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Abstract We investigate learning of flexible robot
locomotion controllers, i.e., the controllers should be
applicable for multiple contexts, for example differ-
ent walking speeds, various slopes of the terrain or
other physical properties of the robot. In our experi-
ments, contexts are desired walking linear speed of the
gait. Current approaches for learning control parame-
ters of biped locomotion controllers are typically only
applicable for a single context. They can be used for
a particular context, for example to learn a gait with
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highest speed, lowest energy consumption or a com-
bination of both. The question of our research is, how
can we obtain a flexible walking controller that con-
trols the robot (near) optimally for many different
contexts?We achieve the desired flexibility of the con-
troller by applying the recently developed contextual
relative entropy policy search(REPS) method which
generalizes the robot walking controller for differ-
ent contexts, where a context is described by a real
valued vector. In this paper we also extend the con-
textual REPS algorithm to learn a non-linear policy
instead of a linear policy over the contexts which call
it RBF-REPS as it uses Radial Basis Functions. In
order to validate our method, we perform three sim-
ulation experiments including a walking experiment
using a simulated NAO humanoid robot. The robot
learns a policy to choose the controller parameters for
a continuous set of forward walking speeds.

Keywords Learning humanoids robot locomotions ·
Generalizing robot skills · Stochastic search ·
Contextual relative entropy policy search · Nonlinear
policies · Nao robot

1 Introduction

In the humanoid robotics research field, one of the
major tasks is to design a locomotion controller for
the biped robot that be optimally applicable for mul-
tiple locomotion tasks such as walking with different
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desired speeds. We characterize a task with a context
vector s. The context describes all variables which
do not change during the execution of the task but
might change from task to task. For example through-
out this paper, we refer to context as a combination of
following three items:

1. The walking objective such as the walking speed.
2. The physical properties of the robot such as the

mass
3. The environmental states such as the friction,

slope and gravity.

There have been several parametrized walking con-
trollers proposed in the literature [4, 8, 9, 11, 13,
15] that potentially, with appropriately set parame-
ters, can control the robot for different contexts. One
of the key problems is now to find the optimal gait
controller parameters for a given context. There are
many examples of optimizing the control parameters
of biped locomotion controllers, however, these exam-
ples usually optimize a parameter set for a single
context, for example, optimize a gait for highest speed
[3, 21, 22], lowest energy consumption or both [1].
Black box optimization methods such as evolution-
ary strategies, e.g. CMA-ES [25], have been employed
extensively for gait optimization [5–7, 12, 21]. How-
ever, these algorithms fail to generalize the optimized
gait to different contexts. In order to generalize the gait
to, for example, different walking speeds, typically the
parameters are optimized for several target contexts
independently. Subsequently, regression methods are
used to generalize the optimized gaits to a new, unseen
context [6, 16]. Although such approaches have been
used successfully, they are time consuming, ad-hoc
and inefficient in terms of the number of needed train-
ing samples as optimizing the controller parameters
for different contexts and the generalization between
optimized parameters for different contexts, are two
independent processes. Hence, we cannot reuse data-
points obtained from optimizing a gait for one context
to improve and accelerate the optimisation of a gait
context. Given these limitations, for the first time,
we investigate the application of contextual policy
search [2] to efficiently optimize and generalize the
parameters of a walking controller for multiple unseen
contexts such as forward walking speeds. In this paper,
we present a hierarchical structure of walking con-
troller, that is composed of two main parts, which are
a lower level walking policy an upper level policy.

We model the lower level walking policy as a ZMP
based walking controller that models the dynamics of
the robot as an inverted pendulum model augmented
with a spring model [17]. The upper level walking pol-
icy sets the parameters of the lower level policy for
a given context. We use contextual relative entropy
policy search (REPS) [2, 20], to learn the upper-level
walking policy π(θ |s) that chooses the parameters θ

of the lower level walking policy according to the
desired input context s. REPS typically learns a linear
upper level policy. We extend the algorithm to learn a
non-linear policy by using radial basis functions and
we call the the algorithm RBF-REPS. We will show
that RBF-REPS outperforms standard REPS in our
experiments. We also investigate using two different
constraint handling methods for learning the upper
level policy. Using our proposed structure of the walk-
ing controller, we successfully learn an upper level
walking policy that generalizes the lower level walk-
ing policy for different forward walking speeds. The
reminder of the paper is organized as follows. The next
section introduces our proposed lower level walking
policy. Subsequently we explain the learning method
for the upper level policy which sets the parameters
of our lower level walking policy given a context. The
results and discussions will be presented in the exper-
iments section and finally, we conclude the paper with
a conclusion and future work.

2 Parametrized Walking Controller

In this section, we explain the parametrisation of our
lower level walking policy which is a ZMP-based
omnidirectional walking engine [8, 11, 13, 15].

2.1 Overview of Walking Engine

The walking engine is omnidirectional in the sense
that the robot can potentially walk towards any desired
direction. The origin of the robot base-frame is on
the torso of the robot, with the x-axis pointing for-
ward, y-axis pointing to the left, and z-axis pointing
up. Similar to [8], we assume that the position of the
center of mass (CoM) and the base-frame are iden-
tical. There are different methods to synthesize the
walking motion.We use one of the popular approaches
that generates Cartesian trajectories for the CoM and
the feet of the robot given planned footsteps [8, 11,
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13]. The footstep planner gets as an input the desired
CoM displacement along x-axis and y-axis for a sin-
gle step and using this input, plans the final position
of the feet and the final position of the CoM in the
Cartesian space. Knowing the initial and end position
of the CoM for one single step, the walk engine gen-
erates the CoM trajectories such that the zero moment
point (ZMP) stability criterion is fulfilled, i.e., the
ZMP stays within support polygon.1 We use Bezier
curves to generate the trajectory of the swing foot
to reach the computed foot end position. Given the
CoM trajectory (Which is same as robot base-frame
trajectory in global fram) and the swing foot trajec-
tory (in global frame) we use inverse kinematics to
compute the desired joint positions. We also use a
posture controller that ideally keeps the trunk of the
robot upright to avoid the robot to fall. Finally, we
use a PD controller to convert the desired joint posi-
tions to proper motor commands. Hence, the lower
level walking policy is decomposed in several mod-
ules. Figure 1 depicts the role of each module and their
interactions. Each module has a few parameters to set
which are listed in Table 1. In the following, a brief
description of each module is given. Please refer to
[17] for details of our omnidirectional walking engine.
Next-Step Position Generator - Based on the desired
CoM displacement along x-axis (xstep) and along y-
axis (ystep) it computes the position of the swing foot
at the end of the step by taking to account foot reach-
ability and feet collision, please refer to [17] for more

1Support polygon is the convex hull of the feet

Table 1 Open parameters of lower level walking policy

Notation Description

A(m) Oscillation amplitude of the spring

x0(m) Rest position of the spring (initial

height of the robot)

zstep(m) Maximum height of The Swing Foot

From The Ground

T (s) Duration of the step

roffset(Degree) Torso roll Offset

γtilt Feedback gain for The torso tilt

γroll Feedback gain For The torso roll

xstep(m) The CoM Step Size along The desired

direction

φDSP(s) Duration of double support phase

σstep(m/s) The factor of how fast the CoM step size

increases or decreases

details. Please note that for direct walking which is the
case of this paper, the (ystep) is zero.

Swing Foot Trajectory Generator - This module is
responsible to generate a trajectory for the swing
foot such that it reaches its next position that is
given by Next-Step Position Generator module. The
idea is to smoothly move the swing foot from the
current position to the final foot step position, ide-
ally with zero lifting and landing speed. Cubic
Bezier Curve is used to generate such a desired
smooth trajectory. The parameter of this module
to set is zstep which is the maximum height of the
swing foot during the movement.

COM Trajectory Generator - In this module we
generate the CoM trajectories for all three Carte-
sian coordinates i.e., The trajectories along x.axis,
y-axis and z-axis. We use a 3D-Inverted pendulum
model(IPM) augmented with springs as a simpli-
fied model of the robot (Fig. 2) with the ZMP
criterion as stability indicator to generate CoM tra-
jectories from its initial position to the calculated
end CoM position. The parameters of this mod-
ule to be set are A, x0, T and φDSP which will
be explained in the Section 2.2. For more detailed
explanation refer to [17].

Robot Posture Controller - This module maintains
the stability of the robot by controlling the torso
to have a reference roll and tilt. In our case the
reference tilt of the torso is zero. However we
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Fig. 2 We use an inverted
pendulum model
augmented with a spring
which generates movements
in the x − z and y − z planes

empirically found that if robot be rolled forward
to some extend it can be helpful. We still need to
find that how much robot should be rolled forward.
Therefore the reference roll of the torso roffset is one
of the open parameters. This module tries to keep
the tilt and roll of the robot torso same as the ref-
erenced ones using tilt and roll of the robot from
sensors. The parameters γtilt and γroll are the other
open parameters of this module which take care of
correcting for undesired tilt and roll of the torso.
Please refer to [24] for details.

Inverse Kinematics Solver - This module computes
the reference joint angles based on the relative posi-
tion of the feet to the torso frame. Please refer to
[14] for details.

2.2 CoM Trajectory Generator

To generate the CoM trajectories, we model the robot
as a 3D inverted pendulum model augmented with a
spring as shown by the Fig. 2. It is a single particle
system that uses an undamped spring to model the
dynamics of CoM along z-axis. We generate the Carte-
sian trajectories of the CoM such that Zero Moment
Point(ZMP) [10] always stays under the support foot.
Once we have the initial and final positions of the feet
and CoM, we can define the desired reference ZMP
trajectory
[

xZMP (t)

yZMP (t)

]
.

We choose the reference ZMP to be at the centre of
the supporting foot during the single support phase

and linearly move towards to the centre of the other
foot during double support phase [17]. Assuming the
model in Fig. 2 the relationship between the position
of the ZMP and the CoM can be obtained by

xZMP = xCoM − ẍCoM.zCoM

g + z̈CoM
, (1)

yZMP = yCoM − ÿCoM.zCoM

g + z̈CoM
. (2)

The variables zCoM and z̈CoM denote the position and
acceleration along z-axis. The zCoM and z̈CoM trajec-
tories are determined by the dynamics of the spring
with the resulting movment

zCoM(t) = x0 +A cos(ωt +φ), s.t. ω = 2π

T
, (3)

z̈CoM(t) = −Aω2 cos(ωt + φ), s.t. ω = 2π

T
. (4)

Similar to walking, it is a periodic motion with ampli-
tude A which determines the desired amount of CoM
displacement along z-axis around spring rest position
x0 which can be interpreted as the initial height of the
torso, the period T is the duration of a single oscil-
lation, which has the same duration of a single step
and φ is the phase of the motion which determines
the starting position of zCoM at the beginning of the
step. Throughout this paper we set φ to 0. The next
problem is how to generate the xCoM and yCoM trajec-
tories on-line for one step given the zCoM, z̈CoM, xZMP,
yZMP trajectories and the initial position of the x0 and
terminal position of the CoM xn for a single step.
This problem is the inverse problem of Eqs. 1 and 2.
Similar to [13], we use a central difference approxi-
mation to discretize the second derivative of?the xCoM,
i.e.,

ẍCoM(t) = xCoM(t + ζ ) − 2xCoM(t) + xCoM(t − ζ )

ζ 2

= xCoM(k + 1) − 2xCoM(k) + xCoM(k − 1)

ζ 2
,

(5)

where ζ is the sampling period and k = 1 . . . n is
the index of the time-discretized samples with n total
number of samples which depends on sampling period
T . On the other word, as we always solve for one step,
we can infer that

n = T

ζ
,



J Intell Robot Syst (2016) 83:393–408 397

where T is duration of one step. Note that we use the
same sampling period ζ to discretize the given zCoM ,
z̈CoM , xZMP , yZMP trajectories. Integrating (5) into
(1), we obtain

xZMP(k) = a(k)xCoM(k − 1) + b(k)xCoM(k)

+c(k)xCoM(k + 1),

s.t. ∀ k = 1...n c(k) = a(k) = −zCoM(k)

(g − z̈CoM(k)) T 2
,

a(1) = 0,

b(k) = 1 − 2a(k), c(n) = 0. (6)

This Equation is a tridiagonal system for n unknowns
xCoM(k), k = 1 . . . n. For such a system, the Thomas

algorithm [13] can find the solutions efficiently in
O(n) operations and can hence be used for real-time
gait generation. To solve this system, we first rear-
range the coefficients. New coefficients are denoted
with primes:

c(k)′ =
{
0, k = 1

c(k)
b(k)−a(k−1)c(k−1)′ k = 2, 3, . . . , n − 1

(7)

xZMP (k)′ =
{

x0, k = 1
xZMP (k)−a(k)xZMP (k−1)′

b(k)−a(k)c(k−1)′ k = 2, 3, . . . , n − 1

(8)

The solution is then obtained by back substitution, i.e.,
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Fig. 3 High level view of learning an upper level policy for the
lower level walking controller. As the workflow shows, the pol-
icy search component generates parameters θ for a particular
context. The lower level walking policy uses this parameters to
generate the joint trajectories. This joint trajectories are applied

on the robot and based on the performance indexes, a reward
value is computed. Once enough number of samples are eval-
uated, policy search algorithm updates the parameters of the
upper level policy. This process iterates till algorithm converges
to a solution

xCoM(k)′ =
{

xn, k = n,

xZMP(k)′ − c(k)′xCoM(k + 1), k = n − 1, n − 2, . . . , 1.
(9)

Using the same method, we can obtain the yCoM tra-
jectory. Table 1 lists the open parameters of the lower
level policy. In the next section we discuss a method
to learn an upper level policy which sets the open
parameters given a context (Fig. 3).

3 Learning the Upper Level Policy

Given the lower level policy, we would like to obtain
an upper level policy π(θ |s) that sets the parame-
ters θ (see Table 1) of the lower level walking policy

given a context s. For this purpose, we use contex-
tual REPS [2, 20]. Contextual REPS is a stochastic
search algorithm that maintains a Gaussian search dis-
tribution π(θ |s) over the parameter vector θ condition
on context s, which we denote as upper level policy.
This policy is used to create samples θ [i] (i is the
index of the sample) of the parameter vector θ for a
given context sample s[i]. Subsequently, the perfor-
mance R[i] ∼ p(R|θ [i], s[i]) of [s[i] θ [i]] is evaluated.
Using the samples [s[i] θ [i] R[i]], a weight d[i] for
each sample is computed that is used to estimate a
new upper-level Gaussian policy by using a weighted
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maximum likelihood (ML) estimate. Algorithm 1
shows a compact representation of the method.

Algorithm 1 Contextual policy search algorithm

Repeat

Generate context samples {s[i]}k=1...N

Sample parameters {θ [i]}k=1...N from π(θ |s)
given context samples {s[i]}k=1...N

Evaluate the reward R[i] of each sample in the
sample set {s[i], θ [i]}k=1...N

Use the data set {R[i]}k=1...N to compute a
weight d[i] for each sample

Use the data set {s[i], θ [i], d[i]}k=1...N to update
the upper level policy π(θ |s)

Until upper level policy π(θ |s) converges

3.1 Contextual Relative Entropy Policy Search

Contextual REPS is an information theoretic policy
search method [2]. The main insight of using infor-
mation theory is to bound the relative entropy, also
called Kullback-Leibler divergence, between two sub-
sequent policies. By limiting the relative entropy, we
can control the information loss of the policy update
and the policy will keep the information about what
areas of the parameter space still need to be explored.
Contextual REPS directly searches in the parameter
space of the lower level controller by maintaining
and updating a stochastic policy which is typically
modelled as a multivariate Gaussian distribution. The
upper-level policy π(θ |s) is conditioned on the con-
text vector s, which describes the current task. We
now want to optimize the following performance
criteria

max
π

∫∫
μ(s)π(θ |s)Rsθdθds,

s.t.
∫

μ(s)KL (π(θ |s)||q(θ |s)) ds ≤ ε, ∀s : 1

=
∫

π(θ |s)dθ . (10)

where μ(s) denotes the distribution over the context
which is specified by the task and Rsθ denotes the
expected performance when evaluating parameter vec-
tor θ in context s. This optimization problem can be

solved efficiently by the method of Lagrangian multi-
pliers [19]. The closed form solution for policy π(θ |s)
is given by

π(θ |s) ∝ q(θ |s) exp (Rsθ/η) .

where η is a Lagrangian multiplier that sets the tem-
perature of the soft-max distribution given in the
previous equation. The temperature parameter η can
be found efficiently by optimizing the dual function

g(η) = ηε + η

∫
μ(s) log

(∫
q(θ |s) exp

(
Rsθ

η

)
dθ

)
ds.

(11)

The optimal value for η can be obtained by minimiz-
ing the dual function g(η) such that η > 0, see [19].
However approximating the log integral in the dual
function (Eq. 11) is not feasible as we would need a lot
of samples θ i for each context si . In order to alleviate
this problem the performance criteria is reformulated.
Since contextual REPS use the contexts and parame-
ters samples [θ i , si], it only has access to the samples
from the joint distribution i.e. , q(s, θ). Therefore we
optimize for the joint probabilities p(s, θ) instead of
for the policy π(θ |s). Additionally, we need to enforce
that p(s) = ∫

θ p(s, θ)dθ still reproduces the correct
context distribution μ(s) by using the constraints ∀s :
p(s) = μ(s). However now we have an infinite num-
ber of constraints. In order to avoid an infinite number
of constraints, these constraints are approximately ful-
filled by matching feature expectations instead of
matching single probabilities, i.e.,∫

s

p(s)φ(s)ds = φ̂.

where φ̂ = ∫
s μ(s)φ(s)ds is the expected feature vec-

tor for the given context distribution μ(s) and a given
feature vector φ(s). For example, if the feature vec-
tor φ(s) contains all linear and squared terms [s, s2]
of the context vector s, these constraints correspond to
matching the first and second moment of p(s)with the
moments of μ(s). The resulting optimization program
yields

max
p

∫∫
p(s, θ)Rsθdsdθ s.t. ε≥KL(p(s, θ)||μ(s)q(θ |s)),

φ̂=
∫∫

p(s, θ)φ(s)dsdθ , 1=
∫∫

p(s, θ)dsdθ .

(12)

The solution for p(s, θ) is now given by

p(s, θ) ∝ q(θ |s)μ(s) exp ((Rsθ − V (s))/η) ,
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Where V (s) = φ(s)T w is a context dependent base-
line which is subtracted from the return Rsθ . The
parameters w and η are again Lagrangian multipliers
that can be obtain by optimizing the dual function,
given as

g(η, w) = ηε + φ̂
T
w + η log

(∫∫
μ(s)q(θ |s)

× exp

(
Rsθ − φ(s)T w

η

)
dθds

)
. (13)

This policy update results in a weight di = p(si , θ i )

for each sample [si , θ i] which we can use to estimate
a new upper-level policy π(θ |s) by using a weighted
maximum likelihood estimate. In the simplest case,
π(θ |s) is modeled as linear Gaussian policy, i.e.,
π(θ |s) = N

(
θ |AT ϕ(s), �

)
, where ϕ(s) is an arbi-

trary feature function. In this case, the parameters A

can be obtained by the weighted maximum likelihood

A = (�T D)
−1

�T DU, (14)

where  = [ϕ[1], ..., ϕ[N]] contains the feature vector
for all samples, U = [θ [1], ..., θ [N]] contains all the
sample parameters and D is the diagonal weighting
matrix containing the weightings d [i] . The covariance
matrix � is obtained by

� =
∑N

i=1 d[i](θ [i] − AT ϕ(s[i])(θ [i] − AT ϕ(s[i])T

Z
,

Z =
(∑N

i=1 d[i]
)2 − ∑N

i=1

(
d[i])2

∑N
i=1

(
d[i]) . (15)

Typically ϕ(s) = [1 s] and φ(s) = [s, s2], which
results in linear generalization over contexts. In order
to achieve non-linear generalization over contexts, we
extend the algorithm by using normalized radial basis
features (RBF) as feature function:

φj (s) = ϕj (s) = ψj(s)∑K
j=1 ψj (sj )

, ψj (s)

= exp

(
− (s − cj )

2

2σ 2

)
(16)

Where j is the index of the element in the vector and
the centers cj are equally spaced in the range of the
context space based on the desired number of RBFs
K and σ 2 is the bandwidth of the RBF. We call the
algorithm with this new setup RBF-REPS. In the next
section, we will show the effectiveness of RBF-REPS
for non-linear tasks.

4 Experiments

In this section, we evaluate standard-REPS and RBF-
REPS for learning an upper level policy for different
tasks including a complex walking task. In the first
sets of experiments we use three toy tasks to only eval-
uate our proposed method to learn non-linear policies
using RBF-REPS against standard REPS. We use a
simple standard sin function with one parameter to
show that RBF-REPS can learn non-linear policies
while standard REPS can not. Furthermore we use a 3-
link planar robot that has to reach a given point in task
space and we call it planar reaching task. The result-
ing policy has 15 parameters, but we also use the same
planar robot to reach a given hole on the ground that
has 18 parameters and we call it planar hole reach-
ing tasks. Both, the reaching task and hole reaching
task use dynamic motor primitives (DMPs) [18] for
parametrizing the lower level policies. Dynamic motor
primitives recently has been used extensively to model
the joints trajectory in robotics. For details on DMPs
please refer to [18]. Finally, we use a simulated NAO
robot (Fig. 4) with the described walking controller to
test and verify our proposed approach. The NAO robot
is a kid size humanoid robot with 21 degree of free-
dom.The simulation of the NAO is done by Robocup
soccer simulator, rcssserver3d, which is the official
simulator released by the Robocup community [23].
The open parameters of the algorithm that need to be

Fig. 4 The simulated Nao robot used for walking experiments
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Fig. 5 Standard sin
function over contexts a
This figure shows the
learning curves of learning
a linear and a non-linear
upper level policies for sin
task b This figure shows the
learned linear upper level
policy using linear
features(standard REPS)
over context [0.0 5PI ]. The
x axis is the desired context,
and the y axis is the learned
parameter for the given
context. c This figure shows
the learned non-linear upper
level policy using
RBFs(RBF-REPS) over
context [0.0 5PI ]. The x
axis is the desired context,
and the y axis is the learned
parameter for the given
context

specified by the user are ε (which will be 0.5 through-
out all experiments), the number of last L samples to
keep and number ofN new samples to generate at each
iteration. We also need to define the distribution μ(s)

over contexts which, in this paper can be either a uni-
form or a Gaussian distribution. In case of RBF-REPS
we need to specify the number of RBFs K as well as
the bandwidth σ 2 value. In order to define the σ 2 for
each context, we use the following simple heuristic:

σ 2 = max(context) − min(context)

K

We run five trials for each experiment and show the
mean and standard deviation of the results in the fig-
ures. The learning curves has been shown in log space

in order to present the differences between learning
curves clearly. The shaded area in the figures repre-
sents the standard deviation of the results while the
solid lines are the mean of the trials.

4.1 Sinus Function Task

We consider learning a non-linear function over a one
dimensional context s where the optimal parameter θ

for a given context s is sin(s) i.e., θ∗ = sin(s). We use
the following context-dependent reward function

Rsθ = (θ − sin(s))2

In each iteration, we generated 40 new samples. we
always keep the last L = 2000 samples. We use a

Fig. 6 Evaluation on the
Reaching task: a This figure
shows the learning curves
of learning a linear and a
non-linear RBF based upper
level policy for reaching
task b This figure compares
the performance of uniform
and Gaussian contexts
samplers
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Gaussian context sampler. Figure 5 shows the learning
curves and the learned upper level policies by these
two algorithms. As the results show , contextual RBF-
REPS successfully learns this non-linear function but
standard contextual REPS only linearly approximate
it and fails to complete the learning task.

4.2 Planar Reaching Task and Hole Reaching Task

In this setup, we used a 3-link planar robot with DMPs
[18] as a lower level policy. Each link had a length

of 1m. The robot is modeled as a decoupled lin-
ear dynamical system. We used 5 basis functions per
degree of freedom for the DMPs. In each iteration, we
generated 40 new samples. We always keep the last
L = 2000 samples.

Planar Reaching Task For completing the reaching
task, the robot has to reach a via-point at time step
50 with its end-effector and at the final time step
T = 100 the point v100 = [5, 0]. We varied the

Fig. 7 The planar reaching task used for our comparisons. A
3-link robot has to reach a via-point at time step 50 . The via-
point is indicated by the red cross. The postures of the resulting
motion are shown as overlay, where darker postures indicate a
posture which is close in time to the via-point. In title of each

figure you can see the context and gained reward by each algo-
rithm. In this task both algorithm performed similarly good as
we saw in the learning curve, however considering the gained
rewards, RBF-REPS slightly outperforms standard-REPS
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first via-point from −0.5 to −1.5 in both dimen-
sions. The reward was given by a context-dependent
quadratic cost term for the two via-points as well as
quadratic costs for high accelerations. The goal attrac-
tor of DMPs for reaching the final state was assumed
to be known. Hence, our parameter vector had 15
dimensions. Figure 7 shows the setup. First, we use
this setup to evaluate Gaussian and Uniform con-
text samplers using standard REPS. Figure 6b shows
that Gaussian context sampler outperform the uni-
form context sampler, hence thorough all experiments
we use a Gaussian context sampler. We also com-
pared standard-REPS and RBF-REPS with 2 RBFs.
Figure 6a shows that these two algorithms perform
similarly good on this task, however, RBF-REPS out-
performs standard-REPS slightly, the reason is that
this task is simple and a linear policy still can have a
good performance. Figure 7 shows the learned poli-
cies for two different contexts by RBF-REPS and
Standard-REPS.

Planar Hole Reaching Task For completing the hole
reaching task at final time step T = 100 the robot end
effector has to reach the bottom of a hole (30 cm wide
and 1 m deep) centering at a point varying from 1.4
to 2 without any collision with the ground or the hole
wall. The reward was given by a quadratic cost term
for the desired final point, quadratic costs for high
accelerations and quadratic costs for collisions with
the environment. Note that this performance function
is discontinuous due to the quadratic costs for col-
lisions . The DMPs goal attractor for reaching the

final state in this task is unknown and need to be
learned. Hence, our parameter vector had 18 dimen-
sions.The learning setup is shown in Fig. 9 . The
results shown in Fig. 8a shows that RBF-REPS with
6 RBFs clearly outperforms standard-REPS because
of non-linearity of this task. We also evaluate the
performance of RBF-REPS with different number of
RBFs K in Fig. 8b where RBF-REPS with 6 RBFs
has the best performance and RBF-REPS with 20
RBFs has the worse performance. Figure 9 shows
the learned policies for two different contexts by
RBF-REPS and Standard-REPS. The result shows that
RBF-REPS successfully complete the task in both
given contexts while standard-REPS fails to complete
the task for the second context and it collides with the
wall.

4.3 Robot Walking Task

In this section we learn an upper level policy for a
one dimension context which is the linear speed of the
gait, ranging from 0.1 m

s
to 0.6 m

s
and the direction

of the walk stays always straight starting from a com-
plete stop. We use the controller explained in Section
2 with 10 open parameters as lower level walking pol-
icy. Figure 3 illustrates our approach for learning an
upper level policy for the robot walking lower level
policy.

4.3.1 Used Learning Setup

In this section, we explain the settings of the
learner to learn an upper level policy for the lower

Fig. 8 Evaluations on hole
reaching task: a This figure
shows the learning curves
of learning a linear and a
non-linear RBF based upper
level policy for the hole
reaching task b This figure
compares the performance
of RBF-REPS with
different number of RBFs
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Fig. 9 The planar hole reaching task used for our comparisons.
A 3-link robot has to reach the bottom of a hole (30 cm wide
and 1 m deep) at time step 100 centering at a point varying from
1.4 to 2 without any collision with the ground or the hole wall.
The red lines show the ground and the hole. The postures of the
resulting motion are shown as overlay, where darker postures
indicate a posture which is close in time to the bottom of the

hole. In the title of each figure, you can see the given context
value and gained reward by each algorithm. In this task, RBF-
REPS considerably outperforms the standard-REPS. As you can
see in the second row, the learned policy by standard-REPS for
the given context 2 collides with wall while the one learned
by RBF-REPS completes the task successfully (Please see the
resulting rewards in the title of the figures)

level walking policy. There are constraints on the
lower level walking policy parameters as follows

A x0 zstep T roff set

UpperBound 1 0.22 0.15 3 5
LowerBound 0 0.16 0.02 0.1 0

γtilt γroll xstep φDSP σstep

UpperBound 1 1 0.5 1 0.5
LowerBound 0 0 0.05 0 0

We initialize the Gaussian upper level policy with the
mean

(UpperBound + LowerBound)

2
,

and a diagonal covariance matrix with diagonal ele-
ments

(UpperBound − LowerBound),



404 J Intell Robot Syst (2016) 83:393–408

for all 10 parameters (Table 1). We also use a Gaus-
sian distribution as a context sampler. The experiments
start with 100 samples and continue with 30 samples
at each iteration. We keep the last L = 600 sam-
ples. Due to the noise in robot’s actuators, sensors and
simulation uncertainties, we obtain noisy rewards. In
order to remedy this problem, we use a re-sampling
technique by evaluating each sample three times. We
use the average of these three rewards as the expected
reward of the corresponding sample. We also evaluate
both standard-REPS and RBF-REPS with 5 RBFs on
this task.

4.3.2 Constraint Handling

REPS is not a constraint optimizer so we need to have
precautions to satisfy the constraints over the lower
level walking parameters. A typical solution is adding
a penalty term in the reward function to discourage
the policy to search in infeasible parameters areas.
Another solution is to transform the parameter space
in a way that the parameters are always feasible and
the constraints are satisfied. To do so, we use a sig-
moid function for transforming the θ sampled from the
upper level policy to a new θ ′ such that the constraints
are satisfied

θ ′
j =

(
1

1 + exp(−θ j )

)
(UBj − LBj ) + LBj (17)

UB and LB are the upper bound and lower bound
vectors of the parameter space respectively. We will
show that sigmoid based constraint handling method
outperforms the penalty based one in our used setup.

4.3.3 Reward Function

For all experiments, contextual REPS aims at max-
imizing the following reward function for a given
context s:

R(s, θ) = −α(ẋ−s)2−β(ẏ)2−σ(1f all)−λ(1p) (18)

Where s is the desired direct linear speed along the x-
axis in robot torso coordinate system as was explained
in Section 2. The ẋ and ẏ are the achieved speeds
along the x-axis and y-axis respectively using the
parameter sets θ . As we want the robot walks straight
we punish for speed ẏ along y-axis. The variable 1f all

is a flag that is 1 when the robot falls and zero oth-
erwise. 1p is set based on the constraint handling
method that we want to use, it will be set to 1 if we
use the penalty based method and is set to 0 if we use
sigmoid based constraint handling method. We empir-
ically set the coefficients of the reward function as
follows:

α β σ λ

10 1 100 1000

Fig. 10 This figure shows
a comparison between
sigmoid based and penalty
based constraint handling
methods for learning an
upper level policy for
different forward walk
speeds using standard
REPS. The results show
that sigmoid based
constraint handling method
considerably outperforms
the penalty based constraint
handling method



J Intell Robot Syst (2016) 83:393–408 405

4.3.4 Results

Evaluating Different Constraint Handling Methods
We compare the sigmoid based and penalty based con-
straint handling methods. We use two different learn-
ing setups. The first learning set-up uses a penalty
based constraint handling and the second one uses a
sigmoid based constraint handling method. Fore both

evaluations standard-REPS is used. The other set-
tings are the same for both learning settings as was
explained before. Figure 10 shows that the learning
setup with sigmoid based constraint handling out-
performs the one with the penalty based constraint
handling. As you see in the Fig. 10, the penalty
based method starts with a worse reward which
makes sense, because at the beginning the algorithm

Fig. 11 a This figure shows the learning curves of learning a
linear and a non-linear upper level policies for forward walking
task b This figure shows the learned linear upper level policy
for forward walking task using linear features over the desired
speed [0.1 0.6]. The x axis is the desired context which is the

linear speed in this task, and the y axis is the learned walk
parameters for the given context (Table 1) c This figure shows
the learned non-linear upper level policy for forward walking
task using RBF features over speed [0.1 0.6]
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sometimes samples from the infeasible areas so it gets
punished. It takes several iteration to find the feasi-
ble search areas. One of the issues with the contextual
REPS is that the search distribution after each update
shrinks due to the expectation reward maximization.
And this leads to premature convergence which is the
case in the penalty based constraint handling learn-
ing setup. Because once it finds the feasible area, its
search distribution variance is too small to continue
the exploration to find better solutions and it con-
verges prematurely. On the other hand, the sigmoid
based learning setup is searching from the beginning
in the feasible search area, hence, it converges to a
reasonable solution before its search distribution col-
lapses. Given this results we choose the sigmoid based
constraint handling method for the other experiments.

Standard-REPS and RBF-REPS We learn an upper
level policy for the walking task using both standard-
REPS and RBF-REPS. Figure 11a shows that both
learning setups successfully learn the task. However
RBF-REPS outperforms the Standard-REPS consider-
ably due to non-linearity of the task. Figure 11b and c
show the learned generalization policies for standard-
REPS and RBF-REPS respectively. In order to show
the significance of the results we chose 11 different
forward speeds and used the final learned linear and
non-linear policies to generate the controller parame-
ters given the desired forward speed. Table 2 shows

Table 2 Comparing the performance of the linear and non-
linear policies for walking task

Speed (m
s
) Reward achieved Reward achieved

by linear policy by non-linear policy

0.1 −1.057 −0.166

0.15 −0.800 −0.011

0.2 −0.043 −0.0196

0.25 −0.139 −0.077

0.3 −0.633 −0.026

0.35 −0.353 −0.546

0.4 −3338.082 −0.220

0.45 −0.168 −0.206

0.5 −0.77 −0.366

0.55 −3336.321 −1.221

0.6 −3339.157 −0.911

the final reward achieved using linear and non-linear
polices for each speed. As you can see for almost all
the query speeds, non-linear policy learned by RBF-
REPS achieves considerably better reward without
a single robot fall. However for example for query
forward speeds 0.4, 0.55 and 0.6 using linear poli-
cies robot falls. Using non-linear policy robot can
complete all the tasks without falling.

Implementation Issues In this section we discuss a
few implementation issues. One of the important issue
is that the covariance matrix (Eq. 15) must be positive
semidefinite to be used by the multivariate Gaussian
policy. We regularize the covariance matrix by adding
a small diagonal matrix in each iteration such that
the eigen values of the covariance matrix always stay
nonnegative. The second issue is optimising the dual
function (Eq. 11). In order to optimise the dual func-
tion we use fmincon tool in matlab. However one
could use any non-linear optimiser package. The last
and possibly the most important issue is about choos-
ing the number of samples to use. The number of
samples to use heavily depends on the number of
parameters we need to estimate for mean and covari-
ance matrix. Therefore the more parameters we have
to estimate the more samples we need. Those parame-
ters depends on the dimension of the problem and the
number of Radial basis functions we choose.

5 Conclusion and Future Work

In this paper, we studied generalizing a ZMP based
walking controller for different contexts. In order to do
so we used contextual Relative Entropy Policy Search.
Using REPS, we successfully learned an upper level
policy that generalizes the lower level walking policy
for different forward speeds. We also studied differ-
ent settings of REPS. We showed that using sigmoid
function for constraint handling outperforms the the
penalty based method. We also extended the REPS
algorithm by using RBF features resulting in RBF-
REPS and showed that it enables the algorithm to
learn non-linear upper level policies which outper-
forms standard REPS. For the future work, we are
going to test our method on the real robots. We will
also investigate using more complex upper level policy
representations such as neural networks and Gaussian
processes.
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