J Intell Robot Syst (2016) 84:829-858
DOI 10.1007/s10846-016-0362-z

@ CrossMark

A Review of Global Path Planning Methods for Occupancy
Grid Maps Regardless of Obstacle Density

E. G. Tsardoulias ' . A. Iliakopoulou -
A. Kargakos - L. Petrou

Received: 21 September 2015 / Accepted: 10 March 2016 / Published online: 23 May 2016

© Springer Science+Business Media Dordrecht 2016

Abstract Path planning constitutes one of the most
crucial abilities an autonomous robot should possess,
apart from Simultaneous Localization and Mapping
algorithms (SLAM) and navigation modules. Path
planning is the capability to construct safe and col-
lision free paths from a point of interest to another.
Many different approaches exist, which are tightly
dependent on the map representation method (met-
ric or feature-based). In this work four path plan-
ning algorithmic families are described, that can be
applied on metric Occupancy Grid Maps (OGMs):
Probabilistic RoadMaps (PRMs), Visibility Graphs
(VGs), Rapidly exploring Random Trees (RRTs) and
Space Skeletonization. The contribution of this work
includes the definition of metrics for path planning
benchmarks, actual benchmarks of the most common
global path planning algorithms and an educated algo-
rithm parameterization based on a global obstacle
density coefficient.

E. G. Tsardoulias (P<) - A. Iliakopoulou - A. Kargakos -
L. Petrou

Faculty of Engineering, Department of Electrical and
Computer Engineering, School of Electrical and Computer
Engineering, Aristotle University of Thessaloniki,

54124 Thessaloniki, Greece

e-mail: etsardou@eng.auth.gr

L. Petrou
e-mail: loukas @eng.auth.gr

Keywords Path planning - Probabilistic RoadMaps -
Visibility graph - Generalized Voronoi graph -
Rapidly exploring random trees - Occupancy grid
maps

1 Introduction

One of the most widely researched fields in robotics
is a field agent’s ability to operate autonomously,
without an external operator’s intervention. An
autonomous robot should possess the following
attributes:

— A way to represent the environment

— A target selection method, i.e. to have an explo-
ration strategy

— An efficient method to move from its current pose
to the next goal

The environment representation problem is solved
by SLAM algorithms, which concurrently perform
mapping of the environment and the robot’s local-
ization in it. The produced maps have three basic
types of representation: metric maps, feature maps and
hybrid that essentially are a combination of the previ-
ous two. Concerning the goal selection, an abundance
of methods have been proposed, which of course
vary according to the map representation. Finally, the
problem of moving from one point to another in a
specific environment is solved by path planning and

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-016-0362-z&domain=pdf
http://orcid.org/0000-0001-9034-4832
mailto:etsardou@eng.auth.gr
mailto:loukas@eng.auth.gr

830

J Intell Robot Syst (2016) 84:829-858

navigation algorithms. As expected, no universal path
planning method exists, able to operate in all map rep-
resentations. Thus, in this work, only path planning
algorithms that can be deployed in metric maps are
considered.

The type of metric representation assumed is the
Occupancy Grid Maps, where the map is stored as a
grid of cells, each of which represents a small frac-
tion of the environment. Additionally, each cell holds
a value, corresponding to the occupancy probability
of the specific element. In order to evaluate the per-
formance of each path planning method, five different
OGMs were constructed: a totally obstacle-free space,
an area with sparse obstacles, an environment of
high obstacle density, one that combines dense obsta-
cles with corridors and finally a maze. The selection
of heterogeneous environments is essential towards
extracting reliable results concerning the method’s
performance. Furthermore, a number of performance
metrics are introduced: the Mean and Relative Stan-
dard Deviation of the execution time, the Mean and
Relative Standard Deviation of path distance, the Path
Anomaly, i.e. the amount of rotations the robot has
to perform, the Estimated Time of Traversal and the
Success Rate.

This paper contains a survey of the most common
methods that can be used on OGMs, which are the
Probabilistic RoadMaps, Visibility Graphs, Rapidly
exploring Random Trees and Space Skeletonization.
These methods are evaluated for their performance
via the described metrics. It should be stated that in
this work, we do not look into search algorithms for
graphs or grids, such as Dijkstra, A*, D* and others,
as we are interested in methodologies that can be effi-
ciently applied in an Occupancy Grid Map. Obviously,
the aforementioned search algorithms can be applied
too, but they usually are time inefficient due to the
small dimensions of each cell, thus due to the large
number of grid nodes. Nevertheless, as will be pre-
sented in the next chapters, A* is deployed in most of
the described algorithms, after preprocessing the grid.
Finally, these methods were enhanced via automatic
parameterization based on a global obstacle Density
Coefficient.

Regarding the document’s structure, the state of
the art description exists in chapter 2, whereas in
chapter 3 the experimental environments, as well as
the metrics used to evaluate the maps are presented.
Chapter 4 is the core of the document, as the path

@ Springer

planning algorithms and their automatic parameteri-
zation are described. Finally, in chapter 5 the experi-
mental results are presented and chapter 6 includes the
conclusions and future work.

2 Related Work

Many path planning approaches exist, suitable for
two dimensional to N dimensional spaces, for deploy-
ment in ground, aerial or underwater vehicles or even
robotic arms. The first path planning method, pro-
posed in 1979 by Losano-Perez and Wesley is the Vis-
ibility Graph [1]. There, an algorithm for path creation
into a convex environment is described. The obstacles
are transformed, so as to depict untraversable areas
due to constraints enforced by the robot’s footprint.
Then, a graph is created, containing the transformed
obstacles’ vertexes as nodes. This is a visibility graph
where the path creation is performed by search algo-
rithms on the graph structure. In [2] Ghosh states that
even though this method is comprehensively simple,
the high computational resources needed to apply it
in a large space makes it unrealistic. Thus, many of
the algorithms described in the aforementioned work,
aim to reduce the computational or memory resources
needed for the algorithm to be efficiently executed.
Nonetheless, in [3] Ghosh and Goswami describe the
difficulties existent during the computation of Visi-
bility Graphs in obstacles of arbitrary shape. Jungtae
et al. tackle this problem by proposing the Quan-
tized Visibility Graph (QVG) where the obstacles of
arbitrary type are represented as polygons [4]. In our
work, a variation of the Visibility Graph method has
been created, as well as a hybrid algorithm, incorpo-
rating Visibility Graphs in conjunction with a sparse
uniform space sampling, approach that increases the
initial success rate.

Regarding skeletonization techniques, in [5], Bhat-
tacharya and Gavrilova suggest the computation of
collision - free and smooth paths using the General-
ized Voronoi Diagram (GVD), as well as ways to store
and update the diagram’s structure in case of dynamic
environments. Furthermore in [6] Garrido et al., use
the GVD to discover safe areas and thereafter Fast
Marching algorithm is applied, aiming at minimizing
the length of the path. Another approach is presented
in [7], where the Voronoi Uncertainty Fields (VUFs)
are proposed in order to perform path planning under

J Intell Robot Syst (2016) 84:829-858

831

uncertainty. This approach is two-stage, where the
high-level planer employs the GVD in order to con-
struct a collision-free path and a low-level planner
adds repulsive forces deriving from the environmental
obstacles.

One of path planning’s most established algorith-
mic families are the Probabilistic Roadmaps (PRMs).
There, a sampling is applied to the environmental rep-
resentation and a graph is created, the edges of which
are considered safe for robot traversing. Since our
desire is to create a path from an origin to a goal, these
two points are integrated in the graph and the path
is computed via search algorithms such as Dijkstra
or A*. There are many surveys comparing sampling
methods for PRMs and introducing improvements [8—
11]. PRMs were initially introduced in [12] from
Kavraki et al. In [13] Laumond and Nissoux use the
Visibility Graph’s creation procedure to compute the
connections of the PRM graph, whereas in [14] the
Lazy PRM algorithm is described, where the checks
for valid connections between the PRM nodes are
minimized by initially assuming that all connections
are valid. Then the minimum path is computed and
is gradually checked for collisions. If a collision
exists, the participant nodes are removed from the
PRM structure and the next iteration is performed.
Finally in [15] Hybrid PRM is proposed, combining
different PRM sampling methods, according to the
environment’s formation.

Even though PRMs constitute a fairly popular algo-
rithmic category regarding path planning, they pose
a drawback: their size can grow too large, depending
on the application space, thus making them unable to
maintain low execution times. For this reason, several
algorithms were proposed aiming to produce sparser
graphs that create near-optimal solutions in favor of
low execution times. One such method is k-PRM [16],
where only the k nearest “visible” neighbors of a
node are connected to it, in contrast to the vanilla
version where all of them are assigned with neighbor-
hood relations. In the same work, PRM* is proposed
where the neighbors are selected based on a distance
radius, nonetheless this radius is dynamically altered
according to the total number of nodes. This method
is similar to our approach but in our case the number
of nodes depends on the environmental properties, i.e.
how many are needed in order to successfully create
paths under specific spatial limitations. Furthermore,
in [17] the Incremental Roadmap Spanner (IRS) is

proposed, which incrementally constructs an asymp-
totically non-optimal roadmap, resulting in a sparse
graph. IRS2, the method’s continuation, is proposed
in [18], where redundant samples are rejected accord-
ing to specific criteria in order to further lower the
graph’s complexity. Conclusively, K-order Surround-
ing Roadmap (KSR) [19] constructs a roadmap in an
incremental manner by creating a tree while answer-
ing to a query, selects a part of the tree according
to quality measures and adds this part to an existing
roadmap.

Finally, Rapidly exploring Random Trees (RRTs)
were proposed in 1998 from La Valle [20]. RRTs
constitute tree-like structures created iteratively. Each
RRT initiates from the starting pose (called root) and
terminates when a leaf approaches the current target.
RRTs have many properties such as the ability to be
deployed in multidimensional spaces, to apply non-
holonomic constraints, to incorporate motion con-
straints, they are uniformly expanded to unoccupied
space and others, providing fertile ground for further
research. Indeed, many surveys aim to improve the
final result either regarding the path length or the exe-
cution time. Some of them are Execution Extended
RRT (ERRT) [21], the combination of genetic pro-
cedures with bi-directional RRTs [22], RRT* [23],
RRT*-Smart [24], T-RRT [25] and Cell-RRT [26].
An interesting approach is presented in [27] where
the RRT construction is parallelized using two meth-
ods. First a batch parallelization is performed using
the original RRT algorithm and next, the configura-
tion space is divided into regions. Finally, the RRT
computation is distributed in each region to available
processes.

In this work, a number of the prior methods are
implemented, as well as some methods’ combinations
and enhancements that improve their performance,
minimizing the execution time, the memory required
or increasing the success rate.

3 Metrics - Experiment Environments

In order to check each algorithm’s ability to perform
global path planning and measure its performance in
an objective way, eight different metrics are intro-
duced. The experiments were performed using five
heterogeneous environments, so as to achieve max-
imum spatial diversity and therefore more accurate

@ Springer

832

J Intell Robot Syst (2016) 84:829-858

results. As noted, the environments are metric and
specifically Occupancy Grid Maps. In addition, each
method is executed K times for N successive targets
in each environment. Next, the performance metrics
and the experiments’ environments follow.

3.1 Performance Metrics

3.1.1 Mean Execution Time - t,

The mean execution time of each algorithm in mil-
liseconds. This metric is crucial as the optimal algo-
rithm must construct paths efficiently, thus in a mini-

mum amount of time.

3.1.2 Relative Standard Deviation (RSD)
of Execution Time - RT

The relative standard deviation of each algorithm’s

execution times. The mathematical formula for its
computation is:

. MK
v 2t —ty)?
i=1

Im

RT = ey

Here, ¢; is the specific method’s i th execution time
during the experiments. RSD is a statistical metric
used to measure the accuracy and repeatability of a
certain variable. Its value is representative of each
method’s reliability as far as execution times are con-
cerned, i.e. by how much the individual variables
values diverge from the mean value.

3.1.3 Mean Path Distance - D,,

The mean distance of the produced paths in cells.
This information is quite important, as the mean
path distance directly relates to the path’s traversing
time, which is of maximum interest in an exploration
involving situation. It is assumed that each Path con-
sists of subgoals, where the i th subgoal is denoted
as Path;. Also, the cardinality of Path measured in
subgoals is denoted as PathSize = |Path|. D, is
computed as the mean distance D of each path. The
computation of D follows:

PathSize—1
D= Y Dist(Path;, Pathi))

i=1

@ Springer

P3

Fig. 1 Example of a simplified path, depicting its subgoals

Here, Dist(p,q) = \/(xp — xq)2 + p — yq)2 is
the euclidean distance between points p and g. A
simplified example of a path is depicted in Fig. 1.

3.1.4 Relative Standard Deviation (RSD) of Path
Distance - RD

The relative standard deviation of each path’s dis-
tance. Similarly to the RT metric, the mathematical
computation formula follows:

| N-K
e 3 (D — D)?

i=1
Dy,

RD =

3

Here, D; isthe i th path’s distance in cells. This met-
ric checks the punctuality of each method concerning
its produced paths, i.e. if an algorithm produces the
same path for different experimental conditions.

3.1.5 Path Anomaly - RC

The path anomaly metric measures the smoothness of
each path, i.e. the amount of rotational movement the
robot has to perform during the path’s traversal. In
our implementation RC is bounded in the [0, 1] range.
The first computation step is to measure the total rota-
tional motion a robot would do if it had traversed
the specific path. In order to simplify this calculation,
we assumed that the vehicle turns only at the path’s
subgoals trying to align with the next one. Further-
more, the robot is assumed to perform the minimum
rotational movement in each turn, so the rotation is
bounded in [0°, 180°]. A visual depiction of the met-
ric’s computation is shown in Fig. 2, where 6; denotes
the turn at the i subgoal.

J Intell Robot Syst (2016) 84:829-858 833
PathSize—1
> 6;. Finally, the ETT is measured in seconds
i=0
and is calculated as follows:
D,,-ODGD AngleS
ETT = Pm n ngleSum 5)

Pff“;‘f .

Fig. 2 Example of a RC computation - The sum of the orange
angles is the total turn of the robot for traversing the specific
path

Obviously the best case scenario is when the robot
is aligned to the final goal, where no rotational move-
ment is needed, resulting in an angle sum of 0°. On
the other hand, the worst case scenario is to perform
an 180° turn at each of the subgoals, something unre-
alistic, but introduces an upper limit to RC, which is
(PathSize — 1) - 180°. Finally, RC is calculated as
follows:

PathSize
0i
i=1

RC = -
(PathSize — 1) - 180°

,€[0,1] “

This metric is of equal importance to D,,, as it
directly affects the time needed by a vehicle to traverse
the corresponding path.

3.1.6 Estimated Time of Traversal - ETT

The estimated time of traversal for each path. Obvi-
ously, this metric includes D,, and the total rotational
movement the vehicle has to perform. The following
assumptions are made: a) the vehicle performs either
pure linear or rotational movement and not a com-
bination of them, b) the linear velocity is constant
and equal to LS m/sec similarly to rotational, which
is equal to RS rads/sec, c) the transition from lin-
ear to rotational motion and vice versa is instant, d)
no friction or slippage phenomena occur during each
movement and e) the Occupancy Grid Cell Dimen-
sion (a cell’s side in meters) is denoted as OGCD
and the accumulated rotational move as AngleSum =

LS RS

3.1.7 Success Rate - SR

The final and most important metric is each algo-
rithm’s success rate, i.e. its capability to calculate
paths regardless of a) the environmental conditions
and b) the robot’s and target’s poses. A path plan-
ning algorithm can fail for two main reasons : a) due
to the transgression of an execution time limit and
b) due to environmental limitations, i.e. narrow pas-
sages or lack of traversable areas. As aforementioned,
each method’s executions number for an environment
is N - K, where K is the experiment’s ID and N
the number of successive goals the algorithm must
produce paths for. Thus, the success rate of each
algorithm for a specific environment, if S is the num-
ber of successfully created paths, is calculated as
follows :

S
SR=——-100% (6)
N-K

3.2 Experimental Environments

In order to obtain reliable results regarding the ability
of each algorithm to produce paths, the environments
in which the experiments will be performed must be
as heterogeneous as possible. Thus five distinct envi-
ronmental setups were selected, each of which has
unique spatial characteristics. The assumption is made
that OGCD = 0.02m, so each cell has a size of
0.02 - 0.02m>. In addition, it should be noted that
the robot visits three successive targets in each envi-
ronment (except for the maze-like environment). The
robot’s pose is denoted as R, the targets’ as 77, T2, T3
and as a result the vehicle performs the following
transitions: R — T, — T, — Ts.

3.2.1 Environment 1 - Free Space
The first environment is the simplest possible in terms
of path creation, as it consists solely of free space. This

environment is depicted in Fig. 3. Its total area is 1000-
1000 cells> = 20 - 20m> = 400m?>. The ideal paths

@ Springer

834

J Intell Robot Syst (2016) 84:829-858

Fig. 3 First environment - Free space

for this environment are straight lines connecting the
successive targets.

3.2.2 Environment 2 - Sparse Obstacles
The second environment’s main characteristic is the

existence of sparse obstacles. This environment is
depicted in Fig. 4, it is more demanding in comparison

Fig. 4 Second environment - Sparse obstacles

@ Springer

Fig. 5 Third environment - Dense convex obstacles

to the first one, but still the challenge degree is quite
low for the path planning algorithms. The total area is
1000 - 1000 cells? = 20 - 20m* = 400m?.

3.2.3 Environment 3 - Dense Convex Obstacles

The third environment consists of dense convex square
obstacles and is depicted in Fig. 5. The total area of
this space is 1000- 1000 cells?> = 20-20m?* = 400m>.
This environment is characterized by increased diffi-
culty as the dense obstacles create narrow passages.

3.2.4 Environment 4 - Dense Convex Obstacles with
Corridors

The fourth environment contains not only dense obsta-
cles, but also corridors of various widths. The envi-
ronment is depicted in Fig. 6 and its total area is
1000 - 1000 cells? = 20 - 20m> = 400m?>. This space
is characterized by increased traversal difficulty as
the dense obstacles, combined with narrow corridors,
constitute it quite demanding.

3.2.5 Environment 5 - Maze - Like Environment

The fifth and final environment is maze - like and
is depicted in Fig. 7. The total area of the space is
902 - 1237px? = 18.04 - 24.74m> = 446.3m>. The
current environment was not included for simulating

J Intell Robot Syst (2016) 84:829-858

835

Fig. 6 Fourth Environment - Dense Convex Obstacles with
Corridors

real-life applications, but to determine the capability
of each algorithm to perform well in space where the
path to goal is not obvious. This is the main reason
why there is no succession of targets, but a sole goal,
as the question asked is whether or not the specific
algorithms can produce a path from the start to the
goal point.

3.3 Map Container Specifications

In the following methods’ descriptions, it is assumed
that the maps described above (M;,1 < i < 9),

Fig. 7 Fifth environment - Maze - like environment

are stored in a square container denoted as Mc, of
size MAPsje X MAPsize, where M A Pj, is signif-
icantly larger than the actual map’s size. We suppose
that these maps were created by a robotic vehicle,
whose initial pose was in the map’s center, having
coordinates (%, %). Furthermore, since
M;’s center was the initial robot pose, this cell is
always unoccupied. With X,,in, Xmaxs Ymins Ymaxs
the limits of M; in M¢ are denoted. These limits
can easily be computed, as they denote a rectangle
in which the entirety of the produced OGM exists.
The limits of M; will be used in order to confine
the necessary path planning procedures in the “use-
ful” space, aiming to increase the performance. They
are calculated via an iterative procedure which initi-
ates from the map’s center and sweeps towards the
four map directions. The limits are the vertical or
horizontal lines closest to the map’s center, which
split the map in two half-planes, where the explored
portion of the map exists entirely in one of them.
Finally, is must be noted that these assumptions are
also valid during an exploration procedure, when the
OGM is incomplete, thus the path planning algo-
rithms can be executed whenever the developer needs
them.

These concepts are depicted in Fig. 8. For clarifica-
tion purposes, the X axis is horizontal with increasing
values from left to right, whereas the Y axis is vertical
with increasing values from top to bottom.

Fig. 8 Map container specifications

@ Springer

836

J Intell Robot Syst (2016) 84:829-858

4 Planning Methods

As stated in the introduction, one of the contributions
of this paper is the automatic parameterization of path
planning methods, in order to increase their success
percentage and consequently their performance. For
this reason the introduction of a new metric, indica-
tive of the obstacle density is necessary. This metric is
denoted as Density Coefficient (D.) and is computed
using the values of a distance transform [28]. The
selected distance transform calculates the Manhattan
Distance form the obstacles and is computed via a
BrushFire algorithm [29], initiating from the occu-
pied cells and propagating in the unoccupied space.
An example of a distance function calculated for an
occupancy grid map is depicted in Fig. 9.

If X free is the set of all OGM cells correspond-
ing to unoccupied space, x; € X ... a single cell and
B[x;] the distance function value of x;, D, is calcu-
lated as the difference of the mean value of distance
function values (up) minus its standard deviation

(oB):

Dc = WUB — OB (7)
There,
1
pp=——- Y Blx] ®)
| X Freel Vi €X Free

Fig. 9 Example application of BrushFire algorithm in an OGM

@ Springer

Table 1 wp, op and D, values of each environment

Environment 75} op D.=up—op
Environment 1 165.919 116.969 48.95
Environment 2 54.6265 33.8798 20.746
Environment 3 35.12.88 23.0628 12.066
Environment 4 27.7183 18.7098 9.0085

Environment 5 14.3008 8.4105 5.8903

1
|XFree|

> (Blxil—up)? ©)

VX €X Free

op =

In Table 1 the values of wp, op and D, are pre-
sented for all five environments.

As the results indicate, the difference between the
distance function’s mean and standard deviation val-
ues, constitutes a valid measure of the environmental
obstacle density. The D, metric can estimate the
obstacle density assuming their dispersion is close
to uniform. It is important to emphasize that the
proposed enhancements will indeed produce better
results if the environment is homogeneous concern-
ing its structural properties. On the opposite occasion
the computed D, parameter will mistakenly describe
the environment, fact that can lead to the path plan-
ning algorithm’s failure. Next, the global path plan-
ning methods will be described. For each method its
standard version and the one utilizing the D, coef-
ficient in order to increase their success rate will pe
presented.

It should be stated that no modifications were made
to them (like post-processing smoothing or introduc-
tion of motion constraints), in order to be able to
perform benchmarks on their standard versions.

4.1 Probabilistic RoadMaps (PRMs)

The basic concept behind the PRM approach is the
construction of a set of points usually produced by
spatial sampling. This set contains the nodes of a
graph G, which can have neighborhood relations if
the nodes’ corresponding connections are collision-
free. The initial point ng (the robot’s pose) and the
target ng are inserted in G and are connected to the
appropriate neighbors. Finally the path from ng to

J Intell Robot Syst (2016) 84:829-858

ng is calculated by deploying the A* algorithm on
G. There are many sampling alternatives proposed by
the scientific community. Here four methods will be
described: the uniform and random space sampling,
the sampling with Halton Sequences and the uniform
incremental sampling that improves the performance
of the uniform one.

4.1.1 Uniform Space Sampling - USS

As aforementioned, the path extraction’s first step is
to create the G graph. This procedure is described in
Algorithm 1. To do so, a sampling procedure initiates
from the point (X5, Ymin) (lines 6-7). The sampling
step is denoted as Sy 7 and the sampling procedure
is performed by rows. Each sample ny is tested for
obstacle proximity by checking if B[ny] > MWD,
where M W D stands for Minimum Wall Distance (line
13). This constant is essential for the graph creation
and subsequently for paths that are collision safe. If
the prior condition holds, nj is inserted in G (line
14). Assuming that an arbitrary state of the algorithm
is reached where the point ny = (i, j) and (i =
Xmin + P - SUNI»] = Ymin +q - Suni), the graph
edges are created on the fly by checking if the points
(@ —Suni, j—Sunp), G, j—SunD), i +Sunt, j—
Suni), i — Suni, j) € G (Fig. 10, lines 17-28). If
this condition is valid, the proper edge connections are
created. Assuming that Syy; < 2 - MW D, no further
checks concerning edge collisions with obstacles are
needed, as this is geometrically impossible. Further-
more, it should be noted that only four connectivity
checks are needed instead of eight, as only the afore-
mentioned nodes could be created due to the sampling
process.

Fig. 10 Connectivity checks during uniform sampling

837

Algorithm 1 USS algorithm

1: procedure COLLISION(np,ng)

2: True if the line from n,, to nq collides with an obstacle
3:

4: procedure CREATEUSSGRAPH()

5: G=0

6: Tt = Xmin

7 Yyt = Ymin

8: while y: < Yinaa do

9: yet =Sunt

10: while z: < X0 do

11: zi+ = SunNs

12: ng = (¢, yt)

13: if Blng] > MWD then

14: Add ny, in G

15: else

16: continue to next iteration
17 np = (vt — Sunr1,yt — SUNT)
18: if not Collision(ny, np) then
19: Connect ny to np in G
20: np = (v¢ — SUNT, Yt)
21: if not Collision(ny, np) then
22: Connect ny to np in G
23: np = (z¢,yt — SUNT)
24: if not Collision(ny, np) then
25: Connect ny to np in G
26: np = (z¢ + Sunrt, ¥t — Sunr)
27: if not Collision(ny, np) then
28: Connect ng to np in G
29: return G
30:

31: procedure USSPATHPLANNING()
32: G = CreateUSSGraph()
33: for all ny € G do

34: if Distance(nk,ngr) < S§%%; then
35: Connect ng to nx in G
36: if Distance(nk,ng) < S§%; then
37: Connect ng to ng in G

38: Path = Ax (ng,ng,G)
39: return Path

Up to this point, G has been created, so ng and ng
must be inserted in the graph. Generally, the potential
goals can exist in locations whose distance function
value to the closest obstacle is less than MW D.

In order to improve the connectivity of the initial
and goal points towards the rest of the graph, a new
constant is created, S§'%,, such that Sf%, > Syw;
but still S5, < 2- MW D. S;,; must be larger than
SunT, as the robot pose can exist out of G (Fig. 11,
green pose), since the robot can be located in close
proximity to an obstacle (even if it should not). Thus
peculiar cases can arise when the robot pose is far
from any element of G due to the local OGM morphol-
ogy, constituting the path planning algorithm bound to
fail.

@ Springer

838

J Intell Robot Syst (2016) 84:829-858

\/ \ 4 b 71 /NN
DA AL DSOS SR UN
NN 57 N NN TN N A
| X > s >< Pl .\\”\;./\ /./><\/’.\(
NN INA NN N TN TN TN N TN
CNNANI NN NNN NN NN N
S IX XXX X DX DX X X X
%\ VA K
ANNIN ZANVANVAN
NN\ \(N N\«
AN AN AN
N INCTN %
ANV L7
/ST 7
ANANYA AN
e ‘\,/ N ‘\,/ / N
\ L\ \ \ (\

Fig. 11 Extended connectivity for initial and goal points

Conclusively, the initial and goal points are con-
nected to each ng € G for which their euclidean
distance is less than S§y, (Fig. 11, lines 34-37).
Finally, graph G’s creation has been concluded and A*
is deployed from n g to ng through G (line 38).

This method’s drawback is that the Sy constant
must be chosen arbitrarily. If Sy is assigned a high
value, the algorithm will be faster but will fail in nar-
row areas. On the contrary, a low Sy, value results
in a high success ratio but increased execution times.
In order to achieve a balance, Syy;’s value is being
set according to the environmental obstacle density,
i.e. based on the D, metric. Thus Syy; = 1.5 D,
MWD = 1.2 - D, (since Syy; must be lower than

NN
b9

IIXDXIXIX]
XX

X

PN

»
Y

XXX

X000

DO IR

O

OO0

]|
DRIXIXIY

DPRIXPIRI]

Fig. 12 Example paths using USS for Environment 2

@ Springer

2-MWD)and S§%,; = 2-Syn;. It must be noted that
in both simple and enhanced version of Uniform space
sampling, MW D must be assigned a value higher
than the robot’s width, in order for the traversing to
be safe and collision-free. Figures 12 and 13 illus-
trate two examples of paths created by Uniform Space
Sampling.

4.1.2 Random Space Sampling - RSS

In Random space sampling, as the name suggests, G’s
construction involves a random sampling procedure
in the unoccupied space. The theoretical advantage of
random sampling in comparison to the uniform one
is that random samples can potentially be created in
narrow areas, where uniform sampling constantly fails
due to the Sy constrain. This method is described in
Algorithm 2. Hereinafter only the CreateGraph pro-
cedure is going to be presented, since the Collision
and PathPlanning procedures are common for all
methods.

Algorithm 2 RSS algorithm

1: procedure CREATERSSGRAPH()
G=10

3 Nranda = Axp.,../Rspar

4 counter =0

5: while counter < Nrgna do
6: counter+ =1
7.

8

ny, = Random(M;)
: if Blny] > MWD then
9: Add ny in G

10: for all n, € G do
11: if Distance(np,nk) < Rmaz then
12: Connect ny,ny in G

13: return G

In order to perform random sampling, the number
of needed random samples must be specified. As sam-
pling is performed in the unoccupied space, it makes
sense for the samples number Ng,,4 to be propor-
tional to the free space’s area, denoted as Ay, ..
Constant Rgp,r (Random sampling Sparseness) is
introduced in order to specify the exact number of
samples needed: Nrana = Axp,../Rspar (line 3).
Rspar is arbitrarily chosen based on the desired den-
sity of sampling points per space unit. Similarly to
the previous method, the samples are tested for prox-
imity by B[nx] > MWD (line 8). The neighboring
relations of G are defined via the samples’ proximity
status. Specifically an edge is created between n, and
ng samples if Dist(np,ng) < Rpax, where Ry, is
the maximum circle radius of center n,, for an element

J Intell Robot Syst (2016) 84:829-858

839

DZOZOZOZOZOTONY

X i
OO0z

<
OO0
XX

XXX
DROIXPIXIXI]

OO

pA

O

X X
XX
XX~
X
XX
P
0

DO
OZOZOZOZOZZZOZOZOZOTO

R

4

XXX
X

IXIN

5
DX
OXOZOTOZOZTOS
.

X
0Z0%
X
0%

0|
)
<

X
4| I
& DT % X
IRIXIXIXIIXIXXIXIXIXIXIXIXX] DI 4
:%KK«XMNMNEEL
XX
XX
XX

20
X205
X000
.
g] 0%0%
v DO DIXODIDIDIK] %020
RPODOIIPODN %03
Rootig bt Lozt
X g7 NN@
5 S5 BB BER]
N 0200
R0 205
02030

X

1
4
X

0N

0%

<X

IXIXIXIX]

ZOZZOZ0Z0Z0Z0Z0N|
REOXZOOZOZ0Z0Z0N |

XN

%
X
X

0%

PAIXIX]

X[

X0

.

| 0Z0%0

X PN

%4 XDIXIXX
XA

XX

£
BRI
RIS

XX
X

XXX

0200 1%

IXIXIXIXIXIXIXIXIXIX]
)

0%
V
XXX~

XX

[

ZOZON |

5

[

X
RXBIRIXDIXIXPIXIX]

PO
XL

K
N

]

i@m»ﬁ»ﬁm

X

X DN X0
mwmmm%xxga

) RDIIDDIRIRIRI],”
DRI
OO TS XX X
;&mmm X
BRRRR
XXX
P00 N 2030
PROZOZOZOZZOTOTON AN VA
XN
DN

XXX
X%

200NN ZOZOZITONZIZO TN

DDDIDDE]

MO0
XXX

)

XXX
XX

0X0

20

=

X0

PXOTOZOZOZOZOZOZOXI 4 OZOZOZOZ0Z0Y
PO XXX
DO 0000

Ammmmgvxmmgvzggg %Z«Z %@g%ﬁ
R ERRREd

XIX] IXIXIXIXIXIX
0% XX 02 XX 0}

IIXIRIN]

5

2

Fig. 13 Example paths using USS for Environment 3

ng to be connected to it (lines 10-12). Again, R4
must be smaller than 2 - MW D in order not to check
for connection collisions. Finally the initial and goal
points are inserted into G and connected to the other
samples if their proximity distance RS, is less than
Rinax, where RS < 2- MWD.

The enhanced version of the algorithm suggests
that R,y = 1.5 - D, MWD = 1.2 - D, and
RS = 2 - Rypax. In addition Rgp, must be auto-
matically set in order to have less samples in sparse
environments and more to complex ones. Since Rgpqr
implies spatial dimensionality (2D), it is expected to
select Rspar = (Dc)z. In Figs. 14 and 15 two path

examples are depicted.
4.1.3 Space Sampling with Halton Sequences - HSS

Due to Random space sampling’s randomness, the
final graph G might be unconnected in certain nar-
row passages of the environment. Thus, it would
make sense to exploit the advantages of both Uniform
and Random sampling methods. A Halton sequence
is characterized as a low-discrepancy sequence.
It’s basic property is that the sequences samples’
X1, X2, ..., xy successive differences tend to be low,
or in other words it approaches the Uniform space
sampling, as far as discrepancy is concerned. Another
name for these sequences is “Quasi-random”, since

Fig. 14 Example paths using RSS for Environment 1

the samples produced are not random, but possess
some properties of random sequences.

Given a prime number p, a sample i of Halton
sequence is computed on the basis of p as follows:
i =ay+a 'p+a2-p2+...,whereaisasetcon-
taining integer numbers. The desired sequence sample
r(i, p), belonging to the [0, 1] range, is calculated by

Fig. 15 Example paths using RSS for Environment 2

@ Springer

840

J Intell Robot Syst (2016) 84:829-858

Fig. 16 Example paths using HSS for Environment 2

reversing the number’s "’bits”” and moving the decimal
point:

. ap ai ap
rip =244 2 (10)
p p p

Thus, a node ny € G is a point with coordinates
produced by two Halton sequences with different
bases (2 and 3 in our work): ny = [r(k, 2), r(k, 3)].

This method is presented in Algorithm 3.

Algorithm 3 HSS algorithm
1: procedure CREATEHSSGRAPH()
G=0
3 Nratton = AXFME/HSpar
4: counter =0
5: while counter < Ngqiton do
6.
7
8

counter+ =1
ny = (r(counter, 2), r(counter, 3))
if B[n,] > MWD then

9: Add ny in G

10: for all n, € G do

11: if Distance(np,nk) < Rmaz then
12: Connect ny,ny in G

13: return G

Again, the parameters R4 = 1.5- Do, MWD =
1.2 - D, and HSY. = 2 - Ryax are used and
Hspar = (D.)?, where the samples’ number equals to
NHaiton = Axg,e./Hspar (line 3). In Figs. 16 and 17
two examples of path creation using Halton sequences

sampling are depicted.

@ Springer

4.1.4 Uniform Incremental Space Sampling - UISS

Even though the Uniform space sampling method is
quite straightforward and time efficient, it has a major
drawback: it is a batch method, i.e. every time a new
path is needed, the whole graph needs to be recreated.
Thus, the vanilla method is altered in order to be incre-
mental, aiming at storing the sampling graph and only
update it when required. This method is described in
Algorithm 4.

Algorithm 4 UISS algorithm
1: procedure CREATEUISSGRAPH()

2: Remove nr,ng from G
MAP, M size — X, i
3 Ty = 257,:»_[ZSUNI J‘SUNI
MAP MATsise —Yinin

4 yr = 5 size __ L 2SUN1 J . SUNI

5: counter =0

6: while y; < Yiaa do

7 yi+ = Sunr

8 while z¢ < X402 do

9: i+ = SunNT

10: ng = (z¢,yt)

11: if UISS_HIST|[ny] not equal to — 1 then
12: if Blnk] < MWD then

13: Remove ny from G

14: Remove ny’s connections from G
15: else

16: if Blnk] > MWD then

17: Add ny, in G

18: UISS_HIST[ny| = counter

19: counter+ =1
20: else
21: Continue
22: for i in [—1,1] do
23: for j in [-1,1] do
24: Np = (Tn, +9-SUNI,Yn, +7-SUNT)
25: if np, == nj then
26: continue
27: if not Collision(np,ny) then
28: Connect ng,np in G

29: return G

The first noteworthy difference between the sim-
ple (USS) and the incremental uniform space sam-
pling (IUSS) methods, is the initial sampling point.
In USS, the sampling procedure initiated from the
upper left map corner (Xuin, Ymin), Which was in
general variable, due to the map expansion during
the robot exploration. Consequently, the whole graph
would be shifted, making the incremental approach
impossible. Thus, a constant reference must be cre-
ated, which in our case was the center of the map
container (%, %) (which is the initial pose
of the robot, as described in Section 3.3). This fact
ensures that it will be unoccupied, thus a node can be
placed there. The initial sampling point is calculated

J Intell Robot Syst (2016) 84:829-858

841

Fig. 17 Example paths using HSS for Environment 3

as the first cell in the map’s limits whose coordinates’
distance from the map’s center is an integer multiple
of Syns (lines 3-4). This way, it is ensured that the
cell existing at the map’s center will be in G, thus all
potential G’s elements have predefined poses.

Furthermore, a matrix UISS_HIST of the same
size as the OGM container is stored, holding each
graph node’s id (if such node exists) or —1 in con-
trary. This way, checking the graph for nodes in an
area of interest is quite efficient (lines 20-26). Thus,
each time a new path must be created, the whole graph
structure is checked for unoccupied areas that do not
contain nodes. If such areas exist, the graph is updated
by inserting nodes and connections to their neigh-
bors are created. Furthermore, the already existent
elements of G are checked for proximity to the obsta-
cles, as it is possible for the B field to have erroneous
values, that are corrected in a future timestamp. If such
occurrences are found, the corresponding nodes are
removed from G (lines 11-13). Finally, the old poses
of robot and goal are removed and the current ones are
inserted, in order for the A* algorithm to construct the
path. Since the paths are visually similar to the USS
method’s ones, no figures are presented.

4.2 Visibility Graphs

Visibility graphs comprise nodes whose connectivity
relies on visibility, i.e. if two nodes can be connected

with a straight line segment, without crossing any
obstacles. Of course, this condition must be valid in
both space sampling and RRT methods with the differ-
ence of the nodes’ selection. Visibility graphs usually
contain nodes which are the edges of environment’s
convex obstacles.

4.2.1 Simple Visibility Graph - VG

Many different approaches exist concerning the detec-
tion of convex spatial obstacles’ edges. The most com-
mon ones involve line sweeps and the identification
of edges from spatial points with certain characteris-
tics. The first approach utilizes a straight line segment
that sweeps the environment. When the line’s body
collides with an obstacle, the collision point is consid-
ered a visibility graph’s node. The second proposition
applies ray casting on a specific set of points. When
two successive virtual rays have a large length differ-
ence (a ray’s length is the distance from the origin
to the obstacle that the ray eventually hits), the col-
lision point of the shortest ray is considered to be
a graph node. In the current approach the second
method is employed. Since the final path consists of
lines segments connecting the points which lay on the
obstacles’ surfaces, it is understandable that the path is
neither safe nor collision free. Thus, virtual obstacles
are created by “inflating” the real ones by M W D cells
(the distance considered safe for the robot’s traversal).
This method is described in Algorithm 5.

Algorithm 5 VG algorithm

1: procedure CREATEVISIBILITYGRAPH()
2: oins = InflateObstacles(MW D)

3: G = {ngr,ng}
4: Open =0
5: Closed = ()
6: Insert ng and ng in Open
7: while Open is not) do
8: np = any element of Open
9: Remove n, from Open
10: Insert n, in Closed
11: P, = RayCasting(np, 0inf)
12: for allt € P, do
13: if Distance(P}, Pit1) > DIa® then
14: if [|ri]] <||rit! then
15: if P} not in Closed then
16: Insert P} in G
17: Connect Pf,ny, in G
18: else
19: if P(;Jfl not in Closed then
20: Insert P! in G
21: Connect Pi*!, ny, in G

22: return G

@ Springer

842

J Intell Robot Syst (2016) 84:829-858

Fig. 18 Example of ray casting

The visibility graph’s construction initiates by
inserting ng and ng to G (line 2). Additionally, the
Open and Closed sets exist, where Open contains
the nodes to be expanded, whilst Closed contains
the already expanded nodes. Initially, ng and ng are
inserted in Open (line 5). At any iteration, the nodes
existing in Open set are expanded, meaning that from
each node n,; € Open a ray casting procedure is per-
formed, creating circumferentially Nyqy rays (Nyqy =
360 in our implementation), where each ray is denoted
as ré. Each ray is being cast till its collision with

Fig. 19 Example paths using VG for Environment 1

@ Springer

an inflated obstacle (at the point Pé), or till a maxi-
mum ray length is exceeded (line 11). The maximum
length was arbitrarily set to 300 cells. If two succes-
sive rays’ collision points abstain more than D",
ie. if Dist(P;, P;“) > Dyiax, the shortest ray’s
collision point is inserted in G (lines 16 and 20). Addi-
tionally, the new node is inserted in Open, unless it
already exists in Open or Closed (lines 14-21). A ray
casting example is depicted in Fig. 18 where the vir-
tual obstacles are presented in blue and the collision
points which are stored as Visibility Graph’s nodes in
orange.

The method terminates when Open = @. To con-
struct the path, A* is applied. In order to enhance the
method, MW D is parameterized as MW D = 1.5-D,.
Two paths’ examples created by the Visibility Graph
method are depicted in Figs. 19 and 20.

4.2.2 Visibility Graph with Sparse Uniform Sampling
- VGSS

The Visibility Graph method’s performance is accept-
able in purely convex environments. Unfortunately,
the experimental environments are not convex, as they
contain circumferential obstacles. For that reason, Vis-
ibility Graph methods do not have a high success
rate, especially in corridor-like spaces. In order to
overcome this problem, a sparse uniform sampling is

Fig. 20 Example paths using VG for Environment 3

J Intell Robot Syst (2016) 84:829-858

843

introduced, whose nodes are inserted in Open with the
algorithm’s initiation, aiming at improving the graph’s
connectivity. This method is presented in Algorithm 6.

Algorithm 6 VGSS algorithm
1: procedure CREATEVISIBILITYGRAPH()

2: oins = InflateObstacles(MW D)
3: G = {ngr,ng}
4: Gss = Sparse sampling in X ... with step Sy o
5: Open = Gss
6: Closed = ()
7: Insert ng and ng in Open
8: while Open is not) do
9: np = any element of Open
10: Remove n, from Open
11: Insert n, in Closed
12: P, = RayCasting(np, 0iny)
13: for alli € P, do
14: if Distance(P}, PiTh) > Dma® then
15: if [|ri|| < |lriT! then
16: if P; not in Closed then
17: Insert P; in G
18: Connect P}, np in G
19: else
20: if P;‘*‘l not in Closed then
21: Insert P;‘H in G
22: Connect PiTt,n, in G

23: return G

The sampling step used is denoted as Sy . In order
for the algorithm to adjust to various environments,
MWD =1.5-D.and Syg = 7.5 - D.. Two example
paths created by Visibility Graph with Sparse Uniform
Sampling are depicted in Figs. 21 and 22.

Fig. 21 Example paths using VGSS for Environment 2

Fig. 22 Example paths using VGSS for Environment 3

4.3 Rapidly Exploring Random Trees (RRTs)

RRTs stands for Rapidly exploring Random Trees, a
data structure designed to perform efficient searches
in high dimensional and generally non-convex spaces.
This algorithm involves the creation of a tree structure,
in a way that each point belonging to X e, is con-
nected to the closest tree member. The RRT algorithm
is repetitive and its main characteristic is that it rapidly
minimizes one random point’s distance from the tree
structure. RRTs are very efficient in path creation
problems including obstacles or kinematic restrictions
and are considered a technique able to construct open
loop paths for non-linear problems. It is important
to state that even though RRTs can be created with
kinematic constraints, in our work we chose to follow
the simplest assumption, i.e. that our robot can per-
form only pure rotational or pure linear motion. This
way, the RRTs were constructed without kinematic
constraints, even though if they did their final met-
rics would probably be more favorable (specially the
path anomaly coefficients). A typical RRT structure is
depicted in Fig. 23.

The tree structure initiates from n g and propagates
through X .. until ng is reached. Then, the path is
constructed by reverse traversing of the tree, initiating
from ng and finalizing at ng. Four RRTs variations
will be presented: the standard RRT, RRT *, multiple
RRTs and Multiple incremental RRTs.

@ Springer

844

J Intell Robot Syst (2016) 84:829-858

Fig. 23 RRT structure!

4.3.1 Standard RRT

The construction of the standard RRT structure is pre-
sented in Algorithm 7 and initiates by the selection
of an unoccupied cell, which will be the tree root. In
our case, this point is ng, i.e. the robot’s pose (line 3).
Then, at each iteration a random point 7,4,4 € X Free
is selected (line 7). Next, the tree (G) is searched to
find the closest node 7,04 € N (line 8). The algo-
rithm proceeds by selecting a point n,,¢,, that belongs
on the virtual line that connects n,,,q With n,eqr,
located at a random distance D, from 7,4, (line 9).
D, is bounded to [0, D5], where Dy.k. denotes the
maximum expansion distance possible. If the connec-
tivity between ey, fpeqr 18 possible in accordance
to spatial restrictions, an edge is created and 7,4,
becomes 71,,.y,’s parent (lines 10—12). On the contrary,
Nranad 1 rejected and the next algorithmic iteration is
performed (lines 14—15). The algorithm ends when ng
can be connected with any node n; € G (lines 16-17).
Similarly to the other methods, if B[ney] > MWD,
Npew 1S rejected.

In the enhanced version we automatically assign
the Dy, and MWD values. Specifically Db =
1.5 - D, and since D;,/. must be less than2 - MW D,
MWD = D, Two path creation examples are
depicted in Figs. 24 and 25.

ISource: http://planning.cs.uiuc.edu/img2043.gif

@ Springer

Fig. 24 Example paths using RRT for Environment 1

Algorithm 7 RRT algorithm

1: procedure CREATERRTGRAPH()
2: G=10

3: Insert ng in G

4: counter = 0

5: while counter < Kyazr and ng ¢ G do

6: counter+ =1

7 Select nygng from Xy ce

8: Find npear € G :

argming,, ., (distance(Mnear; Nrand))

9: Pick npew = Expand(nnear, Nrand, Dra®
10: if Npew € Xfree and Bnpew] > MWD then
11: Insert npew in G

12: Connect Nnew, Nnear in G
13: else

14: counter— =1
15: continue

16: if Distance(nnew,na) < Dgoar then
17: return G

18: return G

4.3.2 RRT *

A major problem of the standard RRT method is
the output path randomness concerning its length. An
example is evident in Fig. 25 where the created paths
are far from optimal in length. RRT* was proposed in
order to tackle this drawback by introducing the length
cost concept. Specifically, during the tree’s creation,
the tree is reordered, aiming for each new node to have
a minimum length cost to the tree root. This method is
described in Algorithm 8.

http://planning.cs.uiuc.edu/img2043.gif

J Intell Robot Syst (2016) 84:829-858

845

Fig. 25 Example paths using RRT for Environment 3

Algorithm 8 RRT* algorithm

1: procedure CREATERRTGRAPH()

2: G=10
3: Insert ng in G
4: counter =0
5: while counter < Kpar and ng € G do
6: counter+ =1
7 Select nygng from Xyree
8: Find npear € G :
argming,,,,, (distance(Mnear; Nrand))
9: Pick npew =
Expand(nnear;Mrand, D"
10: if Nnew € Xfree and Bnpew] > MWD then
11: Insert nyeq in G
12: for alln, € G:
Distance(np, Nnew) < DMinRadius dO
13: if Cost(npew) > Cost(ny)
+Distance(Npew,np) then
14: Nnearest = Np
15: Parent(np) = Nnew
16: for alln, € G :
Distance(np, nnew) < DMinRadius dO
17: if Cost(ny) > Cost(nnew)
+Distance(np, Nnew) then
18: Cost(np) =
Cost(nnew) + Distance(np, Nnew)
19: Erase n,, Parent(ny) connection
20: Parent(np) = Nnew
21: else
22: counter— =1
23: continue
24: if Distance(nnew,na) < Dgoar then
25: return G

26: return G

As before, a random point 7,4,4 is chosen and the
closest node n,., € G is picked (line 8). Then a
point 7, is selected on the virtual line connecting

Nrand With nyeqr, located at a random distance D, €
[0, D] from npeqr (line 9). In contrast to the stan-
dard RRT algorithm, n,¢qress € G is computed in a
radius of DyinRadius Such that n,,.,, has the minimum
distance cost to tree root if connected to 72,0455 (lines
12-14). DyginRadius 18 the maximum search radius of
nodes regarding 7., for connection’s redistribution
to be considered. So eventually, 7., s father is not
selected by minimum distance but by minimum length
cost to the tree’s root (line 12-15). Finally, for each
node existent in a radius of Dy, Radius from nyey, if
its cost is greater than the sum of 7,,.,,’s cost plus the
distance from the specific node to n;.y, its father’s
connection is deleted and 7,y takes the father’s place
(lines 16-20).

Similarly to the vanilla RRT, Dy /x = 1.5 - D, and
since DX must be less than2- MWD, MWD = D,.
In addition, DysinRradius = 2 - D}e;lxapx'

An important fact is that this method does not ter-
minate when the RRT reaches ng, but continues for
the same number of iterations needed to converge,
in order to improve the path’s total length via rear-
ranging the node connections. This fact is described
in the RRT* algorithm, but the selection of the num-
ber of extra iterations resides on the corresponding
developer’s judgment.

Algorithm 9 MRRT algorithm
1: procedure CREATEMRRTGRAPH()

2: Create G; =0, 0<i < NrRrT
3: Insert ng in Gg
4: Insert ng in Gy
5: Select Ny, € Xfr667 2 <4< NRRrT
6: Insert n,, in Gj
7 counter =0
8: while counter < Koz and Go, G1 not merged do
9: counter+ =1
10: Select Nrgna from Xyree
11: for i € [0, Ngrr — 1] do
12: Find ny,cqri € Gi :
argming: (distance(nt, . g, Nrand))
13: Pick n’ .., = Expand(ni .o, Nrand, DILGT
14: if n? .., € Xfree and
Bln.,] > MWD then
15: Insert nf, ., in Gi
16: Connect n? .., "% eqr in Gi
17: else
18: continue
19: for all G; do
20: for all Gj # G; do
21: for all n, € G; do
22: for all n, € Gj do
23: if distance(np,nq) < Dmerge then
24: Connect ny,ng
25: Change parenthood relations in

Gj, starting from nq

@ Springer

846

J Intell Robot Syst (2016) 84:829-858

Fig. 26 Example of a
RRT* iteration. Here 1,4,
becomes father of 7,,.,, but
nj rearranges its parenthood
relation due to lower length
cost if connected through

nnew

In Fig. 26, a method’s iteration example is pre-
sented and in Figs. 27 and 28 two paths examples
created by the RRT* method are depicted.

4.3.3 Multiple RRTs - MRRT

The multiple RRTs method suggests the employment
of more than one simultaneously expanded RRTs, in
order to increase the algorithmic performance and to
overcome expansion issues the standard RRT method
has. This method is presented in Algorithm 9. Here,
an arbitrary number Ngrr7 of RRTs (each one denoted
as Gj) is created, two initiating from the robot’s and

Fig. 27 Example paths using RRT* for Environment 2

@ Springer

goal’s pose and Nggrr — 2 initiating from random
spatial unoccupied cells (lines 2—6).

As before, a random point 7,4, iS chosen (line
10). Then for all existent trees, the nearest node n’,,,,
is computed, n’,, is created and the connectivity
between them is checked (lines 10-18). The method
differentiates from the prior RRT algorithms, as the
possible merging of trees is investigated in each iter-
ation. If nodes n, € Gj and n, € Gj exist, such that
Dist(np,ng) < Dperge, the trees Gi, Gj are merged
(lines 19-25). Obviously, Dy,erge is the maximum dis-
tance between two nodes of different trees, in order
for these trees to be merged. A problem this approach

Fig. 28 Example paths using RRT* for Environment 3

J Intell Robot Syst (2016) 84:829-858

847

Fig. 29 Procedure of
merging two RRTs in order
to obtain an RRT-like
structure

has is that the merged structure Gj; is not tree-like, as
it has two roots. In order to overcome this drawback,
the parenthood relations are shifted initiating from n,
(or ng) and traversing the tree towards the root, i.e.
a node’s parent becomes its child. This procedure is
iterated till the tree’s root is reached (line 25). An

Fig. 30 Example paths using MRRTs for Environment 2

optical description is presented in Fig. 29. Finally, the
algorithm terminates when the trees initiated from the
robot and the goal poses are merged, i.e. a path from
the robot to the goal exists.

The enhanced version of the algorithm is achieved
by automatic value assignment of Dj;/x and MW D.

P 2220 FACHAAL AN oo A

Py o AN A R 2
{

N

Fig. 31 Example paths using MRRTSs for Environment 4

@ Springer

848

J Intell Robot Syst (2016) 84:829-858

Specifically Dy,/x = 1.5 - D, and since Dy’ must
be less than 2 - MWD, MWD = 0.8 - D.. Addi-
tionally Dyerge = Diay. Finally, the number of trees
NgrT must be specified. In our implementation, we
selected to have one tree per 10000 unoccupied cells,
i.e. Nrrr = Axyp,,./10000. Two path examples cre-
ated by the multiple RRT method are depicted in Figs.
30 and 31.

4.3.4 Multiple Incremental RRTs - MIRRT

The multiple incremental RRTs extension was created
to maintain the already formed tree structures in the
environment, in order to use them in future path plan-
ning requests. Similarly to the MRRT method, Ngrr
trees are initially created. After a path planning pro-
cedure, we assume that N ;3 gy trees remain, where
1 < Ngppy < NRrT — 1. Nppy is equal to 1 if all
the trees are merged before the path is created and
Ny grr = Nrrr — 1 when the trees initialized from the
robot and goal are the first to be merged, thus a path
was directly created.

For each new path request, Nrrr —N ;e g7 DEW trees
are constructed in the unoccupied space, in order for
the total tree number to be constant and proportional
to the unoccupied area. At the same time, the merging
conditions are checked during the trees’ expansion.
The enhanced version of the algorithm automatically

\/

/

Fig. 32 Example of GVD constructed in Environment 2

@ Springer

Fig. 33 Example paths using GVD for Environment 2

assigns values to the same constants as the MRRT
method does. Since the paths created from MRRT and
MIRRT methods are structurally similar, no figures
will be presented here. Additionally, since the only
difference between the MRRT and MIRRT is the dif-
ferent number of created trees in every iteration, no
need exists for presenting the algorithm.

Fig. 34 Example paths using GVD for Environment 2

J Intell Robot Syst (2016) 84:829-858 849

Table 2 Constant values for simple and enhanced methods for all environments

Method Constant’s Name Computation Constant’s Value Env.l1 Enh. Env.2 Enh. Env.3 Enh. Env.4 Enh. Env.5 Enh.
Sunt 1.5- D, 25 73.43 31.12 18.1 13.51 8.84
USS, UISS MWD 1.2- D, 20 58.74 24.89 14.48 10.81 7.07
N 2. D, 35 97.9 41.49 24.13 18.02 11.78
SUNI 1.5- D, 25 73.43 31.12 18.1 13.51 8.84
RSS MWD 1.2- D, 20 58.74 24.89 14.48 10.81 7.07
R 2-D, 35 97.9 41.49 24.13 18.02 11.78
Rspar D? 300 2396 430.3 145.5 81.15 34.69
Sunt 1.5- D, 25 73.43 31.12 18.1 13.51 8.84
HSS MWD 1.2- D, 20 58.74 24.89 14.48 10.81 7.07
HEY 2-D, 35 97.9 41.49 24.13 18.02 11.78
Hipar D? 300 2396 430.3 145.5 81.15 34.69
VG MWD 1.5- D, 25 73.43 31.12 18.1 13.51 8.84
MWD 1.5- D, 2 4 1.12 18.1 13.51 .84
VGSUS w 5 D, 5 73.43 3 8 35 8.8
Sve 7.5 D, 100 367 155.6 90.49 67.56 44.17
MWD D, 20 48.95 20.75 12.07 9.01 5.89
RRT ox
Dyl 1.5- D, 30 73.43 31.12 18.1 13.51 8.84
MWD D, 20 48.95 20.75 12.07 9.01 5.89
RRT* Db, 1.5- D, 30 73.43 31.12 18.1 13.51 8.84
DuinRadius 3. D, 60 146.8 62.24 36.2 27.02 17.67
MWD D, 20 48.95 20.75 12.07 9.01 5.89
exp .
MRRT.MIRRT Dipax 1.5- D, 30 73.43 31.12 18.1 13.51 8.84
DMerge 1.5- D, 30 73.43 31.12 18.1 13.51 8.84
NRRrT Axp,,./10000 10 9 9 7 8 5
GVD - - - - - - - -

Algorithm 10 Path planning via GVD

1: procedure CREATEGVDPATH()
2: GVD = CalculateGV D()
3: Calculate P;, € GVD :
argminp, (ManhattanDist(Pin,nR))
4: Calculate P,y € GVD :
argminp,,, (ManhattanDist(Pout,ng))
5: GV Dpr = create distance transformation on GVD
from P;,, to Pouyt
6: GV Dpath = back traversal of GV Dpr from
Pout to Pip
7 Path = Line(ngr, Pin) + GV Dpath + Line(ng, Pout)

4.4 Space Skeletonization

The space skeletonization algorithmic family differ-
entiates from the previous three by not using a graph
containing the robot and the goal poses. Instead, it
performs a space skeletonization which results in a
’skeleton”, i.e. a continuous line running through

the entirety of the unoccupied space. Each point
of the line — ideally — has the property of being
equidistant to its two nearest obstacles. In the cur-
rent paper the Generalized Voronoi Diagram method
is employed to perform skeletonization. Another com-
mon skeletonization method is the application of the
thinning morphological operator in the unoccupied
space.

4.4.1 Generalized Voronoi Diagram - GVD

The Generalized Voronoi Diagram is computed via the
deployment of a Manhattan distance transformation of
the unoccupied space. In this work the distance trans-
formation is created utilizing the Brushfire algorithm.
Brushfire is an iterative algorithm initiating from a set
of points, propagating in a specific space and termi-
nating under some conditions, creating the Manhattan

@ Springer

850

J Intell Robot Syst (2016) 84:829-858

distance function stored in a container denoted as
B. In this work, a Brushfire algorithm initiates from
the obstacles applying the O value, expands through
the unoccupied space by increasing the neighbors’
values by one and terminates when all the unoccu-
pied space elements have an updated Brushfire value.
The fact that the algorithm operates by updating a
set of points that at any time are equidistant to their
closest obstacles, can be perceived as a wave-like
value propagation. During this propagation, the cells
existing where two propagation “waves” collide, par-
ticipate in the Generalized Voronoi Diagram, as they
are equidistant to the obstacles, the two waves ini-
tiated from. An example of a GVD is depicted in
Fig. 32.

The path planning procedure is described in Algo-
rithm 10. Obviously, a part of the GVD will be used
as the path from the robot pose (ng) to the goal (ng).

Since ng, ng are generally not elements of the GVD,
the cells closest to them that belong on the GVD must
be computed. These are denoted as P;, and P,,;, the
first being the entry point to the GVD and the second
the exit. In order to efficiently calculate these points, a
Brushfire algorithm initiates from ng and ng, propa-
gate through the unoccupied space and terminate when
a GVD’s element is visited (lines 3—4). Then a Brush-
fire algorithm is applied from P;, to P,,; via GVD
only, which if backtracked produces the desirable path
(lines 5-6). Finally, the total path consists of a straight
line segment between ng and P;,, the GVD part from
P;, to P, and the straight line segment from P,
to ng (line 7). Since the GVD path planning method
does not contain any parameters, no enhanced version
of the algorithm is possible. Two path examples pro-
duced by the GVD method are depicted in Figs. 33
and 34.

Table 3 Experimental results for simple and enhanced versions of algorithms for Environment 1

Environment/Method tm RT Dy, RD RC ETT SR

Env 1 - Simple USS 14.34 3.87 % 826.86 0% 591 % 248.35 100 %
Env 1 - Enhanced USS 0.41 17.46 % 819.39 0 % 10.13 % 246.32 100 %
Env 1 - Simple RSS 75.92 2.6 % 817.38 0.22 % 7.52 % 245.59 100 %
Env 1 - Enhanced RSS 1.89 11.28 % 831.39 1.06 % 13.57 % 250.09 100 %
Env 1 - Simple HSS 42.97 2.69 % 836.77 0% 11.26 % 251.59 100 %
Env 1 - Enhanced HSS 1.12 10.69 % 816.8 0 % 13.19 % 245.7 100 %
Env 1 - Simple UISS 0.97 12.24 % 824.28 0 % 6.45 % 247.61 100 %
Env 1 - Enhanced UISS 0.11 48.93 % 820.49 0 % 9.71 % 246.63 100 %
Env 1 - Simple VG 7.01 8.74 % 804.02 0 % 3% 241.36 100 %
Env 1 - Enhanced VG 6.58 5.4 % 804.02 0 % 3.02 % 241.35 100 %
Env 1 - Simple VGSS 4501.1 3.65 % 804.02 0% 3% 241.36 100 %
Env 1 - Enhanced VGSS 21.35 6.87 % 804.02 0 % 3.02 % 241.36 100 %
Env 1 - Simple RRT 71.41 18 % 1074.53 5.35% 20.01 % 323.36 100 %
Env 1 - Enhanced RRT 62.84 11.6 % 1090.03 5.81 % 21.12 % 328.06 100 %
Env 1 - Simple RRT* 99.37 46.25 % 849.05 3.02 % 12.51 % 255.34 100 %
Env 1 - Enhanced RRT* 75.94 4.58 % 788.92 2.64 % 12.47 % 237.3 100 %
Env 1 - Simple MRRT 5.06 22.17 % 1554.13 8.72 % 29.25 % 467.70 100 %
Env 1 - Enhanced MRRT 3.73 11.08 % 1727.88 12.69 % 33.1 % 520.02 100 %
Env 1 - Simple MIRRT 8.43 27.16 % 1790.97 26.17 % 31.29 % 538.86 100 %
Env 1 - Enhanced MIRRT 5.98 25.57 % 1893.22 14.61 % 34.84 % 569.71 100 %
Env 1-GVD 54.47 10.31 % 967.65 0% 6.5 % 290.62 100 %

@ Springer

J Intell Robot Syst (2016) 84:829-858

851

5 Experimental Results

In this section the experimental results for all meth-
ods and environments are presented. Specifically, in
Table 2 the values of each parameter used in the meth-
ods (both originals and enhanced), are provided for all
environments. Additionally in Tables 3, 4, 5, 6 and 7
the experimental results are depicted.

As the amount of information is quite large for an
effortless evaluation, an attempt will be made to create
a rational way to automatically compare the meth-
ods’ performance. The way to do this is to group the
different environments’ results into a single unified
representation. For that reason, the mean value of met-
rics for all environments is calculated. If a method
fails to produce results in a specific environment, its
metrics are assigned the value of the worst method in
the specific environment. Next, the metrics that do not
come in a percentage form are normalized to [1, inf)

by dividing them by the minimum value of the specific
metric. The results are presented in Table 8. It should
be noted that the mean value of metric M; is denoted
as M; and the mean normalized value as M;.

In order to decide which path planning method has
the best performance when applied in occupancy grid
maps, the performance weight W), is introduced, con-
sisting of three separate parts whose values are bound
in [0, 1], in order for the final coefficient to be also
bound in [0, 1]. The first part, denoted as P, is a per-
formance coefficient. P, takes under consideration the
method’s execution time, the mean path distance and
the rotation coefficient, as they are crucial metrics for
the method to be efficiently used. Instead of using
t:m and RC separately, the ETT can be utilized, as
it combines them. Of course, the preferred values of
both tf,, and RC should be low and specifically equal
to unity. Thus the use of the inverse value of t,:n and
ETT was selected, in order to achieve a high value

Table 4 Experimental results for simple and enhanced versions of algorithms for Environment 2

Environment/Method tm RT Dy, RD RC ETT SR
Env 2 - Simple USS 10.63 4.9 % 1148.42 0 % 8 % 344.93 100 %
Env 2 - Enhanced USS 2.87 9.43 % 1131.55 0 % 10.07 % 339.97 100 %
Env 2 - Simple RSS 79.27 1.43 % 1092.12 0.62 % 8.78 % 328.07 100 %
Env 2 - Enhanced RSS 13.74 3.87 % 1145.83 1.96 % 11.48 % 344.32 100 %
Env 2 - Simple HSS 30.65 2.29 % 1129.17 0 % 12.77 % 339.39 100 %
Env 2 - Enhanced HSS 13.35 5.13 % 1129.09 0 % 10.63 % 339.26 100 %
Env 2 - Simple UISS 1.4 10.99 % 1149.49 0 % 8.57 % 345.28 100 %
Env 2 - Enhanced UISS 0.57 9.26 % 1153.1 0 % 8.87 % 346.37 100 %
Env 2 - Simple VG - - - - - - -

Env 2 - Enhanced VG - - - - - - -

Env 2 - Simple VGSS 1036.19 343 % 1154.33 0 % 4.93 % 346.55 100 %
Env 2 - Enhanced VGSS 193.12 2.51 % 1211.75 0 % 4.98 % 363.77 100 %
Env 2 - Simple RRT 199.9 27.46 % 1501.45 7.68 % 19.19 % 451.39 100 %
Env 2 - Enhanced RRT 113.29 22.82 % 1539.67 7.89 % 20.07 % 462.91 100 %
Env 2 - Simple RRT* 759.58 59.17 % 1104 2.70 % 12.94 % 331.85 100 %
Env 2 - Enhanced RRT* 285.23 44.24 % 1186.32 541 % 13.05 % 356.55 100 %
Env 2 - Simple MRRT 10.45 24.54 % 223891 12.02 % 26.34 % 672.99 100 %
Env 2 - Enhanced MRRT 6.89 2091 % 2495.98 18.69 % 27.62 % 750.17 100 %
Env 2 - Simple MIRRT 17.87 47.73 % 2306.8 12.20 % 28.41 % 693.46 100 %
Env 2 - Enhanced MIRRT 12.65 110.73 % 2291.14 8.73 % 29.56 % 688.82 100 %
Env 2 - GVD 52.72 332 % 1292.69 0 % 9.21 % 388.29 100 %

@ Springer

852

J Intell Robot Syst (2016) 84:829-858

Table 5 Experimental results for simple and enhanced versions of algorithms for Environment 3

Environment/Method tm RT Dy, RD RC ETT SR
Env 3 - Simple USS 6.14 5.18 % 1017.63 0 % 8.69 % 305.72 100 %
Env 3 - Enhanced USS 12.42 443 % 1004.52 0 % 6.93 % 301.7 100 %
Env 3 - Simple RSS 80.22 277 % 978.84 0.65 % 7.23 % 294.01 100 %
Env 3 - Enhanced RSS 85.57 2.34 % 989.48 1% 8.87 % 297.29 100 %
Env 3 - Simple HSS 16.47 329 % 1042.18 0 % 13 % 313.30 100 %
Env 3 - Enhanced HSS 71.53 1.53 % 993.01 0 % 10.87 % 298.45 100 %
Env 3 - Simple UISS 0.75 11.86 % 1023.36 0 % 8.04 % 307.41 100 %
Env 3 - Enhanced UISS 1.32 10.43 % 1000.29 0 % 7.85 % 300.48 100 %
Env 3 - Simple VG 27.17 11.52 % 1670.45 0 % 6.42 % 501.62 66.67 %
Env 3 - Enhanced VG 46.03 8.94 % 1080.22 0 % 5.08 % 324.45 66.67 %
Env 3 - Simple VGSS 395.02 2.75 % 1192.22 0 % 4.62 % 357.9 100 %
Env 3 - Enhanced VGSS 1071.16 3.09 % 1001.65 0 % 4.75 % 300.73 100 %
Env 3 - Simple RRT 101.51 17.67 % 1294.14 7.42 % 19.49 % 389.22 100 %
Env 3 - Enhanced RRT 84.64 14.71 % 1387.2 8.97 % 20.39 % 417.18 100 %
Env 3 - Simple RRT* 218.95 55.85 % 1040.19 3.62 % 12.55 % 312.68 100 %
Env 3 - Enhanced RRT* 260.75 46.3 % 1178.09 7.08 % 14.97 % 354.18 100 %
Env 3 - Simple MRRT 9.42 17.03 % 1797.69 14.11 % 24.28 % 540.52 100 %
Env 3 - Enhanced MRRT 13.14 19.34 % 1663.6 13.11 % 24.68 % 500.31 100 %
Env 3 - Simple MIRRT 7.78 29.03 % 1800.97 15.79 % 26.35 % 541.61 100 %
Env 3 - Enhanced MIRRT 11.76 74.78 % 1739.95 13.53 % 25.16 % 523.24 100 %
Env3-GVD 53.39 3.85 % 1036.19 0 % 10.75 % 311.39 100 %

when the two metrics are equal (or close) to one. Since
the desired behavior of P. is to be increased when the
corresponding method is both execution and path effi-
cient, P, is formulated using the statistical measure F1
score (F1 =2 %). F1 is bounded to [0, 1] and pro-
duces high values when both of its variables are high.
The two metrics of F1 should have, if not an identical,
an almost equal range. From the experimental results
of Table 8, tfn is bounded to [1, 1252.06] and ETT
in [1, 1.835]. For them to be used in F1, ETT must
be scaled down to an approxiplate range of [1, 2]. For

this reason, instead of t;, t,?;'l is used, with a range
of [1, 2.09]. Finally P, is computed by the following
formula:

1

S

01 ETT

Pe=2 4 (11)
o1 | ETT
tm

@ Springer

The second part of W), is a measure of the meth-
ods’ reliability and repetitiveness, i.e. the R.. For
that reason the RT and RD metrics will be used.
Since the maximum value of 1 is desired for R,
its form must be constructed in a way that when
RT and RD increase, R, will decrease and when
RT = RD = 0 the R. value will be equal to 1.
The following formula is used for the computation of
R.:

1

- (12)
1+ RT + RD

c

Finally, the third coefficient S, is a measure of
success, thus SR can be directly used. Since this coef-
ficient is of major importance, instead of SR, S_R2 will
be used:

S. = SR* (13)

J Intell Robot Syst (2016) 84:829-858 853
Table 6 Experimental results for simple and enhanced versions of algorithms for Environment 4

Environment/Method tm RT Dy, RD RC ETT SR

Env 4 - Simple USS 4.51 4.44 % 1691.32 0% 5.96 % 507.69 100 %
Env 4 - Enhanced USS 47.11 2.41 % 867.34 0 % 6.33 % 260.52 100 %
Env 4 - Simple RSS 80.44 3.08 % 1651.56 6.67 % 7.33 % 492.43 96.67 %
Env 4 - Enhanced RSS 243.59 1.62 % 1371.71 27.56 % 9.15 % 411.92 96.67 %
Env 4 - Simple HSS 13.96 422 % 2159.05 0 % 13.19 % 648.7 66.67 %
Env 4 - Enhanced HSS 246.91 11.28 % 1651.46 0 % 11.28 % 496 100 %
Env 4 - Simple UISS 0.61 13.68 % 1674.15 0% 5.71 % 502.53 100 %
Env 4 - Enhanced UISS 2.05 8.98 % 855.84 0% 6.32 % 257.06 100 %
Env 4 - Simple VG - - - - - - -

Env 4 - Enhanced VG - - - - - - -

Env 4 - Simple VGSS - - - - - - -

Env 4 - Enhanced VGSS 3613.32 343 % 936.07 0% 5.76 % 281.11 100 %
Env 4 - Simple RRT 999.38 67.81 % 1457.34 33.44 % 17.38 % 438.07 100 %
Env 4 - Enhanced RRT 890.14 2091 % 2587.55 29 % 21.8 % 7779 66.67 %
Env 4 - Simple RRT* 5304.37 86.73 % 1197.92 30.13 % 16.31 % 360.19 100 %
Env 4 - Enhanced RRT* 15214.6 122.31 % 1256.1 24.59 % 15.78 % 377.62 100 %
Env 4 - Simple MRRT 495.22 49.11 % 21374 4.96 % 22.66 % 642.35 100 %
Env 4 - Enhanced MRRT 3112.36 55.15 % 2126.3 6.35 % 21.09 % 637.44 98.33 %
Env 4 - Simple MIRRT 265.09 82.74 % 2269.37 6.44 % 22.62 % 679.75 98.33 %
Env 4 - Enhanced MIRRT 1478.82 65.82 % 224717 9.59 % 21.57 % 669.17 96.67 %
Env 4 -GVD 54.68 6 % 897.26 0% 9.39 % 269.65 100 %

Conclusively, the performance weight W, is calcu-
lated as follows:

1 1

o1 ETT 1 5

W, = P.-Re-Se = 2- i" - .1 o R_D.SR
o e PR

(14)

The performance metric for all methods, as well as
their rank are presented in Table 9.

Comments for each path planning method follow.
Initially, the simple and enhanced USS showcased
relatively small RT and RD values and their SRs
are 80 % and 100 % respectively. These results indi-
cate that the USS is a stable and trustworthy method
for deployment in OGMs. Specifically, the enhanced
USS has a normalized mean value of D,, equal to
1, indicating that (in average) this method achieved
the minimum path, in comparison to all others. Addi-
tionally, the small RC value proves that the produced

paths contain no redundant turns. On the other hand,
RSS methods achieved similar results regarding SR
but had much worse R Ds, due to the methods’ random
nature. Additionally, RC is slightly worse than USS’s,
as the samples are not uniformly dispersed in space.
The simple RSS execution times are lower than simple
USS’s, something not evident in their enhanced ver-
sions, since the enhanced RSS method requires more
time in obstacle dense environments for creating the
initial graph due to the random sampling. HSS, the
third space sampling method, achieved similar results
to the previous two methods. It should be noted that
the R D metric is O (or close to 0 in simple HSS), as the
method does not create random, but pseudo-random
samples, resulting in identical paths. RC and ETT
are slightly elevated in the simple HSS case, some-
thing fixed in the enhanced HSS. Finally, as UISS is
concerned, the results are almost identical to the ones
of the USS method. The only difference is detected
in the #,, and RT metrics. Specifically, the enhanced

@ Springer

854

J Intell Robot Syst (2016) 84:829-858

Table 7 Experimental results for simple and enhanced versions of algorithms for Environment 5

Environment/Method tm RT

Dy,

RD RC ETT SR

Env 5 - Simple USS - -

Env 5 - Enhanced USS 83.32 2.89 %
Env 5 - Simple RSS 45.8 0%
Env 5 - Enhanced RSS 624.47 1.26 %
Env 5 - Simple HSS - -

Env 5 - Enhanced HSS 473.52 1.24 %
Env 5 - Simple UISS - -

Env 5 - Enhanced UISS 9.47 4.88 %
Env 5 - Simple VG - -

Env 5 - Enhanced VG - -

Env 5 - Simple VGSS - -
Env 5 - Enhanced VGSS - -

Env 5 - Simple RRT - -
Env 5 - Enhanced RRT - _
Env 5 - Simple RRT* - _
Env 5 - Enhanced RRT* - _

Env 5 - Simple MRRT - -
Env 5 - Enhanced MRRT - -

Env 5 - Simple MIRRT - -
Env 5 - Enhanced MIRRT - -

Env5-GVD 69.86 29.81 %

4721.9

4878.26
4696.86

4741.95

4752.06

5203.62

0 % 431 % 472.41 100 %

0 % 11.01 % 486.53 5%
0.59 % 8.97 % 470.13 100 %

0% 11.74 % 474.78 100 %

0 % 4.34 % 475.42 100 %

0% 11.94 % 520.95 100 %

UISS achieved the lowest execution time comparing to
the other methods, fact that in conjunction to the 100
% SR and the very low ETT, predispose positively
about the method’s inferiority. The increased RT val-
ues can be explained by the extremely small execution
times.

As far as VGs are concerned, the results are disap-
pointing. Both simple and enhanced versions resulted
in high execution times and large path distances, ele-
vated RC and consequently high estimated time of
traversal. The worst is that the method succeeded only
once in three times. The enhanced method’s inferior-
ity in comparison to the simple one is mainly detected
inthe ET T’s slight decrease. The VG’s failure can be
attributed to the selected environments, as they are not
purely convex. On the other hand, the incorporation of
a sparse uniform sampling in VG improved the results.
Except from the simple VGs, where the execution
times were raised, D,,, RT, RD and ET T decreased
by far. Furthermore, the success rate almost doubled,
increasing from 33.33 % to 60 %. The enhanced

@ Springer

version of VGSS led to much better results in all
metrics when compared to the simple one. Specifi-
cally the execution times decreased to 1/4 of the initial
value, the path distance and RC were lower (fact that
decreased the ET T') and the success rate increased to
80 %. It must be stated that the ET T’s normalized
mean is close to 1 and therefore the produced paths
approach the optimal solution.

Proceeding to the RRTs, the simple RRT method
had higher ¢, than the PRMs but lower than VGs.
Additionally the success rate has reached 80 %. An
important observation is that for the first time RC
surpasses 15 %, something expected due to the tree’s
structure. Additionally, even though the enhanced
RRT achieved slightly lower execution times, it failed
to increase the success rate and decrease ETT.
The RRT* method reached an 80 % success rate
both in the simple and enhanced form. Its specific
characteristic is the high execution times needed for
the path improvement step, as described in para-
graph 4.3.2, though the values were excessive in

J Intell Robot Syst (2016) 84:829-858

855

Table 8 Normalized mean values of metrics on all five environments

Method Im RT D RD RC ETT SR
Simple USS 48.82 9.64 % 1.157 0.118 % 8.1% 1.189 80 %
Enhanced USS 10.81 7.32 % 1 0% 7.55 % 1 100 %
Simple RSS 26.75 1.97 % 1.102 1.632 % 8.37 % 1.139 80.33 %
Enhanced RSS 71.69 4.07 % 1.057 6.434 % 10.41 % 1.094 99.33 %
Simple HSS 53.88 8.46 % 1.214 0.118 % 12.43 % 1.279 73.33 %
Enhanced HSS 59.65 5.97 % 1.092 0% 11.54 % 1.144 100 %
Simple UISS 46.46 1572 % 1.156 0.118 % 8.142 % 1.187 80 %
Enhanced UISS 1 16.49 % 1.004 0% 7.418 % 1.003 100 %
Simple VG 1250.69 56.62 % 1.585 10.54 % 14.716 % 1.722 3333 %
Enhanced VG 1252.06 55.44 % 1.516 10.54 % 14.452 % 1.613 3333 %
Simple VGSS 1610.31 32.39 % 1.372 6.81 % 9.43 % 1.385 60 %
Enhanced VGSS 408.54 9.142 % 1.072 0.118 % 6.09 % 1.054 80 %
Simple RRT 147.68 32.15% 1.232 10.896 % 15.6 % 1.309 80 %
Enhanced RRT 131.32 19.97 % 1.382 5232 % 19.06 % 1.547 73.33 %
Simple RRT* 518.25 55.56 % 1.099 8.012 % 1325 % 1.099 80 %
Enhanced RRT* 1217.53 49.45 % 1.125 8.062 % 13.64 % 1.139 80 %
Simple MRRT 84.66 28.53 % 1.513 8.08 % 22.89 % 1.755 80 %
Enhanced MRRT 278.15 27.26 % 1.547 10.28 % 23.68 % 1.807 79.67 %
Simple MIRRT 68.32 4329 % 1.694 12.24 % 24.12 % 1.835 79.67 %
Enhanced MIRRT 157.82 61.34 % 1.565 9.41 % 24.61 % 1.833 79.33 %
GVD 21.089 10.66 % 1.099 0 % 9.558 % 1.099 100 %

the enhanced approach. Nevertheless, t,’s increase
assisted towards constructing a nearly-optimal path,
as can be derived from the D,, and ETT metrics.
As far as MRRTs are concerned, we initially observe
that the execution times decreased in comparison to
RRT and RRT* (at least in their simple forms), some-
thing expected. The SRs were kept to a 80 % level
but RT, RD and RC were increased. Furthermore,
the mean path length was quite high and inductively
EET increased too. The high values of RT and RD
can be explained if we consider the method’s ran-
domness and the high values of D,, and RC exist
due to the new structure characteristics, produced by
the merging of different RRTs. Specifically, the final
structure is highly “unstructured” regarding its cre-
ation due to the randomness of the individual RRTs
merging. The same comments apply for the MIRRTS,
even though the execution time decreased compared to
MRRTs.

Finally, as the space skeletonization method is con-
cerned, GVD had almost constant execution times for

all environments, indicative of the method’s indepen-
dence to the environmental obstacle density. GVD’s
t, is quite lower than RRTs, VGs and some of the
PRM algorithms. Additionally RD = 0, showcasing
the method’s stability regarding the produced path’s
distance. Its two more noteworthy advantages are the
100 % success rate, as well as the low estimated time
of traversal resulted from the low RC and D,, values.
On the other hand, the method’s main drawback is the
increased D,, in cases of low environmental obstacle
density, as the produced GVD is created in the middle
of the unoccupied space.

Generally, the evaluation coefficients showcase
the fact that the Space Sampling methods are the
best choice for path planning in two dimensional
occupancy grid maps. Specifically, the enhanced uni-
form incremental space sampling achieved the 1%°
rank among all methods, as it has a success rate of
100 %, small path length and no unnecessary path
turns. In the 29, 4" and 5" place, the enhanced ver-
sions of Uniform, Random and Halton space sampling

@ Springer

856

J Intell Robot Syst (2016) 84:829-858

Table 9 Evaluation coefficients and rank of path planning methods

Method P. R, S, W, Rank
Enhanced UISS 0.9984 0.8584 1.0000 0.8571 15
Enhanced USS 0.8815 0.9318 1.0000 0.8214 ond
GVD 0.8146 0.9037 1.0000 0.7362 34
Enhanced HSS 0.7550 0.9436 1.0000 0.7124 4ih
Enhanced RSS 0.7612 0.9049 0.9867 0.6797 5th
Simple RSS 0.7910 0.9642 0.6454 0.4927 6!
Simple USS 0.7506 09111 0.6400 04377 7ih
Simple UTSS 0.7534 0.8633 0.6400 04162 g!h
Enhanced VGSS 0.6949 09152 0.6400 0.4070 gth
Simple HSS 0.7222 0.9210 05378 03577 100"
Simple RRT 0.6762 0.6990 0.6400 03025 11t
Simple MRRT 0.6036 0.7320 0.6400 0.2828 12t
Enhanced RRT 0.6299 0.7987 05378 0.2705 13t
Simple RRT* 0.6741 0.6113 0.6400 0.2637 14t
Enhanced MRRT 0.5614 0.7270 0.6347 0.2590 15t
Enhanced RRT* 0.6301 0.6349 0.6400 0.2560 16"
Simple MIRRT 0.5951 0.6430 0.6347 0.2428 17t
Enhanced MIRRT 0.5727 0.5856 0.6294 02111 18
Simple VGSS 05751 0.7184 0.3600 0.1487 19t
Enhanced VG 0.5474 0.6025 0.1111 0.0366 207
Simple VG 05315 0.5982 0.1111 0.0353 215

follow. This fact indicates that the enhanced versions
increased the methods’ potential of creating efficient
paths by far. It should be noted that GVD holds the
374 place as it is an extremely stable method with 100
% success rate. It must also be noted that enhanced
VGs were placed in the 9" position due to their low
path distance and rotation coefficient. From 117 to
18" place, the RRT methods exist. In these cases,
the enhanced methods did not manage to improve the
results. The main reason is that the R, coefficient
decreased the RRTs expansion distance according to
the environmental obstacle density. Thus, the RRT
expansion itself was significantly delayed, as more
iterations were needed towards for the algorithm’s
convergence, i.e. to create the path from the robot pose
to the goal. Finally, VGs hold the lowest rank, as their
SR was very low and the path length quite high.

6 Conclusions - Future Work

In this paper, path planning methods for deploy-
ment on two dimensional Occupancy Grid Maps were

@ Springer

presented. The methods described belonged to four
heterogeneous algorithmic families, the Space Sam-
pling (PRMs), the Visibility Graphs, the Rapidly
exploring Random Trees and the Space skeletoniza-
tion. The algorithms were tested in five OGMs with
different characteristics and seven performance and
quality metrics were used. The contributions of this
paper include the definition of several path plan-
ning benchmarking metrics, several path planning
methods’ comparison, and their enhancement via a
environmental obstacle density coefficient. Further-
more, some novelties were introduced regarding in
specific methods (such as UISS) which accelerated
their execution, while preserving their quality or
results.

The results indicated that the Space sampling meth-
ods are the optimal choice for performing path plan-
ning procedures in two dimensional OGMs, since they
had a great success rate, small execution times and
the paths produced were short in length and lacked
excessive turns. The space skeletonization method
(GVD) produced great results, as it had a 100 % suc-
cess rate and constructed efficient paths, though its

J Intell Robot Syst (2016) 84:829-858

857

use is not suggested in obstacle free environments.
Additionally, the RRT family resulted in medium
quality results, specially in obstacle dense spaces.
Thus it can be inferred that the RRTs are not optimal
for path creation in two-dimensional OGMs, in oppo-
sition with high dimensional spaces, where RRTs are
primarily used. Finally, Visibility Graphs resulted in
poor quality paths and low success rates, as the exper-
imental environments were not sparse, nor purely
convex. The introduction of the density coefficient D,
enhanced the efficiency of the Space Sampling and
Visibility Graphs algorithms, but resulted in quality
reduction in the RRTs cases. Finally, the performance
weight (W) succeeded in objectively evaluate the
methods, as the final weights were in compliance with
both the experimental results, as well as the intuitive
evaluation performed by observation.

Regarding future work, many expansions in this
paper can be made. Initially, the survey can be
expanded to three, or even N dimensional spaces,
where the specific methods’ properties change. Fur-
thermore, the algorithms can be tested in a greater
variety of environments, some of which should have
different obstacle densities presented in the same
areas. This would affect the enhanced methods’
approach, as new and more intelligent metrics should
be introduced. A way to eliminate our major assump-
tion (and at the same time limitation) concerning the
environmental obstacle homogeneity, would be to pre-
process the map at hand and extract local Density
Coefficients, in order for the methods to have different
properties in each region.

Also it would be useful to introduce alteration pro-
cedures like final path smoothing in the PRMs case or
create the RRTs using motion constraints, in order to
expand the survey. Finally, different approach must be
followed in the VG and RRT families in order for the
enhanced methods to produce much better results in
comparison to the standard ones.

References

1. Lozano-Prez, T., Wesley, M.A.: An algorithm for planning
collision-free paths among polyhedral obstacles. Commun.
ACM 22(10), 560-570 (1979)

2. Ghosh, S.K.: Visibility Algorithms in the Plane,
ISBN:9780521875745. Cambridge University Press (2007)

3. Ghosh, S.K., Goswami, P.P.: Unsolved problems in
visibility graphs of points, segments and polygons. In:

10.

11.

12.

14.

15.

16.

17.

19.

. Geraerts, R.J.,

Proceedings of India-Taiwan Conference on Discrete Math-
ematics, Taipei, pp. 44-54 (2009)

. Kim, J., Kim, M., Kim, D.: Variants of the quantized visi-

bility graph for efficient path planning. Adv. Robot. 25(18),
2341-2360 (2011)

. Bhattacharya, P., Gavrilova, M.L.: Voronoi diagram in opti-

mal path planning. In: 4th International Symposium on
Voronoi Diagrams in Science and Engineering, 2007. ISVD
’07, pp. 38-47

. Garrido, S., Moreno, L., Abderrahim, M., Martin, F.: Path

Planning for Mobile Robot Navigation using Voronoi Dia-
gram and Fast Marching. In: 2006 IEEE/RS]J International
Conference on Intelligent Robots and Systems, pp. 2376—
2381 (2006)

. Ok, K.-C., Ansari, S., Gallagher, B., Sica, W., Dellaert,

F., Stilman, M.: Path planning with uncertainty: Voronoi
uncertainty fields. In: 2013 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4596-4601. IEEE
(2013)

. Geraerts, R., Overmars, M.H.: A comparative study of

probabilistic roadmap planners. In: Workshop on the algo-
rithmic foundations of robotics, pp. 43-57 (2002)
Overmars, M.H.A.: Sampling Tech-
niques for Probabilistic Roadmap Planners. Intelligent
Autonomous Systems 8, 600-609 (2004)

Kavraki, L.E., Latombe, J.-C.: Probabilistic Roadmaps
for Robot Path Planning, Practical Motion Planning in
Robotics: Current Approaches and Future Directions,
pp- 33-53. Wiley (1998)

Kavraki, L.E., Kolountzakis, M.N., Latombe, J.-C.: Analy-
sis of probabilistic roadmaps for path planning. IEEE Trans.
Robot. Autom. 14(1), 166-171 (1998)

Kavraki, L.E., Svestka, P.,, Latombe, J.-C., Overmars,
M.H.: Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4), 566-580 (1996)

. Laumond, J.-P., Nissoux, C.: Visibility-based probabilis-

tic roadmaps for motion planning. In: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1999. IROS °99, vol. 3, pp. 1316-1321
(1999)

Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM.
In: Proceedings of the IEEE International Conference on
Robotics and Automation, 2000. ICRA °00, vol. 1, pp. 521-
528 (2000)

Hsu, D., Sanchez-Ante, G., Sun, Z.: Hybrid PRM Sampling
with a Cost-Sensitive Adaptive Strategy. In: Proceedings of
the 2005 IEEE International Conference on Robotics and
Automation 2005, ICRA 2005, pp. 3874-3880

Karaman, S., Frazzoli, E.: Sampling-based algorithms for
optimal motion planning. Int. J. Robot. Res. 30(7), 846-894
(2011)

Marble, J.D., Bekris, K.E.: Asymptotically near-optimal is
good enough for motion planning. In: International Sympo-
sium on Robotics Research (2011)

. Marble, J.D., Bekris, K.E.: Towards small asymptotically

near-optimal roadmaps. IEEE (2012)

Li, Y, Li, D., Maple, C., Yue, Y., Oyekan, J.: K-Order Sur-
rounding roadmaps path planner for robot path planning. J.
Intell. Robot. Syst. 75(3-4), 493-516 (2014)

@ Springer

858

J Intell Robot Syst (2016) 84:829-858

20. LaValle, S.M.: Rapidly-exploring random trees: A New
Tool for Path Planning. TR 98-11, Computer Science
Dept., Iowa State University (1998)

21. Bruce, J., Veloso, M.: Real-time randomized path planning
for robot navigation. In: IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, vol. 3, pp. 2383—
2388 (2002)

22. Martin, S.R., Wright, S.E., Sheppard, J.W.: Offline and
Online Evolutionary Bi-Directional RRT Algorithms for
Efficient Re-Planning in Dynamic Environments (2007)

23. Karaman, S., Frazzoli, E.: Incremental Sampling-
based Algorithms for Optimal Motion Planning coRR
(2010)

24. Nasir, J., Islam, F., Malik, U., Ayaz, Y., Hasan, O,
Khan, M., Muhammad, M.S.: RRT*-SMART: a rapid
convergence implementation of RRT*. Int. J. Adv. Robot.
Syst., 10 (2013)

25. Jaillet, L., Corts, J., Simon, T.: Sampling-based path plan-
ning on configuration-space costmaps. IEEE Transactions
on Robotics 26(4), 635-646 (2010)

26. Guitton, J., Farges, J.-L., Chatila, R.: Cell-RRT: Decompos-
ing the environment for better plan. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2009.
IROS 2009, pp. 5776-5781

27. Jacobs, S.A., Stradford, N., Rodriguez, C., Thomas, S.,
Amato, N.M.: A scalable distributed RRT for motion plan-
ning. In: 2013 IEEE International Conference on Robotics
and Automation (ICRA), pp. 5088-5095, p. 2013. IEEE

28. Felzenszwalb, P., Huttenlocher, D.: Distance transforms of
sampled functions Cornell University (2004)

29. Barraquand, J., Latombe, J.-C.: Robot motion planning:
A distributed representation approach. Int. J. Robot. Res.
10(6), 628-649 (1991)

E. G. Tsardoulias has obtained his doctorate and engineer-
ing diploma from the Department of Electrical and Computer
Engineering at Aristotle University of Thessaloniki (AUTH),
Greece, in 2013 and 2007 respectively. His working experience
includes participating in the “Eudoxus” project, a web appli-
cation that unifies the Greek University secretariats, enables
the easy distribution of books and the on-line payment of
the publishing houses, with the collaboration of Ministry of
Education. His research interests are focused in Robotics and
specifically in Autonomous Robots. Some of the topics involved
are autonomous navigation, SLAM (Simultaneous Localization
And Mapping) and multi-robot exploration / full coverage. In
addition, from 2009 till now, is the head manager of the artificial
intelligence group of the robotics team P.A.N.D.O.R.A., which
operates at the Department of electrical and computer engineer-
ing, Aristotle University of Thessaloniki, and is an IEEE branch
also. Team P.A.N.D.O.R.A. has participated in the national
competition RoboCup- RoboRescue in China, Graz-Austria,
Istanbul-Turkey and Eindhoven-Netherlands. Finally, he has
published scientific papers in magazines such as Micropro-
cessors and Microsystems and Journal of Intelligent Robotics,
as well as presentations in conferences like ICAPS. His cur-
rent occupation is in the FP7 funded RAPP project, involving
technical coordination, robotics expertise and development.

@ Springer

A. Iliakopoulou holds a Master’s degree in Computer Science
from the Fu Foundation of Engineering and Applied Sciences at
Columbia University in the city of New York and an engineer-
ing diploma from the Department of Electrical and Computer
Engineering at Aristotle University of Thessaloniki (AUTH),
Greece. Her working experience includes both industry driven
and research projects. As an undergrad, she participated in
the robotics team P.A.N.D.O.R.A. developing algorithms for
autonomous robot navigation in unknown spaces. She partic-
ipated in the national competition RoboCup-RoboRescue in
Istanbul-Turkey in 2010. After her graduation from Aristotle
University of Thessaloniki (AUTH), Greece, she worked as a
Research Assistant in Center for Research & Technology Hel-
las (CERTH), Greece, where she contributed to “SocialSensor”,
an international project, which aimed at building an applica-
tion that discovers trends, events, and interesting media content
in social media. Ms Iliakopoulou has also been a Technology
Intern at the The New York Times, developing tools for the
newspaper’s newsroom that facilitate computing data analytics
of their content. In May 2016, she received the award of excel-
lence in Computational Journalism from the Brown Institute
for Media Innovation and the Tow Center for Digital Journal-
ism at Columbia University for her Master’s thesis, “Building
an Automated Tagger System.” Ms. Iliakopoulou will continue
her career at The New York Times in the position of Software
Engineer.

A. Kargakos graduated from Electrical and Computer Engi-
neering Dpt. of Aristotle University of Thessaloniki (AUTH).
He is a research assistant in the Information Technologies Insti-
tute of Centre for Research and Technology Hellas (CERTH-
ITI) since 2013. His research interests include fields such as
robotics and artificial intelligence. He participated in robotics
team P.A.N.D.O.R.A. (AUTH) and European research projects
as CloPeMa and Ramcip (CERTH-ITI).

L. Petrou received his Diploma of Electrical Engineering from
the University of Patras, Greece, in 1973, the M. Sc. Degree
in Theory and Practice of Automatic Control from U.M.LS.T.,
Manchester, U.K. in 1975 and the Ph.D. in Electrical Eng.,
from Imperial College, London, U.K. in 1979. Currently, Dr.
Petrou is an Associate Professor at the Electrical and Computer
Engineering Department of the Aristotle University of Thessa-
loniki, Greece. His research interests include Microprocessor
applications, autonomous mobile robots, intelligent control of
waste water treatment plants, reconfigurable embedded sys-
tems, evolutionary computation, fuzzy logic and neural network
control systems, sensor networks. His work has been published
in over 40 papers, book chapters, and conference publications.
Currently he is Team Leader of the PANDORA (Program for
the Advancement of Non Directed Operating Robotic Agents)
Robotics Research Team of the Electrical and Computer Engi-
neering Department of the Aristotle University of Thessaloniki,
(http://pandora.ee.auth.gr) and participates in the EDUSAFE
Marie Curie ITN project of CERN.

http://pandora.ee.auth.gr

	A Review of Global Path Planning Methods for Occupancy Grid Maps Regardless of Obstacle Density
	Abstract
	Introduction
	Related Work
	Metrics - Experiment Environments
	Performance Metrics
	Mean Execution Time - tm
	Relative Standard Deviation (RSD) of Execution Time - RT
	Mean Path Distance - Dm
	Relative Standard Deviation (RSD) of Path Distance - RD
	Path Anomaly - RC
	Estimated Time of Traversal - ETT
	Success Rate - SR

	Experimental Environments
	Environment 1 - Free Space
	Environment 2 - Sparse Obstacles
	Environment 3 - Dense Convex Obstacles
	Environment 4 - Dense Convex Obstacles with Corridors
	Environment 5 - Maze - Like Environment

	Map Container Specifications

	Planning Methods
	Probabilistic RoadMaps (PRMs)
	Uniform Space Sampling - USS
	Random Space Sampling - RSS
	Space Sampling with Halton Sequences - HSS
	Uniform Incremental Space Sampling - UISS

	Visibility Graphs
	Simple Visibility Graph - VG
	Visibility Graph with Sparse Uniform Sampling - VGSS

	Rapidly Exploring Random Trees (RRTs)
	Standard RRT
	RRT *
	Multiple RRTs - MRRT
	Multiple Incremental RRTs - MIRRT

	Space Skeletonization
	Generalized Voronoi Diagram - GVD

	Experimental Results
	Conclusions - Future Work
	References

