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Abstract In this paper, we consider the control prob-
lem of tracking a 3D spatial trajectory for a fully actu-
ated helicopter in static known environment, which
is predefined to avoid obstacles and collisions con-
sidering the distance, fuel consumption and other
related constraints. For this purpose, a nonlinear con-
troller using the radial basis function neural network
(RBFNN) is designed. Based on Lyapunov analysis,
the proposed adaptive neural network control succeeds
in tracking the desired trajectory robustly to a small
neighborhood of zero, and guarantees the bounded-
ness of all the closed-loop signals at the same time.
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Extensive numerical results are given to illustrate the
effectiveness of the designed controller.
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1 Introduction

Aerial Vehicles (AVs) have been used more and more
widely in surveillance, search and rescue mission,
aerial mapping, cartography, border patrol, inspection,
agricultural imaging, and other related areas [1–3].
During these flight missions, the AVs usually fly in
low altitudes, which makes them be subject to col-
lision with static obstacles (such as buildings, trees,
mountains, etc.) as well as dynamic obstacles (such
as other AVs, etc.) in their flight zone [1]. To avoid
the potential collisions, static trajectories or real-time
motion plans must be executed for the AVs in static
environments or dynamic environments, respectively.
After that, the AVs can be controlled to follow the
desired trajectories or motion plans to avoid the poten-
tial collisions and achieve its goals [4].

This paper is concerned with the control prob-
lem of tracking a predefined 3D spatial trajectory in
known static environment for a fully actuated heli-
copter, which means enabling the helicopter to move
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from its current location to a new desired location
avoiding collisions with fixed obstacles. This control
problem is challenging due to highly nonlinear and
strongly coupled dynamics of the helicopter, such that
disturbances along a single degree of freedom (DOF)
can easily propagate to the other DOF and lead to loss
of performance or even destabilization [5].

During the past few decades, flight control has
attracted an ever increasing interest to guarantee the
stability of helicopter systems. A large number of con-
trol techniques have been proposed in the literature
for the flight control of helicopters, including sliding
mode control [6], H∞ control [7–10], backstepping
control [11, 12], neural network control [13–15], and
so on. In all of these flight control methods, model-
based control, such as H∞ control etc., is susceptible
to uncertainties and disturbances. The authors pro-
posed a robust attitude control of helicopters with
actuator dynamics using neural networks to handle
the model uncertainty and the external disturbance
[15]. The authors developed an approximation-based
techniques using neural networks (NN) to track the
altitude and yaw angle for a scale model helicopter
mounted on an experimental platform in the presence
of model uncertainties [5]. Both of these controllers
were designed to track the states of the helicopter with
limited flight zone. The authors proposed a robust full
degree of freedom tracking control to follow the verti-
cal, lateral, longitudinal and yaw attitude motion of a
helicopter along the desired arbitrary trajectories [16].
However, they have simplified the vector of forces
applied to the helicopter.

The neural network and adaptive control is
designed to track the planned trajectory that is very
common in many areas. For example, robotic sys-
tem, marine system and other nonlinear system [17–
30]. In [31], the authors addressed the problem of
control design for strict-feedback systems with con-
straints on the states via neural network. The authors
presented the neural network control for a rehabili-
tation robot with unknown system dynamics in [32].
For the marine system, the authors investigated the
control problem of tracking a desired trajectory by
adaptive neural network [33]. An adaptive output
feedback control was studied for uncertain nonlinear
systems with unmeasured states in [34]. The authors
proposed an online learning adaptive neural network
for small unmanned aerial vehicle (UAV) to improve
control performance during flight [35]. The authors

investigated a novel method to solve the mutual syn-
chronization control problem of multiple robot manip-
ulators in the case that the desired trajectory is only
available to a portion of the team members, and the
dynamics and the external disturbances of the manip-
ulators are unknown in [36]. The representative works
on mobile manipulators are [37–41]. In these papers
[37–39, 41], some elegant techniques for mobile
manipulators, such as operation space transformation,
hybrid force/motion, symmetrical and asymmetrical
coordination, can be employed to give rise to the per-
formance of mobile manipulators, evenly other robots,
which were significant improvement in robotic appli-
cations. In addition, fuzzy logic control [42–53] is
also widely used for the nonlinear systems and their
applications with uncertainties.

In this paper, we draw inspiration from the atti-
tude and yaw angle tracking for a scale model
helicopter mounted on an experimental platform in
the presence of nonlinearity, model uncertainty and
external disturbance. The approximated-based NN
control is designed to track the desired 3D spatial
trajectory. RBFNN realizes function approximation
through mapping input-output as a linear combi-
nation of radially symmetric functions [54]. Com-
pared with other neural network structure, RBFNN
illustrates good properties, such as rapid training,
good generalization, simplicity structure, etc.. For
this reason, this article chooses RBFNN in our
controller. The main contributions of this paper
include:

(i) An implementable robust and adaptive RBFNN
controller is designed to track the planned 3D
spatial trajectory in known static environment.

(ii) Virtual control input is introduced during the
control design process to make the system sta-
ble.

(iii) Uniform boundedness and stability are proved
via Lyapunov synthesis.

The rest of this paper is organized as follows.
Section 2 illustrates the dynamics of the fully actu-
ated helicopter and some preliminaries. In Section 3,
the adaptive RBFNN control design via Lyapunov’s
method is discussed for autonomous tracking the
desired 3D trajectory. The numerical simulation is
presented in Section 4 to verify performance of the
proposed controller. The conclusion of this paper is
drawn in Section 5.
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Fig. 1 A helicopter system

2 Problem Formulation and Preliminaries

In the following study, the notations and definitions
are used throughout the whole paper. �n denotes
the n-dimensional Euclidean space. �+ represents the
positive real number.

Assumption 1 The planned 3D spatial trajectories
[x1d(t), x2d(t), x3d(t)]T and their derivatives up to
the third order are continuously differentiable and
bounded for all t ≥ 0.

2.1 Dynamic Analysis

As shown in Fig. 1, by fixing an inertial coordi-
nate frame Fi in the Euclidean space and a refer-
ence coordinate frame Fb attached to the body of
the helicopter, a mathematical model of the heli-
copter dynamics can be derived from Newton-Euler
equations of motion of a rigid body in the inertial
coordinate frame. The multiple-input-multiple-output
(MIMO) non-linear model of a six degree-of-freedom
(DOF6) helicopter is described as below [8, 16, 55]:

Mp̈ = Rf b,

J ω̇ = −S(ω)Jω + τb. (1)

where p = [px, py, pz]T represents the position of
the center of the mass; ω = [ω1, ω2, ω3]T denotes the
angular velocities along the x, y and z axes; M is the
mass of the body; J is the inertia tensor of the body

which is a diagonal matrix; f b and τb are the vector
of forces and torques in the body-fixed coordinate sys-
tem; R is a rotation matrix, and S(ω) denotes the 3×3
skew-symmetric matrix, shown as Eq. 2.

R =
⎡
⎣
1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ/ cos θ cosφ/ cos θ

⎤
⎦ ,

S(ω) =
⎡
⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ . (2)

The expressions of f b and τb are in terms of four
control inputs u = [PM, PT , α, β]T , where PM and
PT represent the main rotor collective pitch and the
tail rotor collective pitch, α and β denote the longitu-
dinal and lateral inclination of the tip path plane in the
body-fixed coordinate system. From previous work of
Isidori et al. [56], Koo and Sastry [57] and Marconi
[16], f b and τb can be modeled as:

f b = [
XM YM + YT ZM

]T + RT
[
0 0 Mg

]T
,

τ b =
⎡
⎣

RM

MM

NM

⎤
⎦ +

⎡
⎣

YMhm + ZMym + YT ht

−XMhm + ZMlm
−YMlm − YT lt

⎤
⎦ . (3)

where g is the force of gravity; lm, ym, hm and
lt , yt , ht represent the coordinates of the main and
tail rotor shafts with respect to the center of the mass
in Fb; XM = −TM sinα, YM = TM sinβ, ZM =
−TM cosα cosβ, YT = −TT ,RM = cM

b β−QM sinα,
MM = cM

a α+QM sinβ andNM = −QM cosα cosβ.
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In these expressions, cM
a and cM

b are physical parame-
ters modeling the flapping dynamic of the main rotor,
QM is the total torque of the main rotor, TM and TT

are the thrusts generated by the main and tail rotor
respectively, which are given by:

TM = KTM
ω2

ePM, (4)

TT = KTT
ω2

ePT . (5)

where ωe is the angular velocity of the main rotor in
Fb,KTM

andKTT
denote aerodynamic constants of the

main and tail rotors’ blades. ωe is dominated by the
engine dynamic model, which is modeled as [58]

Qe = Pe/ωe, Pe = P̄eTh. (6)

where Qe is the total engine torques, and Pe denotes
engine power which is assumed to be proportional to
throttle Th with 0 < Th < 1.

Let x1 = px , x2 = py , x3 = pz, x4 = ω1, x5 = ω2,
x6 = ω3, u1 = PM , u2 = PT , u3 = α and u4 = β. At
the mean time, considering that the tilt angles α and β

are small, we have sinα ≈ α, sinβ ≈ β, cosα ≈ 1
and cosβ ≈ 1. Substitute Eqs. 2, 3, 4 and 5 into Eq. 1,
we have the following helicopter system:

A(x)ẍ + B(x, ẋ)ẋ + C(x) = D(x, u) (7)

where x, ẋ, ẍ represent the state vector, first order
differential state vector, and second order differential
state vector, respectively. The matrix coefficients are
given as follows:

A(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

lmM 0 0 0 0 0
0 lmM 0 0 0 0
0 M

sinφ
cos θ

−M cosφ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
6×6

B(x, ẋ) = −

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −J33 sinφ tan θ

0 0 0 0 0 −J33 cosφ

0 0 0 0 0 0
0 0 0 J11 0 0
0 0 0 0 J22 0
0 0 0 0 0 J33

⎤
⎥⎥⎥⎥⎥⎥⎦
6×6

,

C(x) = −

⎡
⎢⎢⎢⎢⎢⎣

(J11 − J22)x4x5 sinφ tan θ + lmMg tan θ
cos θ

(J11 − J22) cosφx4x5 − QM cosφ

−Mg
cosφ

cos2 θ
(J22 − J33x5x6)
(J33 − J11)x4x6

(J11 − J22)x4x5 − QM

⎤
⎥⎥⎥⎥⎥⎦
6×1

,

D(x, u) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−lmKTM
ω2

e cosφ tan θ · u1 + (lt − lm)KTT
ω2

e sinφ tan θ · u2 − lmKTM
ω2

e · u1u3
lmKTM

ω2
e sinφ · u1 + (lt − lm)KTT

ω2
e · u2

KTM
ω2

e

cos θ
· u1

−ymKTM
ω2

e · u1 − htKTT
ω2

e · u2 − QM · u3 + (hmKTM
ω2

e · u1 + cM
b ) · u4

−lmKTM
ω2

e · u1 + hmKTM
ω2

e · u1u3 + cM
a u3 + QM · u4

−lmKTM
ω2

e · u1u4 + ltKTT
ω2

e · u2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
6×1

=

⎡
⎢⎢⎢⎢⎢⎢⎣

d11 d12 d13(u1) 0
d21 d22 0 0
d31 0 0 0
d41 d42 d43 d44(u1)

d51 0 d53(u1) d54
0 d62 0 d64(u1)

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎣

u1
u2
u3
u4

⎤
⎥⎥⎦ . (8)

The control objective is to track an 3D planned
trajectory of helicopter in known environment. There-
fore, the proposed control techniques must render the
helicopter track a desired trajectory [x1d, x2d , x3d ]T
such that the tracking errors converge to a very
small neighborhood of the desired position, that is,
limt→ti ‖[x1(t),

x2(t), x3(t)]T − [x1d(ti), x2d(ti), x3d(ti)]T ‖ < ε with
ε > 0 ensuring that the helicopter would not collide
with other obstacles.

Assumption 2 [15, 59] For all t > 0, there exist
‖ẋid (t)‖ ≤ ζ1i , ‖ẍid (t)‖ ≤ ζ2i and ‖x(3)

id (t)‖ ≤ ζ3i
(i = 1, 2, 3), where ζ1i > 0, ζ2i > 0 and ζ3i > 0.
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2.2 Preliminaries

Assumption 3 [5] On a compact set 
Z ⊂ �n+1, the
ideal neural network weights W ∗ satisfy

‖W ∗‖ ≤ wm (9)

where wm is a positive constant.

Lemma 1 [60–62] For bounded initial conditions, if
there exists a C1 continuous and positive definite Lya-
punov function V (x) satisfying γ1(‖x‖) ≤ V (x) ≤
γ2(‖x‖), such that V̇ (x) ≤ −ρV (x) + η, where
γ1, γ2 : �n → � are class K functions, ρ and η are
positive constants, then the solution x(t) is uniformly
bounded.

Lemma 2 For a, b ∈ �+, the following inequality
holds:

ab

a + b
≤ a (10)

3 Spatial Trajectory Tracking Controller Design

The main control purpose is to design the four
control inputs u = [PM, PT , α, β]T in order to
asymptotically track the planned 3D spatial trajec-
tory [x1d(t), x2d(t), x3d(t)]T . The planned 3D spatial
trajectory of each helicopter can be calculated by opti-
mizing an objective function, for example, distance
and fuel consumption, with constraints corresponding
to some special airspace traffic rules. In this paper, the
planned 3D spatial trajectory from the trajectory plan-
ning method is assumed to be known. Motivated by
the the previous work on the approximated-based con-
trol of helicopter [5], we will design adaptive neural
control for each subsystem to follow the planned 3D
spatial trajectory.

3.1 RBFNN-based control

In this section, the RBFNN-based controller designed
by Lyapunov synthesis is developed to track the
planned trajectory. From Eq. 7, we have six subsys-
tems in sequence. With respect to the obtained six
subsystems, the controller is designed step by step as
follows:

1) Design u1 based on the 3rd subsystem;
2) Design u2 based on the 2nd subsystem;

3) Design u3 based on the 1st subsystem;
4) Design u4 based on the 4th subsystem;
5) Analyze the stability of internal dynamics of 5th

and 6th subsystem.

3.1.1 3rd Subsystem

From Eq. 7, we have the 3rd subsystem as:

a32ẍ2 + a33ẍ3 + c3 = d31u1 (11)

Define a new virtual state variable xnew = a32x2 +
a33x3, then the tracking error and filtered tracking
error can be defined as below:

enew = xnew − xnewd, (12)

rnew = ėnew + λ3enew (13)

where xnewd = a32x2d + a33x3d , λ3 is a designed
positive real constant.

Substituting Eqs. 12, 13 into Eq. 11, we have

ṙnew = d31u1 − FS1 (14)

where

FS1 = ẍnewd − λ3ėnew + c3 (15)

is an unknown nonlinear function, which can be
approximated by a RBFNN to arbitrary any accuracy
as

FS1 = W ∗
1

T
S1(Z1) + ε1(Z1) (16)

where Z1 = [ẍnewd, ėnew]T ∈ 
Z1 is the input vec-
tor of the NN; S1(Z1) is the basis function; W ∗

1 is
ideal weight satisfying ‖W ∗

1 ‖ ≤ ω1m, where ω1m

is a positive constant; ε1(Z1) is the approximation
error satisfying ε1(Z1) ≤ ε1, where ε1 is a positive
constant.

Let Ŵ1 approximates W ∗
1 , then the error between

the actual and the ideal RBFNN is as below:

ŴT
1 S1(Z1) − W ∗

1
T
S1(Z1) = W̃T

1 S1(Z1) (17)

where W̃1 = Ŵ1 − W ∗
1 .

Consider the following Lyapunov function candi-
date

V1 = 1

2
r2new + 1

2
W̃T

1 �−1
1 W̃1 (18)

where �1 = �T
1 > 0.
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The time derivative of V1 is given by

V̇1 = rnewṙnew + W̃T
1 �−1

1
˙̃

W1

= rnew[d31u1 − W ∗
1

T
S1(Z1) − ε1(Z1)] + W̃T

1 �−1
1

˙̂
W1

(19)

Consider the following RBFNN based control law
and weight adaptation law

u1 = −k1rnew − rnew(ŴT
1 S1(Z1))

2

d31(|rnewŴT
1 S1(Z1)| + δ1)

, (20)

˙̂
W1 = −�1[S1(Z1)rnew + σ1Ŵ1]. (21)

where k1 > 0, δ1 > 0, and σ1 > 0.

Remark 1 The above σ -modification adaptation term
σ1Ŵ1 in Eq. 21 is introduced to improve the robust-
ness in the presence of the RBFNN approxima-
tion error ε1 [63–66]. Furthermore, σ1Ŵ1 can easily
be replaced by e-modification adaptation term like
σ1|rnew|Ŵ1. In this way, the control design in this
paper can be easily extended to the control based on
e-modification adaptation law without difficulty.

Substituting Eqs. 17, 20 and 21 into Eq. 19, we have

V̇1 = −k1d31rnew
2 − rnew

2(Ŵ T
1 S1(Z1))

2

|rnewŴT
1 S1(Z1)| + δ1

−rnewW ∗
1

T
S1(Z1) − rnewε1(Z1)

−rnewW̃T
1 S1(Z1) − σ1W̃

T
1 Ŵ1

≤ −k1d31rnew
2 − rnew

2(Ŵ T
1 S1(Z1))

2

|rnewŴT
1 S1(Z1)| + δ1

+|rnewŴT
1 S1(Z1)|

+|rnew||ε1(Z1)| − σ1W̃
T
1 Ŵ1 (22)

Noting that

− rnew
2(Ŵ T

1 S1(Z1))
2

|rnewŴT
1 S1(Z1)| + δ1

+ |rnewŴT
1 S1(Z1)|

= |rnewŴT
1 S1(Z1)|δ1

|rnewŴT
1 S1(Z1)| + δ1

. (23)

According to Lemma 2, Eq. 23 yields

− rnew
2(Ŵ T

1 S1(Z1))
2

|rnewŴT
1 S1(Z1)| + δ1

+ |rnewŴT
1 S1(Z1)| ≤ δ1. (24)

By completion of squares, we can obtain

− σ1W̃
T
1 Ŵ1 = −σ1W̃

T
1 (W̃1 + W ∗

1 )

≤ −σ1

2
‖W̃1‖2 + σ1

2
‖W ∗

1 ‖2. (25)

According to the Young’s inequality, we have

|rnew||ε1(Z1)| ≤ r2new

2θ1
+ θ1ε

2
1

2
≤ r2new

2θ1
+ θ1ε̄

2
1

2
. (26)

where θ1 > 0.
Substituting Eqs. 24–26, we have

V̇1 ≤ −(k1d31 − 1

2θ1
)r2new − σ1

2
‖W̃1‖2 + δ1

+θ1

2
ε̄21 + σ1

2
ω2
1m

≤ −1

2
(2k1d31 − 1/θ1)r

2
new

−1

2

σ1

λmax(�
−1
1 )

W̃ T
1 �−1

1 W̃1 + δ1

+θ1

2
ε̄21 + σ1

2
ω2
1m

≤ −min

{
2k1d31 − 1/θ1,

σ1

λmax(�
−1
1 )

}

×
[
1

2
r2new + 1

2
W̃T

1 �−1
1 W̃1

]
+ δ1 + θ1

2
ε̄21

+σ1

2
ω2
1m

≤ −ρ10V1 + η10. (27)

where λmax(·) denotes the largest eigenvalue of a

matrix; ρ10 = min

{
2k1d31 − 1/θ1,

σ1

λmax(�
−1
1 )

}
, η10 =

δ1 + θ1
2 ε̄21 + σ1

2 ω2
1m.

3.1.2 2nd Subsystem

From Eq. 7, we have the 2nd subsystem as below:

a22ẍ2 + b2(x, ẋ)ẋ6 + c2(x) = d21u1 + d22u2 (28)

Similar to Section 3.1.1, define the tracking error
and filtered tracking error as below:

e2 = x2 − x2d, (29)

r2 = ė2 + λ2e2 (30)

where λ2 is a designed positive real constant.
Substituting Eqs. 29, 30 into x2 subsystem, we have

a22ṙ2 = d22u2 − FS2. (31)
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where

FS2 = a22(ẍ2d − λ2ė2) + b2(x, ẋ)ẋ6 + c2(x) − d21u1

is an unknown nonlinear function, which is approxi-
mated by RBFNN to arbitrary any accuracy as

FS2 = W ∗
2

T
S2(Z2) + ε2(Z2) (32)

where Z2 = [x4x5, ẋ6, ė2, ẍ2d , u1]T ∈ 
Z2 is the
input vector of the NN; S2(Z2) is the basis function;
W ∗

2 is ideal weight satisfying ‖W ∗
2 ‖ ≤ ω2m, where

ω2m is a positive constant; ε2(Z2) is the approximation
error satisfying ε2(Z2) ≤ ε2, where ε2 is a positive
constant.

Let Ŵ2 approximate W ∗
2 , then the error between

the actual and the ideal RBFNN can be expressed as
below:

ŴT
2 S2(Z2) − W ∗

2
T
S2(Z2) = W̃T

2 S2(Z1) (33)

where W̃2 = Ŵ2 − W ∗
2 .

Consider the following Lyapunov function candi-
date

V1 = 1

2
a22r

2
2 + 1

2
W̃T

2 �−1
2 W̃2 (34)

where �2 = �T
2 > 0.

The time derivative of V2 is given by

V̇2 = a22r2ṙ2 + W̃T
2 �−1

2
˙̃

W2

= r2

[
d22u2 − W ∗

2
T
S2(Z2) − ε2(Z2)

]

+W̃T
2 �−1

2
˙̂

W2 (35)

Consider the following NN based control law and
weight adaptation law

u2 = −k2r2 − r2(Ŵ
T
2 S2(Z2))

2

d22(|r2ŴT
2 S2(Z2)| + δ2)

, (36)

˙̂
W2 = −�2

[
S2(Z2)r2 + σ2Ŵ2

]
. (37)

where k2 > 0, δ2 > 0, and σ2 > 0.
Substituting Eqs. 33, 36 and 37 into Eq. 35, we have

V̇2 = −k2d22r2
2 − r2

2(Ŵ T
2 S2(Z2))

2

|r2ŴT
2 S2(Z2)| + δ2

−r2W
∗
2

T
S2(Z2) − r2ε2(Z2) − r2W̃

T
2 S2(Z2)

−σ2W̃
T
2 Ŵ2

≤ −k2d22r2
2 − r2

2(Ŵ T
2 S2(Z2))

2

|r2ŴT
2 S2(Z2)| + δ2

+|r2ŴT
2 S2(Z2)|+|r2||ε2(Z2)|−σ2W̃

T
2 Ŵ2.(38)

Similar to Eqs. 24, 25 and 26, the following
inequalities hold

− r2
2(Ŵ T

2 S2(Z2))
2

|r2ŴT
2 S2(Z2)| + δ2

+ |r2ŴT
2 S2(Z2)| ≤ δ2 (39)

−σ2W̃
T
1 Ŵ1 ≤ −σ2

2
‖W̃2‖2 + σ2

2
‖W ∗

2 ‖2. (40)

|r2||ε2(Z2)| ≤ r22

2θ2
+ θ2ε̄

2
2

2
. (41)

where θ2 > 0.
Substituting Eqs. 39–41 into Eq. 38, we have

V̇2 ≤ −(k2d22 − 1

θ2
)r22 − σ2

2
‖W̃2‖2 + δ2

+θ2

2
ε̄22 + σ2

2
ω2
2m

≤ −1

2
a22

2k2d22 − 1/θ2
a22

r22

−1

2

σ2

λmax(�
−1
2 )

W̃ T
2 �−1

2 W̃2 + δ2

+θ2

2
ε̄22 + σ2

2
ω2
2m

≤ −min

{
2k2d22 − 1/θ2

a22
,

σ2

λmax(�
−1
2 )

}

×
[
1

2
a22r

2
2 + 1

2
W̃T

2 �−1
2 W̃2

]
+ δ2

+θ2

2
ε̄22 + σ2

2
ω2
2m

≤ −ρ20V2 + η10. (42)

where ρ20 = min

{
2k2d22−1/θ2

a22
,

σ2

λmax(�
−1
2 )

}
, η20 = δ2+

θ2
2 ε̄22 + σ2

2 ω2
2m.

3.1.3 1st Subsystem

From Eq. 7, we have the 1st subsystem as below:

a11ẍ1 + b16ẋ6 + c1(x) = d11u1 + d12u2

+ lmKTM
ω2

eu1u3 (43)

Similar to Section 3.1.2, define the tracking error
and filtered tracking error as below:

e1 = x1 − x1d, (44)

r1 = ė1 + λ1e1 (45)

where λ1 is a designed positive real constant.
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Similar to Sections 3.1.1 and 3.1.2, substituting
Eqs. 44, 45 into x1 subsystem, we have

a11ṙ1 = d13u1u3 − FS3 (46)

where

FS3 = a11(ẍ1d − λ1ė1) + b16ẋ6 + c1(x) − d11u1 − d12u2

is an unknown nonlinear function, which is approxi-
mated by RBFNN to arbitrary any accuracy as

FS3 = W ∗
3

T
S3(Z3) + ε3(Z3) (47)

where Z3 = [x4x5, ė1, ẍ1d , ẋ6, u1, u2]T ∈ 
Z3 is the
input vector of the RBFNN; S3(Z3) is the basis func-
tions; W ∗

3 is ideal weight satisfying ‖W ∗
3 ‖ ≤ ω3m,

where ω3m is a positive constant; ε3(Z3) is the approx-
imation error satisfying ε3(Z3) ≤ ε3, where ε3 is a
positive constant.

Let Ŵ3 approximate W ∗
3 , then the error between

the actual and the ideal RBFNN can be expressed as
below:

ŴT
3 S3(Z3) − W ∗

3
T
S3(Z3) = W̃T

3 S3(Z3) (48)

where W̃3 = Ŵ3 − W ∗
3 .

Consider the following Lyapunov function candi-
date

V3 = 1

2
a11r

2
1 + 1

2
W̃T

3 �−1
3 W̃3 (49)

where �3 = �T
3 > 0.

The time derivative of V3 is given by

V̇3 = a11r1ṙ1 + W̃T
3 �−1

3
˙̃

W3

= r1

[
d13u1u3 − W ∗

3
T
S3(Z3) − ε3(Z3)

]

+W̃T
3 �−1

3
˙̂

W3 (50)

Suppose that u′
3 = u1u3 is a virtual control input.

Then, consider the following RBFNN based control
law and weight adaptation law

u′
3 = −k3r1 − r1(Ŵ

T
3 S3(Z3))

2

d13(|r1ŴT
3 S3(Z3)| + δ3)

, (51)

˙̂
W3 = −�3

[
S3(Z3)r1 + σ3Ŵ3

]
(52)

where k3 > 0, δ3 > 0, d13 is a positive real constant
such that 0 < d13 ≤ |d13(u1)|, and σ3 > 0.

Furthermore, the real control input u3 can be
defined as

u3 =
{

u′
3, if u1 = 0

u′
3

u1
, Otherwise

(53)

Substituting Eqs. 48, 51 and 52 into Eq. 50, we have

V̇3 = −k3d13r1
2 − r1

2(Ŵ T
3 S3(Z3))

2

|r1ŴT
3 S3(Z3)| + δ3

−r1W
∗
3

T
S3(Z3) − r1ε3(Z3)

−r1W̃
T
3 S3(Z3) − σ3W̃

T
3 Ŵ3

≤ −k3d13r1
2 − r1

2(Ŵ T
3 S3(Z3))

2

|r1ŴT
3 S3(Z3)| + δ3

+|r1ŴT
3 S3(Z3)| + |r1||ε3(Z3)| −

σ3W̃
T
3 Ŵ3 (54)

Similar to Eqs. 24, 25 and 26, the following
inequalities hold

− r1
2(Ŵ T

3 S3(Z3))
2

|r1ŴT
3 S3(Z3)| + δ3

+ |r1ŴT
3 S3(Z3)| ≤ δ3 (55)

−σ3W̃
T
3 Ŵ3 ≤ −σ3

2
‖W̃3‖2 + σ3

2
‖W ∗

3 ‖2. (56)

|r1||ε3(Z3)| ≤ r21

2θ3
+ θ3ε̄

2
3

2
. (57)

where θ3 > 0.
Substituting Eqs. 55–57, we have

V̇3 ≤ −(k3d13 − 1

2θ3
)r21 − σ3

2
‖W̃3‖2 + δ3

+θ3

2
ε̄23 + σ3

2
ω2
3m

≤ −1

2
a11

2k3d13 − 1/θ3
a11

r21

−1

2

σ3

λmax(�
−1
3 )

W̃ T
3 �−1

3 W̃3 + δ3

+θ3

2
ε̄23 + σ3

2
ω2
3m

≤ −min

{
2k3d13 − 1/θ3

a11
,

σ3

λmax(�
−1
3 )

}

×
[
1

2
a11r

2
1 + 1

2
W̃T

3 �−1
3 W̃3

]
+ δ3

+θ3

2
ε̄23 + σ3

2
ω2
3m

≤ −ρ30V3 + η30. (58)
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where ρ30 = min

{
2k3d13−1/θ3

a11
,

σ3

λmax(�
−1
3 )

}
, η30 = δ3+

θ3
2 ε̄23 + σ3

2 ω2
3m.

3.1.4 4th Subsystem

From Eq. 7, we have the 4th subsystem as below:

b44ẋ4 + c4(x) = d41u1 + d42u2 + d43u3

+ (hmKTM
ω2

eu1 + CM
b )u4 (59)

To design u4, we define an error variable e4 = x4−
τ , where τ ∈ � is a virtual control law. Differentiating
e4 with respect to time yields

ė4 = ẋ4 − τ̇ . (60)

The virtual control law τ is chosen as

τ = b44(−kτ e1 + x1d). (61)

where kτ > 0.
Substituting Eq. 60 into Eq. 59, we have

b44ė4 = d44(u1)u4 − FS4. (62)

where

FS4 = b44τ̇ + c4(x) − d41u1 − d42u2 − d43u3

is an unknown nonlinear function, which is approxi-
mated by RBFNN to arbitrary any accuracy as

FS4 = W ∗
4

T
S4(Z4) + ε4(Z4) (63)

where Z4 = [x5x6, τ̇ , u1, u2, u3]T ∈ 
Z4 is the input
vector of the RBFNN; S4(Z4) are the basis functions;
W ∗

4 are ideal weights satisfying ‖W ∗
4 ‖ ≤ ω4m, where

ω4m is a positive constant; ε4(Z4) is the approximation
error satisfying ε4(Z4) ≤ ε4, where ε4 is a positive
constant.

Let Ŵ4 approximate W ∗
4 , then the error between

the actual and the ideal RBFNN can be expressed as
below:

ŴT
4 S4(Z4) − W ∗

4
T
S4(Z4) = W̃T

4 S4(Z4) (64)

where W̃4 = Ŵ4 − W ∗
4 .

Consider the following Lyapunov function candi-
date

V4 = V3 + 1

2
b44e

2
4 + 1

2
W̃T

4 �−1
4 W̃4 (65)

where �4 = �T
4 > 0.

The time derivative of V4 is given by

V̇4 = V̇3 + b44e4ė4 + W̃T
4 �−1

4
˙̂

W4

= V̇3 + e4

[
(hmKTM

ω2
eu1 + CM

b )u4

−W ∗
4

T
S4(Z4) − ε4(Z4)

]
+ W̃T

4 �−1
4

˙̂
W4 (66)

Choose (hmKTM
ω2

eu1 + CM
b )u4 as a new virtual

control input u′
4, and consider the following RBFNN

based control law and weight adaptation law

u′
4 = −k4e4 − e4(Ŵ

T
4 S4(Z4))

2

(|e4ŴT
4 S4(Z4)| + δ4)

, (67)

˙̂
W4 = −�4

[
S4(Z4)e4 + σ4Ŵ4

]
. (68)

where k4 > 0, δ4 > 0, d44 is a positive constant such
that 0 < d44 ≤ |d44(u1)|, and σ4 > 0.

For the real control input u4, it can be defined as

u4 =
{

u′
4, if hmKTM

ω2
eu1 + CM

b = 0
u′
4

hmKTM
ω2

eu1+CM
b

, Otherwise (69)

Substituting Eqs. 64, 67 and 68 into Eq. 66, we have

V̇4 = V̇3 + e4

[
−k4e4 − (Ŵ T

4 S4(Z4))
2

(|e4ŴT
4 S4(Z4)| + δ4)

]

−e4W
∗
4

T
S4(Z4) − e4ε4(Z4)

−W̃T
4

[
S4(Z4)e4 − σ4Ŵ4

]

≤ V̇3 − k4e4
2 − e24(Ŵ

T
4 S4(Z4))

2

|e4ŴT
4 S4(Z4)| + δ4

+|e4ŴT
4 S4(Z4)| + |e4||ε4(Z4)|

−σ4W̃
T
4 Ŵ4. (70)

Similar to Eqs. 24, 25 and 26, the following
inequalities hold

− e4
2(Ŵ T

4 S4(Z4))
2

|e4ŴT
4 S4(Z4)| + δ4

+ |e4ŴT
4 S4(Z4)| ≤ δ4 (71)

−σ4W̃
T
4 Ŵ4 ≤ −σ4

2
‖W̃4‖2 + σ4

2
‖W ∗

4 ‖2. (72)

|e4||ε4(Z4)| ≤ e24

2θ4
+ θ4ε̄

2
4

2
. (73)

where θ4 > 0.
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Substituting Eqs. 71-73, we have

V̇4 ≤ −min

{
2k3d13 − 1

θ3

a11
,

σ3

λmax(�
−1
3 )

,
2k4 − 1

θ4

b44
,

σ4

λmax(�
−1
4 )

}

×
[
(
1

2
a11r

2
1 + 1

2
W̃T

3 �−1
3 W̃3)

+(
1

2
b44e

2
4 + 1

2
W̃T

4 �−1
4 W̃4)

]
+ η30 + δ4 + θ4

2
ε̄24 + σ4

2
ω2
4m

≤ −ρ40V4 + η40. (74)

where ρ40 = min

{
2k3d13−1/θ3

a11
,

σ3

λmax(�
−1
3 )

,
2k4−1/θ4

b44
,

σ4

λmax(�
−1
4 )

}
,

η40 = η30 + δ4 + θ4
2 ε̄24 + σ4

2 ω2
4m.

3.1.5 5th Subsystem

Using the designed control laws expressed by Eqs. 20,
36, 51 and 67, the 5th subsystem can be written as

ξ̇ = ψ(�, ξ, υ). (75)

where ξ = x5, � = [x4, x6]T , υ = [u1, u3, u4]T .
The zero-dynamics can be addressed as [5]

ξ̇ = ψ(0, ξ, υ∗(0, ξ)) (76)

Assumption 4 [5] System (7) is hyperbolically
minimum-phase. As such, zero-dynamics (76) is expo-
nentially stable. Furthermore, noting that the control
input υ is a function of (ξ, �) and the reference sig-
nal satisfying Assumption 2, the function ψ(ξ, �, υ) is
Lipschitz in �, i.e. there exist constants L� and Lψ for
ψ(ξ, �, υ) such that

‖ψ(ξ, �, υ) − ψ(0, ξ, υξ )‖ ≤ L�‖�‖ + Lψ (77)

where υξ = υ∗(0, ξ).

According to Assumption 4 and the Converse The-
orem of Lyapunov [5], there exists a Lyapunov func-
tion V5(ξ) which satisfies

γa‖ξ‖2 ≤ V5(ξ) ≤ γb‖ξ‖2 (78)
∂V5

∂ξ
ψ(0, ξ, τξ ) ≤ −νa‖ξ‖2 (79)

‖∂V5

∂ξ
‖ ≤ νb‖ξ‖ (80)

where γa , γb, νa and νb are positive constants.

Lemma 3 [5] For the internal dynamics ξ̇ =
ψ(�, ξ, υ) of the system, if Assumption 4 is satisfied,
and the states � are bounded by a positive constant
‖�‖max, i.e. ‖�‖ ≤ ‖�‖max, then there exist positive
constants Lξ and T0 such that

‖ξ(t)‖ ≤ Lη, ∀t > T0 (81)

Proof According to Assumption 4, there exists a Lya-
punov function V5(ξ). Differentiating V5(ξ), we have

V̇5(ξ) = ∂V0

∂ξ
ξ̇ = ∂V5

∂ξ
ψ(�, ξ, υ)

= ∂V5

∂ξ
ψ(0, ξ, υξ )

+∂V5

∂ξ
[ψ(�, ξ, υ) − ψ(0, ξ, υξ )] (82)

Noting that Eqs. 77–80, 82 can be written as

V̇5(ξ) ≤ −νa‖ξ‖2 + νb‖ξ‖(L�‖�‖ + Lψ)

≤ −νa‖ξ‖2 + νb‖ξ‖(L�‖�‖max + Lψ)

Therefore, V̇5(ξ) ≤ 0 whenever

‖ξ‖ ≥ νb

νa

(L�‖�‖max + Lψ)

Let Lξ = νb/(rνa)(L�‖�‖max+Lψ), it can be con-
cluded that there exists a positive constant T0, such
that Eq. 81 holds.

3.1.6 6th Subsystem

Similar to Section 3.1.5, the 6th subsystem can be
written as

ξ̇ ′ = ϕ(�′, ξ ′, υ ′) (83)

where ξ ′ = x6, �′ = [x4, x5]T , υ ′ = [u1, u2, u4]T .
The zero-dynamics is as below:

ξ̇ ′ = ϕ(0, ξ ′, υ ′∗(0, ξ ′)) (84)

Similar to Assumption 4, there exist constant L�′
and Lϕ′ such that

‖ϕ(ξ ′, �′, υ ′) − ϕ(0, ξ ′, υ ′
ξ ′)‖ ≤ L�′ ‖�′‖ + Lϕ′ (85)

where υ ′
ξ ′ = υ ′∗(0, ξ ′).
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Furthermore, according to Assumption 4 and the
Converse Theorem of Lyapunov [5], there exists a
Lyapunov function V6(ξ

′) which satisfies
γ ′
a‖ξ ′‖2 ≤ V6(ξ

′) ≤ γ ′
b‖ξ ′‖2 (86)

∂V6

∂ξ ′ ϕ(0, ξ ′, υ ′
ξ ′) ≤ −ν′

a‖ξ ′‖2 (87)

‖∂V6

∂ξ ′ ‖ ≤ ν′
b‖ξ ′‖ (88)

where γ ′
a , γ

′
b, ν

′
a and ν′

b are positive constants.

Lemma 4 [5] For the internal dynamics ξ̇ ′ =
ϕ(�′, ξ ′, υ ′) of the system, if Assumption 4 is satisfied,
and the states �′ are bounded by a positive constant
‖�′‖max, i.e. ‖�′‖ ≤ ‖�′‖max, then there exist positive
constants Lξ ′ and T ′

0 such that

‖ξ ′(t)‖ ≤ Lξ ′, ∀t > T ′
0 (89)

Proof The proof of Lemma 4 is the same to that of
Lemma 3. It is omitted here for clarity and concise-
ness.

3.2 Stability Analysis

The following theorem shows the stability and control
performance of the control system.

Theorem 1 Consider the system (7), the control laws
(20), (36), (51), (67) and the adaptive laws (21),

Table 1 Parameters of the helicopter system

Parameter Value Unit

J diag(0.18,0.34,0.28) Kg m2

lm 0 m

ym 0 m

hm 0.24 m

lt 0.9 m

ht 0.1 m

c
Q,T
M 52 N·m/rad

cM
a,b 52 N·m/rad

KTM
58 mN·s2/rad3

KTT
1 mN·s2/rad3

M 8 Kg

P̄e 2000 W

Th 0.2 mN·m/rad2

ωe 16 rad/s

(37), (52), (68). Under Assumptions 2–4, the overall
closed-loop adaptive neural network control system is
SGUUB in the sense that all of the variables in the
system are bounded, the tracking errors and neural
weights converge to the following regions

|e1| ≤ |e1(0)| + 1

λ1

√
2η3
d11

|e2| ≤ |e2(0)| + 1

λ2

√
2η2
d21

|e3| ≤ |e3(0)| + 1

λ3

√
2η1
d31

‖Ŵ1‖ ≤
√

2η1

λmin(�
−1
1 )

+ ω1m

‖Ŵ2‖ ≤
√

2η2

λmin(�
−1
2 )

+ ω2m

‖Ŵ3‖ ≤
√

2η3

λmin(�
−1
3 )

+ ω3m

‖Ŵ4‖ ≤
√

2η4

λmin(�
−1
4 )

+ ω4m. (90)

where

ηi = ηi0

ρi0
+ Vi(0), ηi0 = δi + 1

2
ε̄2i + σi

2
ω2

im, i = 1, 2, 3, 4

ρ10 = min

{
2k1b31 − 1/c1

d31
,

σ1

λmax(�
−1
1 )

}

ρ20 = min

{
2k2b22 − 1/c2

d21
,

σ2

λmax(�
−1
2 )

}

ρ30 = min

{
2k3b13 − 1/c3

d11
,

σ3

λmax(�
−1
3 )

}

ρ40 = −min

{
2k3b13 − 1/c3

d11
,

σ3

λmax(�
−1
3 )

,
2k4b42 − 1/c4

d41
,

σ4

λmax(�
−1
4 )

}

ei(0)(i = 1, 2, 3) and Vi(0)(i = 1, 2, 3, 4) are
respectively the initial values of ei(t) and Vi(t).

Proof From previous analysis, the closed-loop stabil-
ity analysis of the 3rd subsystem (11) with the control
law u1 (20) and the adaptive law (21) is made by
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Fig. 2 Comparison
between the desired
trajectory and the simulated
trajectory (solid line-the
desired trajectory, dash
line-the simulated
trajectory) 0 5 10 15
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Lyapunov synthesis. Then, similar closed-loop stabil-
ity will be achieved on the subsystems (28), (43) and
(59) with the control laws (36), (51), (67) and the
adaptive laws (37), (52), (68). At last, the stability
analysis of internal dynamics of the 5th and 6th sub-
systems are made based on the stability of the previous
four subsystems.

The 3rd subsystem Solving the inequality (27), we
have 0 ≤ V1(t) ≤ η1 with η1 = (η10/ρ10) + V1(0).

Then, from the definition of V1(t) (18), we have

|r3| ≤
√
2η1
d31

, ‖W̃1‖ ≤
√

2η1

λmin(�
−1
1 )

(91)

From Eq. 13, we have ėnew = −λ3enew + rnew.
Thus, enew can be solved as the following:

enew = e−λ3t enew(0) +
∫ t

0
e−λ3(t−τ)rnewdτ (92)

Fig. 3 Absolute error
between the desired
trajectory and the simulated
trajectory
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Combining Eqs. 91 and 92, we obtain

|enew| ≤ |enew(0)| + 1

λ3

√
2η1
d31

(93)

Noting xnew = enew + xnewd , Ŵ1 = W̃1 + W ∗
1 ,‖W ∗

1 ‖ ≤ ω1m, and Assumption 2, we have

|xnew| ≤ |enew| + |xnewd | ≤ |enew(0)| + 1

λ3

√
2η1
d31

+ |x3d | ∈ L∞

‖Ŵ1‖ ≤ ‖W̃1‖ + ‖W ∗
1 ‖ ≤

√
2η1

λmin(�
−1
1 )

+ ω1m ∈ L∞.

Since the control law u1 is a function of r3 and Ŵ1,
its boundedness is also guaranteed.

The 2nd subsystem Similar to the stability analysis of
the 3rd subsystem, we have

|r2| ≤
√
2η2
d21

, ‖W̃2‖ ≤
√

2η2

λmin(�
−1
2 )

|e2| ≤ |e2(0)| + 1

λ2

√
2η2
d21

|x2| ≤ |e2| + |x2d | ≤ |e2(0)| + 1

λ2

√
2η2
d21

+ |x2d | ∈ L∞

‖Ŵ2‖ ≤ ‖W̃2‖ + ‖W ∗
2 ‖ ≤

√
2η2

λmin(�
−1
2 )

+ ω2m ∈ L∞

and thus the boundedness of the control law u2 is
guaranteed.

The 1st subsystem Similar to the stability analysis of
the 3rd and 2nd subsystems, we have

|r1| ≤
√
2η3
d11

, ‖W̃3‖ ≤
√

2η3

λmin(�
−1
3 )

|e1| ≤ |e1(0)| + 1

λ1

√
2η3
d11

|x1| ≤ |e1| + |x1d | ≤ |e1(0)| + 1

λ1

√
2η3
d11

+ |x1d | ∈ L∞

‖Ŵ3‖ ≤ ‖W̃3‖ + ‖W ∗
3 ‖ ≤

√
2η3

λmin(�
−1
3 )

+ ω3m ∈ L∞

and thus the boundedness of the control law u3 is
guaranteed.

The 4th subsystem Solve the inequality (74), we have
0 ≤ V4(t) ≤ η4 with η4 = (η40/ρ40) + V4(0).
According to the definition of V4 (65), the following
inequalities hold

|e4| ≤
√
2η4
d41

, ‖W̃4‖ ≤
√

2η4

λmin(�
−1
4 )

(94)

Fig. 4 Norm of neural
weights using
RBFNN-based control
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From Eq. 61, the virtual control law is bounded as
the following

|τ | ≤ |d41kτ ||e1| + |x1d |

≤ |d41kτ |
(

|e1(0)| + 1

λ1

√
2η3
d11

)
+ |x1d |. (95)

Noting that x4 = e4 + τ , Ŵ4 = W̃4 +W ∗
4 , ‖W ∗

4 ‖ ≤
ω4m, and Assumption 2, we obtain

|x4| ≤ |e4| + |τ | ≤
√
2η4
d41

+|d41kτ |
(

|e1(0)| + 1

λ1

√
2η3
d11

)

+|x1d | ∈ L∞
‖Ŵ4‖ ≤ ‖W̃4‖ + ‖W ∗

4 ‖

≤
√

2η4

λmin(�
−1
4 )

+ ω4m ∈ L∞

The 5th and 6th subsystems From the previous sta-
bility analysis about the 1st -4th subsystems, it can be
found that x1, x2, x3, x4, ẋ1, ẋ2, ẋ3, ẋ4 are all bounded.
According to Lemma 3, we know that the internal
dynamics is stable, i.e. x5, x6, ẋ5 and ẋ6 are also
bounded. All the variables in the closed-loop system
are bounded.

4 Numerical Simulation

In this section, numerical simulations are given to
demonstrate the feasibility and effectiveness of the
proposed 3D spatial trajectory tracking control tech-
niques. We choose the desired trajectories as follows:
yd(t) = [y1(t), y2(t), y3(t)], where

⎧⎨
⎩

y1(t) = 30 sin(πt/40) + 60 sin(πt/10);
y2(t) = 21 sin(πt/40) − 10 sin(πt/10);
y3(t) = 30 sin(πt/40) + 52 sin(πt/10);

(96)

Detailed parameters of the helicopter system [16]
are given in Table 1:

The control parameters for the RBFNN control
laws (20), (36), (53), (69) and adaptation laws (21),
(37), (52), (68) are chosen as follows: k1 = 2.925 ×
10−4, δ1 = 1 × 10−10, �1 = 3.165× 10−5, σ1 = 0.5,
λ1 = 2.5, k2 = 0.5 × 10−5, δ2 = 1 × 10−10,
�2 = 6 × 10−3, σ2 = 0.8, λ2 = 2, k3 = 1.2 × 10−6,
δ3 = 1 × 10−10, �3 = 1.5 × 10−2, σ3 = 1.4,
λ3 = 2.893, k4 = 1.01 × 10−4, δ4 = 1 × 10−10,
�4 = 3.4 × 10−1, σ4 = 1.8, and kτ = 1.05.

Figure 2 shows the comparison between the desired
trajectory and the actual trajectory, from which, it
can be seen that the actual trajectory can track the
desired trajectory successfully along the x and z

axes, the actual trajectory track the desired trajectory
with fairly great error at the beginning along the y

axis, but finally approaches to very small error. In

Fig. 5 Control inputs
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Fig. 6 Comparison
between the desired
trajectory and the simulated
trajectory with different
scenario (solid line-the
desired trajectory, dash
line-the simulated
trajectory)
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summary, the trajectory following ability in the 3D
space is acceptable.

Figure 3 shows the tracking errors along the x, y

and z axes. From Fig. 3, we can obtain the tracking
errors converge to a relative small neighborhood after
a short time about 12s using the RBFNN-based con-
trol method. The oscillations during the beginning 12s
may be induced by the uncertainty learning process
of RBFNN. After this oscillation period, the robust-
ness to uncertainties is improved and the good tracking
performance is achieved.

Figure 4 shows the corresponding norm of neu-
ral weights, and the control inputs are proposed by
Fig. 5. From these two figures, we can see that both
the norm of neural weights and the four control inputs
are all bounded. From this perspective, the proposed
RBFNN-based tracking control method for a fully
actuated helicopter in known static environment is
feasible.

To further verify the feasibility and effectiveness
of the designed controller, another desired trajectories
are used as follows:

⎧⎨
⎩

y1(t) = −50 sin(πt/150) + 50 sin(πt/10);
y2(t) = 21 sin(πt/20) − 10 sin(πt/10);
y3(t) = 30 cos(πt/40) + 52 cos(πt/10);

(97)

Then we obtain Fig. 6, from which, it can be seen
that the helicopter can successful track the desired
trajectory too.

According to the above simulation results, we can
conclude that the helicopter can tracking the prede-
fined trajectory within the acceptable range of error by
using our proposed control.

5 Conclusion

In this paper, a RBFNN-based control method has
been proposed to track arbitrary lateral, longitudi-
nal and vertical reference trajectory in the pres-
ence of model uncertainties. The reference trajec-
tory is planned for helicopter to avoid obstacles and
collisions in known environment. Considering the
unknown disturbances and uncertainties, the robust
RBFNN-based controller has been investigated for
the helicopter step by step. Finally, simulation results
demonstrated that the helicopter is able to track the
planned 3D spatial trajectory satisfactorily, with all
other closed-loop signals bounded.

The presented method can also be extended to fur-
ther trajectory tracking considering the posture of the
helicopter in known or unknown environment. Fur-
thermore, the proposed method can be extended by
considering state, control and output constraints.
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