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Ap D =
⎡
⎣

a11 D a12 D 0
1 0 0
0 −u0 0

⎤
⎦ ,

Bp D =
⎡
⎣

b1 D

0
0

⎤
⎦ ,

xD = [q θ z]T , uD = δs , yD = z (13)

where the surge velocity is constant as u0 =
1.832m/sec [22]. In this study, to identify the steering
and diving modes, the input is chosen sufficiently rich
respectively of orders 6 and 4 as

ui S (t) = 5 sin t + 5 sin 4t + sin 8t (14)

ui D (t) = 10 sin 16t + 5 sin 4t (15)

Remark 1 There is a trade off in choosing γA and γB

to obtain the fast convergence and avoiding instability.
Compared with some previous conventional works [9,
13], the adaptation gains is determined here by PSO
to achieve the fast convergence and avoid the windup
problem simultaneously. This advantage is significant,
especially for uncertain systems. The proposed block
diagram of the parameter identification scheme, tuned
by PSO is presented in Fig. 2.

The cost function, used in PSO is adopted here as

hT otal (γA, γB)=
∫ Tf

t=0
(|e1 (t)|+|e2 (t)|+|e3 (t)|) dt

(16)

where ei (t) = xi (t)− x̂i (t) , i = 1, 2, 3 and Tf > 0
is the final simulation time.

Fig. 2 The proposed block diagram of model parameter identi-
fication tuned by PSO

By Eqs. 8–13, the adaptation mechanisms for the
steering and diving modes are obtained as

˙̂a11 S = γA 11 S

(
x1 − x̂1

)
x1 ,

˙̂a12 S = γA 12 S

(
x1 − x̂1

)
x2 ,

˙̂
b2 1 S = γB 1 S

(
x1 − x̂1

)
ui S (17)

˙̂a21 S = γA 21 S

(
x2 − x̂2

)
x1 ,

˙̂a22 S = γA 22 S

(
x2 − x̂2

)
x2 ,

˙̂
b2 2 S = γB 2 S

(
x2 − x̂2

)
ui S (18)

and

˙̂a11 D = γA 11 D

(
x1 − x̂1

)
x1 ,

˙̂a12 D = γA 12 D

(
x1 − x̂1

)
x2 ,

˙̂
b1 D = γB 1 D

(
x1 − x̂1

)
ui D (19)

where γA S, γB S, γA D, γB D are some constants
determined by using PSO with the specified cost
function.

Based on the proposed block diagram in Fig. 2,
the PSO-based identification problem is to find the
optimal vectors

γ S = [γA 11 S , γA 12 S , γB 1 S , γA 21 S ,

γA 22 S , γB 2 S] (20)

and

γ D = [γA 11 D , γA 12 D , γB 1 D] (21)

that minimizes the objective function hT otal (γA, γB),
in the steering and diving modes respectively.

The specifications of the applied PSO algorithm,
used for identification of the steering and diving
modes, are summarized in Table 2. The specified
inputs (14) and (15) are used in adaptation mech-
anisms (17)–(19), based on Fig. 2. Then, the PSO
algorithm is applied to find the optimal values of
the parameters of γ S and γ D , by minimizing the
objective function hT otal (γA,γB) in (16). The adopted
lower and upper bounds of nine parameters in γ S and
γ D and the final optimal values for adaptation gains in
(20) and (21) are given in Table 3. Now, by replacing
the optimal vectors γ S = [9 , 8 , 0.3 , 9 , 19 , 0.8]
and γ D = [15.1 , 9.98 , 1.01] in Eqs. (17)–(19), the
unknown parameters of matrices in (12) and (13) can
be estimated.

Figures 3 and 4 demonstrate the time history of
parameter identification in the steering and diving
modes, respectively. Moreover, the estimated values of
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Table 2 The steps of PSO algorithm in the identification problem

Step Process

1 Set the members of each individual in PSO algorithm γ S and γ D

2 Population size is equal to 50

3 Inertia weight factor wI is set as Eq. 7, with wI (0) = 0.975

4 The limit of change in velocity is set to maximum dynamic range of the variables on each dimension

5 Acceleration constants are c1 = c2 = 2.05

6 Maximum iteration is set to 20

the unknown parameters in steady state are reported in
Table 4. By replacing the estimated parameters in (12)
and (13), the transfer function (nominal plant) for the
steering and diving modes are respectively obtained as

Gn S(s) = ψ(s)

δr (s)
= − 0.2847 s − 0.08408

s3 + 0.8457 s2 + 0.1205 s

(22)

and

Gn D(s) = z(s)

δs(s)
= 0.382

s3 + 0.9999 s2 + 0.0665 s

(23)

4 Robust Motion Control Design

Adopting the identified model of AUV in Section 3,
and taking the model uncertainties into account, an
H∞ mixed sensitivity problem is first formulated to
meet reference tracking, disturbance attenuation and
avoiding actuator saturation. Besides, to remove the
restriction of weighting function selection, the PSO
algorithm is adopted to optimally determine the coef-
ficients of the prescribed weighting functions. Then,

from a comparison viewpoint sliding mode control is
also formulated to solve the underlying problem.

4.1 H∞ Control Formulation

Unstructured uncertainties arise mostly due to mod-
eling errors and linearization, may be tackled by H∞
control. To this end, a family of unknown plants is first
constructed based on the nominal model. The input
multiplicative uncertainty is preferred here to describe
the steering and diving subsystems as

Gp (s) =Gn (s) (1+	m (s) Wm (s)) (24)

where Gn denotes the nominal system, Wm (s) is a
stable weighting function and 	m (s) indicates the
normalized uncertainty block with ‖	m (s)‖∞ < 1
[27, 28], which together with Eq. 24 yields
∣∣∣∣
Gp (jω)

Gn (jω)
−1

∣∣∣∣ ≤ |Wm (jω)| ∀ω (25)

where |Wm (jω)| represents the upper bound of uncer-
tainty in frequency domain.

Now, a mixed sensitivity problem can be formu-
lated to solve the control problem, as demonstrated in
Fig. 5. To facilitate the designing procedure, a general

Table 3 The optimal values of γA S , γB S , γA D , γB D in the steering and diving modes

Subsystem

Steering mode Parameters γA 11 S γA 12 S γA 21 S γA 22 S γB 1 S γB 2 S

Lower Bound 7 7 0.15 7 12 0.5

Upper Bound 14 14 0.3 14 24 1

Optimal Value 9 8 0.3 9 19 0.8

Diving mode Parameters γA 11 D γA 12 D γB 1 D

Lower Bound 10 9 0.6

Upper Bound 20 18 1.2

Optimal Value 15.1 9.98 1.01
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Fig. 3 Time history of parameter estimation in the steering mode (a) a11 S , (b) a12 S , (c) b1 S , (d) a21 S , (e) a22 S , (f) b2 S

framework is formed by the linear fractional trans-
formation, as depicted in Fig. 6. By defining Z =[
z1 z2

]T
and w = d, respectively as the controlled

output and the exogenous input, the generalized plant
P is specified as
⎡
⎢⎢⎣

y	

z1
z2
y

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 Wm

−Gn We −We −Gn We

0 0 Wu

−Gn −1 −Gn

⎤
⎥⎥⎦

︸ ︷︷ ︸
P

⎡
⎣

u	

d

u

⎤
⎦

(26)

The H∞ controller Kinf is designed so that ym

tracks the reference trajectory yd , taking the effects
of disturbance and the actuator limit, into account.
The sensitivity-performance weighting function We,
is selected such that the performance requirements
on rise time, overshoot percentage and steady state
error are satisfied. Meanwhile, the transfer func-
tion Wu, penalizes the controller with high control
effort.

Briefly discussing, the purpose of the underly-
ing mixed-sensitivity problem is to minimize a cost
function, including the transfer functions
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Fig. 4 Time history of parameter estimation in diving plane (a) a11 D , (b) a12 D , (c) b1 D
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Table 4 Estimated values of unknown parameters in steering and diving modes

Subsystem

Steering mode Parameters a11 S a12 S a21 S a22 S b1 S b2 S

Estimated Value −0.2721 −0.6465 −0.0552 −0.5734 0.1191 −0.2848

Diving mode Parameters a11 D a12 D b1 D

Estimated Value −1 −0.0665 −0.2085

i. From u	 to y	 (robust stability)
ii. From external disturbance d to system output ym

(disturbance attenuation)
iii. From the reference input yd to controller output

u (avoiding actuator saturation)

Defining the sensitivity function S =(
1 + Gn Kinf

)−1, the norm of transfer matrix Tzw is
given by

‖Tzw‖∞ =
∥∥∥∥∥∥

WmGnKinf S

We S

WuKinf S

∥∥∥∥∥∥
∞

(27)

The H∞ sub-optimal control uses the γ -iteration
algorithm to give an infimum value for γ > 0 such
that the objectives are satisfied and ‖Tzw‖∞ < γ [21].
On the other hand, the calculated value of γ is highly
dependent to the selected weighting functions. Hence,
some general guidelines are presented on choosing
the structure of such functions and using the PSO
algorithm to optimally determine the coefficients.

4.1.1 Weighting Functions Selection

To determine the uncertainty function 	 for each
subsystem, based on the specified procedure in [28,
29, 31] the transfer functions (22) and (23) are first
adopted as the nominal model Gn (jω) in Eq. 24
for the steering and diving subsystems. Then, various
parameters of the model for the worst case configura-
tion are perturbed up to±40% of their nominal values.

∆∆

 

− 

 

 

∆

 

Fig. 5 Block diagram representation of the system with multi-
plicative uncertainty

The singular values of the perturbed system Gp (jω),
together with the specified multiplicative weighting
functions Wm (jω) are plotted in Fig. 7.

The input multiplicative uncertainty weighting
functions are approximated by a first order system and
tuned to get the best possible match for the steering
mode as

Wm S(s) = 0.5774 s + 2.257

s + 3.091
(28)

and for diving plane as

Wm D(s) = 0.5834 s + 2.137

s + 2.252
(29)

A similar procedure can be carried out to opti-
mally determine We and Wu in the steering and diving
modes. A general structure for such weightings may
be a first order transfer function [21] respectively as

We(s) = As + B

s + C
(30)

and

Wu(s) = s + D

E s + F
(31)

where A, B, C, D, Eand F are some constants, deter-
mined by using the PSO algorithm. The weighting
function We is selected such that |We (jω)|−1 ≥
|S (jω)| , ∀ω, i.e. the tracking performance and dis-
turbance attenuation are satisfied and Wu should
satisfy |Wu (jω)|−1 ≥ ∣∣Kinf (jω) S (jω)

∣∣ , ∀ω, by

∆∆

∆

Fig. 6 General framework for H∞ controller design
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Fig. 7 The singular values of the perturbed system in (a) steering mode and (b) diving mode

which the maximum amplitude of control effort
can be taken into account [21]. Also, defining
the complementary sensitivity function T (jω) =
Gn (jω)Kinf (jω) S (jω), the inequality condition
|Wm (jω)|−1 ≥ |T (jω)| , ∀ω, may be adopted
together with inequality (25) to ensure the robust
stability, in choosing Wm.

Now, the PSO algorithm can be used to optimally
determine the unknown vector

λ = [A , B ,C ,D ,E , F ] (32)

by specifying a performance index. Including over-
shoot percentage MP , rise time tr , and settling time
ts in the step response of the closed loop syste, a
weighted cost function is chosen as

J1 (λ) = w1 MP + w2 tr + w3 ts (33)

in which the weight factors wi , i = 1, 2, 3 are speci-
fied by the designer. On the other hand, the weighting
functions inevitably affect the value of γ in the sub-
optimal H∞ algorithm. Hence, a second index may be
also imposed by

J2 (λ) = ‖Tzw‖∞ (34)

incorporated in forming the total objectives function

JT otal (λ) = J1 (λ) + J2 (λ) (35)

The resulting PSO-based weighting function selec-
tion is to find λ, so that the cost function (35) is
minimized, based on the proposed block diagram in
Fig. 8.

The lower bound of thesix parameters in vector λ is
taken to zero and the upper bounds are assumed to be
[A, B, C, D, E, F ] = [0.005, 0.5, 30, 25, 25, 1000],
in the PSO algorithm simulation. The weight factors

in Eq. 33 are selected as w1 = w2 = 50 and w3 = 20,
to get the fast responses with low overshoot percent-
age. Finally, by replacing the obtained optimal values
of the entries of λ in general structures (30) and (31),
We and Wu for the steering and diving modes are
respectively obtained as

We S(s) = 0.0009561 s + 0.07188

s + 28.2173
, (36)

Wu S(s) = s + 0.2888

2.0880 s + 127.9018
(37)

and

We D(s) = 0.0000012 s + 0.0048

s + 13.5061
, (38)

Wu D(s) = s + 3.2276

3.4831 s + 680.0174
(39)

4.1.2 Controller Order Reduction

Using hinfsyn function in MATLAB Robust Con-
trol Toolbox the H∞ controller Kinf in Fig. 5 is

‖ ‖

 

− 

 

 

 

Fig. 8 The proposed block diagram for PSO-based H∞ con-
troller design
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designed with the resulting values of γ reported
in Table 5. The H∞ controller transfer function,

respectively for the steering and diving modes,
are

Kinf S(s) = −0.1952 s5 − 18.23 s4 − 406.4 s3 − 1372 s2 − 917.7 s − 123.9

s6 + 80.56 s5 + 1728 s4 + 7370 s3 + 7780 s2 + 3278 s + 486.7
(40)

and

Kinf D(s) = 0.4927 s5 + 104.4 s4 + 1634 s3 + 4453 s2 + 3006 s + 193.7

s6 + 194.5 s5 + 3467 s4 + 15500 s3 + 23950 s2 + 17680 s + 6517
(41)

Although the H∞ synthesis is an efficient control
tool to achieve robust stability and performance, but
the high order of the resulting controller may be a
drawback in practical implementation. Thus, the Han-
kel norm approximation [21], as a controller order
reduction technique is applied here to the resulting
controllers. The Hankel singular values for the steer-
ing and diving modes respectively obtained as

SV S = [ 0.1681 , 0.0426 , 0.0031 , 0.00080648 ,

0.00042460 , 0.0000000010239 ]

and

SV D = [ 0.1478 , 0.1456 , 0.0122 , 0.00055534 ,

0.00014429 , 0.00000000023177 ]

are plotted in Fig. 9.
Ignoring the small singular values the order of the

steering and diving controllers are reduced to 3 and 4
respectively, with the transfer functions

K inf
Sreduced

(s) = −0.2386 s2 − 0.5183 s − 0.1029

s3 + 3.051 s2 + 1.826 s + 0.4003
(42)

K inf
Dreduced

(s)= 0.5436 s3 + 1.234 s2 + 0.4554 s + 0.02706

s4 + 4.722 s3 + 5.722 s2 + 3.855 s + 0.9016
(43)

Table 5 Final value of γ for steering and diving mode obtained
based on PSO

Subsystem γ

Steering Mode 0.7303

Diving Mode 0.9490

The maximum singular value of the resulting
closed loop systems, depicted in Fig. 10a and b is
less than one. Meanwhile, the illustrations in Fig. 10c
and d show that the condition ‖We S‖∞ < 1, or
equivalently the tracking performance together with
disturbance rejection, has been satisfied. Avoiding
actuator saturation is also guaranteed, as Fig. 10e and
f show the maximum singular value of Kinf S is less
than W−1

u , i.e.
∥∥WuKinf S

∥∥∞ < 1.

4.2 PSO-Based Adaptive Sliding Mode Controller

Removing some drawbacks of the H∞ control syn-
thesis, a systematic adaptive sliding mode controller,
optimized by PSO, is proposed here to motion con-
trol of an AUV. An adaptation mechanism, without
high frequency switching, is developed to deal with
the system uncertainties with unknown bounds.

The both steering and diving subsystems can be
described by

ẋ (t) = Ax (t) + B u (t) + f (t, x) (44)

where x (t) is the state vector, u (t) is the control
input and f (t, x) stands for external disturbances,
unmodelled dynamics and coupling effects.

As the first step in developing the proposed ASMC
scheme, define the sliding surface as

σ = ST x̃ = [
s1 · · · sn

]
⎡
⎢⎣

x1 − x1d
...

xn − xnd

⎤
⎥⎦ (45)

where S represents the sliding coefficient vector and
x̃ = x−xd is the tracking error vector, with the desired
state trajectory xd . The control objective is to design
u(t) such that x̃ → 0, as t → ∞. To this end, it is
sufficient to construct a u(t) with the switching gain
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Fig. 10 Frequency
characteristics, including
the largest singular values
of (a&b) the closed loop
system, (c&d) the
sensitivity function S and
W−1

e , and (e&f) the
functions Kinf S and W−1
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−
( )

( )

Fig. 11 Block diagram of ASMC, tuned by PSO

η >0 which satisfies σ̇ = −η sign (σ ) or equiva-
lently, σ σ̇ < 0. By defining 	f = f − f̂ , where f̂

denotes the nominal part, it can be shown that

η >

∥∥∥ST
∥∥∥ . ‖	f (x)‖ (46)

ensures the robust stability. Although choosing η may
be feasible by using the known upper bound of per-
turbations, but in the case of underwater vehicles,
the complexity and unpredictably of the structure of
uncertainties make such selection be difficult. To over-
come such problem, an adaptation law may be derived
for updating η̂, as the estimate of η, to construct an
ASMC.

Choosing the Lyapunov function candidate

V (σ, η̃) = 1

2
σ 2 + 1

2 γη

η̃2, γη > 0 (47)

where η̃ = η̂ − η, and taking the time derivative of
V (σ, η̃), one obtains

V̇ (σ, η̃) = σ σ̇ + 1

γη

η̃ ˙̃η

= σ
(
ST

(
Ax + B u + f̂ + 	f − ẋd

))

+ 1

γη

η̃ ˙̂η (48)

Substituting the proposed ASMC law

u =
(
ST B

)−1 [
−ST A x − ST f̂ (x) + ST ẋd

−η̂ sign (σ )
]

(49)

in Eq. 48, where ST B is non-singular, yields

V̇ (σ, η̃) = σ ST 	f (x)− η̂ σ sign (σ )+ 1

γη

η̃ ˙̂η (50)

Incorporating the inequality (46) into Eq. 50, gives

V̇ < η |σ | − η̂ |σ | + 1

γη

η̃ ˙̂η (51)

Now, choose the adaptation mechanism

˙̂η = γη |σ | (52)

to obtain V̇ ≤ 0, which ensures the robust stability.

Remark 2 In practice, the limitations on choosing
small sampling time and imperfect implementation
of adaptation mechanism (52) may cause the esti-
mated value η̂ to increase without bound. On the other
hand,η̂ has direct impact on control law (49) and may
cause instability. Hence, some modifications as leak-
age method or dead zone, as in this work, should be
used.

Remark 3 Chattering phenomenon, due to the discon-
tinuity of the sign function in Eq. 49, can be avoided
by using a tanh function to form a modified ASMC
law as

u =
(
ST B

)−1 [
−ST A x − ST f̂ (x) + ST ẋd

−η̂ tanh (σ/�)
]

(53)

where the positive constant � is the boundary layer.

4.2.1 Selection of Sliding Coefficients by PSO

The performance of the closed loop system, formed
by the ASMC and AUV subsystems, is highly depen-
dent to numerical value of the sliding coefficients. By
specifying a cost function as

f1 = w1 MP + w2 tr + w3 ts (54)

− 

 

  

Fig. 12 The general framework of the motion control system
for an AUV
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Table 6 Different groups of weighting functions, obtained by using PSO

Subsystem Weighting functions First group Second group Selected group

Steering Mode We S(s) 0.0009032 s+0.2109
s+27.3001

0.0007981 s+0.05198
s+35.2181

0.0009561 s+0.07188
s+28.2173

Wu S(s) s+0.4769
19.1651 s+131.6895

s+0.5969
3.5008 s+200.8965

s+0.2888
2.0880 s+127.9018

Diving Mode We D(s) 0.000073 s+0.0089
s+10.9501

0.0000091 s+0.0018
s+16.7611

0.0000012 s+0.0048
s+13.5061

Wu D(s) s+1.9905
5.9569 s+506.1009

s+9.0006
2.8968 s+845.2013

s+3.2276
3.4831 s+680.0174

where wi , i = 1, 2, 3, denotes some weight constants
and MP , tr and ts are respectively the maximum over-
shoot, rise time and settling time, the PSO algorithm
may be adopted to optimally determine S. On the
other hand, for minimizing the accumulated absolute
tracking error, a cost function as

f2 =
∫ Tf

t=0
|x̃ (t)| dt (55)

with Tf > 0, can be incorporated in the total objective
function fT otal = f1 + f2 The overall block diagram
of the proposed ASMC, tuned by PSO, is shown in
Fig. 11.

Remark 4 Weighting function selection may be one
the main problems in developing an H∞ control algo-
rithm [21]. There is no general structure for weighting
functions, but the trial and error procedure and fine-

tuning based on the time response of the system have
been used before [30, 32]. In general, such strategies
cannot ensure the fast response and stability properties
simultaneously, whereas by defining an appropriate
cost function and applying the PSO algorithm the
robust stability and performance, as well as fast track-
ing response with disturbance attenuation are achieved
here.

Remark 5 The sliding mode controllers for AUVs,
developed in some previous works [33–36] has some
disadvantages as

i. The upper bound of system uncertainties are
assumed to be known

ii. The switching gain η is determined by trial and
error.

iii. Assigning the coefficients of the sliding sur-
face may be time consuming by the conventional

(a)                                                                             (b)
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Fig. 13 Simulation results of yaw control, by applying the identification-based H∞ controller, with various weighting functions in
Table 6, (a) Output response, (b) Control effort δr
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Fig. 14 Simulation results of depth control, by applying the identification-based H∞ controller, with various weighting functions in
Table 6, (a) Output response, (b) Control input δS , (c) Pitch angle error

techniques such as the geometric approach and
search-based methods.

On the contrary, this paper removes the aforemen-
tioned drawbacks by the proposed ASMC, in which an
adaptation law is derived for estimating η.

5 Simulation Results

The effectiveness of the developed identification-
based robust motion control is evaluated here via
various simulations, with adopting a 6DOF nonlinear
model of the AUV, introduced by Healey et al. [22].

Table 7 The results of the PSO-based H∞ controller by using different groups of weighting functions in t ∈ [
0 100sec

]

Subsystem Specification MP% tr (sec) ts5% (sec) ‖x̃‖2 ‖u‖2 Controller order γ

Groups

Steering Mode First group 1.15 8.56 11.86 18.63 12.21 6 0.7304

Second group 0 29.19 43.15 32.71 4.88 6 0.7303

Selected group 0 14.55 21.53 25.92 7.20 6 0.7303

Diving Mode First group 19.22 3.32 13.71 17.74 7.81 6 0.9491

Second group 5.4 14.26 41.07 27.3 1.18 6 0.9490

Selected group 9.9 5.21 20.72 21.34 3.21 6 0.9490
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Fig. 15 Simulation results of yaw control, by applying the identification-based H∞ controlle (–) and ASMC (− • −), (a) Step
response, (b) Control effort δr

The physical shape of the selected AUV, called NPS
AUV II is shown in Fig. 1. More details about the 6-
DOF nonlinear dynamics of the model including the
main properties of hydrodynamic coefficients together
with the numerical values of the parameters, omitted

here due to the space limitations, are completely given
in [14, 22].

The initial conditions [x0, y0, z0, ϕ0, θ0, ψ0] =
[0m, 0m, 0m, 0 rad/s, 0 rad/s, 0 rad/s] and [u0, p0,

q0, r0] = [1.832m/s, 0 rad/s, 0 rad/s, 0 rad/s], and
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Fig. 16 Depth control by applying the identification-based H∞ controlle (−) and ASMC (− • −), (a) Step response, (b) Control
effort δS , (c) Pitch angle error, (d) Time history of sliding surface σ
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Table 8 Final values of η̂

and S for the steering and
diving control, obtained by
PSO in t ∈ [

0 50sec
]

Parameters η̂ S =
[

s1 s2 s3

]T

Optimal values Steering Mode 1.1780 [ -0.0418,0.9643,0.2614 ]T

Diving Mode 0.7593 [ -0.6212,-0.7786,0.0888 ]T

the propeller shaft speed n = 1500 rpm, regarding
the AUV model are selected in simulation studies The
general framework of the control system, formed by
the nonlinear model and the proposed robust con-
trollers in the steering and diving modes, is presented
in Fig. 12.

The simulation results are presented in the follow-
ing cases to evaluate the tracking performance and
disturbance rejection.

Case 1 In this case, the performance of the pro-
posed PSO-based H∞ controller is evaluated with
adopting different groups of weighting functions. In
Table 6, two different groups of weighting factors
(functions) are chosen to compare with the selected
group (in Section 4.1.1 in Eqs. 36–39), obtained
by PSO algorithm. It is important to note that,
weighting functions, obtained by using PSO, satisfy
the conditions |We (jω)|−1 ≥ |S (jω)| , ∀ω, and
|Wu (jω)|−1 ≥ ∣∣Kinf (jω) S (jω)

∣∣ , ∀ω, the same as
Fig. 10.

Taking the desired state trajectory as xT
d = [0, 0, 1],

in both the steering and diving modes, the time
responses of the systemare illustrated in Figs. 13
and 14. From a comparison viewpoint, the time
response specifications of the designed identification-
based H∞ robust motion controller, are summarized
in Table 7 with Tf = 100sec. Such comparison can be
made in the sense of 2-norm of tracking error, 2-norm

of control effort, and transient time specifications. The
resulting values γ and the order of H∞ controllers are
similar in all three groups, whereas, the desired perfor-
mance in the sense of less overshoot (MP ), faster time
response (tr ), and less tracking error (x̃),is obtained by
using the selected groups for We and Wu, in both the
steering and diving modes.

Case 2 Taking a square command as the desired state
trajectory, to show the effect of abrupt changes in
positive and negative directions in both the steer-
ing and diving modes, the time responsesare illus-
trated in Figs. 15 and 16, in the absence of external
disturbances.

The objective function for applying the PSO algo-
rithm in ASMC is specified by choosing the weight
factorsw1 = w2 = 50 andw3 = 20. The optimal final
value of η̂ and S for the steering and diving control
are reported in Table 8 with Tf = 50sec. The simu-
lation results confirm the tracking performance by the
both proposed methods, with limited control efforts.
Although it is found by Figs. 15a and 16a that the ref-
erence trajectory is tracked with quite small errors by
both the PSO-base H∞ controller and the PSO-based
ASMC, but Figs. 15b and 16b, show that a smaller
control effort is obtained for theH∞ algorithm.

From a comparison viewpoint, the time response
specifications of the designed identification-based
robust motion controllers are summarized in Table 9
with Tf =50sec. One can conclude that the PSO-based

Table 9 Comparison of the
PSO-based H∞ controller
and ASMC in
t ∈ [

0 50sec
]

Subsystem Specification MP% tr (sec) ts5%(sec) ‖x̃‖2 ‖u‖2 ‖u‖∞
Control algorithm

Steering Mode H∞ 0 14.55 21.53 25.92 7.20 0.28

ASMC 0 14.45 20.52 23.11 7.90 0.36

Diving Mode H∞ 9.9 5.21 20.72 21.34 3.21 0.20

ASMC 0 9.22 14.33 20.76 3.48 0.48
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Fig. 17 Heading control by identification-based H∞ controlle (−) and ASMC (− • −) in the presence of external disturbance d1 (t).
(a) Step response, (b) Control effort δr , (c) Adaptive gain parameter η̂ S in ASMC, (d) Time history of sliding surface σ
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Fig. 18 Heading control by identification-based H∞ control (−) and ASMC (− • −) in the presence of sine disturbance d2 (t). (a)
Step response, (b) Control effort δr , (c) Adaptive gain parameter η̂ S in ASMC, (d) Sliding surface σ
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ASMC gives a better performance in the sense of less
overshoot (MP ), faster time response (tr ) and less
tracking error (x̃) and settling time (ts). On the con-
trary, the PSO-based H∞ controller presents a lower
control effort (u), which facilitates controlling the
vehicle to track the desired trajectory.

Case 3 In order to study the robustness properties
of the designed robust controllers, consider a situa-
tion in which the external disturbance d (t) perturbs

the system. The performance is evaluated here against
the abrupt and periodic disturbances by choosing two
general structures as

d1 (t) =
{
0.1 t ≥ 60 s

0 t < 60 s
(56)

and

d2 (t) =
{
0.3 sin2πt 60 s ≤ t ≤ 65 s

0 otherwise
(57)

(a)                (b)

(c)       (d)
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Fig. 19 Depth control by identification-based H∞ algorithm (−) and ASMC (− • −) in the presence of external disturbance d1 (t).
(a) Step response, (b) Control effort δS , (c) Pitch angle error, (d) Adaptive gain parameter η̂ D , (e) sliding surface σ
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Taking the desired state trajectory as xT
d = [0, 0, 1],

the proposed identification-based robust controllers,
applied to the perturbed steering and diving subsys-
tems, provide robust tracking performance with dis-
turbance rejection, as demonstrated in Figs. 17 and 18
for heading control, and in Figs. 19 and 20 for div-
ing control. The simulation results show that despite
applying the external disturbance d (t) to six-DOF
nonlinear NPS AUV II model, the output regulation
is achieved after a short time with disturbances atten-
uation. Furthermore, the convergence of η̂ S and η̂ D

which estimate the upper bound of system perturba-
tions is obtained. The time history of sliding surface
σ in ASMC, guarantees the convergence of tracking
error, i.e., x̃ → 0 as t → ∞.

In the presence of sine disturbance d2 (t), a small
oscillation is made in ASMC as depicted in Figs. 18b
and 20b, and also in the sliding surface σ , as reported
in Figs. 18d and 20e.

Briefly discussing, regulation of the desired depth
and the desired yaw angle are satisfied despite the
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Fig. 20 Depth control by identification-based H∞ algorithm (−) and ASMC (− • −) in the presence of sine disturbance d2 (t). (a)
Step response, (b) Control effort δS , (c) Pitch angle error, (d) Adaptive gain parameter η̂ D , (e) sliding surface σ
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model uncertainties and external disturbances for a six
DOF nonlinear NPS AUV II, by using the proposed
PSO-based robust controllers.

6 Conclusions

This research investigates the problem of
identification-based robust motion control of an
AUV in the vertical and horizontal planes. Remov-
ing the trial and error procedure, the AUV model
in the steering and diving modes is identified by
using an adaptive parallel-series model. The gains
are optimized by the PSO algorithm, which pro-
vides achieving the fast convergence and avoiding
the windup problem simultaneously. To ensure the
robust stability and performance with respect to
model uncertainties and external disturbances, two
robust control strategies are adopted to solve the
motion control problem. An H∞ control synthesis,
as a powerful technique for disturbance attenuation,
is first formulated to solve the problem. The multi-
plicative uncertainty is preferred in formulation of a
mixed H∞ control, to deal with the cross coupling
effects between subsystems, hydrodynamic parame-
ter variations and external disturbances. In fact, the
both parametric and unstructured uncertainties are
incorporated into the mathematical model for the
steering and diving modes in the designing procedure.
The weighting functions, which play an important role
in developing an H∞ control algorithm, are selected
based on an optimization criterion by using the PSO
algorithm. Then, an ASMC is developed, without the
complexities of weighting function selection in H∞
control synthesis. The upper bound of perturbation
is estimated by using an adaptive tuning law derived
based on the Lyapunov stability theorem. The coeffi-
cients of sliding surface are optimally determined by
adopting a performance index in the PSO algorithm.
Finally, the identification-based robust controllers
are applied to nonlinear dynamic motion equations
of NPS AUV II, as a six-DOF AUV model. Robust
stability and performance are explored in the steering
and diving modes, in the presence of two kinds of
bounded external disturbances. Simulation results are
presented and discussed in three different cases, from
a comparison point of view. Removing the chattering
phenomenon of the conventional SMC, the proposed
PSO-based ASMC presents a better performance

compared with the H∞ controller, in improving the
transient time response and disturbance attenuation,
at the expense of higher control effort. Identifying the
model parameters of other degrees of freedom such as
surge and sway modes, taking both the state and input
constraints into account, and making an experimental
study may be some research topics for the future
works.
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