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Abstract The task priority based control is a formal-
ism which allows to create complex control laws with
nice invariance properties, i.e. lower priority tasks
do not affect the execution of higher priority ones.
However, the classical task priority framework (Sicil-
iano and Slotine) lacked the ability of enabling and
disabling tasks without causing discontinuities. Fur-
thermore, tasks corresponding to inequality control
objectives could not be efficiently represented within
that framework. In this paper we present a novel tech-
nique to integrate both the activation and deactivation
of tasks and the inequality control objectives in the
priority based control. The technique, called iCAT
(inequality control objectives, activations and transi-
tions) task priority framework, exploits novel regular-
ization methods to activate and deactivate any row of
a given task in a prioritized hierarchy without incur-
ring in practical discontinuities, while maintaining as
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much as possible the invariance properties of the other
active tasks. Finally, as opposed to other techniques,
the proposed approach has a linear cost in the num-
ber of tasks. Simulations, experimental results and a
time analysis are presented to support the proposed
technique.

Keywords Task priority control · Redundant
robots · Kinematics · Hierarchical control

1 Introduction

Nowadays, redundant robotic systems are becom-
ing increasingly more common than a few decades
ago. As these systems increased with popularity, the
computational power available to control them has
scaled from the 40 MHz Motorola 68040 CPUs
that were used to control the 7 d.o.f. AMADEUS
arms [26], where a computation of a 6 × 7 pseudo-
inverse required around 150 ms, to dual or quad
core GHz systems where the same operation now
takes a few microseconds. The increased computa-
tional power has allowed to exploit the high versatility
offered by such systems, due to their high number
of degrees of freedom (d.o.f.), in order to perform
different, complex tasks. Examples of such systems
are humanoid robots [9, 14, 17], aerial vehicles with
manipulation capabilities [21], mobile manipulators
[47] and autonomous underwater vehicle manipulator
systems [33, 40].
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Given the high versatility and the fact that such
systems need to complete different goals, it became
important to have a simple and effective way to spec-
ify the control objectives. The task-based control [37],
also known as operational space control [25], allows
one to define the control objectives in a coordinate
system that is directly relevant to the task that needs
to be performed, rather than in the generalized coordi-
nates of the robotic system.

With the possibility of specifying the objectives
directly in the operational space, it became even more
important to efficiently exploit the redundancy of the
system. The first studies on this subject date back to
the seminal works [29, 50], where the residual d.o.f.,
after accomplishing the end-effector position control,
were used in order to tackle the problem of singularity
and obstacle avoidance for an industrial manipula-
tor. Another seminal work [24] introduced the use of
potential functions in order to efficiently implement
the obstacle avoidance for manipulators and mobile
robots.

Since the control objectives do not always have the
same importance, the task-based control was enhanced
by the introduction of the concept of task priority
[36]. A primary task was executed, and a secondary
task was accomplished (or attempted) only in the null
space of the primary one, in order to guarantee the
invariance of the main task w.r.t. (with respect to) the
secondary one. This concept was later generalized to
any number of task-priority levels in the seminal work
[42].

Differing from the above works, [15] proposed a
suboptimal approach, i.e. to compute the secondary
task as if it was alone, and projecting it in the null
space of the higher priority one, using a variable
damping factor as proposed in [37] to deal with sin-
gularities. This was later generalized in [2] and called
null-space-based behavioral control. The main advan-
tage of this approach is that it avoids the problem of
algorithmic singularities that can occur due to rank
loss caused by the projection matrix. Further works on
achieving a task priority control robust to singularities
are found in [22, 34, 35].

Since those times, the task-priority framework has
been applied to numerous robotic systems: redundant
manipulators, as was obvious in each of the works
mentioned until now; mobile manipulators such as
[3, 4, 13, 33, 51] and multiple coordinated mobile
manipulators [39, 47]; modular robots [11]; and also

humanoid robots [41, 48] just to cite a few examples.
Furthermore, a stability analysis for several prioritized
inverse kinematics algorithms can be found in [1].

An important limitation of the classical task pri-
ority framework, which is evident in all the previous
mentioned works, is that inequality control objec-
tives (e.g. avoiding the joint limits) were never treated
as such. Indeed, the corresponding task was always
active, even when the joints were sufficiently far away
from their limits. The reason for this is the fact that
activating (inserting) or deactivating (deleting) a task
implies a discontinuity in the null space projector,
which leads to a discontinuity in the control law [28].
As a consequence, such control objectives could be
only considered as secondary tasks, otherwise they
would have consumed many d.o.f. even when not nec-
essary (i.e. joints far away from their limit). This led to
an undesired situation where safety related tasks had
a lower priority w.r.t. mission-centric tasks such as the
end-effector position control.

Thus, in the last decade, major research efforts
have been spent in order to incorporate inequality con-
trol objectives in the task-based control paradigm in a
more efficient way. In [32] a new inversion operator
is introduced for the computation of a smooth inverse
with the ability of enabling and disabling tasks in the
context of visual servoing. That work only dealt with
the activation and deactivation of rows of a single mul-
tidimensional task (i.e. a single level of priority). The
extension of the operator to the case of a hierarchy of
tasks is provided in [31]. However, the major problem
within that work is that it requires the computation
of all the combinations of possible active and inac-
tive tasks, which grows exponentially as the number
of tasks increases.

Another interesting approach is given in [28]. The
idea is to modify the reference of each task that is
inserted or being removed, in order to comply with
the already present ones, in such a way to smooth out
any discontinuity. However, the algorithm requires m!
pseudo inverses with m number of tasks. The authors
provide also approximate solutions, which are subop-
timal whenever more than one task is being activated
or deactivated (in transition).

A further way to solve a hierarchy of tasks is pro-
posed in [23], which generalizes the earlier work [20]
to any number of priority levels. Differing from the
aforementioned works, [23] directly incorporates the
inequality control objectives as inequality constraints
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in a Quadratic Program (QP). At each priority level,
they solve a QP problem finding the optimal solu-
tion in a least-squares sense, using slack variables
to incorporate inequality constraints in the minimiza-
tion process. If the solution contains a slack variable
different from zero, it means that the corresponding
inequality constraint is not satisfied. Then they prop-
agate to the next level all the inequality constraints
that were satisfied, and transform each one that was
not into an equality one (to prevent lower priority
tasks from changing the best least-square trade-off
found). A similar process is done for the equality
constraints. The main drawbacks of this approach are
that the cascade of QP problems grows in dimen-
sion and that the work cannot handle the activation
or deactivation of tasks. Such a property is required
whenever temporal sequences of tasks are used, as it
happens whenever complex behaviour such as assem-
bling objects is required [7, 38]. A similar approach
is given in [16], where again the inequality constraints
are directly tackled within a constrained minimiza-
tion problem. However, no explicit way to activate and
deactivate an equality task is given.

Building on the results of [23], a hierarchical active
set search is proposed in [19]. The main difference
with [23] is that instead of a cascade of QP problems,
the authors solve a single problem finding the active
set of all the constraints at the same time. This allows
to speed up the process quite a bit w.r.t. [23]. Due
to its iterative nature, the authors propose to limit the
iterations number to achieve a boundary on the com-
putation times and be more suitable for a real-time
implementation, although the resulting solution is not
optimal. Similarly as [16, 23], the work does not have
an explicit way to activate and deactivate an equality
task.

An extension of the null space behavioural control
which includes set-based objectives has also been pro-
posed in [6]. The paper does not deal with activation
and deactivation of tasks, and further works are needed
to cope with its computational load.

Previous works of the authors dealt with the con-
trol of underwater free floating manipulators [12, 45,
46] in the context of the TRIDENT Framework Pro-
gramme 7 (FP7) project. In such works, all the tasks
except the end-effector position control were repre-
sented by scalar inequality objectives. The activation
and deactivation of scalar tasks was tackled in the
prioritized control. While proving sufficient and well

working for the problem at hand also during the field
trials, such works lacked the ability to deal with the
activation and deactivation of multidimensional tasks,
i.e. multiple scalar tasks at the same priority level.

In this work, we present a simple and generalized
framework that has the capability of activating and
deactivating tasks without incurring in practical dis-
continuities. It retains the simplicity of the original
task-priority framework [42] since it only uses pseudo
inverses. Tasks are activated and deactivated via the
use of an activation matrix. The possible discontinu-
ities that can arise with the use of an activation matrix
[31, 32] are eliminated with the use of a novel task-
oriented regularization and the singular value oriented
one.

With the possibility of activating and deactivating
tasks, it becomes possible to easily do the following:

– treat inequality control objectives efficiently: a
suitable reference rate driving the system toward
the region where the inequality objective is satis-
fied is generated, however the task (i.e. tracking
such a reference rate) is deactivated whenever
the system is inside the validity region, thus no
over-constraining of the system is done;

– manage task transitions in a simple way: when-
ever a temporal sequence of tasks must be per-
formed, it is possible to deactivate the tasks that
are not anymore necessary and activate the new
ones using the same activation function mecha-
nism, which can be applied to equality control
objectives as well as inequality ones in a uniform
manner.

The work is structured as follows. Section 2 intro-
duces some definitions and recalls some basic princi-
ples about the regularized pseudo inverses. Section 3
presents the basic idea to activate and deactivate rows
of a single multidimensional task without practical
discontinuities. Section 4 generalizes the approach to
any number of multidimensional tasks inserted in mul-
tiple priority levels. Section 5 presents the activation
functions and a deep discussion on task transitions.
Simulation and experimental results, together with a
computation time analysis, are presented in Section 6,
and some final conclusions are given in Section 7.
Finally, Appendix A gives further insights on how
to construct the activation functions to implement
inequality control objectives and task transitions.
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2 Definitions and Preliminaries

Before starting the discussion we first introduce some
notation in the next subsection. Then some definitions
are given in the successive subsection, while some pre-
liminaries on the regularized pseudo inverses are given
in the last one.

2.1 Notation

Vectors and matrices are expressed with a bold face
character, such as M , whereas scalar values are repre-
sented with a normal font such as γ . Given a matrix
M:

– M(i,j) indicates the element of M at the i-th row
and j -th column;

– M{k} refers to the k-th row of M;
– M# is the exact generalized pseudo-inverse (see

[8] for a review on pseudo-inverses and their prop-
erties), i.e. the pseudo inverse of M performed
without any regularizations.

Further, less used, notation is introduced as needed.

2.2 Definitions

We report hereafter some definitions often used in this
paper:

– the system configuration vector c ∈ R
n of a

robotic system. For example, this vector is formed
by the collection of all the joint positions if we
consider just a robotic arm, the position and three
orientation parameters if we consider an underwa-
ter vehicle, or both if we consider an underwater
vehicle manipulator system;

– the system velocity vector q̇ ∈ R
n. Note that

the system velocity vector may be different from
the derivative of the system configuration vec-
tor. An example of such a case is an underwater
vehicle, where the system velocity vector is the
collection of the three linear and three angular
velocities, where the latter are not the derivatives
of the orientation parameters;

– a configuration dependant scalar variable x(c)

is said associated to an equality control objec-
tive when it is required to eventually satisfy, if
possible,

x(c) = x0, (1)

or to an inequality control objective when it is
required to eventually satisfy, if possible,

x(c) ≥ xm (2)

or

x(c) ≤ xM. (3)

The case where a variable needs to stay within
an interval can be represented by two separate
objectives. Examples of such variables are the arm
joints qi , which are required to be within the joint
limits, or the manipulability measure μ, which is
required to be above a certain minimum threshold.

However, we can also consider as x(c) the
modulus of a certain vector p. This allows to con-
trol its norm to a particular value (for instance if
we want to nullify some error vector or having a
vector p lying on a sphere surface), to be below a
given threshold (if we just need to keep a reason-
able error bound), or to be above a threshold (for
instance if such a vector is a distance between two
objects to avoid collisions).

In addition, we can also consider x(c) to be
the i−th component of a vector p ∈ R

m. Then
if we consider its m different variables xi(c), it
is possible to ask vector p to be inside/outside a
polyhedral surface, or just achieving any desired
value.

For the remainder of the paper, we will drop the
dependency of x from c to ease the notation;

– for such variables, we also consider the existing
Jacobian relationship between x and the system
velocity vector q̇ as

ẋ = gT (c)q̇, (4)

where g ∈ R
n is a vector. Again, in the rest of the

paper we will drop the dependency of g from c;
– we define as a reference rate ˙̄x associated to a

control objective any rate capable of driving the
associated variable x toward the corresponding
control objective.

For equality control objectives, a suitable ref-
erence rate ˙̄x that drives x toward x0 is

˙̄x � κ(x0 − x), κ > 0, (5)

where κ is a positive gain to control the conver-
gence speed. For inequality control objectives, a
suitable reference rate ˙̄x is any rate that drives x

toward any arbitrary point inside the region where
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the inequality is satisfied. For instance, consider
an inequality objective of the type x ≤ xM and
consider a point x∗ such that x∗ ≤ xM , then
a suitable reference rate that drives x toward its
corresponding objectives is

˙̄x � κ(x∗ − x), κ > 0. (6)

As it is clear from the above equations, the
main difference between the two kind of objec-
tives lies in the arbitrariness of the choice of x∗
compared to x0;

– an active task is defined as the requirement of
tracking at best a reference rate ˙̄x in the current
operational conditions, while an inactive task is
trivially defined as the the absence of any tracking
requirement of a reference rate ˙̄x. Independently
from the active or inactive state, the two categories
will however be indicated via the common term
task.

To clarify the above definitions, we can
observe how when an inequality objective is not
satisfied, then the associated task must be active
to drive the variable toward the region where the
inequality is satisfied, while when it is satisfied
it can also be inactive. For equality objectives the
corresponding task is always active, unless exter-
nal conditions (i.e independent from the achieve-
ment or not of the equality, for example related to
a change of mission phase) are allowed to inter-
vene to activate or deactivate the corresponding
task. Such a situation can of course be also applied
to tasks associated to inequality objectives.

In the following we shall see how suitable com-
binations of continuous activation functions will
reveal as the necessary tool for guaranteeing con-
tinuous transitions of tasks from active to inactive
states and vice versa. During a transition the cor-
responding task will be therefore denoted as being
in transition;

– the control objectives may have different priori-
ties and the same holds for their associated tasks.
Whenever multiple scalar tasks are considered
with the same priority they form a so called mul-
tidimensional task, where its related variable x

results as the stacking of all the scalar variables
x, and the same goes for its reference rate ˙̄x. We
will term the associated Jacobian as J , which is
the stacking of all the vector Jacobians gT . Note
that a multidimensional task may be formed, at a

given time, by any combination of active, inactive
and in transition scalar tasks;

– all the active scalar tasks within a multidimen-
sional task should be achieved simultaneously,
if possible. Scalar or multidimensional tasks
with lower priority should not interfere with the
achievement of any active tasks with higher prior-
ity. A set of tasks with different priorities is also
called a hierarchy of tasks.

– a practical discontinuity is a mathematically con-
tinuous rapidly varying behaviour that becomes
a discontinuity or chattering phenomena once
implemented in a discretized control system for
practical values of the control gains. As it will be
clear in the rest of the paper, most of the present
work is aimed at mitigating the possible effects
of practical discontinuities in order to implement
task transitions without strong impacts on the
control performances.

2.3 Regularized Pseudo Inverse

Before introducing the core of this work, it is use-
ful to recall the fundamentals of pseudo inverses and
the regularization mechanism. Toward that end, let us
consider the following Jacobian relationship

ẋ = J q̇, (7)

with J ∈ R
m×n, q̇ ∈ R

n and ẋ ∈ R
m.

Given a reference velocity vector ˙̄x, it is well
known that the minimum norm velocity vector q̇ that
realizes ˙̄x at best, in a least-squares sense, can be
found as the minimum norm solution of the following
minimization problem

min
q̇

∥
∥ ˙̄x − J q̇

∥
∥
2
. (8)

Such a solution can be found computing the square
and taking the derivative equal to zero, which leads to
the condition

(J T J )q̇ = J T ˙̄x, (9)

which can be solved using the pseudo inverse as

q̇ = (J T J )#J T ˙̄x. (10)

Since for the rest of the work we will focus on exploit-
ing the residual arbitrariness in the solution, it is worth
to consider the actual manifold of all solutions, by also
including the null space, that is the manifold:

q̇ = (J T J )#J T ˙̄x + (I − (J T J )#J T J )ż, ∀ż. (11)
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Then, by exploiting the following identities involving
pseudo inverses

G# = (GT G)#GT , (12)

G# = GT (GGT )#, (13)

we note that Eq. 11 can be equivalently rewritten in
the following, more usual form

q̇ = J # ˙̄x + (I − J #J )ż, ∀ż. (14)

Performing a regularization means changing the
original minimization problem -(8) by adding an addi-
tional regularization cost, as in the following

min
q̇

∥
∥ ˙̄x − J q̇

∥
∥
2 + ‖q̇‖2R ; R ≥ 0, (15)

where the notation ‖q̇‖2R indicates the weighted norm,
i.e. q̇T Rq̇.

This is usually done to deal with the ill-definition
of the solution near a singularity of the matrix J . The
solution of the regularized problem is found along
the same steps performed for the original one, as the
minimum norm solution of the following equation

(J T J + R)q̇ = J T ˙̄x (16)

that is

q̇ = (J T J + R)#J T ˙̄x, (17)

while the manifold of all solutions is

q̇ = (J T J +R)#J T ˙̄x+(I−(J T J +R)#(J T J +R))ż, ∀ż.

(18)

However it is important to note that the above projec-
tion matrix (I − (J T J + R)#(J T J + R)) preserves
the overall minimum of problem (15), including that
of the regularization cost ‖q̇‖2R . This means that if
R > 0 then the projection matrix becomes equal to 0
(e.g. in the case of damped least squares, see the next
subsection) and no arbitrariness is available.

For the above reason, the following substitution is
instead typically performed

J # → (J T J + R)#J T (19)

and a manifold of solutions with J regularized by R

is consequently constructed by analogy with Eq. 14 as

q̇ = (J T J +R)#J T ˙̄x+(I −(J T J +R)#J T J )ż, ∀ż.

(20)

It is noteworthy to see that the projection matrix
(I − (J T J + R)#J T J ) is not anymore an orthogonal
projector on the null space of J whenever R 	= 0.

Important remark In some works, notwithstanding
the introduction of a regularization of J with R in
the minimum norm solution, the null space projection
matrix is calculated without the regularization matrix
R, and thus is still an orthogonal projection. However,
since exploiting the non-orthogonality of the projec-
tion matrix is actually one of the key ideas of this
work, we will always consider it computed with J

regularized by R as in Eq. 20. Furthermore, if the pro-
jection matrix is calculated without any regularization,
a discontinuity occurs whenever an exact singularity
of the matrix J is encountered.

2.3.1 Damped Least Squares

Among the different regularization we can cite the
damped least squares (DLS)

min
q̇

∥
∥ ˙̄x − J q̇

∥
∥
2 + γ 2 ‖q̇‖2 , (21)

where thus R = γ 2I . In this case, finding the solu-
tion to the original problem (8) is balanced with the
requirement of also maintaining all the components
of the velocity vector q̇ limited. The scalar value
γ balances this trade-off: smaller values of γ will
favor accomplishing the original minimization, while
greater values will maintain q̇ much more limited. A
more detailed discussion on DLS can be found in the
book [27] and in [49].

2.3.2 Singular Value Oriented Regularization

Another popular regularization is the SVD-based one
(see the book [36] for a deeper investigation). In this
case, the Jacobian matrix is first decomposed along its
singular values:

J = U�V T , (22)

with U ∈ R
m×m, � ∈ R

m×n and V ∈ R
n×n.

� is a rectangular diagonal matrix, whose diagonal
elements are the singular values. U and V are orthog-
onal matrices, where the m columns of U and the n

columns of V are called the left-singular vectors and
right-singular vectors of J and are respectively the
eigenvectors of JJ T and J T J .
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It is easy to see that, if a singular value is small,
there is a need for a big effort along corresponding
control direction in V to accomplish a given task along
the corresponding task direction of U . To prevent the
control from growing unbounded as the singular value
approaches zero, a diagonal singular value oriented
regularization matrix P ∈ R

n×n can be computed
as follows: each diagonal elements p(i,i) of P is a
bell-shaped, finite support function of the correspond-
ing singular value, or it is zero if i > m (i.e. the
corresponding singular value does not exist).

With this definition, the singular value oriented
(SVO) regularization problem becomes that of mini-
mizing

min
q̇

∥
∥ ˙̄x − J q̇

∥
∥
2 +

∥
∥
∥V T q̇

∥
∥
∥

2

P
, (23)

where thus R = V PV T . In this case it is possible to
see that the regularized solution is

q̇ = V (�T � + P )#�T UT ˙̄x, (24)

and that the projection matrix becomes

V (I − (�T � + P )#�T �)V T . (25)

Given the definition of P it is simple to see that only
the directions with a small singular values, such that
p(i,i) 	= 0, are affected by the regularization. Finally, it
is evident how with the use of the SVO regularization
the matrix (�T � + P ) is always of constant rank m.
An application of such a regularization method can be
found in [37].

3 Activation and Deactivation of Tasks

In this section, we present the methodology for acti-
vating and deactivating any of the scalar tasks com-
posing a single multidimensional task. We first show
how classical regularization methods are not sufficient
to eliminate practical discontinuities, without greatly
impacting on control performances. Instead, the intro-
duction of a novel regularization, called task oriented,
coupled with the SVO one and a final minimization on
the control vector allows to eliminate any practical dis-
continuity. The extension to the hierarchy of priority
levels is given in a later section.

3.1 Classical Regularization Methods

Let us now consider a scenario where, for some rea-
son, one or more of the scalar tasks composing a
multidimensional task start losing importance, even to
the point where they should not be anymore consid-
ered. To represent this fact, we consider a scalar value
0 ≤ a(i) ≤ 1, associated to i-th scalar task, whose
meaning is the following:

– a(i) = 1 implies that the corresponding scalar task
must be exactly assigned if possible, i.e. the goal
is to have ẋ(i) = ˙̄x(i) (active task);

– a(i) = 0 implies that the corresponding scalar
task should not be considered, i.e. ẋ(i) should be
unconstrained (inactive task);

– 0 < a(i) < 1 implies that ẋ(i) should smoothly
evolve between the two previous cases (task in
transition).

Then, the straightforward initial idea is to modify
the problem (8) by inserting a weight diagonal matrix
A, whose diagonal elements are defined as above, as
hereafter indicated

min
q̇

∥
∥A( ˙̄x − J q̇)

∥
∥
2
, (26)

whose corresponding manifold of non-regularized
solutions is

q̇ = (AJ )#A ˙̄x + (I − (AJ )#AJ )ż, ∀ż. (27)

Equation 27 unfortunately exhibits discontinuities in
the q̇ when A is varied, since the resulting weighted
pseudo-inverse (AJ )#A is invariant to the weights on
the rows of J that are linearly independent [18]. More
specifically, the discontinuity occurs whenever a value
of A(i,i) changes from 0 to ε > 0 and vice versa.

To deal with this discontinuity problem, the use
of the DLS and SVO regularizations can be therefore
proposed, where the latter is certainly better, since
it specifically acts only along the singular directions.
However, in both cases, since there is not a straightfor-
ward relationship between the activation and the reg-
ularization damping values, this in turn requires either
to have high damping values, which have a detrimental
impact on the performances, or small ones, which do
not prevent the issues with “practical” discontinuities,
as highlighted in [32].
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An example is reported in Fig. 1 for the case of

J =
[ −1 −0.5
1 1

]

, (28)

with a velocity reference ˙̄x = [

0.1 0.1
]T

and by
varying the value of A(2,2), i.e. activating/deactivating
the second task, represented by the second row of J .

Remark 1 Despite being continuous, the use of such
rapidly varying control vectors and task velocities can
easily create chattering phenomena in discrete control.
See Fig. 8 and its related simulation in Section 6 or see
the details in [32].

Remark 2 It is important to note how for a large part
of the variation of A(2,2) the value of the control vec-
tors are constant, due to the aforementioned reasons.
This exemplifies the fact that a straightforward rela-
tionship between the activation and the regularization
damping values does not actually exist. This in turn
makes the transition between the solution where the
second task is inactive (q̇ = [ −0.08 −0.04

]T
) and

where it is active (q̇ = [ −0.3 0.4
]T
) compressed in

the small interval of variation between A(2,2) = 0.03
and A(2,2) = 0.2.

3.2 Task Oriented Regularization

Since solely imposing a weight A is insufficient to
obtain the desired continuous behavior of activating
and deactivating some rows of J without discontinu-
ity, and that both the DLS and SVO regularizations,
even if assuring a theoretical continuity, are however
affected by practical discontinuities, the additional

idea is therefore to modify the original minimization
problem (26) by introducing a novel regularization,
the here called task oriented regularization:

min
q̇

[∥
∥A( ˙̄x − J q̇)

∥
∥
2 + ‖J q̇‖2A(I−A)

]

. (29)

The above problem is a special instance of the general
regularized problem (15), where the regularization
matrix R results to be

R = J T A(I − A)J . (30)

The rationale of this choice is that we want to preserve
the rows that have their corresponding A(i,i) = 1,
while at the same time we want to introduce a regular-
ization on those with A(i,i) < 1. The choice of using
A(I − A) guarantees that a regularization is added
only to the rows in transition. Indeed, it is easy to see
that the cost vanishes for all the rows with A(i,i) = 0
or A(i,i) = 1. Thus, if A is made of only such values,
the regularization cost vanishes and the solution just
corresponds to the pseudo inverse of the active rows,
as it will be evident in the following discussion.

The definition (30), substituted into Eq. 20, gives
the following form for the manifold of regularized
solutions

q̇ = (J T AJ )#J T AA ˙̄x + (I − (J T AJ )#J T AAJ )ż

� ρ + Qż, ∀ż.

(31)

In order to analyze the properties of Eq. 31 we now
need to to analyze the so called residual orthogonal-
ity properties of the projection matrix Q, as hereafter
reported in the next subsection.
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Fig. 1 Example of task activation using only the SVO regularization as the second row of the task (28) is deactivated: a practical
discontinuity can be seen in both a control vector q̇ and b task velocities ẋ
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3.2.1 Residual Orthogonality Properties
of the Projector

In the classical task priority framework the projec-
tion operator is orthogonal, and guarantees that lower
priority task can only act inside the null space of
the higher priority ones. This ensures the invariance
of the main task w.r.t. lower priority ones. However,
in the here proposed case, the projection matrix is
not orthogonal whenever any of the activation val-
ues are different from 0 and 1, i.e. whenever some
task is in the transition zone. As we shall see, this
is actually a positive fact, since the d.o.f. that are
being released from the higher priority tasks can be
exploited, at least partially, by the lower priority ones.
For the time being, let us prove the fact that, under
some assumptions, the projection matrix admits some
residual orthogonality property: it is orthogonal with
respect to the active rows of J , i.e. (JQ){i} = 0 for
every i-th row for which A(i,i) = 1.

To simplify the subsequent analysis, it is convenient
to note that

(J T AJ )#J T A

=(J T
√

A
√

AJ )#J T
√

A
√

A

=(
√

AJ )#
√

A,

(32)

where the identity (12) has been used. Substituting this
relationship in the manifold (31) yields

q̇ = (
√

AJ )#
√

AA ˙̄x + (I − (
√

AJ )#
√

AAJ )ż

� ρ + Qż, ∀ż.

(33)

Let us start the discussion by considering A(i,i) >

0, ∀i and J full rank, which implies that
√

AJ is full
row rank. Let us compute (

√
AJ )#:

(
√

AJ )# = J T
√

A(
√

AJJ T
√

A)−1

= J T
√

A
√

A
−1

(JJ T )−1
√

A
−1

= J T (JJ T )−1
√

A
−1

= J #
√

A
−1

(34)

which substituted into (33) gives

q̇ = J #A ˙̄x + (I − J #AJ )ż

� ρ + Qż, ∀ż.
(35)

It is easy to see that the projection matrix (I − J #AJ )

is actually orthogonal to the active rows. Indeed,
multiplying the projector by J yields

J (I − J #AJ ) = (J − JJ #AJ ) = (I − A)J (36)

since JJ # = I under the above assumptions. The
above result implies that, for every row where A(i,i) =
1, then (JQ){i} = 0 as it was claimed. However, the
projection matrix Q does not prevent ż from influenc-
ing the other rows. As said before, this is a positive
fact, as those rows are being deactivated and thus there
is not anymore any need to guarantee the fulfillment of
their corresponding velocity reference. Indeed, when
A(i,i) reaches zero, the corresponding velocity should
be unconstrained.

Let us now drop the two assumptions of full rank-
ness of A and J . If A contains any value equal to zero
in its diagonal, then the above formula cannot be used,
since it contains (

√
A)−1 which cannot be computed.

Instead, without losing generality, let us suppose that
the rows with A(i,i) = 0 are at the bottom, and let us
partition A and J in the following way

A =
[

Ā 0
0 0

]

; J =
[

J̄

Ĵ

]

, (37)

where J̄ only contains the i-th rows for whichA(i,i) 	=
0.

Let us still compute the value of (
√

AJ )#. Using
(13) let us write it as

(
√

AJ )# = J T
√

A(
√

AJJ T
√

A)#. (38)

Then using the definition (37) it is simple to compute

√
AJ =

[ √
ĀJ̄

0

]

(39)

and

√
AJJ T

√
A =

[ √
ĀJ̄ J̄

T
√

Ā 0
0 0

]

(40)

After some simple algebra, the formula for the
pseudo-inverse (

√
AJ )# becomes:

(
√

AJ )# = J T
√

A(
√

AJJ T
√

A)#

=
[

J̄
#
0

]√
A

# (41)

which substituted into the control law (33) yields

q̇ =
[

J̄
#
0

]

A ˙̄x + (I −
[

J̄
#
0

]

AJ )ż

� ρ + Qż, ∀ż.
(42)
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This could not be otherwise, as the added cost in
Eq. 29 vanishes wheneverA is composed only by ones
and zeros, and thus the obtained solution is just the
pseudo inverse of J with only the relevant rows.

The projection matrix (I −
[

J̄
#
0

]

AJ ) is still

orthogonal to the active rows. Indeed,

JQ = (I −
[

J̄

Ĵ

] [

J̄
#
0

]

A)J

= (I −
[

J̄ J̄
#
0

Ĵ J̄
#
0

]

A)J

=
[

(I − J̄ J̄
#
Ā)J̄

(I − Ĵ J̄
#
Ā)J̄

]

.

(43)

We have the following results:

– if a row i is linearly independent from all the oth-
ers, and its A(i,i) = 1, then (JQ){i} = 0 as it was
claimed;

– for a set of rows of J that are linearly dependent
between each other, but linearly independent from
the others, the orthogonality property holds if and
only if all the corresponding A(i,i) are equal to
one.

The clear advantage of the proposed regulariza-
tion method is that the activation value is directly
linked with the regularization itself, unlike in the SVO
case. This allows to exploit the full range of varia-
tion of the activation value to perform the transition,
clearly mitigating the possible practical discontinu-
ities. Furthermore, the above analysis shows that the
regularization is oriented along the task in transitions,

preserving those that are active (whenever they are
linearly independent from those in transition).

Before moving to the next section, we immedi-
ately note that using Eq. 31 an inevitable discontinuity
occurs both in the minimum norm solution ρ and in
the projection matrix Q whenever one of the A(i,i)

becomes zero. This is clear when comparing its spe-
cialization (35) (all rows are active) and (42) (some
rows are now deactivated). This is depicted in Fig. 2
where the same example (28) of Fig. 1 has been used.

3.3 Combining the Task Oriented and the SVO
Regularizations

In this section we will show how to solve the problem
of the residual discontinuity of the control law (31).
The idea is simply that of combining the previously
introduced task oriented regularization with the SVO
one. As highlighted in Section 2.3.2, the SVO regular-
ization ensures the theoretical continuity of the pseudo
inverse, making the matrix to be inverted always of
constant rank m. However, as stated in Section 3.2,
the problem of using only the SVO regularization is
that, in order to obtain a practical continuous transi-
tion, high values of the regularization parameters are
actually necessary, with a clear impact on the perfor-
mances of the control. Instead, in the previous sections
we have shown how the task oriented regularization
acts as soon as the activation is lower than one, thus
smoothing the transition within the whole interval 0 ≤
a(i) ≤ 1, without impacting on the other rows, but
without preventing the change of rank of the matrix to
be inverted, which always occurs in the close vicini-
ties of a(i) = 0. The idea is thus to combine the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

0

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(a) (b)

Fig. 2 Example of task activation using only the task oriented regularization as the second row of the task (28) is deactivated: a
discontinuity occurs near A(2,2) = 0. History of a q̇ and b history of ẋ as A(2,2) is varied
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task oriented regularization with the SVO one, thus
combining the best of both regularizations:

– the task oriented regularization acts as soon as the
task is being deactivated, thus immediately releas-
ing its corresponding control directions, with a
consequent immediate increase in the arbitrari-
ness space of the solution in the whole interval
0 ≤ a(i) < 1;

– the singular value oriented regularization instead
ensures the continuity in the close vicinities of
a(i) = 0, even with small regularization parameter
values, because of the contemporaneous presence
of the task oriented one.

The minimization problem (29) thus is modified as
follows

min
q̇

[
∥
∥A( ˙̄x − J q̇)

∥
∥
2 + ‖J q̇‖2A(I−A) +

∥
∥
∥V T q̇

∥
∥
∥

2

P

]

,

(44)

where V T is the right orthonormal matrix of the SVD
decomposition of J T AJ = U�V T , and P is the
SVO regularization matrix described in Section 2.3.2.
The manifold of solutions of the above problem can
be thus written as

q̇ = (J T AJ + V T PV )#J T AA ˙̄x
+ (I − (J T AJ + V T PV )#J T AAJ )ż

� ρ + Qż, ∀ż,

(45)

and coincides with Eq. 31 whenever P = 0.

From the above formula it is clear that the matrix
Q evolves smoothly with A, since the V T PV regu-
larization maintains the matrix to be inverted always
of the same rank.

The addition of the SVO regularization to the task
oriented one therefore allows to eliminate the residual
discontinuity of Fig. 2 by transforming it into the prac-
tical one of Fig. 3, just emerging in the proximity of
a(i) = 0, due to the use of small SVO regularization
parameters. In the following section we shall show
how we can finally eliminate also such a practical
discontinuity.

3.4 Minimization of the Control Vector

The main idea to eliminate any practical discontinu-
ities is to exploit the arbitrariness of the solution ż in
order to minimize the resulting control vector q̇. The
rationale is simple. At the extreme values of A (i.e. its
diagonal elements are either one or zero) the solution
corresponds to the pseudo inverse of only the active
rows, which is the minimum norm solution obtainable
while fulfilling the given active tasks. Thus, the idea
is to minimize the control vector as much as possible
also during a task activation/deactivation transition,
in order to smoothly join these two minimum-norm
extrema. The above idea can be represented by the
following minimization problem

min
ż

‖ρ + Qż‖2 (46)

The solution of the above problem is simply

ż = −Q#ρ, (47)
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Fig. 3 Example of task activation using the task oriented regu-
larization combined with the SVO one as the second row of the
task (28) is deactivated: the discontinuity of Fig. 2 is removed

however a practical one still persist in both a control vector q̇

and b task velocities ẋ
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which substituted in Eq. 45 gives

q̇ = ρ − QQ#ρ. (48)

It is clear that the above formulation cannot be applied.
Indeed, as soon as one eigenvalue of Q changes
from zero to a value ε > 0, the above solution
would instantly cancel out any part of q̇ along the
corresponding eigenvector direction.

To solve the aforementioned discontinuity, let us
consider the following minimization problem in lieu
of Eq. 46:

min
ż

[

‖ρ + Qż‖2 + η ‖(I − Q)ż‖2
]

. (49)

The introduction of the second cost allows to penal-
ize the use of the control directions characterized by
an eigenvalue strictly less than one, due to the comple-
mentary nature of the eigenvalues ofQ and I−Q. The
scalar value η > 0 allows to balance the two needs.
The solution of Eq. 49 is

ż = −(QT Q + η(I − Q)T (I − Q))#QT ρ, (50)

which substituted into the manifold ρ + Qż yields

q̇ = ρ − Q(QT Q + η(I − Q)T (I − Q))#QT ρ

=
(

I −Q
(

QT Q + η(I − Q)T (I − Q)
)#

QT

)

ρ

� Mρ.

(51)

Figure 4 shows the resulting final behaviour of the
proposed algorithm as the same example (28) of the

previous figures has been used. Summing up, for the
example (28), we have:

– classical regularization methods such as SVO or
DLS suffer of practical discontinuities, as high-
lighted in Fig. 1;

– the novel task oriented regularization has nice
properties, as reported in Section 3.2.1, but has a
discontinuity near zero as seen in Fig. 2;

– combining the task oriented and the SVO reg-
ularization allows to have a continuous, non-
orthogonal projection matrix Q and to remove the
discontinuity near A1(2,2) = 0, although issues of
practical discontinuities arise and can be seen in
Fig. 3;

– finally, the continuous, non-orthogonal projection
matrix Q is exploited with a final minimization
on the control vector q̇, and allows to join the
two minimum norm extrema without practical
discontinuities issues, as shown in Fig. 4.

Finally, let us remark how the properties that have
been highlighted in the Section 3.2.1 hold only when
P = 0, i.e. when the corresponding SVO regulariza-
tion is not active. The only drawback due to the intro-
duction of the SVO regularization is that whenever it
is active, it is not possible to ensure the invariance of
the active tasks. However, since the required values
for the SVO regularization can be chosen small, this
drawback is almost negligible, as can be appreciated
in Fig. 4. This indeed allows to reach a good compro-
mise between simplicity of the algorithm, continuity
of the obtained control and performances.
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Fig. 4 Example of task activation using the proposed algorithm
as the second row of the task (28) is deactivated: the result-
ing control vector and task velocity are now free of practical

discontinuities (using η = 10). History of a control vector q̇ and
b task velocities ẋ
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4 Extension to Task Priority Framework

In the previous section, the methodology for activat-
ing and deactivating rows of a single task has been
presented, with the introduction of the so called task
oriented regularization, the use of the SVO one and
a final minimization on the control vector to ensure
the continuity of the solution. In this section, we shall
first tackle the possible discontinuity that can arise
when a second level of priority is introduced, and then
generalize the proposed framework to any number of
priority levels.

4.1 Removing the Discontinuities in the Prioritized
Control

Let us now consider another task that has to be exe-
cuted with lower priority, represented by the following
Jacobian relationship

ẋ2 = J 2q̇, (52)

with J 2 ∈ R
m2×n, q̇ ∈ R

n and ẋ2 ∈ R
m2 . The

minimization for this second task must be performed
taking into account that q̇ has been partially fixed by
the higher priority task. The manifold of solutions of
the first task is given by Eq. 45 and is q̇ = ρ1 +Q1ż1.
Let us remark how, for the time being, we are not
considering the minimization on the control vector,
because that completely consumes any residual arbi-
trariness. We shall later see in Section 4.2 how that
minimization is used in a hierarchy of tasks.

With that in mind, the second minimization prob-
lem can only exploit the arbitrariness of ż1, leading to

min
ż1

[∥
∥
∥A2( ˙̃x2 − J 2Q1ż1)

∥
∥
∥

2 + ∥
∥J 2Q1ż1

∥
∥2

A2(I−A2)

+
∥
∥
∥V T

2 ż1

∥
∥
∥

2

P 2

]

,

(53)

with the definition ˙̃x2 � ˙̄x2 − J 2ρ1, and where the
same task oriented and SVO regularizations have been
employed to deal with the activation matrix A2.

Whenever a second level of priority is considered,
a new source of possible discontinuities is represented
by the non-orthogonal projection matrix Q1. To focus
only on the discontinuities created by the projection
matrix and to simplify the notation, let us suppose,
without loss of generality, A2 = I and for the moment

let us neglect the presence of the SVO regularization.
Then, the solution of the previous minimization is

ż1 = (J 2Q1)
# ˙̃x2 (54)

which substituted into the first control law leads to

ρ2 = ρ1 + Q1(J 2Q1)
# ˙̃x2. (55)

Note that Q1(J 2Q1)
# is in actuality the weighted

pseudo-inverse, with weights Q−1
1 on the control vec-

tor q̇ [36]. However, the above solution, while weight-
ing the control directions, thus preferring to use those
that have an eigenvalue of λi = 1 (i.e. unconstrained),
fails under certain conditions. Indeed, there are cases
where control directions with an eigenvalue 0 < λi <

1 are treated as if λi = 1, because of possible invari-
ance of the minimization with respect to the weights
[18]. A very simple example can be constructed by
considering Q1 = αI . It is easy to see that α cancels
out in Q1(J 2Q1)

# unless it is zero. This means that,
even if the corresponding control direction only begins
to be released by the higher priority tasks, the current
priority level would consider it as totally free, with an
inevitable discontinuity when it becomes zero.

To solve this problem, the idea is to compute a new
task reference in lieu of ˙̃x2. In particular, we want to
find which is the best velocity obtainable minimizing
the use of control directions in transition. Toward that
end, we exploit the following auxiliary problem

min
u̇1

[∥
∥
∥A2( ˙̃x2 − J 2Q1u̇1)

∥
∥
∥

2 + ∥
∥J 2Q1u̇1

∥
∥2

A2(I−A2)

+ η
∥
∥(I − Q1)u̇1

∥
∥2 +

∥
∥
∥V̂

T

2 u̇1

∥
∥
∥

2

P̂ 2

]

,

(56)

where this time V̂
T

2 is the right orthonormal matrix of
the SVD decomposition of

QT
1 J T

2 A2J2Q1 + η(I − Q1)
T (I − Q1).

The corresponding task velocity is

ẋ∗
2 = J 2Q1u̇1 � W 2 ˙̃x2, (57)

which is then used as a reference velocity in Eq. 53.
We then have the following results:

– if u̇1 is such that ẋ∗
2 = ˙̃x2, then ż1 will be the

minimum norm solution that gives ˙̃x2, just as in
Eq. 54. Furthermore, in this case W 2 = I ;

– conversely, ż1 = u̇1 and the obtained ẋ2 will
necessarily differ from ˙̃x2 because not enough
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unconstrained control directions are available to
obtain the desired velocity.

In practice, Q1(J 2Q1)
#W 2 ˙̃x2 operates in this way:

first it finds the best ẋ∗
2 = W 2 ˙̃x2 that can be

obtained minimizing the use of control directions in
transition, and then it exploits the standard weighted
pseudo-inverse to obtain the corresponding weighted
minimum norm solution (i.e. Q1(J 2Q1)

#ẋ∗
2 ).

4.2 Minimization of the Control Vector as the Final
Task

In the previous section we have seen how to deal with
a secondary task, exploiting (56) to cope with fact that
the standard weighted pseudo inverse Q1(J 2Q1)

# is
insufficient.

Let us now go back to the minimization of the con-
trol vector presented in Section 3.3. It is clear that such
a minimization can actually be seen as another task
to be executed. This can be simply done considering
J 2 = I , A2 = I and ˙̄x2 = 0. Then, we can see how
Eq. 49 is just a special instance of Eq. 56.

Then, this task should be placed as the very last task
of the hierarchy, consuming all the residual arbitrari-
ness for minimizing the control vector, eliminating
any practical discontinuities during task activations.

4.3 Unifying Formula for the Pseudo Inverse

Before proceeding to the extension to any number of
priority levels, let us first introduce a more compact
notation by introducing the operator (X)#,A,Q as in
the following:

X#,A,Q �
(

XT AX + η(I − Q)T (I − Q) + V T PV
)#

XT AA

(58)

where V is the right orthonormal matrix of the SVD
decomposition of XT AX + η(I − Q)T (I − Q).

The task oriented regularization (44) can be simply
obtained by writing J #,A,I and the auxiliary problem
(56) can be obtained by writing (JQ)#,A,Q.

4.4 Extension to Any Number of Priority Levels

Putting all the pieces together, and with the defi-
nition of the pseudo inverse given in the previous

section, the extension to any number of priority levels
is straightforward. With the initializations

ρ0 = 0, Q0 = I , (59)

then for k = 1, . . . , p, where p is the total number of
priority levels:

W k = J kQk−1(J kQk−1)
#,Ak,Qk−1

Qk = Qk−1(I − (J kQk−1)
#,Ak,IJ kQk−1)

T k � (I − Qk−1(J kQk−1)
#,Ak,IW kJ k)

ρk = T kρk−1 + Qk−1(J kQk−1)
#,Ak,·W k

˙̄xk

(60)

thus ending up with the final control law

q̇ = ρp (61)

because, according to Section 4.2, the p-th and final
task should be the minimization of the control vector
q̇, which consumes any residual arbitrariness.

5 Details on Activation Functions and Transitions

We have described in the previous sections the frame-
work for activating and deactivating tasks, even when
they are distributed within different priority levels,
without issues of practical discontinuities. We started
the discussion by referring to an activation value a for
each row of such tasks that defines if a task is active,
in transition or deactivated. This in turn implies if the
corresponding reference signal should or should not
be tracked exactly. We first show how the activation
functions can be defined, and how they can be exploit
to manage task transitions and implement inequality
control objectives. Then a detailed discussion on the
closed loop dynamics in task space whenever one or
more tasks are in transition is presented, using simple
geometrical tasks.

5.1 Activation Functions

Let us consider a multidimensional task and the acti-
vation value associated to each i-th of its components,
called a(i), and let us construct it as the product of two
functions

a(i) � a
p

(i)a
s
(i), (62)
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which have the following specific purposes:

– as
(i) is used to activate/deactivate the task based on

its internal state, i.e. the current value of the actual
i-th component x(i);

– a
p

(i) is instead used to activate/deactivate the task
based on external parameters to the task itself, e.g.
an activation based on the current elapsed mission
time.

For each inequality control objective, we consider as
activation function as

(i) the one defined as follows for
objectives of the type x(i) ≤ x(i),M (a similar function
can be constructed for objectives x(i) ≥ x(i),m):

as
(i) �

⎧

⎨

⎩

1, x(i) > x(i),M

si(x), x(i),M − β(i) ≤ x(i) ≤ x(i),M

0, x(i) < x(i),M − β(i)

(63)

where si(x) is any sigmoid function with a continuous
behaviour from 0 to 1 when x(i),M − β(i) ≤ x(i) ≤
x(i),M . The β(i) value allows to create a buffer zone,
where the inequality is already satisfied, but the acti-
vation value is still greater than zero. This is necessary
to prevent any chattering problem around the inequal-
ity control objective threshold. On the other hand, note
that for equality control objectives it clearly holds that
ai
(i) = 1.

The activation value a
p

(i) is instead a value which
can be exploited to perform task transitions based on
variables external to the task itself. For example, let us
consider a mobile manipulator, moving on a horizon-
tal plane, performing a grasping task. The end-effector
position control (which is an equality control objec-
tive) should be activated only when the vehicle is
sufficiently close to the object to be grasped, since
it does not make sense to move the arm when the
object is far away. Thus the activation function a

p

(i)

of the end-effector position control task would be a
function of the horizontal distance d between the vehi-
cle and the object. This allows to surpass sequential
approaches, where the vehicle is first commanded to
get close and only successively the arm is commanded
to grasp the object. Instead, the robot will accom-
plish both tasks, enabling the arm end-effector control
smoothly as the vehicle approaches the object. A sim-
ulation trial implementing this seamless task transition
is presented in Section 6.2.

Remark We have implicitly considered objectives of
the type xm < x < xM as two separate ones. Note that

if xm and xM are sufficiently spaced, i.e. xm + β <

xM −β, then they can be considered together by using
as activation function the sum of the two activation
functions, and by choosing an arbitrary point inside
the validity of both inequality to construct the com-
mon reference rate in Eq. 6. This is actually what is
done for the joint limits task implementation, since
the minimum and maximum limits satisfy the above
conditions.

5.2 Discussion on Transitions

Let us for now discuss what happens when one or
more tasks at the same or different priority levels are
in transition. Toward that end, let us consider a simple
two dimensional example. A point-wise robot moves
on the plane (χ, γ ) and has the following inequality
control objectives to satisfy:

– objective 1: γ > 3;
– objective 2: χ > 1;
– objective 3: γ − χ < 0.

These objectives are grouped in two different priority
levels:

– priority level 1: objective 1 and 2, with their
respective velocity references stacked in the vec-
tor ˙̄x1 and their activation values in the matrix A1,
where the subscript indicates the priority level as
done in the previous sections;

– priority level 2: objective 3, with a velocity ref-
erence denoted as ˙̄x2 and activation matrix as
A2.

The activation functions corresponding to these con-
trol objectives have been chosen with buffer zone size
β = 1 (see Appendix A for the actual choice of
sigmoid function).

In the first example the starting point of the robot is
(−4, 4.5). Figure 5a shows the trajectory of the robot
on the (χ, γ ) plane, as well as the inequality control
objectives with a solid line and their corresponding
buffer zone with a dashed line. Figure 5b reports the
time behavior of the activation functions, while Fig. 5c
reports the reference velocities for each task (dashed
lines) and the actual task velocities (solid lines).

In the initial point of the first example, the first
objective is already satisfied and the corresponding
activation value is A1(1,1) = 0, while the second and
third objectives have their corresponding activation
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Fig. 5 Example 1: the robot initial position is (−4, 4.5). a robot
trajectory, where the solid lines represent the objectives bound-
aries and the dashed lines represent the thresholds at which

the activation functions become different from zero b the time
history of the activation functions c the reference and actual
velocities of each of the three tasks

values equal to one. At the same time, the velocities
of the task 2 and 3 are tracked exactly, since the first
task is completely deactivated. As the robot moves, it
enters the buffer zone of the first task at approximately
t = 0.04 s, which implies an activation of the task
1. For this reason, since the robot has only 2 d.o.f.,
the tracking of task 3 cannot be anymore guaranteed,
because it is at a lower priority level w.r.t. task 1 and
2. This is evident when looking at 5(c), since the ref-
erence ˙̄x2(1) is not anymore tracked exactly. We further
note how the tracking of the task 2 reference is still
exactly fulfilled.

As the simulation progresses, task 1 remains in the
transition zone and partially conflicts with task 3, for
what concerns the motion on the γ axis. However, as
can be noted from Fig. 5a, a balance between the two
tasks is reached and essentially the robot only moves
on the χ axis, heading toward the achievement of both
tasks 2 and 3. As soon as task 2 is completed (at
approximately t = 2.5 s), the task 3 is again tracked
exactly, despite task 1 is still in the transition zone.

In the second example the robot starts at
(−2, −4.5). As before, Fig. 6a shows the trajectory of
the robot on the (χ, γ ) plane, as well as the inequality
control objectives with a solid line and their cor-
responding buffer zone with a dashed line, Fig. 6b
reports the time behavior of the activation functions,
and Fig. 6c reports the reference velocities for each
task (dashed lines) and the actual task velocities (solid
lines).

In this case, tasks 1 and 2 are fully activated at the
start, while task 3 is deactivated. Since tasks 1 and
2 have the highest priority, their velocity reference is
tracked exactly, while the actual velocity of task 3 is
imposed by the first two and actually drives the robot

away from the region where the objective 3 is satis-
fied. Near t = 0.4 s, task 3 starts being activated,
however as there are not enough d.o.f. available, its
actual velocity remains the one set by task 1 and 2.
However, as soon as task 2 enters its transition region
at t = 1.39 s, then the actual velocity of task 3 begins
to converge to its desired one. An exact tracking is
accomplished at t = 2.06 s, when task 2 is finally
completely deactivated.

A further example is proposed, where this time only
two objectives are present and are clearly impossible
to satisfy contemporaneously:

– objective 1: γ > 3;
– objective 2: γ < −3.

These two objectives are distributed within two prior-
ity levels. Such a situation should be clearly avoided
in a real scenario, and is presented only for sake of a
complete discussion.

At the start of the simulation the robot is placed
in (−4, 4.5), as can be seen in Fig. 7a. In such a sit-
uation, A1(1,1) = 0 and A2(1,1) = 1, as can be seen
in Fig. 7b thus the robot moves vertically towards the
second objective. Furthermore, the velocity reference
of the second task is tracked exactly, since the first task
is inactive (see Fig. 7c). However, as soon as the robot
enters the transition zone of the first task, the robot
starts slowing down and actually stops in an equilib-
rium position where the first task is in the transition
zone (and thus still γ > 3) and the second task is
unsatisfied.

We conclude this preliminary discussion by not-
ing how the proposed regularization method allows to
share d.o.f. between the priority levels whenever tasks
are in transition, without affecting the other active
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Fig. 6 Example 2: the robot initial position is (−2, −4.5).
a robot trajectory, where the solid lines represent the objec-
tives boundaries and the dashed lines represent the thresholds

at which the activation functions become different from zero b
the time history of the activation functions c the reference and
actual velocities of each of the three tasks

higher priority tasks. Furthermore, this sharing hap-
pens as soon as the activation values are different from
zero and one, allowing to exploit the full extent of
the transition, as opposed to SVO only regularization
methods, generally only acting in a small zone of the
transition interval. The first two examples shows that
if a region where all the tasks are satisfied exists, then
the system will evolve towards that zone. Instead, as
the third example shows, if such a zone does not exist,
then an equilibrium point within the transition zone
will be established, without any chattering around it,
in a configuration where the higher priority tasks are
mainly satisfied.

Naturally, the fact that the task reference gains can-
not be increased independently of the control sample
time still holds true as in any discrete control sys-
tem. In practice, once implemented in a discrete con-
trol system, the discontinuity-mitigation action which
emerges from the proposed technique allows to have
higher gains, and thus better control performances,

before chattering or limit cycle problems arise when
using SVO-only regularization solutions.

6 Simulation and Experimental Results

In this section we present some simulation and exper-
imental results obtained using the proposed task-
priority framework. The section is structured as fol-
lows:

– in Section 6.1 we present a simple case study,
with the same 2-d.o.f. planar robot of [31]. We
first show how with the use of classical regular-
ization methods based only on SVO regularization
the practical discontinuity issues generate chatter-
ing phenomena. Then, we compare our approach
with the one provided in [31] showing similar
results, despite our approach scaling linearly in
the number of tasks;
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Fig. 7 Example 3: the robot initial position is (−4, 4.5). a robot
trajectory, where the solid lines represent the objectives bound-
aries and the dashed lines represent the thresholds at which

the activation functions become different from zero b the time
history of the activation functions c the reference and actual
velocities of each of the two tasks
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Fig. 8 Practical discontinuities create chattering phenomena around the activation thresholds: a the generated joint velocities, b the
activation function value, c joints position

– in Section 6.2 we move to the control of an under-
water vehicle manipulator system. We first show
the capability of the proposed framework to han-
dle the activation and deactivation of tasks at any
point of the hierarchy and within the same prior-
ity level. Then, another simulation is presented,
showing an example of task transition for equal-
ity tasks. In particular, the end-effector position
control (whose error must be zeroed) is activated
only when the vehicle is actually within grasping
distance;

– in Section 6.3 an experimental result obtained
with the AMADEUS 7 d.o.f. manipulator is pre-
sented;

– finally, Section 6.4 presents a computational time
analysis of the proposed framework.

6.1 Simple Case Study: 2-d.o.f. Planar Robot

In this first basic example the same 2-d.o.f. planar
robot of [31] is employed, with joint limits equal to

1 and −1 for both joints. The starting position of the
robot is q = [ 0.3 0.1 ]T and the desired final posi-
tion for the end-effector is x̄ = [ 0.1 0.7 ]T . Two
tasks are implemented: the joint limit avoidance task
and the end-effector position one.

The velocity reference for the joint limits avoidance
task is simply

˙̄xj l = −γjlq, (64)

and it is activated by an activation function as defined
in [31] Eq. 55 with a buffer zone β of 0.1 rad. This
means that the activation function is zero between
−0.9 ≤ qi ≤ 0.9 and then smoothly goes one for
0.9 ≤ qi ≤ 1 and the same for the negative part.

The position task is described by the following
velocity reference

˙̄xee = −γee(x̄ − x). (65)

First we show how with the sole use of SVO
regularization, the issues of practical discontinuities
become chattering phenomena in discrete control.
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Fig. 9 Comparison between the proposed approach (blue dashed line) and [31] (red solid line): a (x, y) position of the end-effector,
b arm joints velocities, c joints position
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Fig. 10 Free floating vehicle simulation: a arm joints velocities, b vehicle velocities, c end-effector positioning error

Figure 8a shows that as soon as the activation function
reaches a critical value shown in Fig. 8b, the con-
trol begins chattering around the threshold creating an
undesired oscillating behaviour.

Then we proceed to compare our approach to the
one presented in [31]. In particular, Fig. 9a shows the
position of the end-effector obtained as result of the
application of the control law [31] in a red solid line,
while the proposed one is presented with a dashed blue
one. Figure 9b shows the resulting q̇, while the final
Fig. 9c represents the time history of q. As can be
seen, the resulting behaviour is very similar. However,
the approach in [31] scales exponentially and thus is
difficult to apply as the number of tasks and d.o.f.
increases.

6.2 Free Floating Underwater Manipulator

In this second simulation the reference scenario for the
TRIDENT FP7 project [40] is studied. A free floating

vehicle (6 d.o.f.) endowed with a redundant arm (7
d.o.f.) must recover a blackbox from the sea floor.
The main task is thus represented by a position con-
trol of the end-effector (6 d.o.f.). However, the system
must also simultaneously satisfy different safety and
operational-enabling objectives [45]:

1. avoid the arm’s joint limits (a 7 dimensional task,
one for each joint);

2. maintain a good arm dexterity to avoid singular
postures (a scalar task);

3. keep the object grossly centered in the cam-
era visual cone and keep the center of the
object within given horizontal and vertical dis-
tances, to improve the performances of the
visual tracking algorithm (a 3 dimensional
task);

4. maintain the arm’s elbow away from the camera
visual cone, to avoid unnecessary occlusions of
the object (a 2 dimensional task).
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Fig. 11 Free floating vehicle simulation: a activation functions for manipulability, camera and elbow tasks, b activation functions for
the joint limits task
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All these inequality control objectives would require
13 d.o.f. if their corresponding tasks are always active,
as was done in the classical task-priority framework,
which coupled with the main task of the end-effector
position control would sum up to 19 d.o.f., surpassing
the capabilities of the system. However, with the pos-
sibility of activating the tasks as seen in the previous
sections, it becomes possible to activate these tasks
only when strictly necessary, i.e. when the correspond-
ing inequalities are not yet satisfied. Furthermore,
with the proposed approach they can be given an
higher priority w.r.t. to the position control of the end-
effector, in order to guarantee their accomplishment
and the respect of the corresponding inequality control
objectives.

Figure 10a shows the arm’s joint velocities and
Fig. 10b shows the vehicle velocities obtained dur-

ing the simulation, demonstrating the continuity of the
control. Furthermore, Fig. 10c shows the six compo-
nents of the position error of the end-effector, showing
how it converges to zero.

Figure 11a reports the time history of the activation
functions for the manipulability, camera and elbow
tasks, while Fig. 11b reports the seven values of the
activation functions of the joint limits task. As can be
seen, different tasks are in transition during the trial.
However, thanks to the proposed approach, the sys-
tem manages to maintain the inequality tasks within
the required thresholds, while at the same time accom-
plishing the final objective of the mission, by having
the arm in the desired grasping position (see Fig. 10c).

The successive simulation is again performed with
an underwater vehicle manipulator system. This sim-
ulation shows how with the method presented in
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Fig. 12 Example of task transition: the end-effector position
control is activated only when the vehicle is close to the object
a time history of the joint velocities, b time history of the

vehicle velocities c time history of the activation functions and
d Cartesian position error between the end-effector and object
frame
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Fig. 13 The AMADEUS 7
d.o.f. manipulator used
during the experimental
trials

Section 3 it is possible to activate and deactivate also
equality tasks. For this simulation, the tasks are:

1. avoid the arm’s joint limits (a 7 dimensional task,
one for each joint);

2. maintain a good arm dexterity to avoid singular
postures (a scalar task);

3. keep the vehicle grossly horizontal (a scalar task)
4. precisely control the end-effector on top of the

object frame (a 6 dimension task);
5. get the vehicle close to the object in a given

position (a 6 dimension task).

In particular the last two task are both of equality
type. However, since it is not needed to move the arm
while the object is away from the arm’s availability,
the end-effector position control is enabled only when
the vehicle is close to the object to be grasped. At the

same time, the vehicle position control is deactivated,
since there is not a specific position needed.

Figure 12 shows the results of this simulation, pre-
senting the joint and vehicle velocities generated, the
activation functions showing this seamless task transi-
tion between getting close to the object and grasping
it, while the last figure shows the convergence of
the end-effector position control error. The simula-
tion thus shows how sequential approaches can be
implemented in a much smoother way.

6.3 Experimental Results with the AMADEUS
Redundant Manipulator

In this section an experimental trial with the
AMADEUS 7 d.o.f. manipulator (visible in Fig. 13)
is shown. The tasks are, in order of priority: keep-
ing away from joint limits, keeping the manipulability
measure above a given threshold and finally reach-
ing the desired end-effector position. The robot starts
from an initial joint and Cartesian position which are,
respectively,

q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0

−0.31
−1.08

0
−0.63

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, x =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.568
0.008
1.742
1.197
0.001

−0.999

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the Cartesian components represent the yaw,
pitch, roll angles, followed by the x, y, z position of
the end-effector. The robot is commanded to perform
a diagonal movement on the horizontal plane, namely
a −0.4 m movement along the x axis, and a 0.4 m one
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Fig. 14 AMADEUS experimental trial: a activation functions for the joint limits task, b values of the joint near its physical limit c
time history of the joint velocities during the trial
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along the y axis, in order to reach the desired final
position.

Figure 14a shows that during such a movement, one
of the joint’s arm approaches its end of race, causing
the activation of the corresponding row in the joint
limits avoidance task. Figure 14b shows the joint’s
position and the bounds for the start of task activa-
tion (−0.41 rad) and its complete activation (−0.61
rad). The figure thus show how the task successfully
avoids the joint limit. The generated joint velocities
are reported in Fig. 14c, which are continuous and free
of chattering phenomena even during the activation of
the joint limit task.

6.4 Execution Times Analysis

The effectiveness from a computational point of view
has been tested running the proposed algorithm on a
test machine equipped with a Intel Core i7-4790 3.6
GHz CPU. Figure 15 shows the execution times as the
number of priority level is increased, and each level
is represented by a 3 or 5 dimensional task. The tests
depicted in the figure have been done with 13 and 20
control variables, i.e. the number of d.o.f. available
with an underwater vehicle manipulator system with
one or two arms. The results show how with 13 d.o.f.
the control can be run at 1 kHz even with 25 different
priority levels with 5 dimensional task at each level,
for a total of 125 scalar tasks. For a 20 d.o.f. system, a
1kHz control rate can be achieved with 9 priority lev-
els each with 5 dimensional task for a total of 45 scalar
tasks.
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Fig. 15 Computation times as the number of priority levels
(with m tasks for each level) is increased: with 13 d.o.f. the exe-
cution times with 25 priority levels is below 1 ms even with
m = 5 tasks for each level, while with 20 d.o.f. is 2.68 ms with
m = 3 and 2.98 ms with m = 5
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Fig. 16 Computation times as the number m of tasks for each
level is increased, considering 10 priority levels

The successive Fig. 16 shows the linear scaling
considering a fixed (10) amount of priority levels, as
the dimension m of the tasks at each level is increased.
The proposed approach can handle more than 200
scalar tasks divided equally at each priority level for a
13 d.o.f. system in less than 1 ms.

The final Fig. 17 shows the cubic scaling of the
algorithm (due to the pseudo inverse) w.r.t. the num-
ber of d.o.f., considering a fixed (5) number of priority
levels. The figure shows the computational times with
different values of m. Despite the cubic scaling, the
figure shows how the proposed algorithm can handle
100 scalar tasks for a 20 d.o.f. system in under 1 ms,
while the number decreases to 25 scalar tasks for a 25
d.o.f. system.

Remark 1 For practical applications, this means that
a mobile manipulator (3 + 7 d.o.f. for vehicle and
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Fig. 17 Computation times as the number n of degrees of free-
dom is increased, considering 5 priority levels with different
number m of task dimensions
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redundant arm), a free floating vehicle manipulator
system (6 + 7 d.o.f.) and dual arm systems (6 + 7 + 7
d.o.f.) are all capable to be controlled at 1 kHz, while
considering at least 100 scalar tasks. It is important to
stress the fact that the algorithm has a deterministic
computational time, thus is perfectly suited for a real-
time implementation. For these reasons, the proposed
algorithm is being used by the authors in the context of
the MARIS project [10] for the control of single, dual
arm and cooperative underwater vehicle manipulator
systems [30, 43, 44].

Remark 2 Finally, it must be noted that the implemen-
tation only uses one core of the CPU, leaving the other
cores free to be used for other processes.

7 Conclusions

This paper has presented a novel framework for the
task-priority control. The major novelty consists in
the ability of activating and deactivating tasks with-
out incurring into practical discontinuity problems,
while at the same time keeping much of the simplic-
ity of the original task-priority framework. Indeed,
the proposed algorithm has a linear scaling in both
the number of tasks and priority levels. Further-
more, it is deterministic and thus perfectly suited for
a real-time implementation. Despite the cubic scal-
ing in the number of degrees of freedom, we have
shown that many redundant systems can be con-
trolled up to 1 kHz with a significant number of tasks
(at least 100).

The ability of activating and deactivating tasks
has two main benefits. On the one hand it allows
one to efficiently deal with inequality control objec-
tives. Indeed, the corresponding task can be simply
deactivated whenever inside the validity region of
the inequality control objectives, without any over-
constraining of the system mobility and without incur-
ring in practical discontinuities or chattering prob-
lems. On the other hand, the same technique can be
used to implement a temporal sequence of tasks. This
is due to the fact that the mechanism for activating
the tasks, i.e. the activation functions, can be also
parametrized by some external variable (e.g. time, but
also distance, etc.), providing an effective way to tran-
sition from a set of tasks to another. Future works may

include the addition of velocity saturations in the pri-
oritized control, in a similar manner as developed in
[5].

Appendix A: Selection of Activation Functions

We have reported in Section 5 the general definition of
the activation functions. We hereafter report the actual
sigmoid function that we have used:

sg(x)�

⎧

⎨

⎩

1, x < xm
1
2 ∗ (cos( (x−xm)∗π

β
)+1), xm ≤ x ≤ xm+ β

0, x > xm + β

(66)

for objectives of the type x > xm and

sl(x) � 1 − sg(x) (67)

for objectives of the type x < xM .
We report here an example of activation function

used in the implementation of the AMADEUS experi-
ment presented in Section 6.3. Let us consider the joint
limit task and in particular for the third joint lower the
objective is

q3 > −0.61

since the hard joint limit is −0.66 rad.
In this case the variable of interest is x = q3,

and the Jacobian of this task is simply Jjl3 =
[

0 0 1 0 0 0 0
]

. In accordance with the definitions
given in Section 2, we have computed the task refer-
ence for q3 as

˙̄xjl3 = κ(−0.41 − q3),

where κ > 0 is a positive scalar gain. Then by using
Eq. 66 with xm = −0.61 and β = 0.2 we have that
whenever q3 > −0.41 the task is completely deacti-
vated, q̇3 is freely used for other tasks and the fact that˙̄xjl3 is negative does not matter. Figure 18 reports the
specific activation function for this example.

The values of xm and xM can be tuned to increase
or decrease the length of the transition, which can be
important w.r.t. the velocities of the robot in the con-
text of discrete control to avoid chattering phenomena:
in practice, larger transitions are needed as the sample
time of the control is increased.
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Fig. 18 Example of activation function for a joint limit task,
where q3 > −0.66
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A., Turetta, A.: Agility for underwater floating manipula-
tion task and subsystem priority based control strategy. In:
International Conference on Intelligent Robots and Systems
(IROS 2012). doi:10.1109/IROS.2012.6386127, pp. 1772–
1779. Vilamoura, Portugal (2012)

13. Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperindé,
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A.: Floating underwater manipulation: developed con-
trol methodology and experimental validation within the
trident project. J. Field Rob. 31(3), 364–385 (2014).
doi:10.1002/rob.21497

46. Simetti, E., Casalino, G., Torelli, S., Sperindé, A., Turetta,
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