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Abstract Simultaneous Localisation And Mapping
problems are inherently dynamic and the structure
of the graph representing them changes significantly
over time. To obtain the least square solution of such
systems efficiently, it is desired to maintain a good
column ordering such that fill-ins are reduced. This
comes at a cost since general ordering changes require
the complete re-computation of the Cholesky fac-
tor. While some methods have obtained good results
with reordering at loop closing, the changes are not
guaranteed to be limited to the scope of the loop, lead-
ing to suboptimal performance. In this article, it is
shown that the Cholesky factorisation of an updated
matrix can be efficiently recovered from the previ-
ous factorisation if the permutations are localised.
This is experimentally demonstrated on 2D SLAM
datasets. A method is then provided to identify when
such recovery is advantageous over the complete re-
computation of the Cholesky factor. Furthermore, a
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hybrid algorithm combining factorisation recovery
and re-computation of the Cholesky factor is pro-
posed for dynamically evolving problems and tested
on SLAM datasets. Steps where reordering occurs
can be executed up to 67 % faster with the proposed
method.
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1 Introduction

Unmanned Aerial Systems (UAS) have, over the last
forty years, escalated from a few highly experimen-
tal units to wide spread adoption across industries,
fields and borders [1, 2, 31, 51]. Ground vehicles have
been around even longer and, with the introduction of
robotic vacuums and interactive toys, are already part
of our daily lives. Regardless of their type or purpose,
most unmanned vehicles are confronted by the same
problems. In the literature, Simultaneous Localisation
And Mapping (SLAM) is the effective and concur-
rent navigation and modelling of an environment by
an autonomous system. It has been extensively studied
and many algorithms are available to solve it but this
issue remains an active research area as performance
requirements increase [5, 18].

Inspired by graph-based solutions for SLAM [19],
as well as the work done in the field of Structure

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-016-0367-7&domain=pdf
mailto:sebastien.touchette@uOttawa.ca
mailto:wgueaieb@eecs.uOttawa.ca
mailto:Eric.Lanteigne@uOttawa.ca


860 J Intell Robot Syst (2016) 84:859–875

from Motion, smoothing solutions to the SLAM prob-
lem have gained significant popularity in the last two
decades. Exploiting the link between operations on
graphs and their associated matrices, Dellaert and
Kaess [17] presented

√
SAM and demonstrated that

Smoothing and Mapping (SAM) can be a viable alter-
native to current SLAM implementations for on-line
applications. Kummerle et al. [36] proposed g2o, a
highly general and optimised solver for graph based
problems that use an efficient front end to obtain better
performance than

√
SAM and its incremental version,

iSAM [30]. In an effort to reduce memory footprint
and computation time, Dellaert et al. used an approx-
imate solution and iterative methods [16]. Konolige
et al. [34] have proposed SPA, a method similar to
iSAM but designed to take advantage of the high
landmark to pose ratio. Smoothing and mapping algo-
rithms, most based on iSAM, have also been proposed
in the field of cooperative mapping [8–10, 26, 33] and
submaps [39, 40]. Bridging smoothing and filtering,
mixed method have been proposed by Williams et al.
[50] and Indelman et al.[27] for high rate information
fusion.

Dellaert and Kaess [17] have illustrated the effects
of column ordering, which is of prime importance
to least square filtering problems. This is especially
true for SLAM since the size becomes increasingly
large with time and execution often requires real-
time performance. Most smoothing methods rely, to
some extent, on periodic applications of COLAMD
[12] to maintain a good column ordering; however,
this requires the complete factorisation to be per-
formed and limits the possible performance gains of
the incremental solution. Typically, current methods
are designed to avoid these traditionally expensive
operations. In this regard, Kaess et al. have proposed
iSAM2 [29], an incremental algorithm based on Bayes
Trees [28] and QR decomposition which performs
local reordering on nodes affected by loop closing. A
similar solution using efficient incremental updates to
Cholesky factorisation and block matrix formulation
is proposed by Polok et al. [42]. While reordering at
loop closing has significantly reduced the need for full
reordering, these methods are suboptimal as they do
not guarantee that changes between two consecutive
orderings will be limited to the scope of the loop being
closed.

In this article, it is proven that the permutation of
two adjacent rows/columns in a matrix only affects

the corresponding rows/columns in said matrix’s
Cholesky factor and formulas characterising how
these changes occur are given. Based on this result,
a factor recovery algorithm is proposed to recover
the Cholesky factor of a permuted matrix based on
the factor before permutation. This leads to a Hybrid
Cholesky method combining factor recovery and re-
computation to efficiently recover the Cholesky factor
of the reordered system from the current factor when
a full reordering is required in a SLAM setting.

First, the mathematical literature is reviewed
(Section 2), followed by concepts and definitions
(Section 3). The mathematical formulations and
proofs related to column permutation (Section 4)
are then presented and used in the Factor Recov-
ery method (Section 5). A metric to select between
the presented method and full Cholesky decomposi-
tion for complete reordering is presented (Section 6)
followed by a presentation of the Hybrid Cholesky
decomposition (Section 7). Results comparing the reg-
ular and Hybrid Cholesky decomposition on SLAM
datasets are presented and discussed (Section 8) and
a summary is presented along with future work
(Section 9).

2 Background

Consider an overdetermined system of linear equa-
tions of the form Ax = b where A is sparse and of
dimension m(t) × n(t). The least square solution of
such systems is represented by the normal equation
AT Ax = AT b and can be efficiently obtained by cal-
culating the Cholesky factorisation LLT of the sparse
symmetric positive definite matrix C = AT A. Classi-
cally, this has been done directly using dense matrices
but quickly becomes computationally expensive, mak-
ing filtering the standard for online problems. The use
of sparse matrices and algorithms tailored to work
with such data structures have provided a large perfor-
mance gain across many fields, including SLAM.

Symbolic factorisation [21, 46] exploits the spar-
sity of the problem, which can yield large performance
increases for the computation of Cholesky factors
whose complexity goes from O(n3/2) down to

O

(
0.5

∑
i=0:n

(|Li | − 1)(|Li | + 2)

)
, (1)
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where |Li | is the number of non-zero entries in col-
umn i of L [38]. This can be done as a two step
process, with the symbolic Cholesky factorisation pre-
dicting which entries of L will be non-zero before
calculating their actual value. In recent years, this
has been extended to super-nodal sparse Cholesky
factorisation [7] and graphs [25] for parallel compu-
tation while recent articles have detailed GPU imple-
mentations [45, 53]. Out-of-core methods adapted
to very large problems have also been proposed
[44].

The performance of sparse matrix decomposition
methods are highly dependent on the fill-ins and there-
fore rely heavily on fill-reducing ordering algorithms.
The optimal ordering problem has been demonstrated
to be NP-Complete [52] but many heuristics exist to
obtain a good ordering. The most popular are based on
the minimum degree algorithm [4, 12] or graph par-
titioning [20, 32, 37]. A review of such methods has
been done by Agarwal and Olson [3] in the case of
SLAM; comparisons on multiple datasets are available
in publications relating to the respective methods and
recent advances in graph partitioning are reviewed by
Buluç et al. [6].

In the case of dynamic problems where some values
of A change, multiple methods have been proposed
to translate modifications on C = AT A to modifi-
cations on LLT in order to avoid completely recal-
culating the factorisation. Early methods to modify
Cholesky factorisation in the dense case are reviewed
by Gill et al. [22]. Another comprehensive review of
modifications of dense Cholesky factorisations is pre-
sented by Golub and Van Loan [23]. The algorithm
outlined by Gill et al. [22] for rank 1 modifica-
tion was later adapted to sparse matrices by Davis
and Hager [13], providing a method with complex-
ity linear with the number of the non zero entries
in L. This was later extended to rank-k modifica-
tion [14] and to row/column modification [15] for
systems where the dimension of A increases with
time. These methods are still the accepted standard
in numerical computation software and have been the
basis for the incremental Cholesky based SLAM pro-
posed by Polok et al. [42]. Some computations may
be saved, however, if it is desired to displace an exist-
ing row/column of C rather than the more general
arbitrary row/column modification. This would prove
advantageous for autonomous robot navigation that
often have limited computational capabilities.

3 Concepts and Definitions

In this article, the notation is the same as that used
by Davis and Hager [13]. Calligraphic letters (such
as L, A and C) are used to represent sets. Matrices
are in upper case bold, while vectors are identified
by lower case bold letters. Scalars are represented by
lower case letters. The non-zero pattern of a n × n

matrix L is denoted by L where L = {L1, . . . ,Ln}
and Lj = {i|lij �= 0} is the non-zero pattern of col-

umn j of L. The notation L�
j represents the multiset

of Lj such that L�
j = {(i, m(i))|i ∈ Lj } where m(i)

is the multiplicity of element i [13].
The SLAM notation used is similar to what can be

found in other articles [17, 29, 30, 42]. s represents a
vehicle pose and s0:k represents a series of poses from
time 0 to k. Similarly, l indicates landmark position, u
represents the control input and z the observation. si =
fi(si−1, ui ) is the control function relating one pose
to the next while zi = hi(szi

, lzi
) is the observation

function relating a pose to a landmark. Their partial
derivative with regards to s and l are

∂

∂si−1
fi(si−1,ui ) = Fi

∂

∂si
fi (si−1,ui ) = Gi = I

∂

∂szi

hi(szi
, lzi

) = Hi

∂

∂lzi

hi(szi
, lzi

) = Ji

Where I is the identity matrix.

3.1 SLAM - Basics

Mathematically, the SLAM problem consists of calcu-
lating the probability distribution of the vehicle atti-
tude (s) and landmark positions (l) at time k given the
initial attitude s0, control inputs (u1:k) and nz observa-
tions (z1:nz ) with their corresponding data associations
(n1:nz ) . Let the map be the set of all landmarks at time
k

M = {l1, l2, . . . }
The SLAM problem can then be stated as finding the
probability of the possible attitude and map

p(sk,M|z1:nz , u1:k, n1:nz , s0) (2)

Given that the control input at time k, designated by
uk relates the state at k − 1 to the state at time k

p(sk|sk−1, uk), (3)
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Fig. 1 Example of a Bayes Network representation of a small
SLAM problem

that an arbitrary observation zi obtained at time k

depends on the map, data association and position at
that time

p(zi |szi
, nzi

,M)

and that the data association probability is given by

p(nzi
|szi

, zi ,M).

In the case where the data association is provided and
considered exact, the observation probability is then

p(zi |szi
, lzi

). (4)

Through application of Bayes’ rule and the theorem of
total probability, Eq. 2 can be restated as finding the
path s1:k and map M probability

p(s1:k,M|z1:nz , u1:k, s0). (5)

In the literature, this is referred to as full SLAM and
used by most smoothing and mapping algorithms [17,
30, 36, 42]. Often it is desired to find the particular
path and map that maximize (5). To calculate this effi-
ciently, Eqs. 3 and 4 can be used to factorize (5) as a

product of simpler probability densities. The resulting
equation is

argmax
s1:k,M

⎛
⎝p(s0)

k∏
i=1

p(si |si−1, ui )

nz∏
j=1

p(zj |szj
, lzj

)

⎞
⎠
(6)

where the constant factor p(s0) can be normalised out.
Regardless of the formulation, the SLAM problem can
be represented by a graphical model as a collection
of nodes related by constraints (observation and con-
trol). In Fig. 1, the graphical model representation for
a problem with 2 landmarks, 4 observations, 5 control
inputs and 6 position nodes is depicted as a Bayesian
Network, which can be obtained directly from Eqs. 3
and 4 to get the relations between variables. The same
SLAM problem is depicted in the left side of Figs. 2
and 3 as a factor graph and Markov Random Field
(MRF) respectively using Eq. 6.

3.2 SLAM - Graph and Matrices

In order to solve (5) directly, the Gaussian assump-
tion must be used for all probability distributions and
the negative of the natural logarithm is taken to trans-
form the probability maximisation to a minimisation
problem and obtain

argmins1:k,M

(
k∑

i=1
‖fi(si−1, ui ) − si‖2�ui

+
nz∑

i=1
‖hi(szi

, lzi
) − zi‖2�zi

− b

)
(7)

where �ui
and �zi

are the covariance matrices of con-
trol and observation i respectively. ‖a‖2� = aT �−1a

Fig. 2 Factor Graph representation of a small SLAM prob-
lem with the associated matrix representation. There is one
variable node (circle) and matrix column associated with each
unknown (pose or landmark). There is one factor node (square)

and matrix row associated with each measurement. Note that uk

and zk do not represent the functions of the factor nodes but the
measurement they originated from
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Fig. 3 MRF representation of a small SLAM problem with the associated matrix representation. There is a variable node associated
with each row/column of the matrix and diagonal entry. A symmetric pair of off diagonal entry is related to each edge

represents the Mahalanobis norm given the covariance
matrix �, and b represents the constant terms

b =
k∑

i=1

ln
1√

2π�ui

+
nz∑

i=1

1√
2π�zi

which are ignored since they do not affect the position
of the minimum. Linearising (7) and including the �

matrices inside the norms using

‖a‖2� = aT �−1a = ‖�−T/2a‖22
(7) yields

argmin
s1:k ,M

(
k∑

i=1

‖F̂i δsi−1−Ĝδsi −�−T/2(si −fi(si−1, ui )‖22

+
nz∑

i=1

‖Ĥi δszi
+Ĵi δlzi

−�−T/2(zihi −(szi
, lzi

))‖22
)

(8)

where Ĝ = −�
−T/2
i I and I is an identity matrix

of appropriate size. F̂i = �
−T/2
i F, Ĥi = �

−T/2
i H,

Ĵi = �
−T/2
i J, are the new variables obtained once

the covariance has been distributed. Posing ai =
�−T/2(si −fi(si−1, ui ), ci = �−T/2(zi −hi(szi

, lzi
))

and expressing (8) in matrix form, the following over
determined system is obtained

A
[

δs0:k
δl1:nl

]
=

[
a0:k
c1:nz

]

where the matrix A is a block matrix of Jacobians.
This equation is closely related to the factor graph
as seen in Fig. 2. The least square solution can be
obtained by solving the normal equation

AT A
[

δs0:k
δl1:nl

]
= AT

[
a0:k
c1:nz

]
(9)

which can equivalently be obtained by evaluating the
norm in Eq. 8, taking the derivative and solving by
equating to 0. This problem is related to the MRF rep-
resentation as seen in Fig. 3 where the Gramian matrix
AT A is the adjacency matrix of the MRF. Equa-
tion 9 can be efficiently solved using the Cholesky
decomposition

LLT

[
δs0:k
δl1:nl

]
= AT

[
a0:k
c1:nz

]

Fig. 4 MRF node elimination and associated Cholesky factor. The dark edges and dark cells correspond to the dependence between
variables while the dotted edges and hatched cells corresponds to the dependencies added during variable elimination
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followed by forward and backward substitution. The
structure of the factor L for a sample matrix can be
seen in Fig. 4 where the fill-ins of the L matrix cor-
respond to edges added when conducting Bayesian
elimination on the MRF corresponding to AT A.

3.3 Elimination Tree

The elimination tree is a structure illustrating the
dependencies between columns of L in sparse
Cholesky factorisation. Elimination trees have a
wide array of uses and many interesting properties
explained thoroughly by Liu [38]. Knowledge neces-
sary for the reading of this paper is summarised here
for convenience using the notation presented by Davis
and Hager [13] whenever possible. The function π(j),
called the parent function, represents the lowest index
column that depends on column j and is defined as

π(j) = min(Lj \ {j}).
The children multifunction π−1(k) represents the set
of all children of k or alternatively, the set of columns
on which k depends and is defined as

π−1(k) = {j |π(j) = k}.
The set of nodes between node j and the root is
defined as the sequence of parents, or path

P(j) = {π(j), π(π(j)), . . . }.

3.4 Symbolic Factorisation

The symbolic Cholesky factorisation using multi-sets
is defined with the same notation as Davis and Hager
[13]. When presented such that operations are on C
like the algorithm used by Liu [38], the following is
obtained:

Algorithm 1 Symbolic Cholesky Factorisation

1: π(j) ← 0 ∀ j ∈ [1, n]
2: L�

j ← {(i, 1)|i ∈ Cj }
3: for j ← 1 : n do

4: L�
j ← L�

j +
( ∑

i∈π−1(j)

Li \ {i}
)

5: π(j) ← min(Lj \ {j})
6: end for

This algorithm performs the right looking decomposi-
tion of the sparse matrix C while keeping count of the

number of children of Lj that contribute to each of the
non-zeros entries. Note that only the lower triangular
part of C is taken into account.

3.5 COLAMD

SLAM++ and many other solvers in the literature
use COLAMD (COLumn Approximate Minimum
Degree) to obtain a fill-reducing ordering and increase
the efficiency of matrix factorisation. COLAMD is
based on Approximate Minimum Degree (AMD) [4]
which is itself based on minimum degree algorithms
[21, 47]. These algorithms consists of eliminating
nodes that have the lowest degree (number of edges)
first. In its simplest form, this can be done by main-
taining a list of nodes sorted by degree and updating
said list while removing nodes by Bayesian elimi-
nation. Typically, node selection is done at random
amongst the nodes of same degree. AMD forgoes the
need for book keeping and sorting by calculating an
approximate degree for the nodes while COLAMD
allows for the calculations to take place directly on
matrix A instead of on the symmetric matrix AT A.
For more details on ordering algorithms, the reader is
referred to [11].

Algorithm 2 SLAM++

Input: A Measurement Jacobians
Input: b Measurement Error
Input: L Cholesky factor of AT A
1: for all i ∈ new measurements do
2: add i to the graph
3: calculate derivatives Gi , Fi , Hi and Ji

4: add derivatives to new row of A
5: add measurement error to new row of b
6: if non-zero density of L > 0.02 then
7: P ← COLAMD(A)

8: L ← cholesky(PT AT AP)

9: else
10: incremental cholesky update(L,A,P, b)

11: end if
12: forward backward substitute(L,PT AT b, s)
13: end for

3.6 SLAM++

SLAM++ [42] is a Cholesky based non-linear least
square solver which is optimised for block matri-
ces, making it particularly well suited for the struc-
ture of SLAM problems. Although it supports non-
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linear optimisation methods, the linear version will
be used in this article as a basis for implementing
the hybrid Cholesky method and obtaining simulation
results. Algorithm 2 is a simplified illustration of how
SLAM++ works.

For more information regarding the optimised
block matrix Cholesky factorisation, authors can refer
to [41] while the incremental update scheme of
SLAM++ is described in more detail in [42].

4 Swapping Adjacent Columns

In this section, the effect on L of moving a given
row/column of the symmetric matrix C to another
position will be analysed for different base cases.
From these building blocks, arbitrary changes in the
ordering of the row/column of C can be reflected on
L. In an effort to be consistent, the index notation of
rows and columns will refer to their position in the
original matrix C regardless of their position after the
permutation is applied.

Proposition 1 shows that in the case where a given
row/column of C exchanges position with an adja-
cent row/column, the sequential application of the
row/column deletion and addition equations presented
by Davis and Hager[15] and associated rank 1 updates
[22] simplify such that only the two row/columns
involved are modified. An expression on calculating
the modified row/columns of L is given.

Proposition 1 (Row/Column Permutation) Let Cj

and Cj+1 be two adjacent rows/columns in C, P =[
e1, . . . , ej+1, ej , . . . , en

]
a permutation matrix such

that C̄ = PT CP is C where rows and columns Cj

and Cj+1 have exchanged positions. Let LLT and
L̄L̄T be the Cholesky factors of C and C̄ respectively,
where the overhead bar indicates terms affected by the
permutation. If the matrices are defined as:

C =

⎡
⎢⎢⎢⎣
C11 c12 c13 C14

cT
12 c22 c23 cT

42

cT
13 c32 c33 cT

43

C41 c42 c43 C44

⎤
⎥⎥⎥⎦ L =

⎡
⎢⎢⎢⎣
L11

lT12 l22

lT13 l32 l33

L41 l42 l43 L44

⎤
⎥⎥⎥⎦

C̄ =

⎡
⎢⎢⎢⎣
C11 c13 c12 C14

cT
13 c33 c32 cT

43

cT
12 c23 c22 cT

42

C41 c43 c42 C44

⎤
⎥⎥⎥⎦ L̄ =

⎡
⎢⎢⎢⎣
L11

lT13 l̄33

l̄T12 l̄32 l̄22

L41 l̄43 l̄42 L̄44

⎤
⎥⎥⎥⎦

The new Cholesky factor L̄ can be recovered from L
as follows:

l̄12 = l12 l̄33 =
√

l233 + l232

l̄22 = l33
l22

l̄33
l̄32 = l32

l22

l̄33

l̄43 = l42l32 + l43l33
l̄33

l̄42 = l42l33 − l43l32
l̄33

L̄44 = L44

where all other entries are the same in both factors.

Proof The symmetric permutation PT CP can be
decomposed in a row/column deletion followed by
a row/column addition on C. The deletion operation
[15] applied on row/column 2 affects the Cholesky
factor such that the second row and column lT12,
and [l22 l32 l42]T are removed and the following
columns are modified by a rank 1 update. We now
have

C̄=
⎡
⎣C11 c13 C14

cT
13 c33 cT

43
C41 c43 C44

⎤
⎦ L̄ =

⎡
⎣L11

lT13 l̄33

L41 l̄43 L̂44

⎤
⎦ .

The rank 1 update operation [22] affecting the blocks
after column 2 is[

l̄33

l̄43 L̂44

] [
l̄33 l̄T43

L̂T
44

]
=

[
l33
l43 L44

] [
l33 lT43

LT
44

]

+
[

l32
l42

] [
l32 lT42

]
(10)

where L̂44 corresponds to an intermediate result. By
by evaluating the two upper blocks of (10) and solving
the equations obtained for l̄33 and l̄43 , it can be shown
that

l̄33 =
√

l233 + l232 l̄43 = l42l32 + l43l33
l̄33

.

Applying the row/column addition operation [15] to
put the removed row/column in its new position, we
obtain

C̄ =

⎡
⎢⎢⎣
C11 c13 c12 C14

cT
13 c33 c32 cT

43
cT
12 c23 c22 cT

42
C41 c43 c42 C44

⎤
⎥⎥⎦ L̄ =

⎡
⎢⎢⎣
L11

lT13 l̄33
l̄T12 l̄32 l̄22
L41 l̄43 l̄42 L̄44

⎤
⎥⎥⎦
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where, from [15],[
c12
c32

]
=

[
L11

l13 l33

] [
l̄12
l̄32

]
(11)

l̄22 = c22 − [
l12 l32

] [
l12
l32

]
(12)

l42 = (
c42 − [

L41 l̄43
] [

l12 l̄32
])

/l̄22 (13)

L̄44L̄44 = L̂44L̂44 − l̄42 l̄42 (14)

Solving (11) for l12 gives

l̄12 = l12.

l22 and l42 are obtained directly by simplifying (12)
and (13) respectively and thus

l̄22 = l33
l22

l̄33
l̄42 = l42l33 − l43l32

l̄33

Substituting the equation for L̂44L̂T
44 of (10) in (14)

leads to

L̄44L̄T
44 = L44LT

44 + l43lT43 + l42lT42 − l̄43 l̄T43 − l̄42 l̄T42,

from which one can obtain

L̄44L̄T
44 = L44LT

44,

thus L44 does not change.

While Proposition 1 is valid for both dense and
sparse matrices, additional savings can be obtained
working exclusively on sparse matrices. Proposition 2
demonstrates that, due to basic properties of the elimi-
nation tree and results derived in [13], a row/column of
C can be moved without causing numerical changes in
L (rows/columns must still be exchanged accordingly)
as long as it remains between its parent and children
in the elimination tree.

Proposition 2 (Sparse independent row/col permuta-
tion) Let Cj be the index of a row/column in sparse
matrix C with non-zero structure C, L the Cholesky
factor of C with non-zero structure L, π an elimina-
tion tree on L,

P = [
e1, . . . , ej−1, ej+1, . . . ek−1, ej , ek, . . . en

]
be a permutation matrix such that C̄ = PT CP is
matrix C where column j has moved to position k|k >

j and L̄ the Cholesky factor of C̄.
if max{π−1(j)} < k < π(j) then L̄ = PT LP

and π̄ = π |π(π−1(j)) = k. That is, there is no

numerical or structural change and the columns are
simply permuted with the appropriate index updated
in the elimination tree.

Proof From [13] it is known that a change in Lj

will only affect nodes in P(j) and, in Proposition 1,
it was demonstrated that permuting two adjacent
rows/columns of C will only modify the correspond-
ing rows/columns of L. Thus, change will not occur if
π(j) �= j +1 or, equivalently, lj+1,j = 0 since in such
case j +1 /∈ P(j). Extending this by induction to dis-
placement from j to k|k > j , change will not occur if
π(j) < k or, equivalently, lx,j = 0 ∀ x ∈]j ; k]

A similar result has also been demonstrated by Liu
[38] while discussing topological orderings. When a
node is moved past its adjacent parent or child, Propo-
sition 3 uses the basic properties of the elimination tree
and multiset representation of sparse Cholesky factors
[13] to show how the structure L and the elimination
tree π are affected.

Proposition 3 (Sparse dependent row/col permu-
tation) Let j , j + 1 be the index of adjacent
rows/columns in sparse matrix C with non-zero struc-
ture C, L the Cholesky factor of C with non-zero
structure L, π an elimination tree on L and

P = [
e1, . . . , ej+1, ej , . . . , en

]
be a permutation matrix such that C̄ = PT CP is
matrixC where column j and j +1 are exchanged and
L̄ is the Cholesky factor of C̄ with non-zero structure
L̄ and elimination tree π̄ .

If π(j) = j + 1, then the elimination tree can be
updated by

π̄(l) =
⎧⎨
⎩

j + 1 l ∈ {π−1(j)} \ Uc

j l ∈ {π−1(j + 1)} \ Uc

π(l) otherwise
(15)

and the structure of the new Cholesky factor can be
found by

L̄�
j+1 = L�

j+1 − Lj +
∑
i∈Uc

Li (16)

L̄�
j = L�

j + L̄j+1 −
∑
i∈Uc

Li (17)

where elements of zero multiplicity are removed and

Uc = {u ∈ π−1(j)|Lu(j + 1) �= 0}. (18)
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Proof (15) and (18) can be obtained from Algorithm 1
where it can be seen that if π(j) = j + 1, eliminating
j + 1 before j will change π(l) from j to j + 1 for
children l ∈ π−1(j) that are also related to j +1 since
Ll (j + 1) will become the lowest index off diagonal
nonzero entry. Note that the index update required by
the position change is included in (15).

To easily compute L̄j+1, the notion of symbolic
factorisation using multisets must be used to keep
track of how many children have contributed to same
non-zero elements to Lj+1 [13]. Since Lj will no
longer be a child ofLj+1, its contribution must be sub-
tracted while the contribution of the children inherited
from Lj must be taken into account. This is done by
(16) and (17) respectively.

5 Factor Recovery

In typical evolving least square problems, the graph
changes every time new information is added, requir-
ing partial re-computation of the Cholesky factors. To
simplify the discussion, the following block matrix
terminology will be used regardless of local or global
reordering:

[
C11 C12

CT
12 C̄22

]
= PT

[
C11 C12

CT
12 C22

]
P +

[
0 0
0 Wl×l

]
[
C11 C12

CT
12 C̄22

]
=

[
L11 0
LT
12 L̄22

] [
L11 L12

0 L̄22

]

In sequential systems such as SLAM, it is advanta-
geous to constrain the reordering such that the last

node has the highest index, limiting the scope of
the frequent incremental changes to the top of the
elimination tree or, equivalently, the lower right tri-
angular portion L̄22 [29, 42]. In existing methods,
most reordering occurs when closing loops, in which
case the rows/columns of C affected by the loop
closing, [CT

12 C22] and [CT
12 CT

22]T are reordered. A
new partial factor L̄22 is then obtained by apply-
ing resumed Cholesky on C̄22. The ordering, how-
ever, is not guaranteed to be as good as the order-
ing on the complete graph. When a full reorder-
ing is desired, the proposed method can be used to
reorder [LT

11 L12]T , while the original update mech-
anism is used to compute L̄22, which has to be done
regardless due to loop closing. Without loss of gen-
erality, it will be assumed in the following descrip-
tion that reordering and loop closing events always
coincide.

First, a constrained ordering heuristic is applied
to the full system and a new reordering vector p̄ is
obtained. Without loss of generality, CCOLAMD [12]
is used on C to obtain the ordering. From p̄ and
the previous ordering p, a relative ordering vector p̂
is obtained. Bubble Sort is applied on p̂, with the
changes duplicated on L using the method described
in Proposition 1to calculate new values and that of
Proposition 2 and 3 to maintain the nonzero structure,
multiplicity and elimination tree. The sorting halts
when the nodes constituting the columns [LT

11 L12]T
are in order. The remaining columns involved in the
loop closing are computed by resumed Cholesky. An
example is presented in Fig. 5 and the method is
summarised in the following algorithm:

Fig. 5 Graphical example of the Factor Recovery Algorithm.
(1) A new ordering is obtained. (2) Relative ordering is
obtained from previous and new ordering. (3) and (4) Perform

Bubble Sort and swap columns when necessary. (5) All non-
loop node are ordered. (6) Perform resumed Cholesky on
remaining columns
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Algorithm 3 Factor Recovery Algorithm

Input: L is the previous Cholesky factor
Input: ns is the number of columns in the system
Input: if is the index of the first column of

reordered C22

Input: p̂ is a relative permutation vector of length
ns

1: il ← 0
2: while il < if do
3: nn ← ns − 1
4: for i ← ns − 1 : −1 : il do
5: if p[i] < p[i − 1] then
6: swap(p[i], p[i − 1])
7: if π [i − 1] = i then
8: use Proposition 3
9: updates nonzero values as in

Proposition 1
10: else
11: use Proposition 2
12: end if
13: nn ← i

14: end if
15: end for
16: il ← nn

17: end while
18: resumed Cholesky from nf to ns − 1

The use of the relatively inefficient Bubble Sort
algorithm is justified in this case because the swap-
ping operation is only defined for adjacent columns.
A more efficient sorting algorithm would reduce the
number of comparisons, but still require O(n2) adja-
cent column swaps. The extension of Proposition 1 to
arbitrary column displacement is left as future work.

6 Threshold Selection

The part of Algorithm 3 responsible for reordering the
columns of [LT

11L12]T has a worst case complexity of

O

⎛
⎝ if∑

i=0

i|L̂i−1 ∪ L̂i |
⎞
⎠ .

In the case where the permutations are localised, how-
ever, the permutation vector is close to a sorted array
and the performance approaches

O

⎛
⎝ if∑

i=0

|L̂i−1 ∪ L̂i |
⎞
⎠ . (19)

where L̂ is the evolving non-zero structure of the
matrix. The cost in (19) is linear in the number
of non-zeros compared to performing Cholesky on
the same submatrix which can be seen in (1) to be
quadratic. The efficiency of the Algorithm 3 compared
to Cholesky is highly dependent on the assumption
that few nodes need to be swapped. It is thus desired
to obtain an estimation of the work required by both
methods and a threshold to decide when one should
be used over the other, similar to what is used by
Supernodal Cholesky factorisation [7].

To obtain the threshold, a set of nine popular 2D
SLAM datasets have been solved with a simplified
version of the SLAM++ [41] algorithm. The source
and authors of the datasets can be seen in Table 1. The
datasets are stored in linearised form as sparse matri-
ces of dense blocks, where each block represents the
Jacobian or Hessian matrices of individual states and
measurements. Permutations and swapping are carried
out using block rows/columns, where the swapping of

Table 1 Datasets used
Dataset Author Source

10k G. Grisetti et al SLAM++ [43]

City10k M. Kaess et al SLAM++ [43]

CityTrees10k M. Kaess et al. SLAM++ [43]

CSAIL C. Stachniss SLAM benchmarking [35]

FR079 C. Stachniss SLAM benchmarking [35]

FRH B, Steder et al. SLAM benchmarking [35]

Intel D. Hähnel Freiburg SLAM++ [43]

Killian M. Bosse and J. Leonard SLAM++ [43]

Victoria Park Jose Guivant SLAM++ [43]
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Fig. 6 Ratio of Cholesky
execution time over the
presented method execution
time with regards to the
estimated cost of the
proposed method over the
cost of Cholesky for 9
SLAM datasets

two block columns consist of elementary swap oper-
ations executed on individual columns of each block
independently. When a full reordering is triggered
based on SLAM++’s criterion (density of L ≥ 2 %,
the new Cholesky factor is calculated both by regular
Cholesky decomposition and recovered using Algo-
rithm 3. The execution time, the overhead time and an
estimation of the amount of work required are logged.
Assuming the constant cost can be neglected in both
cases, the cost (u) of the Cholesky decomposition and
the proposed method are, respectively,

uCholesky =
n∑

i=1

|L̄i |2

uRecovery =
∑
i∈S

|L̂i ∪ L̂i−1| (20)

where S is the set of all the swaps that were done
by the Bubble Sort during the proposed method’s exe-
cution. To limit the overhead time of the method,
Cholesky score is calculated from current factor L
instead of the new factor L̄. Since it is assumed the
current ordering is replaced by a better one, this is
an upper bound on the number of operations to be
done and requires less computation as L is already
available. In the case of Cholesky factor recovery, the
cost is estimated by multiplying the length of the per-
mutation vector with a partial Kendrall-Tau distance
(PKT) between the new and current permutation vec-
tors. PKT (k) is defined as the number of inversions
required to obtain the k first terms of the current
permutation vector from the previous one.

It can be seen from Algorithm 3 that the Factor
Recovery method competes with Cholesky for the cal-
culations of [LT

11L12]T only since L22 needs to be
updated for loop closing. As such, in (20) S is the set
of index swapped such that [LT

11L12]T is reordered.
The cost of Cholesky for L22 will be subtracted from
the total cost since this has to be executed in both
cases. The cost of the two methods are estimated by

ûCholesky =
n∑

i=1

|Li |2 −
n∑

i=k

|Li |2 (21)

ûRecovery = PKT(p̄, p, k − 1)n (22)

where k is the index of the leftmost column involved
in the loop closing. In order to have a threshold value
that is independent of the matrix size and complex-
ity, the execution time and estimated cost recorded for
the proposed method are normalised by the execution
time and estimated cost of the regular Cholesky fac-
torisation respectively and the following is obtained

tratio = tRecovery

tCholesky

ûratio = ûRecovery

ûCholesky

. (23)

In Fig. 6, the execution time ratio with regards to the
estimated cost ratio is shown for each of the datasets.

Table 2 Operating regions

Region Fastest method Method used

Q1 (tratio > 1, ûratio > α) Cholesky Cholesky

Q2 (tratio > 1, ûratio < α) Cholesky Hybrid

Q3 (tratio < 1, ûratio < α) Hybrid Hybrid

Q4 (tratio < 1, ûratio > α) Hybrid Cholesky
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The sample points below tratio = 1 have a lower run-
time with the proposed method than with Cholesky.
For the best sample obtained, the execution time of the
proposed method is smaller by a factor greater than 75.
In order to select between both methods, a threshold
value α on ûratio must be chosen using tratio = 1. The
resulting configuration divides the points in 4 regions
explained in Table 2.

The threshold value used to choose between both
method is shown in Fig. 7 and is obtained by min-
imising the points in regions Q2 and Q4. It is thus
advantageous to use Algorithm 3 if

ûRecovery

ûCholesky

< 5.21. (24)

7 Hybrid Method

Let L be the previous Cholesky factor of a matrix C,
C̄ be a new matrix such that

C̄ = PT CP +
[
0 0
0 Wl×l

]

where l is the lowest index of values that changed
from C to C̄ and P the permutation matrix associ-
ated with a new ordering p. The proposed Hybrid
Cholesky factorisation method selects between regular
Cholesky factorisation and the Factor Recovery algo-
rithm combined with resumed Cholesky. First, the cost
of complete Cholesky factorisation is found by evalu-
ating (21) from 0 to n − 1. (22) is evaluated between
0 and l − 1 to estimate the work that can be done
using Factor Recovery and the cost of the Resumed

Cholesky is found by evaluating (21) from l to n − 1.
A ratio is calculated as in (23) by

uratio = ûRecovery |l−1
0

ûCholesky |n−1
0 − ûCholesky |n−1

l

The obtained ratio is then compared to a threshold
obtained experimentally on similar data or adaptively
computed as C is modified (future work). If lower,
Factor Recovery (Algorithm 3) is used with Resumed
Cholesky otherwise, regular Cholesky is used. The
resulting algorithm is as follows:

Algorithm 4 Hybrid Cholesky Algorithm

Input: l index of first value affected byW
Input: k a given threshold
Input: C̄ new system matrix
Input: n size of C̄
Input: L previous Cholesky factor
Output: L̄ new Cholesky factor
1: get ûRecovery |l−1

0 from (22)
2: get ûCholesky |n−1

0 from (21)
3: get ûCholesky |n−1

l from (21)

4: if
URecovery |l−1

0

(UCholesky |n−1
0 −UCholesky |n−1

l )
< k then

5: L̄ ← L
6: Update columns 0 to l − 1 of L̄ using

Algorithm 3
7: Update columns l to n−1 of L̄ using resumed

Cholesky
8: else
9: get L̄ by regular Cholesky decomposition

10: end if

Fig. 7 Threshold selection
based on Quadrant 2 and 4
point minimisation



J Intell Robot Syst (2016) 84:859–875 871

8 Experimental Data and Discussion

This section will discuss the experimental results in
two parts. First, the results concerning the threshold
selection presented in Section 6 are presented and
anomalies are discussed. The second part discusses
the performance of the Hybrid method presented in
Section 7.

8.1 Threshold Selection

Below the threshold expressed in (24), the execution
time of Algorithm 3 will, on average, be lower than
Cholesky; however, there are a few cases where it is
twice as much. This undesired effect stems from two
main causes. Firstly, the cost functions (21) and (22)
are, for performance purposes, approximations of the
actual cost of the corresponding algorithms. In some
cases, this can lead to an underestimation (or over-
estimation) of the computational cost, producing a
horizontal shift in the graph, which may causes points
in Fig. 7 to be in a different quadrant. This could be
solved by using more accurate cost functions but the
accuracy of the functions has to be carefully weighted
against their complexity, which affects the overhead of
the Hybrid Cholesky method. More research is needed
to formally select scoring functions that appropriately
balances accuracy and speed.

In the event the cost functions are exact (tCholesky ∝
ûCholesky , tRecovery ∝ ûRecovery) then the current
method of selecting a discrete threshold to choose
between Factor Recovery and traditional Cholesky
decomposition is the optimal choice. Furthermore, if
ûCholesky and ûRecovery are obtained with the same
performance metric, a simple comparison can be used

to select the most efficient algorithm. Such assump-
tion does not hold in the case where the cost functions
are possibly biased approximations, and lead to a sec-
ond possible error cause. In this article, the presence of
approximation errors in the cost functions is mitigated
by considering only SLAM structured problems when
calculating the threshold. Using a function of multiple
parameters instead of a fixed ratio as in (24) could help
compensate for the approximation error and allow for
a more general solution without requiring the evalua-
tion of exact cost functions. To do so, the parameters
affecting the error in the cost functions would need to
be identified and their effect modelled.

The two current methods available to increase the
accuracy come with an increased overhead cost of
Hybrid Cholesky and introduce tuning issues to obtain
a proper balance of performance and speed. In future
research, the information to be computed for both Fac-
tor Recovery and Cholesky decomposition (such as
the elimination tree) as well as quantities that can
be incrementally calculated (such as Cholesky factor
and adjacency matrix density) will be leveraged to
select the most efficient algorithm while minimising
unnecessary computations.

8.2 Hybrid Cholesky Decomposition

In order to obtain experimental results, the original
SLAM++ implementation is modified such that, upon
full reordering, Algorithm 4 is applied. Since it is
desired to compare only the steps where reordering
and re-factorisations are due to density, the corrected
data is given as input to the solver to limit the number
of complete re-factorisation due to changes in the
linearisation point. By default, SLAM++’s variable

Table 3 Datasets
characteristics Dataset Size Loop Total Reordered using

closings reordering factor recovery

10k 64311 1431 32 6

City10k 20687 10688 13 3

CityTrees10k 14442 4343 13 0

CSAIL 1172 128 11 8

FR079 1217 229 8 8

FRH 2820 1505 13 13

Intel 1835 895 19 9

Killian 3995 2055 11 8

Victoria Park 10608 3489 14 6
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Fig. 8 Map produced by
the FR079 dataset using
both methods. The results
with and without Hybrid
Cholesky are identical

reordering routine is triggered when the density of L is
greater than 2%, which is left unchanged. The datasets
used are the same as in Section 6. The characteristics
of each dataset can be seen in Table 3 and an example
of the final path obtained for the FR079 dataset can be
seen in Fig. 8.

A performance gain metric g is defined as

g =
∑
k∈V

tCholesky − ∑
k∈V

tHybrid∑
k∈V

tCholesky

× 100 %

where tHybrid is the time taken by Algorithm 4 and
V is the set of all steps where complete reordering
was required. Figure 9 shows the performance gain
g obtained by using the proposed Hybrid Cholesky
method of Algorithm 4 instead of Cholesky for the
reordering steps of each dataset. For consistency, the
value of g is averaged over 30 experiments and a com-
puter core is dedicated to the program’s execution with
no other processes running.

It can be seen that on most cases, the Cholesky
factor can be recovered more efficiently by using
the Hybrid Cholesky method. When the computation
overhead is included, the reduction of the execution
time reaches 67 % in the best case, while in the worst
case, the cost is not significantly higher (-6.56 %) than
Cholesky. In the cases where g is negative, the arith-
metic part of the Hybrid Cholesky method still saves
time (between 0.83 % and 2.28 %) as expected but
not enough to make up for the overhead required to
select between full Cholesky and Factor Recovery. In
Table 3, the number of times reordering occurred is
shown and it can be seen that for the datasets display-
ing a negative performance gain, the ratio of Factor
Recovery uses to total number of reordering is much
smaller than other methods. This explains why the
overhead of the method, which is executed regard-
less of which method is chosen, becomes significant
compared to the savings.

The Hybrid method presented yield some signifi-
cant time savings on reordering steps but the savings

Fig. 9 The performance
gain between the proposed
method and regular
Cholesky for full reordering
on each dataset
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do not translate to significant reductions in the total
execution time since, as witnessed by the low number
of reordering operations done by SLAM++ (Table 3),
current methods are designed to avoid these tradi-
tionally expensive operations. The Hybrid Cholesky
method’s performance for recovering Cholesky Fac-
tor after reordering offers the foundations for methods
that use variable reordering more liberally and could
be combined with online graph clustering algorithms
such as Fennel [48] or xDGP [49] for a truly incre-
mental reordering phase.

The results obtained are also highly dependent on
the variable ordering algorithm used since the cost
of Algorithm 3 is proportional to the PKT distance
between the current and new orderings. The present
results are obtained using COLAMD [12] as a vari-
able reordering strategy because it is the most popular
for SLAM problems. Due to COLAMD’s heuristic
nature, consecutive calls may produce very different
orderings (high PKT distance) and negatively impact
the Hybrid Cholesky method’s efficiency. The results
would greatly benefit from fill-reducing ordering that
also consider a global view of the graph [24, 32].

The increase in performance obtained by the
Hybrid Method does not come at the expense of preci-
sion since the method is theoretically exact. Analysing
the matrix norms however, show that the matrices are
slightly different, which can be explained by the accu-
mulation of small rounding errors. These are close to
the machine epsilon for any given value and do not
affect the algorithm. This can also be observed from
the example in Fig. 8 where the two paths overlap
perfectly.

9 Conclusion

The Hybrid Cholesky method presented in this article
provides an efficient alternative to the full Cholesky
decomposition when it is desired to obtain a full
reordering of the matrix C and when the ordering
changes are small as is often the case in SLAM. In the
best cases tested, recovering the Cholesky factors with
the proposed method was over 75 times faster than
recomputing the Cholesky decomposition, thus illus-
trating that significant improvement can be gained if
the permutations are localised. A threshold was also
provided to select between Cholesky and the factor
recovery method presented.

The Hybrid Cholesky method was added to the
SLAM++ software and results are obtained for nine
popular 2D SLAM datasets. It has been found that
using the proposed Hybrid method to calculate Cho-
lesky factors during full reordering steps can be sig-
nificantly faster than regular Cholesky decomposition.

Future research could explore calculating cost func-
tions efficiently to increase the precision of the thresh-
old obtained and reduce the cost of the overhead. The
generalisation of adjacent columns swapping to dis-
placement of arbitrary length in the elimination tree
is also desired and careful analysis of the sorting
efficiency and displacement cost would allow more
efficient sorting algorithms to be used in the pro-
posed Hybrid Cholesky decomposition. The use of an
ordering algorithm taking into account geographical
proximity of nodes is expected to affect the hybrid
method favourably. To investigate this avenue, elimi-
nation tree rotations will be performed on COLAMD
orderings to obtain an equivalent ordering that also
minimises the PKT distance, which will be compared
with orderings obtained from METIS [32].
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