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Abstract This work presents a novel approach on
task oriented control of a humanoid robot through
the implementation of a cognitive architecture. The
architecture developed here provides humanoid robots
with systems that allow them to continuously learn
new skills, adapt these skills to new contexts and
robustly reproduce new behaviours in dynamical envi-
ronments. This architecture can be thought of as a
first stepping stone upon which to incrementally build
more complex cognitive processes, providing this way
a minimum degree of intelligence for the humanoid
robot. Several experiments are conducted to prove the
validity of the system and to test the operation of the
architecture.

Keywords Learning by demonstration ·
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1 Introduction

A major goal in robotics research is to develop human-
like robotic systems capable of interacting and col-
laborating with humans. Humanoid robots must carry
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out any number of tasks which their human operators
could reasonably expect from them during the nor-
mal development of a typical working day. Humanoids
must be provided with an architecture that allows
them to continuously learn new skills, represent their
skill knowledge, and adapt their existing skills to
new contexts, as well as to robustly reproduce new
behaviours in a dynamic environment in order to cope
with working in continuously changing environments
and performing a huge variety of tasks.

In our context a skill is defined as a motor trajec-
tory motion learned by the agent, an acquired ability
for the execution of a task. A robot skill is a complex
action movement, reproducible when appropriate, and
generalized to different contexts. Learning systems
are required to acquire skills and develop task knowl-
edge of how to act. Algorithms for learning and
extracting important features of task actions are fun-
damental in order to build intelligent behaviours. To
learn the skills motion, a time independent model of
the motion dynamics is estimated through a set of first
order non-linear multivariate dynamical systems. We
employ SEDS algorithm [23] to learn a global dynam-
ical estimate of the motions through a set of first
order non-linear multivariate dynamical systems in a
statistical approach.

Despite the clear advantages of learning
approaches, it would still be impractical for the
human operator to teach the robot the skills for every
needed task and for every foreseen situation, since the
number of demonstrations the human must provide
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to the robot to generate a new model of a skill could
turn it into a tiresome and time-consuming process;
furthermore, it would not be possible to cover every
required task and every situation. Therefore, it is nec-
essary to allow the adaptation of previously learned
motion skills to new unseen contexts. The models of
a skill are adapted to generate a new task by a merger,
transition, combination or update operation over the
given robot skills.

To reproduce a task adapted for an unseen con-
text the robot must be given knowledge of the state
of the environment and the constraints of the task.
Using both the already learned model of a skill and
the extracted constraints information of the current
task, the model of the skill can be adapted to repro-
duce the task. The robotic systems must be able to
store and later retrieve and use their knowledge of
learned skills. The aim would be to have a knowledge
base of the robot available skills for reproduction. The
knowledge base needs to hold all necessary informa-
tion for reproduction of the skills. The knowledge of
the task would be distributed among the representation
of objects, actions and events of the task and the state
of the world.

This work is centred around the major idea of future
robotic systems, more specifically humanoid robots,
with the cognitive capabilities that allow them to inter-
act with humans in their homes, workplaces, and
communities, providing support in several areas, and
to collaborate with humans in the same unstructured
working environments. Our focus is on topics con-
cerning the learning, representation, generation and
adaptation, and reproduction of robot skills knowl-
edge. In this work an architecture is proposed for
the learning, generation and adaptation of robot skill
models for complying with task constraints. The main
contribution of this work is the implementation of all
the modules composing the cognitive architecture pro-
posed and their integration in order to provide the
robot with a primary level of cognition.

The rest of the paper is organized as follows. A
review of related cognitive systems is presented in
Section 2. Our proposed architecture is introduced in
Section 3. Section 4 addresses the learning of the skill
models. Section 5 discusses the representation and
organization of knowledge. Section 6 discusses the
adaptation of the robot skills. Section 7 deals with the
reproduction of the robot skills. The experimental val-
idation is described in Section 8. Finally, Section 9

presents the main conclusions and future works from
this work.

2 Cognitive Systems for Intelligent Robots

The humanoid robots that are expected for the
future, capable of working autonomously and serving
humans, are required to have advanced motor control
skills, comprehensive perceptual systems, and suitable
intelligence, where an intelligent agent is understood
as in [33], as one that is flexible to changing envi-
ronments and changing goals, and one that learns
from experience and makes appropriate choices, given
perceptual limitations and finite computation.

The study of the mind, intelligence, and the work-
ing processes of intelligent thought are the compe-
tencies of cognitive science. Research in cognitive
architectures constitute a solid basis for building intel-
ligent systems centered on the configuration and inter-
action of cognitive modules dealing with the various
mechanisms and abilities that constitute the various
processes of human intelligence.

The cognitive architecture function is to provide a
comprehensive initial framework for the modeling and
understanding of cognitive phenomena, in a variety
of task domains, [38]. The architecture design must
specify overall structures, essential divisions of mod-
ules and their interrelationships, basic representations,
essential algorithms and a variety of other aspects.
The various attempts at developing cognitive architec-
tures can differ in the assumptions they make, and the
design decisions they take about how to manage these
aspects. A cognitive architecture can support several
capabilities, and can differ variedly in their set of
abilities.

Vernon [41], discerns among two major classes of
cognitive systems along their different stances on the
nature of cognition, what a cognitive system does,
and how a cognitive system should be analyzed and
synthesized. So we can group approaches as whether
they are cognitivist approaches, emergent systems
approaches and also efforts to combine the two in
hybrid systems. For cognitivist systems cognition is
representational; it involves computations of explicit
symbolic representations about the world, abstracted
by perception, to facilitate appropriate, adaptive,
anticipatory, and effective interaction to plan and act
in the world [41]. For most cognitivist approaches
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concerned with the creation of artificial cognitive sys-
tems, the symbolic representations are the descriptive
product of a human designer. For emergent approaches
cognition is the process whereby an autonomous
system becomes viable and effective in its envi-
ronment; it involves a process of self-organization
through which the system continually reconstitutes
itself [41]. The emergent approaches assert that the
primary model for cognitive learning is anticipative
skill construction rather than knowledge acquisition,
in emergent approaches embodiment and the physi-
cal instantiation plays a pivotal role in cognition. The
critical distinction between cognitivist and emergent
approaches is not between representational and non-
representational solutions but among action-neutral
form of internal representation, requiring disembod-
ied symbolic computational processing, and action-
oriented forms, in which a behavioural response is
embedded into the representation itself [12]. Consid-
erable effort has also gone into developing approaches
which combine aspects of both systems. For hybrid
approaches perception-action behaviors, rather than
the perceptual abstraction of representations, become
the focus. The ability to interpret objects and the
external world is dependent on its ability to flexibly
interact with it. Hybrid systems are in many ways consis-
tent with emergent systems, while still exploiting
programmer-centered representations [41].

In the field of Artificial Intelligence and Cogni-
tive Systems there are various works on the devel-
opment of cognitive architectures to model cognitive
processes and functionalities of humans. We will sum-
marize some of the better known architectures.

The Soar (State Operator And Result) [27], cogni-
tive architecture has been under continuous develop-
ment since the early 1980s. The architecture is based
on the theoretical framework of knowledge-based sys-
tems seen as an approximation to physical symbol
systems [13]. Soar stores its knowledge in the form
of production rules, which are in turn organized in
terms of operators that act in the problem space. The
basic deliberative acts of the system are performed
by the operators, with knowledge used to dynamically
determine their selection and application [28].

ACT-R (Adaptive Control of Thought-Rational)
[4], architecture is primarily concerned with modeling
human behaviour. The aim is to build systems that per-
form the whole space of humans cognitive tasks and
describe mechanisms’ underlying perception, thinking

and action [13]. The ACT-R architecture is organized
into a set of modules, including sensory modules
for visual processing, motor modules for action, an
intentional module for goals, and a declarative mod-
ule for long-term declarative knowledge. The ACT-R
architecture has been applied in intelligent tutor-
ing systems, psychological studies, including aspects
of memory, attention, reasoning, problem solving,
etc., and to control mobile robots that interact with
humans [28].

EPIC, (Executive Process Interactive Control) [24],
aims at capturing human perceptual, cognitive and
motor activities through several interconnected pro-
cessors working in parallel, and to build models of
human-computer interaction for practical purposes
[13]. The architecture encodes long-term knowledge
as production rules, and a set of perceptual (visual,
auditory, tactile) and motor processors. Research on
EPIC has included a strong emphasis on achieving
quantitative fits to human behavior, especially in tasks
that involve interacting with complex devices [28].

RCS (Real-time Control System) [2], is a cogni-
tive architecture, originally designed for the sensory-
interactive goal-directed control of laboratory manipu-
lators. It has evolved over three decades into real-time
control architecture for intelligent machine tools, fac-
tory automation systems, and intelligent autonomous
vehicles [3]. The RCS architecture consists of a
multi-layered hierarchy of computational modules,
operating in parallel, containing elements of sensory
processing (SP), examining the current state, world
modelling (WM), predicting future states, value judg-
ment (VJ), selecting among alternatives, behaviour
generation (BG), carrying out tasks, and a knowledge
database (KD).

Global Workspace Cognitive Architecture [36], is
a brain-inspired cognitive architecture that incorpo-
rates approximations to the concepts of conscious-
ness, imagination, and emotion. Cognitive functions
are realized through internal simulation of interaction
with the environment and action selection is mediated
by affect. The architecture is based on an external sen-
sorimotor loop and an internal sensorimotor loop in
which information passes though multiple competing
cortical areas and a global workspace [41].

Cog: theory of mind [34], focuses on social inter-
action as a key aspect of cognitive function. Cog is
an upper-torso humanoid robot platform for research
on developmental robotics. Cog has a pair of six
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degree-of-freedom arms, a three degree-of-freedom
torso, and a seven degree-of-freedom head and neck.
The Theory of Mind focus is on the creation of the pre-
cursor perceptual and motor skills upon which more
complex theory of mind capabilities can be built. A
robot possessing a theory of mind would be capa-
ble of learning from an observer using normal social
signals and would be capable of expressing its inter-
nal state though social interactions, recognizing the
goals and desires of others and anticipate the reac-
tions of the observer and modify its own behavior
accordingly [41].

Other attempts to provide cognitive processes and
functionalities for a humanoid robot can be found in
[7, 8, 11, 14, 20, 25, 26, 29, 43], and [39], among
others. Efforts in cognitive architectures have pro-
duced important advances in cognition, reasoning and
conceptual aspects of human thinking. [30] offers
an overview of the challenges and efforts taken in
the subject of cognitive robotics. [41] offers a very
complete survey of artificial cognitive systems and
their implications for the development of computa-
tional agents. A review of various different cognitive
architectures, issues and challenges, can be found
in [28].

3 Cognitive Architecture for Task Oriented
Control

Research into cognitive architectures is important to
improve the control and design of the intelligent
robotic agents. Here we consider as a cognitive archi-
tecture: the minimal configuration of a system that
is necessary for the robotic platform to exhibit cog-
nitive capabilities and behaviors, the specification of
components of the system, their function, and their
organization as a whole, as defined in [41].

The desired cognitive agents must display capac-
ities for environmentally coupled embedded action:
and at the same time, they must think or reason
abstractly about the world in a de-coupled manner,
as argued by the theories of embodied situated cog-
nition. Perception and recognition, decision making,
memory, and learning are the most central abilities an
architecture must support to cover the range of human-
level intelligence. Other relevant abilities are those
of problem solving and planning, prediction, reason-
ing, communication and action execution [28]. At the

very least a cognitive architecture must present some
mechanisms, structure, and organization which allow
the system to be autonomous and effectively act to a
limited extent [41].

In [1] a multi-layered hierarchical system architec-
ture is proposed, where different levels of intelligence
in the hierarchy can be achieved, depending on the
computational power of the system and the sophisti-
cation of its processing algorithms. A minimal level
of intelligence requires at least the ability to sense the
environment, make decisions and take actions. Higher
levels of intelligence may include the ability to rec-
ognize objects and events, to represent knowledge in
a world model, and to reason about and plan for the
future. More elevated forms of intelligence provide
the capacity to perceive and understand, to choose
wisely, and to act successfully under a large variety of
circumstances.

The current humanoid robots may only be around
the minimum and mid-levels of intelligence. Even if
perhaps the ultimate levels of intelligence could turn
out to be out of reach, and creating robots that repli-
cate the total scope of human intelligence may prove
impossible, it is necessary for future humanoid robots
to achieve a sufficiently high level in the hierarchy.
A cognitive architecture for humanoid robots needs to
provide a minimum degree of intelligent behaviour;
this is, the ability to sense the environment, learn, and
adapt its actions to perform successfully under a set of
circumstances.

The reference model architecture [1, 3] identifies
five elemental systems: sensory processing, world
modelling, behaviour generation, value judgement and
knowledge, interconnected in a way that enables the
various system elements to interact and communicate
with each other in intimate and sophisticated ways.

Research efforts must focus on building the neces-
sary modules of cognition that would form the layers
in this hierarchy and allow the assembling of the lev-
els of intelligence. The work in [41] summarizes some
of the key features that an artificial cognitive system
should exhibit, such as a minimal set of innate behav-
iors, a physical instantiation, means to adapt, and
mechanisms for perception, action, adaptation, antic-
ipation, and motivation that enable its development
over time.

It becomes apparent that humanoid robots must be
provided with systems that allow them to continu-
ously learn new skills and adapt their existing skills
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to new contexts, as well as to robustly reproduce new
behaviours in a dynamical environment in order to
cope with working in continuously changing envi-
ronments and performing an unlimited variability of
tasks.

Figure 1 illustrates our proposed architecture. The
main purpose of the architecture is to provide the
humanoid robot with a basic level of intelligence,
namely, the ability to sense the environment, learn and
adapt its actions to perform successfully under a set of
circumstances. In the developed architecture a knowl-
edge base of skills is built with the models of the skills
learned through demonstrations. During execution the
constraints of a requested task are extracted from the
perception of the working environment and the mod-
els of an appropriate skill are retrieved from the skills
knowledge base. With all available information a new
adapted task model is generated for reproduction.

The proposed architecture is formed by 4 funda-
mental modules:

1. Module for the learning of robot skills.
2. Module for the representation and management of

robot skill knowledge.
3. Module for the generation and adaptation of robot

skill models.
4. Module for the reproduction of robot skills.

The robot skill learning module collects the learn-
ing processes and algorithms used for learning and
encoding the models of the skills. The robot skill
knowledge module controls the developed knowledge

base for the storing and retrieval of the learned models
of the skills. The robot skill generation and adapta-
tion module governs the process by which the learned
model of a skill can be operated to reproduce a new
task. The robot skill reproduction module produces
the adequate control signals to the robot for the repro-
duction of those skills. Additionally, a perception and
interaction module is in charge of processing the out-
side information of the robot working environment to
be used by the other modules. First interactions of this
architecture have been presented in [16], but further
steps towards the real integration and validation of the
whole architecture are presented here, this being the
main contribution of this work.

The ultimate goal for a humanoid robot would
require it to present full level cognitive and intelli-
gent architectures, yet current developments are not
even close to these capacities. The cognitive archi-
tecture archetype could, eventually, very well be the
most suitable approach for building the humanoid
robots’ intelligence capabilities. However, a majority
of current cognitive approaches focus more on solving
intelligence as an abstract reasoning process and do
not take into account the physically embedded aspects
of cognition and the particular challenges humanoid
robotics represents. Furthermore, fully developed cog-
nitive architectures with the capabilities for endowing
robots with the needed functional intelligence are not
readily available. Therefore we begin our approach by
trying to attain a basic functional level of intelligence
allowing a robot to sense the environment, learn, and
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of Task 
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Fig. 1 Proposed cognitive architecture for task oriented con-
trol. A knowledge base (2) is built with the models of the robot
skills learned through demonstrations (1). The constraints of a
requested task are extracted from the perception of the world

state. With the current task constraints and the models of a skill
retrieved from the knowledge base an adapted task model (3) is
generated for reproduction (4)
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adapt its actions to perform successfully under a set of
circumstances.

3.1 Implementation of Task Oriented Cognitive
Architecture

A deeper discussion on the implementation of the
architecture proposed is given in this section. Figure 2
shows the architecture modules and their interconnec-
tion in detail. The architecture is formed by modules
for the learning of robot skills, the perception and
interaction with the environment, the management and
representation of skill knowledge, the generation and
adaptation of skill models, and the reproduction of
robot skills.

The robot skill learning module collects motion
data from demonstrations, processes it and builds the
demonstration data set that feeds the learning algo-
rithms. There are three subsystems in this module: a
subsystem for gathering demonstration data; a subsys-
tem for building an estimate of the demonstration with
the learning algorithm; and a subsystem for encod-
ing the robot skill model. The subsystem for gathering
demonstration data is made up of three processes.
First a teacher agent input data is collected. Second, a
preprocessing step is performed to transform the col-
lected data to ensure correspondence with the robot
system. A final third step processes the raw data from
the previous step to build the demonstration data set
as required to feed the learning algorithm. The oper-
ation of the subsystem for gathering demonstration
data is handled by an external processor with different

implementations for the recording of the teacher
demonstrations. The learning algorithm subsystem
handles the learning of the robot skill. The subsys-
tem for encoding the robot skill model is in charge of
preparing and expressing the learned estimates of the
motions as Robot Skill Models for the rest of the archi-
tecture. The learning process is carried out off-line.
The implemented system is derived from the SEDS
library provided by [23], as describe in Section 4.

The robot skill knowledge module governs the
operation of the knowledge base and the instantiation
and maintenance of the different frames in the devel-
oped knowledge representational structure. There are
three subsystems in this module: a subsystem for the
data entry to the knowledge base; a subsystem for
the knowledge base data storage; and a subsystem for
the knowledge base data management. The knowl-
edge base data entry subsystem works as a middleware
between the knowledge base data storage subsystem
and the robot skill learning module for uploading
robot skills models and action, object and task classes
for storage into the knowledge base. The knowledge
base data storage subsystem works as a database col-
lecting and organizing the robot skill knowledge as per
the representational structure discussed in Section 5.
Entries in the knowledge base are implemented using
the XML markup language, following the structure and
tag labels as necessary for the different knowledge
frames. The physical implementation of the knowl-
edge base is on an accompanying PC outside of the
robot main system. Communications with the robot
on-board computer are carried out using a WLAN

Robot Skill Learning Module

Robot Skill Knowledge Module

Perception Module Robot Skill Reproduction ModuleRobot Skill Adaptation Module

Teacher
Agent

World Robot
Agent

Knowledge
Base Data
Storage

Knowledge Base 
Data Entry
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Demonstration Data

Learning
Algorithm

Robot
Skill
Model

Vision System

Proprio-
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Human Robot 
Interface

Task
Model

Robot Control
System

Generate
Robot Commands
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Algorithm

Knowledge Base 
Data Management

Knowledge Base 
Data Extraction
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Algorithm

Fig. 2 Deployment diagram for the proposed cognitive archi-
tecture. The architecture is formed by a robot skill learning
module, a perception and interaction module, a robot skill

knowledge module, a robot skill generation and adaptation
module, and a robot skill reproduction module
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network. The knowledge base data management sub-
system handles the operation and performance of the
knowledge base. In the knowledge base data manage-
ment subsystem, search and reasoning operations over
the stored knowledge are carried out. A YARP layer
was implemented for the communications between
the robot skill knowledge module and the rest of the
systems.

The robot skill generation and adaptation mod-
ule is in control of handling the process by which
learned models of a skill are adapted for an unseen
context. This module is provided with knowledge of
the state of the environment and the constraints of the
task extracted from the robot skill knowledge mod-
ule; using both, the already learned model of a skill
and the extracted constraints information of the cur-
rent task, the model of the skill is adapted to reproduce
the task. There are three subsystems in this module:
a subsystem for extracting data from the knowledge
base; a subsystem for operating upon the robot skill
with the adaptation algorithm; and a subsystem for
generating the task models. The subsystem for extract-
ing data from the knowledge base is made up of two
processes: first, it recovers data from the robot skill
knowledge module, and second, it distributes appro-
priately this data to the rest of the subsystems for their
operations. This subsystem implements a middleware
between the knowledge base and the rest of the sys-
tems. The adaptation algorithm subsystem handles the
process of operating upon the learned robot skills. A
first step from the information received from the pre-
vious subsystem would help it decide which type of
method is required for adaptation; afterwards the cho-
sen algorithm would work on the given robot skill
models as described throughout Section 6. The sub-
system for generating the task models is in charge
of preparing and expressing the adapted Robot Skill
Models in a form suitable for robot reproduction. As a
final step, a file is outputted storing the computed task
model.

Obviously all efforts in our architecture would be
useless if the robot was not equipped with proper
mechanisms for the motor control of the robot skill
reproduction. The robot skill reproduction module is
in charge of producing the adequate control signals
to the robot for the reproduction of robot skills as
described in Section 7. This module has three sub-
systems: a subsystem for computing regression of
the model with GMR to obtain the desired target

commands; a subsystem for producing the adequate
control signals from the target commands; and a sub-
system to communicate the control signals to the robot
and monitor the HOAP-3 robot execution.

4 Learning Robot Skills Models

The robot skills models are learned by employing an
autonomous dynamical systems (DS) approach. DS
has been proposed representing movements as mix-
tures of non-linear differential equations with well-
defined attractor dynamics [19]. Common approaches
in learning from demonstration create a model of
the skill based on sets of demonstrations performed
in slightly different conditions generalizing over the
inherent variability to extract the essential components
of the skill [9]. Employing statistical learning tech-
niques is a popular trend for dealing with the high
variability inherent to the demonstrations [6].

4.1 Learning Motion Dynamics as Multivariate
Gaussian Mixtures

The DS framework provides an effective mean to
encode trajectories through time-independent func-
tions that define the temporal evolution of the motions.
First it is assumed that the state of the robot system
can be unambiguously described using a state variable
defined as ξ (end-effector positions, velocities, etc.),
and further assumed that the motion is governed by a
first order autonomous ordinary differential equation

ξ̇ = f (ξ, θ) (1)

A probabilistic framework is employed to build an
estimate f̂ of the non-linear state transition map f ,
based on the set of demonstrations. Gaussian Mixture
Models (GMM) are used to directly embed the multi-
variate dynamics of a motion through the encoding of
the demonstrated data. A mixture model of K com-
ponents is defined by a probability density function

p(ξ) =
K∑

k=1

p(k)p(ξ | k) (2)

where ξ is a data point, p(k) is the prior and p(ξ | k)

is the conditional probability.
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The GMM defines a joint probability distribution
p(ξ i, ξ̇ i ) of the training set of demonstrations as a
mixture of the K Gaussian multivariate distributions:

p(ξ, ξ̇ ; θ) = 1
K

K∑
k=1

πkN k(ξ, ξ̇ ; μk, �k)

with μk =
{
μk

ξ ; μk

ξ̇

}
and �k =

[
�k

ξ �k

ξξ̇

�k

ξ̇ξ
�k

ξ̇

]

(3)

The GMM estimates the function f , so the
unknown parameters θ are the prior, πk , the mean,
μk , and the covariance matrix, �k , of the K Gaussian,
such that θk = (πk, μk, �k), as in Eq. 3, defines the
robot skills models.

To recover the expected output variable ˆ̇ξ , given
the observed input in ξ∗, one then can sample from
the probability distribution function p(ξ, ξ̇ ) in Eq. 3.
This process is called Gaussian Mixture Regression
(GMR). Taking the conditional mean estimate of

p(ξ̇ | ξ∗) the estimate of our function ˆ̇ξ = f̂ (ξ∗)
is:

ˆ̇ξ =
K∑

k=1

hk(ξ∗)
(

�k

ξ̇ξ

(
�k

ξ

)−1 (
ξ∗ − μk

ξ

)
+ μk

ξ̇

)
(4)

where hk(ξ) =
p

(
ξ ; μk

ξ , �
k
ξ

)

∑K
k=1 p

(
ξ ; μk

ξ , �
k
ξ

)with

hk(ξ) > 0 and
K∑

k=1

hk(ξ) = 1

4.2 Stable Estimator of Dynamical Systems

The work in [22, 23] proposed a learning method,
called Stable Estimator of Dynamical Systems
(SEDS), to learn the parameters of the DS ensur-
ing asymptotically stable trajectories for all motions
that closely follow the demonstrations dynamics. In
this work we follow their framework to learn the
motions as multivariate DS within a Learning from
Demonstration (LfD) statistical approach.

The unknown parameters θ must be determined
such that by starting the motion from any point the
energy of the system decreases until it reaches the tar-
get. Learning the parameters of the GMM proceeds as

a constraint optimization problem, ensuring that the
model satisfies global asymptotic stability of the DS
at the target [23]. By being time-invariant and globally
asymptotically stable at the target, the DS estimated
with SEDS are able to respond immediately and appro-
priately to perturbations that could be encountered
during reproduction of the motion [23]. The process is
illustrated in Fig. 3 for the teaching of a skill with the
humanoid robot HOAP-3.

5 Representation of Robot Skills Knowledge

An important challenge for robots acting on unstruc-
tured dynamic environments is dealing with internal
representation and understanding of the world. Deci-
sions must be made on which aspects of the world
to focus on and which aspects to ignore, and how to
structure that knowledge.

The interrelation between objects and actions rep-
resentations is fundamental when executing tasks
upon the world. Thus focussing only on objects and
actions would not be enough for the knowledge repre-
sentation needed by the humanoid robots. Represen-
tational attributes need to also take into account the
state of the world, grounding the representations to the
environment, the task at hand and present events. The
central task of a knowledge representation is capturing
the complexity of the real world. Representations thus
perform as functional abstractions of the perceived
environment, encoding an agent’s knowledge about
its world, objects, actions, events, into manageable
internal structures.

A system dealing with objects in the real world
must deal with various forms and types of knowledge.
Here we will organize our knowledge into manageable
structures using object-oriented groups of procedures,
which are called frames. Representations of events
concentrate on two frames, one of the system tasks
knowledge and the other representing the state of the
world knowledge. Task and world frames would hold
the knowledge of the requested execution of a task and
the agent’s environment.

5.1 Knowledge Base Structure

The knowledge base needs to hold all necessary infor-
mation for reproduction of the skills in the environ-
ment. The knowledge of the task would be distributed
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Fig. 3 Illustration of the learning process with GMM-GMR.
(top-left) A human teacher operates the HOAP-3 robot arms
through a demonstration of the skill. (top-right) Recorded train-
ing data of the demonstrated trajectories. (bottom-left) The

learned GMM model represented by ellipses centred at μi , mag-
nitude and direction of the ellipses are given by the eigenvectors
and eigenvalues of �i . (bottom-right) Reproduction of several
trajectories through GMR

among the representation of objects, actions and
events of the goal and the state of the world. From a
given scene the system instantiates frames, generally
governed by the precedence of visual evidence. From
the perceived given input the first step for extracting
task constraints is the matching of the world to an
instance of the World Event Frame and the instantia-
tion of the Task Event. From the information collected
in the World and Task event frames, which in turn are
made up by Object and Action Frames, the system
would have information about its current goals and sit-
uation of the environment, yet this is not enough to
ground the representation in order to effectively use
it for supporting the robot performance. For an agent
working in an unstructured environment the focus of
its perception must be directed towards its execut-
ing action. Knowledge of its environment and task
would be collected into their appropriate frames and
a focused active view frame would be built taken

from their global knowledge and breaking it down into
a simpler framework from which computations and
knowledge take place. Figure 4 presents the control
data flow for the process of using the representa-
tions in the knowledge base and Fig. 5 presents the
organization of the knowledge base.

In order for a process to use a representation, the
process must be coordinated with the format of the
representation, only states appropriate to the process
will count as representations [5]. The process for using
the representations begins by instantiating the appro-
priate frames. The data structure of a frame is made
up of slots filled with attributes, which can be made
of other frames, as organized in terms of a class hier-
archy, analogous to an object-oriented programming
paradigm. When instantiating a frame its slots will
be filled with the values present in the system, any
slots with unavailable information will be filled by
default attributes associated with the class categories.
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Fig. 4 Knowledge base control flow. World Event Frame and
Task Event Frame are instantiated, and an Active View Event
Frame is built from them. From Object and Action Frames the
models of the skill are taken for building the task model

Default values are assumptions reasonably made when
the state of knowledge holds no information to the
contrary.

Figure 6 shows the representation of the skills in
the knowledge database in a three dimensional space
defined by the 〈Object, Goal, World State〉 triple,
selecting from their intersection an adequate model of
the skill for the reproduction of the task.

Further development of the knowledge base repre-
sentation and structure can be found in [18]. Different
approaches on related topics focusing on the manage-
ment of knowledge by robotic system exist, such as

KnowRob [40] or RoboEarth [42]. However these sys-
tems lie at a higher more abstract level of the cognitive
hierarchy while our framework lies at a lower level
of action execution. Further research requires study
and comparison of other systems, in particular the
ones that may be used to complement the framework
developed in this work.

6 Adaptation of Robot Skills

The robot skills learned with the methodology
described in Section 4 would present stable tra-
jectories that accurately reproduce the demonstrated
motion dynamics. These learned models would form
a set of primitives of action from which a knowledge
base of skills was built in Section 5. Evidences exist
from human and animal experiments supporting the
believe that sets of motor primitives are used to build
a basis for voluntary motor control [35]. To generate
complex motions from a learned set of basic primi-
tive skills and be able to reproduce various complex
task behaviours, methods for operating and manip-
ulating upon the primitives are needed. The robot
skills must be adaptable to conditions of its operat-
ing environment. The models of a robot skill must
be updatable: when given new information for the
representation of a skill the system must allow the
models to be improved. Additionally, the action prim-
itives approach must be able to generate new skills
by merging two or more primitives into a new skill:
multiple desired robot skills may be composed from

Fig. 5 Knowledge base
structure and organization
of the knowledge
representations. World
Event Frame and Task
Event Frames represent the
knowledge of the state of
the environment, with
Object and Action Frames
representing the available
objects and actions. From
the knowledge of these
frames an Active View
Event Frame is built of the
focused knowledge required
to drive the agent execution
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Fig. 6 Representation of the skills in the knowledge base. The intersection of the triple 〈Object, Goal, World State〉 allows the selection
of the adequate model of the skill for reproduction

superposition of various primitives. Another important
property is the combination of the robot skills models
to generate new models that encompass a larger spec-
trum of the attractor dynamics. Our previous works in
[15, 17] contain more detailed information about gen-
eration and adaptation of robot skills models, and a
short review is given next.

6.1 Update of Robot Skills

When an update is required with new given data, a pro-
cess of GMR regression is performed over the learned
model to stochastically generate a dataset from the
model. Therefore a new dataset is created composed
of this generated demonstration and the new observed
dataset. The parameters of the updated model are then
retrained. For this purpose a learning rate α is defined.

For our method the new updated demonstration
dataset {ξ, ξ̇}updated is grouped into K clusters accord-
ing to the number of Gaussian functions determined
for the original robot skill model. Parameter α is
defined as αk ∈ [0; 1]; k = 1..K, and it determines
a measure of the relative importance of the area in
cluster k the updated demonstration should have for
refining the model over the stochastic demonstrations
generated from the learned model.

To illustrate this method Fig. 7 shows the result
of updating a learned model of a skill. The updating
process is summarized in Table 1.

6.2 Merger of Robot Skills Models

Intuitively one could consider an approach the fact
of merging two or more models of a skill simply by
adding and averaging together their learned param-
eters θ = (π, μ, �) in order to obtain a new skill
model. While this approach may work for some cases,
it is important to note that the direct superposition
of the skills does not allow the system to control the
manner in which the new model is generated and its
stability.

In order to generate a new skill based on the merger
of several robot skills previously learned, we first
review a couple of useful mathematical properties
from the SEDS [23] formulation chosen to learn the
skills:

if f (ξ) is SEDS, and α > 0 ∈ R

ξ̇ = αf (ξ) is SEDS
consider M SEDS models f i(ξ), i ∈ 1..M

ξ̇ =
M∑

i=1
αif i(ξ);αi > 0 is SEDS

(5)



14 J Intell Robot Syst (2017) 85:3–25

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Fig. 7 Update process of a robot skill. (left) Model of the
learned skill with new demonstrations. (right) Updated model
of the skill. The parameter αk is defined to govern the influence

of new data on the update process. Appropriate selection of αk

allows the updated model to reproduce the curve at the top of
the trajectory

The merger of the robot skills can be carried out
with a model combination approach expressed as mix-
tures of expert models:

p(t |x) =
K∑

k=1

πk(x)pk(t |x) (6)

The SEDS models encoded into a GMM are already
a form of model combination approach. Here, recall-
ing the expression of the non-linear weighting func-
tion hk(ξ), as in Eq. 4, it can be found that it shares a
similar formulation with the expression of the weights
for the gating function as from Eq. 6. The process
for the merging of robot skills would first join the
GMM of the robot skills into a single model. Then
a new weighting function h̃(ξ) for the single model

must be built out of the original weighting terms hk(ξ)

from the merged models, ensuring that the Gaussian
with the biggest weight in every region of the trajec-
tory provides the largest influence over the new GMM
model in that region and that the new weighting func-
tion h̃(ξ) still meets the constraints 0 < hk(ξ) < 1
and

∑
hk(ξ) = 1.

Figure 8 illustrates the results of merging two robot
skills to generate a new skill model. The merging
process is summarized in Table 2.

6.3 Combination of Robot Skills Models

In order to generate a new skill made of the combina-
tion of several robot skills models previously learned,
we have developed a method for skills combination.
Two different SEDS models, M̄1

RS,M̄2
RS , can be

combined just by concatenating their parameters, so

Table 1 Procedure for
updating a learned model of
a robot skill

Algorithm: Update the learned robot skill

Input: Learned Robot Skill Model, MRS , with parameters θk = (πk, μk, �k).

1. Record new demonstration trajectory for the update of the skill.

2. Generate ngen trajectories stochastically from the current model by the GMR.

3. Determine parameter α = αk ∈ [0; 1]; k = 1..K.

4. Create a new updated demonstration dataset {ξ, ξ̇}updated .

5. Generate the new updated model of the skill.

6. END

Output: Updated Robot Skill Model, MRSupdated
, with parameters θk

updated = (πk, μk, �k).
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Fig. 8 Merger of two learned GMM skill models to generate a new skill. (left) Learned models of the robot skill. (center) Merging
process of the two models to generate a new one. (right) Merged skill model

that the parameters of the new model can be defined

as π = [π1; π2]
(π1 + π2)

, μ = [μ1μ2] and � = [�1�2].
Then, an area of influence for the DS attractor is
defined based on the non-linear weighting function
hk(ξ) of the SEDS models expressed as a non-linear
sum of linear dynamical systems as in Eq. 4. A new
weighting function h̃(ξ) = αk(ξ, h)hk(ξ) for the sin-
gle model must be built out of the original weighting
terms hk(ξ), as in the merging of the models. However
in this case the influence of the hk(ξ) terms over the
trajectory must come at any time from only one model;
therefore the αk(ξ, h) function must have a completely
different form from that of the merging of robot skill
models.

Figure 9 illustrates the results of combining three
robot skills to generate a new skill model. The combi-
nation process is summarized in Table 3.

7 Reproduction of Robot Skills

In this section, the development and operation of the
robot skill reproduction module will be presented. The
robot reproduction module is assigned with the task
of providing suitable controllers that convert kine-
matic variables into appropriate motor commands. In
order to test the proposed architecture the HOAP-
3 humanoid robot was used as a test platform. The
HOAP-3 was designed to resemble the human shape,
on a small scale, with a complete humanoid configu-
ration with two legs and arms, a head with vision and
sound capacities, and grip-able hands.

Figure 10 presents the control strategy of the robot
skill reproduction module, for details see [32]. This
scheme considers several blocks. Once a command
has been received, the robot distinguishes if it is a
command for the walking generation or for the arms

Table 2 Procedure for
merging learned skill
models

Algorithm: Merger of learned robot skills

Input: Learned Robot Skill Models, M1
RS , M2

RS , ..., Mn
RS .

1. Compute the new model as
∑K

k=1 hk(ξ)(Akξ + bk).

2. Compute the parameters αk for the new model.

3. Build the weighting function h̃, as h̃(ξ) = αk(ξ, h)hk(ξ).

4. Generate the new merged model of the skill.

5. END

Output: Merged Robot Skill Model, MRSmerged
, given by

∑K
k=1 h̃k(ξ)(Akξ + bk).
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Fig. 9 Combining the dynamics of three skills into a single task model

movement. The walking patterns of the robot have
been designed based on the theory of the 3D Lin-
ear Inverted Pendulum Mode presented in [21, 31]
presents studies for the posture stability control. If the
received command requires a movement of the arms,
as in the case of a grasping task, the selection of the
suitable arm is first considered. Finally, the trajectory
of the arm is evaluated online through the algorithm of
kinematic inversion [37], once the command provides

the distance and the orientation from the object. The
orientation reference for the object is calculated with
the support of the unit quaternion presented in [10].

The HOAP-3 control system is in charge of comput-
ing the appropriate command to control the execution
in real-time. The physical implementation of the robot
control system is made on three PCs: an on-board PC
implements the robot control systems; an auxiliary PC
implements the knowledge and learning systems; and

Table 3 Procedure for
combining learned skills
models

Algorithm: Combination of learned robot skills

Input: Learned Robot Skill Models, M1
RS , M2

RS , ..., Mn
RS .

1. Calculate the prior π̃ , as π̃ = [π1;π2; ...;πn]
(π1 + π2)

.

2. Calculate the mean μ̃, as μ̃ = [μ1μ2...μn] .

3. Calculate the covariance �̃, as �̃ = [�1�2...�n].
4. Build the weighting function h̃, as h̃(ξ) = αk(ξ, h)hk(ξ).

5. END

Output: Combined Robot Skill Model, MRScombined
, given by

∑K
k=1 h̃k(ξ)(Akξ + bk).
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Fig. 10 Control strategy of
the robot skill reproduction
module

a laptop computer implements the HRI and percep-
tion systems. A YARP layer was implemented for the
communications between processes.

8 Experimental Evaluation

Here we provide a general description of a demonstra-
tor for the evaluation of the architecture performance.
The experimental evaluations presented in this section
are aimed at providing proof of concept for the devel-
oped architecture. The quantitative evaluation of the
knowledge processing systems is hardly possible since
many of its features are difficult to reflect in numbers.
However the system can be evaluated in a qualitative
form. Here the major focus of interest lies not in the
measurement of performance and efficiency metrics
but in the validation of the viability of the proposed
system and the capabilities of the architecture in deal-
ing with a range of different and increasingly complex
situations. The demonstration will test the operation of
the humanoid robot and the developed architecture as
it is required to complete distinct tasks. Several exper-
iments were conducted in order to prove the validity
of the system and to highlight how the components
of our architecture contribute to achieving realistic
tasks, and that the implementation of the capabilities
for learning, knowledge manipulation and adaptation
of skills are fundamental for the development of viable
humanoid robots.

8.1 Knowledge Base Scenario

A first experiment involves an agent and a humanoid
robot (here a HOAP-3 robot) interacting to complete a
simple task. The task in this case requires the robot to
pick up a cup and a spoon in each hand and then to put

the spoon inside the cup; then finally it will put down
the cup in front of it. The agent will provide the robot
with the cup and spoon objects so it can pick them up;
also the agent will indicate the robot where to put the
cup down.

The execution of the demonstration could vary
depending on the actions of both the human agent
and the HOAP-3 robot. At the start of the demonstra-
tion the robot is given the task event frame knowledge
for the desired behaviour containing the knowledge of
the four action skills needed to complete the action:
pick spoon, pick cup, place spoon in cup, place cup
down. Extracting the adequate action will depend on
the agent interaction and the content of the rest of
the knowledge base. The purpose of this demonstra-
tion is to validate the performance of the developed
knowledge base in a dynamic interaction with an
agent.

Figure 11 shows a schematic view of the overall
experiment described above. The perception system
handles the interaction with the user and the detection
of objects in the environment. The knowledge base
system would receive this information from the per-
ception system and would instantiate the frames and
build the knowledge representation of the scene in the
knowledge base. The knowledge base system would
select and activate an action skill when the conditions
in the knowledge representation afford such action.
Once an action is selected, the HOAP-3 robot con-
troller would execute the robot commands required for
the skill reproduction. This demonstration highlights
the operation of the knowledge base and how the rep-
resentations of object, action, task event, world event
and active view event frames are used to command the
robot execution of the desired task. The goal of this
demonstrator scenario is to show how action execution
is invoked by the state of the representation frames
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Fig. 11 Schematic view of the Knowledge Base Scenario experiment

present in the knowledge base. Figure 12 presents a
storyboard of the performance of the system during
the execution of the demonstrator experiments with
snapshots taken at various stages.

Figure 13 presents the operation of the percep-
tion system during the execution of the demonstrator

experiments. Objects are recognized based on their
colour properties and blob size. From the images it
can be seen that some problems can take place when
the human agent or the robot platform arm enter the
camera’s field of view, as occlusions and false recog-
nitions can happen. Typically, these issues can be

Fig. 12 Knowledge Base Scenario experiment: different snapshots during the execution of the demonstration. The top and bottom
rows represent two different reproductions of the experiment
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Fig. 13 Knowledge Base Scenario Experiment: different snapshots of the execution of the demonstration illustrating the operation of
the perception system and the knowledge base system

taken care of by the blobs’ size and area inconsistency
with expected objects’ properties, or by their failed
instances being removed from the knowledge base.

The operation of the knowledge base system dur-
ing the execution of the demonstrator experiments
can be seen in Fig. 13. The knowledge base presents
information for the environment and the task execu-
tion. The task frame holds knowledge of the actions
to carry out by the robot for the execution of the
task. Actions highlighted in blue reflect the current
invocation of that action’s knowledge for the robot
reproduction of the skill. Actions that have been com-
pleted are deactivated and highlighted in grey. The
selection and activation of which skill motion to carry
out next is completely determined by the skill initial
conditions being matched to the state of the envi-
ronment. Therefore, the sequence of execution of the
task is controlled by the human agent as it interacts
with the robot and the environment and facilitates the
objects and conditions needed for the robot to fulfil the
task.

A potential problem is determining which action
has precedence when many of them can satisfy their
conditions at the same time. The tasks considered in
the demonstrator do not deal with this issue, since the

robot’s limited workspace prevents the conditions for
picking up the cup and placing the spoon to be sat-
isfied at the same time. This issue has not been fully
explored so far, and as a first simplification the prece-
dence is determined by the order of the actions in the
task frame as determined by the programmer of the
task; although not satisfactory for every scenario, this
solution is probable enough for many common tasks.
The use of some form of long time planner could be
effective to solve this issue by assigning precedence
by determining how the decision of performing one
action over another could affect the execution of the
task.

A knowledge base approach for robots working in
unstructured environments, where the execution of the
task cannot be scripted beforehand, is fundamental
if they are to be able to work successfully. Without
such a system the robot would be unfit to respond to
any unforeseen deviation from the plan, and largely
ineffective to perform in all but the most ideal of situ-
ations. The knowledge base system allows the robot to
keep track of the environment and the execution state
of the task, which provides the system with flexibil-
ity to deal with different states at a particular point
without losing focus of the global task objective.
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A video of the performance of the system in
this scenario has been uploaded: www.youtube.com/
watch?v=3l7-KrMa84o.

8.2 Robot Skill Reproduction Scenario

As a final experiment we will visit a kitchen or dinner
table scenario and expand the demonstrators presented
in the previous section. In this scenario the HOAP-3
robot is required to complete the task of setting up a
dinner service together with a human agent. The pur-
pose of the demonstrator is to test the overall operation
of the developed architecture, as well as to validate the
performance of every individual module and interac-
tion between them, involving the perception of objects
and interaction with the agent, the learning of vari-
ous robot skills, the representation of knowledge in
the knowledge base, the generation and adaptation of
the skill models and the adequate reproduction of the
robot skills.

Figure 14 shows a schematic view of the over-
all skill reproduction scenario experiment described
above. For this scenario, various demonstrations of
skills, recorded with the HOAP-3 robot, are first given
to the learning module to encode the models of the
robot skills for the different actions required for the
“dinner service” task. Subsequently, the learned robot
skills are stored by the knowledge base system. Dur-
ing the operation, the user will provide objects to
the robot by placing them in its action field, both of
vision and manipulation. The perception system will
handle the interaction with the user and the detec-
tion of objects in the environment. The knowledge
base system will receive this information from the

perception system and will instantiate the frames and
build the knowledge representation of the scene in
the knowledge base. Through this interaction with
the user and the environment, the knowledge base
system will select the corresponding skills to acti-
vate. Once the necessary robot skills are selected, the
generation and adaptation system will be in charge
of building the appropriate task model satisfying the
desired command and constraints of the environment
for reproducing the appropriate skill action. Finally,
the HOAP-3 robot controller will execute the robot
commands required for skill reproduction.

This demonstrator scenario is meant to provide
proof of concept of how the knowledge base oper-
ates to instantiate frames from the perception of the
environment, and how the knowledge base maintains
and upkeeps its knowledge representation over time in
a changing environment, as well as how action exe-
cution is invoked by the state of the representation
frames present in the knowledge base. Additionally,
the demonstrator scenario provides validation for the
generation and adaptation system and how it oper-
ates over learned robot skills for increasing the scope
of available skills for the performance of the HOAP
humanoid robot.

Figure 15 depicts a storyboard of the performance
of the second demonstrator showing several snapshots
captured from the execution experiment. The demon-
strator scenario will develop as follows: first the robot
is given the task of setting up the “dinner service” at
the table in front of it, and all necessary robot skill
actions and task event frames are stored in the knowl-
edge base. The task begins with the robot standing in
front of the empty table. The final set-up of the table
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Fig. 14 Schematic view for the Robot Skill Reproduction Scenario experiment
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Fig. 15 Robot Skill
Reproduction Scenario
experiment: different
snapshots from the
execution of the task in the
demonstrator
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requires a plate to be placed in the center, a cup placed
on top of the plate, a spoon placed inside the cup, and
a fork and knife flanking the plate at its left and right
sides, respectively. Completing the task requires the
performance of several different skills. The sequence
of execution of the task is governed by the human
agent as it is him who chooses the order in which
to provide the robot with the needed objects. Certain
items, however, have precedence over others, i.e. the
plate must be placed on the table before the cup, since
the cup goes on top of it.

The first object to be placed on the table is a ‘red’
container box, from which the HOAP-3 robot picks
up the objects, when available. A human agent would
choose from the pool of objects of the task one object
to be placed by the robot. Figure 15 top left image shows
the instance where the human agent sets the first object
for that run of the task, in that case a plate. The HOAP-3
robot perception would recognize the object in the
container box, when this happens an object frame
instance is created in the knowledge base, and the
action frames in the task event frame are checked out
to find which, if any, match is invoking conditions from
the current state of the world frame, in order to begin
reproduction of a skill. Once an action is chosen,
the Robot Skill Model parameters θ = {π, μ, �}
are recovered from the knowledge base system and
provided to the robot skill reproduction model for per-
forming the actual reproduction of the skill, as in the
GMR process described in Section 4. The robot will
pick up the given object and carry out the required
operations with it to place it correctly on the table.

A video of the performance of the system in
this scenario has been uploaded: www.youtube.com/
watch?v=BKXaZGV8xvM.

9 Conclusions and Future Works

This work is centred on the aspiration of building
humanoid robots capable of interacting with humans
in their homes, workplaces, and communities, provid-
ing support in several areas, and collaborating with
humans in the same unstructured working environ-
ments. The aspiration is to have humanoid robots
acting as robot companions and co-workers sharing
the same space, tools, and activities.

There is much work to be done to improve
the capabilities of humanoid robots for locomotion,

perception, interaction, cognitive behaviour and com-
petence at performing tasks. Humanoid robots must
present intelligent, natural, predictable and reason-
able behaviours, and the development of intelligent
controls to resemble this is a major challenge.

The main contribution of this work is the propo-
sition and implementation of a cognitive architecture
for the generation and adaptation of learned models
for task oriented control. In the developed architec-
ture a knowledge base of the skills is built with the
models of the skills learned through demonstrations.
During the execution, the constraints of a requested
task are extracted by the perceptual system from the
working environment and the appropriate skill models
are retrieved from the skills knowledge base. With all
the available information, a new adapted task model is
generated for reproduction.

The architecture developed in this work was pro-
posed as a cognitive model intended to provide the
robot with an essential cognitive ability for learning
and adaptation of skills. Though it is not a primary
consideration of this work, our architecture can be
thought of as one module level in the hierarchy of
a more complex architecture, or as a first stepping
stone upon which to incrementally build more com-
plex cognitive processes. The goal of the developed
architecture is to provide a minimum degree of intel-
ligence for the humanoid robot. The ultimate goal of
the field calls for fully functional humanoid robots
capable of performing any type of task as a human
agent would, and capable of working, collaborating
and interacting with humans, sharing the same space,
tools, and activities. This vision requires for robots
to present full level cognitive and intelligent architec-
tures; however, current developments are not yet even
close to these capacities, and our discussion needs
to start at some point in a basic functional level of
intelligence. We consider as a minimal desirable level
of intelligence for our humanoid robots the ability to
sense the environment, learn, and adapt their actions
to perform successfully under a set of circumstances.

The developed architecture provides humanoid
robots with systems that allow them to continuously
learn new skills, represent their skill knowledge, and
adapt their existing skills to new contexts, as well as
to robustly reproduce new behaviours in a dynamical
environment. The architecture is formed by modules
for the learning of robot skills, the perception and
interaction with the environment, the representation

www.youtube.com/watch?v=BKXaZGV8xvM
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and management of the skill knowledge, the gener-
ation and adaptation of skill models, and the repro-
duction of robot skills. To learn the skills motion a
time independent model of the motion dynamics was
estimated through a set of first order non-linear multi-
variate dynamical systems. A knowledge base of skills
has been developed and implemented. The knowledge
base holds all the necessary information for reproduc-
tion of the skills in the environment. The knowledge
of the task is distributed among the representation of
objects, actions and events of the task and the state
of the world. A structure built on frames has been
adopted in this work. The knowledge of the environ-
ment and goals is represented in terms of the World
Event Frame and Task Event Frames, with Object
and Action Frames representing the knowledge about
available objects and actions, respectively. From the
knowledge of these frames an Active View Event
Frame is built of the focused knowledge required to
drive the agent execution.

Also, methods for models combination have been
presented. Probabilistic frameworks for combining
models can be viewed as mixture distributions condi-
tioned on the input variables. The idea behind is that
different components can model different regions and
a gating function determines which components are
dominant in which region. The manipulation of the
skills must allow the adaptation, update, merger, and
combination of robot skills as necessary.

The proposed architecture was demonstrated with
a commercial humanoid robot HOAP-3, endowing it
with the capacity to learn skill models from teacher
demonstrations, to store them in a knowledge base,
and to adapt the learned models in order to repro-
duce the required skills in different contexts. Dif-
ferent evaluation scenarios were developed to test
the performance of the modules implemented in our
architecture. Demonstrations were organized over two
major scenarios to provide separate validation for the
knowledge base system and the complete developed
architecture.

Future work will constantly focus on augmenting
the architecture cognitive capacities to generate bet-
ter, more intelligent behaviours. By choosing to start
from a bottom level definition of intelligence many
assumptions and simplifications are made; this limits
the possible scope of performance for the robots while
reducing the complexity of the systems. These issues
must be handled and solved in future work as we

continue to improve the system and make it capable of
performing ever more complex behaviours.

The skill learning module provides effective means
for teaching the robot the desired skills. However, the
teaching process is not as smooth and streamlined as
it could aspire to be, and a certain level of practice and
familiarity with the robot platform is required from the
teacher in order to be efficient at providing demon-
strations. Future work must concentrate on topics of
human-robot interaction to improve the demonstra-
tion approach. The skill knowledge module affords
the robot mechanisms by which to select skills to
reproduce in different contexts. The implemented sys-
tem is capable of performing under the demonstrated
scenarios. However, these demonstrations are still lim-
ited in terms of the number of possible choices and
situations they have to handle. Future work must pro-
vide comprehensive evaluations of capabilities and
limitations of the skill knowledge module in a larger
range of scenarios. The skill adaptation module proves
functional for the requirements under the designed
demonstrated scenarios. However, the module in its
current implementation requires supervision from the
operating user. Future work must always increase the
degree of autonomy for the overall system. Also,
future work would benefit from testing and user evalu-
ations employing different users with varying levels of
expertise. The implemented skill reproduction module
allows a satisfactory control of the robot performance
in reproducing various task. Further work is required
to enhance the performance of the robot reproduc-
tions, particularly for improving execution speed and
providing more natural, human-like, movements.
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