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Abstract Detecting and tracking people is becom-
ing more important in robotic applications because
of the increasing demand for collaborative work in
which people interact closely with and in the same
workspace as robots. New safety standards allow peo-
ple to work next to robots, but require that they be
protected from harm while they do so. Sensors that
detect and track people are a natural way of imple-
menting the necessary safety monitoring, and have the
added advantage that the information about where the
people are and where they are going can be fed back
into the application and used to give the robot greater
situational awareness for performing tasks. The results
should help users determine if such a system will pro-
vide sufficient protection for people to be able to work
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1 Introduction

For most of their history, industrial robots have been
separated from people for reasons of safety. There are
many disadvantages of this isolation including addi-
tional costs for fences and safety sensors, the need
for extra floor space, and the difficulty of moving
material through the facility. Until recently, how-
ever, both the safety standards and the capabilities
of human detection sensors were barriers prevent-
ing people from working safely in close proximity to
industrial robots. In the last few years robot safety
standards [1–3] have been modified to specify require-
ments that allow humans and robots to work together
in limited circumstances. Simultaneously, there has
been a significant improvement in the capabilities of
human detection and tracking systems, mainly due
to their greatly increased use in surveillance. The
needs of surveillance applications, however, are dif-
ferent from those of safety. Losing track of a person
for a few frames is usually not critical for concern
in surveillance applications, whereas losing track in a
safety situation is not acceptable. Similarly, reporting
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the presence of a person when there is nobody visible
is usually not of major consequence for surveillance,
whereas doing the same in a manufacturing environ-
ment may result in stopping production and causing
unacceptable delays and losses.

The question that arises is whether or not cur-
rent human-detection and tracking systems are reliable
enough to be used in safety applications. The aim of
the work described in this paper is not to resolve the
question, since the answer depends on the planned
application. Rather, the goal is to provide a methodol-
ogy and set of performance measures to enable poten-
tial users to decide for themselves if their application
can be safely implemented using human detection
sensors.

In most previous work on performance evaluation
for human detection, ground truth (GT) was estab-
lished by manual annotation of the imagery, either by
drawing the outline of the target objects or by plac-
ing bounding boxes around them. The capabilities of
the detection algorithms were then measured by the
amount of overlap between the annotations and the
algorithm being evaluated. The current work takes a
different approach. An independent measurement sys-
tem is employed to provide the actual locations and
motion tracks of the people and a number of perfor-
mance measures are used to measure the Euclidean
distances in three-dimensional space between the
locations detected by the system under test and the
ground truth instrument.

Section 2 of this paper refers to previous work
on human and object detection and tracking. Some
of the performance measures used in this paper are
taken from that work. Section 3 describes the ground
truth systems and how the information is transformed
into a common coordinate system for comparison.
Sections 4 and 5 describe the performance measures
and their results. Most of the measures are designed
specifically for safety applications. The paper ends
with a discussion and conclusions. Detailed informa-
tion about the experiments and results may be found
in Shneier et al. [4].

2 Related Work

Detecting and tracking people and objects has a long
history, including a number of projects that focused

on performance evaluation. Ogale [5] provides a
survey of video-based human detection. The PETS
(Performance Evaluation of Tracking and Surveil-
lance) workshops, Ferryman, Crowley [6], focused
on algorithm development and performance evalu-
ation of tasks such as multiple object detection,
event detection, and recognition. Nascimento, Mar-
ques [7], proposed a way to evaluate the perfor-
mance of object detection systems by comparing
algorithm results to ground-truth data and calculating
performance metrics such as correct detections, false
alarms, detection failure, and splitting and merging
errors. CLEAR (Classification of Events, Activities
and Relationships), Stiefelhagen, Garofolo [8], pro-
vides performance evaluation of people, faces, cars,
and object tracking and ETISEO, Nghiem et al. [9],
was a video understanding and evaluation project
for tracking systems that used an event detection
algorithm.

The Image Library for Intelligent Detection Sys-
tems (i-LIDS) [10, 11] is a United Kingdom govern-
ment initiative that conducts performance evaluations
of vision-based detection systems to ensure that they
meet Government requirements. Other papers specific
to tracking-based metrics are Brown et al. [12], who
suggest a motion tracking evaluation framework that
estimates the number of True Positive, False Positive
and False Negative, Merged, and Split trajectories. Yin
et al. [13] proposed a large set of metrics to assess dif-
ferent aspects of the performance of motion tracking
and to help identify shortcomings of motion trackers
under specific conditions. Lazarevic-McManus et al.
[14], developed a tracking metric to enable evalua-
tion of motion detection based on Receiver Operating
Characteristic (ROC)-like curves and the F-measure (a
combination of precision and recall). Bashir, Porikli
[15], presented metrics based on the spatial intersec-
tion of ground-truth and system-generated bounding
boxes and then calculated a number of performance
metrics, which they then averaged for all the sam-
pled frames. Black et al. [16], used synthetic video
to evaluate tracking performance. They varied the
scene complexity of the tracking task by adding occlu-
sions and clutter and increasing the number of objects
and people in the scene and presented results based
on a number of metrics. Several other performance
evaluation metrics were developed and discussed in
[17–22].
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The National Institute of Standards and Technology
(NIST) has helped to develop performance metrics
for object and human detection in a number of dif-
ferent applications, ranging from videoconferences
through surveillance to counting and tracking peo-
ple in stores and commercial establishments. NIST
has worked with the United States Department of
Homeland Security, with the British Home Office,
and with the European CHIL program (Computers in
the Human Interaction Loop), [14], and the CLEAR
evaluations, [23]. NIST has also worked with the US
Army Collaborative Technology Alliance (CTA) on
Robotics to evaluate systems that locate and track
human pedestrians from a moving vehicle (Bodt et al.
[24]).

The biggest difference between the current paper
and previous work relates to how performance mea-
sures make use of ground truth and, particularly, the
use of three-dimensional space instead of the image
domain to compute the performance measures. Instead
of using windows or manually-outlined regions in the
image as ground truth, the work described here explic-
itly equips each person with sensors that provide iden-
tity and location information, measured with substan-
tially higher accuracy than the system under test. Fur-
ther, both the ground truth and system under test pro-
vide pose information in the three-dimensional world
rather than the image. This is important because,
for safety applications, it is critical to know pre-
cisely where in space a person is located in order to
guarantee that they will not be endangered by their
environment.

3 Measuring Ground Truth

Godil et al. [25], describe four types of ground truth
data for object detection and tracking: annotation
or label-based systems that rely on humans to out-
line regions in the data, fixture-based systems that
use physical positioning constraints to locate items
precisely, physics-based simulations that depend on
models of the objects and their locations in the world,
and sensor-based systems that use independent means
to sense the world and locate the objects. This paper
adopts the last of these methods, making use of a
sensor-based ground truth system, described in the
following subsection.

(a)

(b)

Fig. 1 An iGPS transmitter (a) and two receivers (vector bars)
(b) with cables and position computation engine (PCE)

3.1 Indoor Global Positioning System

The Indoor Global Positioning System (iGPS),1 [26],
is a high-resolution measurement system, shown in
Fig. 1, that can locate objects in a large volume of
space and provide full six degree-of-freedom pose for
multiple objects at the same time. The system uses
stationary laser transmitters (Fig. 1a) and receivers

1 Commercial equipment and materials are identified in order
to adequately specify certain procedures. In no case does such
identification imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily
the best available for the purpose.
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(Fig. 1b) mounted on moving or static objects to
determine the poses of the objects. It requires line of
sight to at least two transmitters to be able to make
a measurement. The manufacturer specifies the accu-
racy of 3D position measurements of the iGPS as
0.25 mm, with a maximum measurement frequency
of 40 Hz. A typical measurement area based on four
to eight transmitters is 1200 m2. Detailed analyses of
the system are presented by Schmitt et al. [27], and
Mosqueira et al. [28]. In [29], Wang et al. showed
that the tracking accuracy of an object in motion is
similar to the static accuracy for speeds below 10
cm/s. However, they found that as the speed of an
object increases, the tracking accuracy decreases—at
a speed of 1 m/s, the mean tracking error could be
as high as 4 mm. In another study, Depenthal [30],
showed that when tracking objects at velocities of 3
m/s, the 3D position deviation is less than 0.3 mm.
She described the experimental comparison of the
dynamic tracking performance between an iGPS and
a laser tracker and showed that the iGPS performed
well under dynamic conditions. In the human-tracking
experiments described in this paper, a pair of iGPS
vector bars is attached to the top of a hard hat worn
by each person, as shown in Fig. 2. The center of a

iGPS receiver bars

iGPS PCE

Fig. 2 iGPS vector bars attached to hardhat to be worn by a
human. The position calculation engine (PCE) is worn around
the waist

human head was tracked as a point relative to a frame,
in global coordinates, defined by the two vector bars.

The iGPS sensor has a fast enough update rate to
track people moving at walking or running speeds and
is accurate enough to provide an order of magnitude
better pose measurement than most sensors used for
human tracking. Its wide field of view allows a range
of typical activities to be carried out by the people
being tracked, and the need for only two transmitters
to have line of sight to the sensors at any time ensures
that the system can provide data even in scenes with
significant clutter. A drawback of this system is the
size of the vector bars, which are difficult to attach to
small objects.

Note that in the experiments, two ground truth sys-
tems were used; the gray spheres on the hard hat in 2
are markers for a motion capture system. The results
presented in this paper make use of the ground truth
provided by the iGPS system because it has been
more rigorously characterized and it provided data
with fewer dropouts in the experiments.

The human being tracked by the iGPS was repre-
sented by a point - the center of the person’s head.
An experiment was conducted to determine the uncer-
tainty of this point as measured by the iGPS. The
average standard deviation of the x, y, z coordinates
was ± 20.5 mm.

4 Methodology

A series of experiments was conducted with human
subjects to collect data to evaluate the performance
metrics. The focus of the metrics is on applications
where safety in human-robot interaction is the main
concern, although some of the measures have been
used in previous, more general studies. A human
detection and tracking algorithm was adopted based
on a literature search and was used to analyze the
data, although the aim was not to evaluate that partic-
ular algorithm’s performance. The algorithm and its
implementation are briefly described in the next sub-
section. This is followed by a description of how the
data were collected and what information was gath-
ered. The performance metrics are then described and
their application to the human detection system is
evaluated.
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4.1 The Human Detection and Tracking Algorithm

Over the past several years, human detection has been
the subject of significant advances, and one of the
motivations for this study was to determine if algo-
rithms had progressed to the point at which they can
be used in safety applications.

The algorithm that was selected is that of Cham-
bers et al. [31], because it claims a very high accuracy:
99% recall with less than 10−6 false positives per win-
dow on the INRIA person dataset (Dalal [32]). The
algorithm operates on disparity data acquired from
either a stereo camera system or an RGB-D cam-
era (in this case we used an ASUS Xtion Pro Live
sensor). RGB-D sensors provide a color image plus
the depth of each point in the image. The approach
taken by Chambers et al. is to start with computa-
tionally non-intensive feature detectors that can rule
out image regions as locations potentially containing
people. More computationally-intensive detectors are
then applied to the remaining regions in a cascade
that continues to eliminate candidates until, following
the application of the final detectors, the remaining
candidates have high confidence.

The sequence of detectors starts by using Haar-
like features (Papageorgiou et al. [33]), classified
first using adaBoost (Freund, Schapire [34]), then a
support-vector machine (SVM) (Cortes, Vapnik [35]),
on a subset of the features and finally, an SVM on
all the features. This is followed by a Haar-like fea-
ture detector applied to the disparity image using an
adaBoost classifier on a subset of the features, but
without the subsequent SVM classifier. Windows that
have passed the preliminary classifiers are processed
with a histogram of oriented gradients (HOG) (Dalal,
Triggs [36]), customized to reflect the expected sil-
houette of a person. Two additional constraints are
applied to the data, made possible because dispar-
ity is available. The first is a size constraint on the
regions that may contain people, while the second is
an estimate of the ground plane on which people are
expected to be standing. The algorithm outputs an esti-
mate of the position in 3D space of each detected
person and an identifier for each person. Over time,
the same identifier should be given to the same per-
son, and the system can tolerate short-time occlusions
or intervals when people move out of the field of view

of the sensors and then come back into view.
Each of the classifiers in the algorithm needs to be

trained. A set of training data was collected indepen-
dently of the data used for evaluation. Because the
HOG classifier is heavily dependent on the appear-
ance of the silhouettes of the people, the training data
were collected with people wearing the hard hats with
ground truth markers, even though no ground truth
was needed for training. It was felt that this would give
a fairer evaluation of the algorithm.

4.2 Data Collection

A series of experiments was designed in which human
subjects were asked to stand, walk, or jog in the field
of view of the sensors.2 The people wore hard hats
instrumented with detectors from the iGPS system so
that their actual locations and trajectories would be
known, and data from all sensors were collected with
timestamps to enable corresponding readings to be
compared. Each of the sensors was calibrated, and the
ground truth sensors and system being tested were reg-
istered to a common coordinate system. The experi-
ments started out very simply with stationary people in
simple scenes (no obstructions, simple backgrounds).
The next experiments involved a single moving per-
son in simple scenes and with obstacles. After that,
multiple people moved in scenes with some human-
to-human or human-to-obstacle occlusions. In some of
the experiments, an object moved along a straight line
through the scene on a motorized sled. The obstacles
used were empty cardboard boxes. Figure 3 shows a
view of an experiment in progress. Note the hard hat
with reflectors for ground truth measurements.

Due to the limited field of view of the sensors being
tested, in particular the ASUS Xtion sensor, the active
area used for testing was small, only 5 m by 5 m, with
a 1 m buffer area surrounding it. One side of the floor
was labeled with letters and the other with numbers.
This meant that a person could be asked to stand in a

2 The NIST Institutional Review Board approved the experi-
mental protocol before the experiments were conducted. Due
to the possible presence of personally identifiable information,
they determined that the data collected during the experiments
could not be made available for use outside NIST.
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iGPS Transmi�ers

Fig. 3 A view of the test area showing an experiment in
progress with obstacles in place

particular location (e.g., J5) or to move from one loca-
tion to another without researchers having to mark the
paths, which changed with different experiments.

There were a total of 34 different experiments, each
of which was repeated five times with different par-
ticipants. More details of the 34 different experiments
may be found in Shneier et al. [4].3 A total of fifteen
subjects participated. The experiments were designed
to include factors such as distance from the system
under test, occlusion, clutter, speed of motion, differ-
ent types of trajectories, and different human shapes
and features. To give a flavor of the experiments, two
are briefly described below. The data collected for
each experiment included a sequence containing, for
each instant (about 20 frames per second), the position
of each person (x, y, z, roll, pitch, yaw), an identifier
for the person, and a time stamp. This was collected
for both the ground truth system and for the sensor
being evaluated. Each sensor collected data at its own
rate, but the time stamp made it possible to align the
data for analysis.

4.3 Representative Experiments

In the experiments with moving people, the same tra-
jectory was covered for four different cases: walking
without obstacles, jogging without obstacles, walking
with obstacles, and jogging with obstacles. Each per-
son was given a trajectory at the start of the experiment

3Available at http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.
8045.pdf.

and told to walk or jog at a comfortable speed (Fig. 4).
Data were collected simultaneously from the ground
truth and system under test sensors for the duration of
the experiment.

To determine howwell the algorithm can keep track
of many people, a number of tests were conducted
with up to five subjects (Fig. 5). In the limited space
available because of the narrow field of view of the
system being evaluated, there is a lot of crowding and,
with obstacles in place, there is also person-to-person
and person-to-obstacle occlusion. This is not atypi-
cal of a workspace such as an assembly line where
there will often be equipment and other people in the
area. As in the single person case, each experiment
with multiple people was conducted four times with
different speeds and with and without obstacles.

5 Performance Measures

This section presents a new approach for measur-
ing the performance of human detection systems
developed specifically for applications in which safety
is critical. We also describe some more traditional
metrics for detection and tracking that are used to
complement the new approach. Before describing the
performance measures, we discuss the data obtained
from the tests and registration of data from the iGPS
ground truth (GT) sensors and the system under test
(SUT).

5.1 Input Data

There are three types of input files:

GT Data Files There is a separate file for each sen-
sor and for each test (i.e., two sensors * 100 tests =
200 files). Each row contains a timestamp, ID, X, Y ,
Z, where the timestamp represents the time in seconds
since Jan 1, 1970 UTC, ID is a unique string corre-
sponding to a person or physical target, and X, Y , Z

are the Cartesian coordinates of the target. Each row
may contain an optional radius which describes the
distance from the center point of a detected person suf-
ficient to contain the entire person, measured on the
ground (XY plane).

http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8045.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8045.pdf
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Fig. 4 A single person
walks along a pre-defined
path starting at A

1.) SUT Data Files. There are separate files for each
test. Each row contains a timestamp, ID,X, Y ,Z,
as above. Each row may contain optional fields
used by the analysis system if present, including

velocities in X, Y, and Z directions, radius, and
confidence.

2.) Position and Orientation Transform Files. A sin-
gle transform file is used for each sensor for

Fig. 5 Five people moving
through the space
simultaneously with
obstacles. The double
arrows indicate that the
person will move along the
path in both directions
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all tests because the sensors were not moved
between tests. The transform is a 4×4 homoge-
nous matrix that encodes the registration between
the SUT sensor and the GT obtained from a
calibration and registration procedure.

5.2 Data Interpolation

The data were converted to units of seconds and
meters and synchronized using the Network Time Pro-
tocol and a trigger signal. Data were interpolated so
that the GT system provided the best estimate of the
position of each person at each time given all data,
including data collected after that point in time. For
the SUT data, interpolation used only data produced
prior to each sample time. The evaluation software
limits the analysis to the common period of time when
both GT and SUT systems were running.

5.3 Performance Measures for Safe Human-Robot
Interaction

A new set of performance measures was defined with
the following goals:

1) Provide safety guarantees: No area is falsely con-
sidered to be clear. An area is falsely considered
to be clear if a person may be in the area but the
system says no human is in the area. Details are
provided in Section 5.6.

2) Be able to compare systems as configured by the
vendor with safety guarantees met.

3) Provide fair comparisons between systems with
different frame rates, detection mechanisms, and
different numbers of outputs

4) Make it easy to combine multiple detection sys-
tems.

5) Separate responsibility between human detection
and robot path planning and execution.

All of the software used to compute these measures
and to perform the analysis in Section 6 is available
from Shackleford [37]. Full source code is provided
to ensure that the algorithms are unambiguously spec-
ified and the results are reproducible.

There are two types of mistakes a human-detection
system could make. It could report that an area con-
tains a human when it is actually safe for the robot to
traverse or it could report that an area does not con-

tain a human when in fact it does. The first kind of
error, a false positive, reduces productivity by lead-
ing the robot to stop, slow, or take a longer path than
necessary, while the other, a false negative, reduces
safety by potentially allowing the robot to collide with
a human. The guarantee we expect human detection
systems to provide is that for all tests conducted, for
every point in time during the test, and for all locations
within the test area, the detection system never makes
the second, and far more dangerous, kind of error. To
infer that the system is safe beyond what is reported
by the tests, two additional requirements must be met:

6) The tests cover all possible cases the system will
encounter. The tests described in Section 4 pro-
vide a minimum set, but are not intended to
be sufficient for this purpose. A more complete
set would require designing the test with more
specific information about the application and
intended environment.

7) The robot’s planning and path execution must
meet its own set of requirements, to be briefly
described later.

5.4 Detection Area vs Safety Coverage Area

The SUT is only expected to report the positions of
people within its field of view and between its min-
imum and maximum operating ranges. The safety
coverage area is the area the system could potentially
tell was safe to move through and is smaller than the
area where detections could occur. The reasons for
this are: 1) Part of a person centered just outside the
detection area could extend into the detection area; 2)
If the robot has non-zero reaction time, then a person
outside the detection area could move into the detec-
tion area before a robot could react [38]; 3) Part of
the area where detections could normally occur may
be occluded from the system; and 4) At the farthest
and nearest ranges of the detection area there may be
an area where detections sometimes occur but are not
sufficiently reliable for safety applications. The evalu-
ation software allows the user to specify a polygon as
the outer edge of the safety coverage area.

Ground-Truth Radius Estimate The GT system pro-
vides only a single position at a time for a target
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attached to the helmet. The positions of the per-
son’s shoulders, hands, feet, and other body parts
can only be inferred to be located somewhere within
a circle centered at the helmet target position (plus
optional offset). This radius is configurable and can
be expanded to include an additional safety mar-
gin. If increased accuracy is required, then a ground
truth system that could provide positions and possibly
shapes of each body part would be required.

5.5 False Clear Area/ False Occupied Area

Given the above assumptions, two primary metrics,
False Clear area and False Occupied area, are com-
puted using a similar procedure except for a change
in the order of operations. To compute the false clear
area:

1) Create an image covering the area of interest at
the desired resolution.

2) Paint the entire image black.
3) Paint white circles surrounding each GT location

of a person (see Fig. 6). The sizes of the circles
are as described in Section 5.4.

4) Paint black circles surrounding each location
where a person was found by the SUT.

5) Count the number of pixels that are white fol-
lowing steps 3 and 4 (see Fig. 7) to give the false
clear area.
To compute the false occupied area:

6) Create an image covering the area of interest at
the desired resolution.

Fig. 6 Intermediate step in computing the False Clear Area.
After Step 3, white circles indicate where GT located people

Fig. 7 The final false clear area, after Step 5

7) Paint the entire image black.
8) Paint white circles surrounding each location

where the SUT detected a person.
9) Paint black circles surrounding the locations

where the GT detected people.
10) The number of pixels that are white follow-

ing this procedure gives the area that is falsely
determined to be occupied (see Fig. 12).

Note: It would be incorrect to assume that false
clear or false occupied regions smaller than the size
that a person could occupy can or should be ignored. If
the area were to be ignored a robot could hit a person
who was partially in that area and partially in an area
that was correctly labeled or was outside the detection
area. Similarly, false occupied areas of any size may
require the robot to stop or take a longer path and thus
reduce productivity.

5.6 Occlusions

Some regions of the coverage area will be occluded
from the sensor by dynamic or static obstacles. A plan-
ner that produces a safe path must treat areas that are
occluded as if they contain a person. The procedure
above is therefore modified by painting an additional
polygon behind each static obstacle and behind the
positions where people were detected by the SUT.
Painting these polygons requires that the evaluation
system know the location of the SUT. If an area is even
partially occluded a person may be in this area and
therefore the only safe assumption is to treat the area
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Fig. 8 Top view of occupied areas after occlusions are
accounted for. Grey regions are occluded by static obstacles.
White areas are areas occupied or occluded according to the
system under test. Brown boxes indicate the locations of static
obstacles. The sensor is located below the image

as if it is known to contain a person. This results in an
estimate of the occupied areas that appears something
like Fig. 8.

5.7 Time Projection for Assumed Reaction Time

No system can react instantaneously. The planning
and control system takes time to respond to new detec-
tions or changes in the estimated position of a detected
person. What matters is a guarantee of where people
cannot be over some time interval into the future. To
account for this, false clear and false occupied regions
are computed as in Section 5.6 except now from each
point in time we integrate over a period into the future.
This means that the SUT must not only estimate the
current position of each person, but also predict poten-
tial future positions measured from that point until the
reaction time has expired (Fig. 9).

Fig. 9 Display of False Occupied regions as computed by inte-
grating over the reaction time. SUT Occupied area is white
stretched circle. GT Occupied area is black region

The simplest way of accomplishing this prediction
is to increase the radius around each detected per-
son until it contains the entire area through which
the person can travel during the reaction time. Sys-
tems that can accurately measure a person’s velocity
may be able to predict their location through short
reaction time periods without increasing the radius
or by increasing it by a small amount. The evalua-
tion software is currently limited to projecting along
a single vector at constant speed since this is the
only information the SUT could provide. To test sys-
tems capable of more sophisticated predictions, the
evaluation software would have to be updated.

5.8 Simulated Examples

In the first simulated example we take only a single
frame of data and both the GT system and the SUT
return a single position for the only person in the scene
(Fig. 10). We assume that occlusions are not an issue
for this system and either that the person is stationary
or the robot reacts fast enough that time projection is
not necessary. We compute the false clear area as in
Section 5.5, giving the result in Fig. 11. In this exam-
ple, the SUT reported a position that was somewhat
to the left of the true position. This, combined with
the fact that the system reported only one position and
reported only the same minimum radius the GT was
set to, means that the person is in danger of being hit
by the robot on the right side. For the false clear image,
the areas in black are areas where no robot-to-human

Fig. 10 Simulated example 1. Ground truth position in red
surrounded by ground truth radius in red. System under test
position in blue surrounded by system under test reported radius
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Fig. 11 False clear area for simple example 1

collision can occur either because there is no human
there or because the robot has been told not to enter
that area. The areas in white are regions where a col-
lision can occur because it is close enough to the GT
position that a portion of the person occupies that area
and the robot has no reason to avoid the area. Given
that the false clear area is not zero, the conclusion is
that this sensor is not safe to use and no further anal-
ysis is needed, although it may only require a simple
fix. Later examples suggest some possible fixes, but
one should be careful about allowing system devel-
opers to make a large number of changes to work
around each test failure, since the test results may not
generalize.

The false occupied area is shown in Fig. 12. Here,
the SUT reported a position that was somewhat to the
left of the true position. This means there is an area to
the left of the person that the robot will be forced to
avoid unnecessarily and this will reduce productivity.
The black areas represent regions of maximum pro-
ductivity that either the robot is avoiding because it
truly needs to or it is able to traverse. The white areas
represent areas that the robot cannot use but which
would be usable if we had chosen a better sensor.
There are 95 white pixels with an area of 4 square cen-
timeters each. This means the false occupied area is
380 square centimeters and the ratio of “Average False

Fig. 12 False occupied region for simulated example 1

Fig. 13 Simulated example 2. Ground truth position in red
surrounded by ground truth radius in red. System under test
position in blue surrounded by system under test reported radius

Occupied Area to Safety Coverage Area” is 0.01 since
there were 9500 pixels in the entire safety coverage
area (Fig. 13).

The second example is the same as the first except
the system reports a larger radius for the person.

In this example, computing the false clear area
results in a completely black field, indicating that the
SUT reported a position somewhat to the left of the
true position but, since it increased the area around
that position sufficiently, there is no position that the
robot will go where it may collide with a person.

Figure 14 shows the false occupied area, which
reflects that the SUT reported a position that was
somewhat to the left of the true position. This means
there is an area to the left of the person that the
robot will be forced to avoid unnecessarily and this
will reduce productivity. The increased radius which
makes the system safe also increases this area. The
false occupied area is 1560 square centimeters and the
ratio of “Average False Occupied Area to Safety Cov-
erage Area” is 0.041 since there were 9500 pixels in
the entire safety coverage area (Figs. 15 and 16).

Fig. 14 False occupied region for example 2



96 J Intell Robot Syst (2016) 83:85–103

Fig. 15 Simulated example 3. Ground truth position in red
surrounded by ground truth radius in red. System under test
positions in blue surrounded by system under test reported
radius

In the third example, the GT reported a single per-
son at a single position while the SUT reported two
positions. The radii reported by the SUT are larger
than in example 1 but smaller than in example 2. One
was somewhat to the left of the true position and one
to the right. This means there is an area on both sides
of the person that the robot will be forced to avoid
unnecessarily and this will reduce productivity. The
increased radius which makes the system safe also
increases this area. The false occupied area is 1444
square centimeters and the ratio of “Average False
Occupied Area to Safety Coverage Area” is 0.038.

The conclusion from this set of examples (Table 1)
is that the system from example 1 is not suitable by
itself as a safety sensor. If it were the only choice avail-
able, conventional fences or manual machines should
be used instead. No more tests are needed to determine
whether example 1 is safe to use since it has already
failed. Examples 2 and 3 appear to be safe in this lim-
ited test, although more testing should be done in the

Fig. 16 False Occupied region for example 3

Table 1 Safety of system under test in the three example
scenarios

System Safe ? Average False

Occupied Area / Safety

Coverage Area

Example 1 NO 0.010

Example 2 Yes (but further testing 0.041

is required)

Example 3 Yes (but further testing 0.038

is required)

target environment. Between example 2 and example
3, example 3 allows the robot to traverse more space
which should lead to higher productivity.

Note that the metrics are not simply related to a
minimum safety radius. The minimum safety radius
cannot be computed from the localization error. If the
person is entirely within the safety coverage area and
there is only one SUT point, then the minimum radius
equals the distance between the two points plus the
distance of the furthest point from the detection to any
portion of the person. However, with more than one
point the distance need not reach the furthest point on
the person, but only the furthest point not covered by
another detection point. Some portion of the person
could be within a known area of occlusion that the
robot would have to avoid anyway. This would change
the position on the person that need be reached by
the minimum safety radius. Some portion of the per-
son might also be outside the coverage area and there
would be no need for the minimum safety radius to
extend to cover this portion of the person.

With increasing distance it becomes less likely that
the closest point reported by the SUT corresponds to
the same person as that from the GT. In this case, it
is better to mark the area as false clear. The exact dis-
tance at which this should be set is sensor dependent.
The sensor vendor should commit to a radius before
tests are performed and the tests should determine if
the results are valid.

The false occupied area also cannot be computed
from localization errors with or without a known
minimum safe radius. The SUT could report a posi-
tion during a period of time when no GT positions
reported. There would therefore be no distances to
measure during this period of time and therefore no
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effect on the localization error although there would
be a large increase in the false occupied area. Even
when there are GT positions in the scene at the same
time, the correspondence function does not guaran-
tee that all SUT positions will have a corresponding
point with which to compute a distance. The corre-
spondence function also does not guarantee that when
a distance is computed that there is no closer GT
position that could have produced a smaller distance.
Even in the absence of GT positions, two sets of
SUT positions of the same size can produce differ-
ent amounts of false occupied area. In one set the
points could largely overlap producing a false occu-
pied area only slightly larger than the area of a circle
for one person while in the other set they could be
disjoint, producing an area larger by a factor of the
number of points reported. Reported positions could
also be close to the edge of the safety coverage area,
thus reducing the increase in the false occupied area.
Sensors that are susceptible to occlusion will neces-
sarily have to mark large areas of the area as occupied
and thus have a larger false occupied area than sen-
sors not susceptible to occlusion even when reporting
the same set of positions with the same minimum
safe radius.

5.9 Conventional Performance Measures

In addition to the new metrics, several others that
have been used for human detection were also applied.
Also, since the new approach does not include track-
ing, some previously-used tracking metrics were used.
These measures allow us to compare human detection
algorithms to others in the literature and to provide
an indication of how well the algorithms maintain the
identities of people as they move about in the environ-
ment. They do not, however, provide a measure of the
safety of the systems. The human detection metrics
that we used include:

1) False Positive (FP): A human is present in the
SUT data but not in the GT data.

2) False Negative (FN): A human is present in the
GT data, but not in the SUT data.

3) True Positive (TP): A human is present in the GT
data and the SUT data.

4) False Positive Rate (FPR): The number of false
positives divided by the sum of the number of

true positives and false positives. FPR is a mea-
sure of how well the system correctly rejects false
positives.

5) Detection Rate (DR): The number of true posi-
tives divided by the sum of true positives and false
negatives. DR is the percentage of true targets
detected.

6) False Negative Rate (FNR): FNR is the number
of false negatives divided by the sum of true pos-
itives and false negatives. FNR is the likelihood
that a target will be missed given the total number
of actual targets.

7) Detection Precision (DP): DP is the number of
true positives divided by the sum of the true pos-
itives and false positives. That is, precision is the
fraction of detected items that are correct

8) Localization: The average distance between the
position of the person detected by the SUT and
the position in the corresponding GT data over the
course of an experiment.

Unlike the metrics for safety described above, con-
ventional metrics provide no clear indication that a
system is or is not safe. They also require a corre-
lation between GT data and SUT data. For example
it may be necessary to know that the third position
reported by the SUT system corresponds to the second
position reported by the GT system. While correspon-
dences may seem obvious in some cases, there is no
clear general rule for establishing them. The safety
metrics proposed above require no assumptions about
correspondences. It should also be noted that the con-
ventional metrics focus on average or typical behavior
while the safety of the system primarily depends on
atypical or extreme cases. Furthermore since they deal
only with discrete people they cannot include an effect
for a person only partially within the coverage area or
only partially within an area of known occlusion.

The human tracking metrics measure the ability of
a SUT to track humans over time. The tracking met-
rics consider the identity and the complete trajectory
of each object separately over the experiments and
compare the GT tracks with the SUT tracks based
on best correspondence. Based on these correspon-
dences, various error rates and performance metrics
are computed.

Since the GT track(s) could correspond to more
than one SUT track, a correspondence first has to be
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established. The method used for determining corre-
spondences between humans detected in the SUT data
and the GT data significantly affects the values of
the performance measures. Our matching method uses
centroids of regions labeled as people and is based
on measuring the Euclidean distance between the per-
son’s centroid as reported by the SUT and the GT data
at each frame in the system under test data, with a
threshold for a successful match. Normalization based
on the size of the bounding box is also used (Bodt,
Hong [39]).

Two measures are used to express the performance
of the tracker. The first is the tracking precision, which
expresses how well the tracker estimates the positions
of objects or people. The second is the tracking accu-
racy, which measures how well the system keeps track
of people or objects and how many mistakes are made
in terms of misses, false positives, mismatches, fail-
ures to recover tracks, etc. The human tracking metrics
are:

1) Human Tracking Precision (HTP): is the preci-
sion of the tracker in determining the position of
a tracked person or object. HTP is calculated as:

HT P =
∑

t,i di
t

ct

where di
t is the Euclidian distance error between

the matched GT location and the matched SUT

location and ct is the total number of matches
made. The HTP is a Euclidian distance error
for matched GT-SUT pairs over all frames, aver-
aged over the total number of matches made. It
shows how well positions of persons or objects
are estimated. HTP is reported in units of length
(e.g., m).

2) Human Tracking Accuracy (HTA): is the accu-
racy of the tracker in keeping correct corre-
spondences over time, estimating the number of
humans, recovering tracks, etc.

HT A = 1 −
∑

t (FNt + FPt )
∑

t GTt

where FNt and FPt are the number of false neg-
atives and false positives in the SUT for time t.
HTA is the sum of all errors made by the tracker
over all frames, averaged over the total number
of humans detected by the GT sensor. HTA is
unitless.

6 Performance Analysis

For reasons of space, we present a performance anal-
ysis only for the new metrics introduced in this paper.
The results for the conventional measures can be
found in Shneier et al. [4].

Fig. 17 The tracks when
the worst false clear area
was detected. Sensor is
located where the S in a
circle is marked. None of
the four ground-truth tracks
(red) are matched by the
tracks from the system
under test (blue). The plot
shows a single snapshot in
time until the end of the test
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Table 2 Performance
statistics of detection in
uncluttered environments
using using RGB-D sensor

Run type Speed Tests with Maximum Average False

False Clear Area > 0 Occupied Area /

/Total Tests in category Safety Coverage Area

Stationary humans stationary 0/30a 0.2184750

Single human walk 1/12 0.0655121

Single human jog 1/8 0.0876930

Multiple humans walk 11/15 0.1641399

Multiple humans jog 12/15 0.1975134

Sled & humans walk 2/6 0.1904649

Sled & humans jog 2/4 0.2127153

aMany static tests passed for the
trivial reason that there were
never any people in the safety
coverage area

The systems tested did not achieve the minimum
safety requirement of producing no false clear areas.
Even with the ground-truth radius set to 0.1 m, which
is probably too small to provide a reasonable safety
offset, a 0.5 s startup time to eliminate startup prob-
lems, and an assumed 0 s reaction time, and a very
small coverage area to consider only detections in the
center of its range limits and field of view, the system
under test had false clear areas for 97 out of 169 tests
(or 57 % of tests). One diagnostic method is to plot
the false clear area versus time and examine traces at
the point in time corresponding to the beginning of the
largest peak. Figure 17 shows an example.

We provide more detailed data below as an example
of what one might obtain, keeping two questions in
mind:

1) Would it be safe to deploy a robotic system that
relied on this human detection system?

2) If it would be safe to deploy such a system,
what insights are available about how the human
detection system would impact productivity?

If the answer for the first question for this SUT is no,
there is no reason to even ask the second question.
However when a system passes the first hurdle, the
second question becomes relevant.

Tables 2 and 3 report the data in cluttered and
uncluttered environments. If the system can be used
safely, then the column labeled “Tests with Maximum
False Clear Area > 0 / Total Tests in category” will
have 0 in the numerator of every cell. This column is
designed to help answer the first question. The column

Table 3 Performance
statistics of detection in
cluttered environments
using RGB-D sensor

Run type Speed Tests with Maximum Average False

False Clear Area > 0 Occupied Area /

/Total Tests in category Safety Coverage Area

Stationary humans stationary 0/20a 0.1225847

Single human walk 6/11 0.3059522

Single human jog 6/8 0.3686000

Multiple humans walk 17/19 0.2178781

Multiple humans jog 4/10 0.2240100

Sled & humans walk 5/7 0.1848025

Sled & humans jog 4/4 0.2420052
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Fig. 18 The tracks when
the worst false clear area
was detected without static
obstacles. The sensor is
located where the S in a
circle is marked. None of
the four ground-truth tracks
(red) are matched by the
tracks from the system
under test (blue)

labeled “Average False Occupied Area / Safety Cov-
erage Area” then gives a measure of the area a robot
would have to avoid unnecessarily whichis related to
loss of productivity. This column is designed to help
answer the second question and is the column where
one would look to compare two systems that were
both safe to use and choose the one likely to provide
the best productivity. A system with the smallest false
occupied area would give the highest productivity
(Fig. 18).

7 Discussion and Conclusions

The use of performance measures to evaluate human
detection systems has previously been applied mainly
to situations in which occasional false positive or false
negative results, while undesirable, have not been crit-
ically important. In the domain of workplace safety,
however, missing a detection is entirely unacceptable,
while incorrectly reporting a false detection is highly
undesirable because of the resulting loss of produc-
tivity. Thus, traditional performance metrics, while
useful for comparing different systems, are not by
themselves sufficient to guarantee safety. The addi-
tional considerations discussed in this paper must also
be addressed.

The scenarios used in the performance evaluation
were selected to be representative of real-world situa-
tions in which one or more people can be expected to
be present in the environment, there may be a lot of
occlusion, other objects in the environment may have
appearances that are difficult to distinguish from the
people, and the lighting and people’s clothing are not
controlled. The ground truth system used in this work
is much less susceptible to occlusions than the sys-
tem under test. This allows the system to evaluate the
effect of varying amounts of occlusion, which would
not be possible with some of the more commonly used
ground-truth methods, especially those that rely on
manually annotating the imagery.

The gaits and speeds of the people were also not
specified, except that jogging was expected to be
faster than walking. The experiments also included a
moving object that moved at a speed similar to a walk-
ing person and had the height and aspect ratio of a
person. The scenarios were thus expected to challenge
even the best current human detection and tracking
systems that are not designed for safety or for the envi-
ronments used in the experiments. The goal was not
to show how well a particular system worked. Rather,
it was to develop and test the performance metrics for
this demanding type of application.

Using both traditional performance measures and
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measures designed specifically for safety may help
to determine what modifications are needed to a sys-
tem that performs well according to the traditional
measures. This may make it easier to transfer the ben-
efits of those high-performing systems to the safety
domain. It must be emphasized, however, that the
performance measures in this report operate in the
three-dimensional world rather than the image domain
because it is important to know where the people are
in relation to objects that may pose hazards. Thus, sys-
tems developed for and evaluated only on detection
and tracking in images may not be suitable for safety
applications.

In many applications, it would be very useful to
know not just where the people are and how they are
moving, but also what their intentions are and, if they
are working collaboratively with a robot, what their
perceptions are about the joint task and the current
goal. This would both improve task performance and
let the robot make decisions about whether or not a
person is planning to move into a dangerous region.
Recognizing individual people would also be useful
because the robot could knowwhat role a person has in
the task and how much freedom of motion they should
be allowed. This is beyond the scope of the current
work but will be the subject of future research.

More robots are being installed in factories as co-
workers with people and the need for robust human
detection and tracking will grow substantially to
ensure the safety of the people in these environments.
Performance measures such as those in this paper,
aimed specifically at this domain, will let develop-
ers provide specifications for their products that are
meaningful to buyers and will allow human detec-
tion systems to be incorporated into the overall safety
system with a reasonable guarantee as to how well
they will work. Because the problem of human detec-
tion is extremely complex when the environment is
unconstrained, it is expected that detection and track-
ing systems will still need to be tested extensively in
the target application domain before being accepted as
safe for daily use.
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