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Abstract The objective of this paper is to develop
a vision-based navigation technique for micro aerial
vehicles, quadrotor type, to operate in GPS-denied
environment. The navigation method has been devel-
oped while using appearance-based Visual-Teach-and-
Repeat (VT&R) technique. In a teaching phase, a
quadrotor is manually navigated along a desired route
to collect a set of reference images. In a repeating
phase, the quadrotor is able to autonomously fol-
low the desired route using these reference images.
Self-localization is developed to determine the current
segment of the desired route by a number of Speeded-
Up Robust Features (SURF), matched between the
current image and the reference images. In this paper,
three methods of self-localization are proposed and
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compared. After performing self-localization, the
quadrotor computes appearance-based motion con-
trol commands (desired yaw and height) for the next
movement in order to keep track of the desired route.
This computation is developed on Funnel Lane theory,
which was originally proposed in Chen and Birch-
field (IEEE Trans. Robot. 25(3), 749–754 (2009))
for 2D navigation of a ground vehicle. The paper
extends this theory to 3D navigation of a quadrotor.
The proposed self-localization methods are tested with
several image databases. Finally, an online experiment
of proposed VT&R technique is demonstrated using
Ar.Drone quadrotor model.

Keywords Visual teach and repeat · Micro aerial
vehicle · Self-localization · Visual homing · Visual
servoing · Vision-based navigation

1 Introduction

In recent years, Micro Aerial Vehicles (MAV), espe-
cially quadrotor type, have become one of the
fastest developing technologies of unmanned vehicles.
Although quadrotors have demonstrated potentials to
replace humans performing difficult tasks [36], the
widespread use of quadrotors in industry is still lim-
ited due to numerous navigation issues. The utilization
of Global Positioning System (GPS) for localization
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and control does not satisfy the necessary require-
ments of fully autonomous applications in several
environments such as indoor and in urban canyons.
Basically, if the initial position of the quadrotor is
defined, the measurements of traveling speeds over
elapsed time and course can reveal the current position
of quadrotor [38, 53]. This dead-reckoning technique
can produce acceptable results only for short-term
operations due to experimental issues in cumulative
errors and measuring drifts. Combining these mea-
surements with other external measurements taken
from a ground station [38] by an External Kalman Fil-
ter can improve the accuracy of localization. However,
the ability of independent operations of quadrotor is
reduced. One popular strategy is Simultaneous Local-
izing And Mapping (SLAM). The SLAM technique
has been applied on quadrotor using either laser-based
[3, 46] or vision-based [21, 22, 25]. Such implementa-
tions require considerable payload to carry exterocep-
tive sensors and demand higher computational cost.
Running SLAM filters in computationally and hard-
ware constrained systems is expensive and limits the
applications for long term operations. Therefore, the
practical applications of SLAM technique on quadro-
tor need the support from ground vehicle [20, 36] in
order to perform the computations. Sharing compu-
tations among multiple vehicles is considered in the
scheme of relative localization techniques [16–18].

Although these kinds of systems have demonstrated
practical applications to investigate indoor environ-
ment, the working volume of quadrotor is limited to
a restricted space defined by the maximum measured
distance from ground vehicles.

To overcome the above limitations, Visual Teach
and Repeat (VT&R) technique [4, 14, 24, 43, 50] is
proposed as an effective solution to enable quadro-
tors to autonomously follow a desired route in GPS-
denied environment. As implied in the name, VT&R
technique consists of two phases (Fig. 1): teaching
phase and repeating phase. In the teaching phase,
a quadrotor is controlled by users (using joystick,
keyboard, teleoperation) along a desired route to col-
lect numerous reference images, which become the
database of the desired route. In the repeating phase,
the quadrotor will compare the current image with
the reference images in order to produce appropriate
motions.

This paper assesses the appearance-based monoc-
ular VT&R navigation technique including two mod-
ules: self-localization and motion control. The sys-
tem is described in Fig. 2. In repeating phase,
self-localization (or place recognition) first defines
the current segment of quadrotor in order to load
appropriate reference image. Three methods of self-
localization are proposed to compare and validate
with four databases, collected by the lead author and

Fig. 1 Two essential
phases of VT&R quadrotor
aerial system: teaching
phase and repeating phase
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Fig. 2 Appearance-based VT&R system

other research groups (COLD database [44] and New
College database [47]):

– Method I is a classical method, which uses
matches of the SURF features in the current image
with the SURF features in the reference images
to compute the probability value of each segment
in the desired route. The segment receiving the
best probability value of matched features will be
chosen as the current segment.

– Method II is an improvement of method I which
incorporates feature-size relation with spatial dis-
tance for outlier rejection when matching SURF
features.

– Method III is an adaptation of the self-localization
method, proposed in [51], into monocular
forward-looking camera.

Using one of these methods, the system will compare
the current image with the reference image. Basing
on the coordinates of matched features between these
two images, motion control commands (desired yaw
and height) are computed to guide the vehicle along
the desired route. The computation of motion control
command is developed on Funnel Lane theory, which
was originally proposed in [11]. This paper extends it
to 3D navigation for the quadrotor.

To summarize, this paper makes the following
contributions. Firstly, this paper advances the-state-of-
the-art in monocular self-localization of appearance-
based VT&R aerial system by utilizing the feature-
size relation with spatial distance. Secondly, Funnel
Lane theory is adapted and expanded into 3D for com-
puting the appropriate motion control commands for
the next movement. Finally, the qualitative VT&R
technique is firstly implemented on quadrotor aerial

vehicle and operating in Robot Operating System
(ROS) [2].

The remainder of the paper is organized as fol-
lows. Section 2 introduces literature of VT&R sys-
tems. Section 3 describes unified notations in the
paper as well as some properties of SURF feature and
its matching-feature technique. Section 4 discusses
Method I, Method II, Method III of self-localization.
Section 5 presents the computation of motion control
component built on Funnel Lane theory. Experimen-
tal results are presented in Section 6 and discussed in
Section 7. Lastly, some conclusion and future work are
presented in Section 8.

2 Related Works

The VT&R systems are classified by the calculating
approach of navigation [51]: posed-based approach [4,
24, 43] and appearance-based approach [11, 14, 41].

The pose-based (or quantitative) approach recon-
structs the positions of vehicle, detected landmarks
and desired route in the same global coordinate frame
basing on the current image and a set of reference
images. Works, reported in [4, 14, 23, 24, 33, 42], are
examples of the quantitative approach. In these works,
the relative pose between the current image and the
reference image is estimated based on matched fea-
tures between these images. The shortest relative pose
determines the appropriate reference image to be used
for navigation. The initialization is performed using
all reference images in order to define the initial posi-
tion of the vehicle. This is a highly computationally
expensive task. Hence, during route following, naviga-
tion is limited to use few reference images (2 or 3) for
the transition between two successive segments [13,
14] in order to decrease the time of calculation. How-
ever, the ability to handle kidnapped-robot scenarios
and recovery from considerable deviations from the
desire route is reduced. Due to the computational cost,
the calculation may be performed on a ground sta-
tion (desktop) before sending the motion commands
to quadrotor [13]. The limitations of the quadrotor
hardware do not allow the onboard calculation. The
pose-based approach requires calibrated cameras and
scale factor estimation for metric localization within
a segment. Although this approach is successful in
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route-following, the quantitative approach still shows
high computational cost and complicated implemen-
tation. These properties become disadvantageous for
some specific systems, such as micro aerial vehi-
cles, which possess strict constraint of computational
cost or consider VT&R as secondary plan for visual
homing.

The appearance-based (or qualitative) approach has
shown considerable benefits in computational cost and
convenient implementation. The approach does not
use camera parameters or attempt to extract exact pose
of the platform, rather it estimates the current segment
where the quadrotor is operating based on the sim-
ilarity between the current image and the reference
images. This information is sufficient to qualitatively
navigate the quadrotor along the desired route.

The work shown in [15], uses mutual entropy
information of the similarity to perform the transi-
tion between two successive segments. This method
can overcome the problems of occlusions. Neverthe-
less, the appearance of unexpected obstacles and the
significant changes of environment negatively effect
the accuracy. The method is applicable for 2D vari-
ation of camera rotation. Most of the other reported
methods such as [10, 12, 19, 32, 51] use matched
features to determine the current segment of the vehi-
cle. These methods rely on reliable feature-matching
results for navigation. Therefore, the development of
the feature detection and matching techniques has
received much attention as means of improving the
performance of VT&R systems. Work, reported in
[19], aims at optimizing the combination of feature
detection methods and feature descriptor methods.
Although this improves the performance of feature
matching, the practical applicability of the method is
questionable, due to the absence of the validation of
the uncommon feature-detection methods used in dif-
ferent environments such as indoor scenarios. Work
in [32] proposes to produce a virtual view of the cur-
rent image using an image database, to improve the
performance of feature-matching. This work reports
validation of this strategy for outdoor scenarios by
using the Google-Street-View database to generate the
virtual view.

The works [6, 10, 40] propose to use a switching
threshold for Mean Square Error (MSE) of feature
coordinates in the images, which tends to decrease
when the vehicle moves closely to the reference
image. The simple method satisfies the requirement of

the transition without consuming much computation.
As improved models of the transition computation,
the references use Bayes filter [48], Kalman filter
[52] or Markov filter [29]. Here, the estimation of
self-localization highly depends on the estimation of
the previous location and the accuracy of traveling
measurements. The estimating errors, which occur in
previous estimation, can not be fixed in the current
estimation.

In work reported in [11], the probability computa-
tion of the transition between two successive segments
consists of multiple information sources (i.e. matched
features, traveled distance and heading angle). Accu-
rate performances have been demonstrated with differ-
ent routes using this method. Their navigation utilizes
Kanade-Lucas-Tomasi (KLT) features. KLT technique
are known to be sensitive with the ambient lighting,
rotation and scale of the viewpoint. This method can-
not be directly employed into quadrotor applications
because the odometric measures used to locate the
vehicle in the segment are highly unreliable. However,
the study suggests that the use of multiple sources
to support transition significantly improves the self-
localization capability of vehicles. Additionally, the
works in [10, 11] propose Funnel Lane theory in order
to command a ground vehicle follow the desired route.
The method first qualitatively defines possible posi-
tions, where the vehicle can navigate through, by the
constraints of feature coordinates between the cur-
rent image and the reference image. The generation
of motion control commands is based on funnel-lane
guided motion. If the vehicle locates itself outside the
funnel lane, it will be commanded back to the funnel
lane. Robust performance and inexpensive calculation
motivate the paper to apply this strategy into quadrotor
navigation. However, the calculation of motion control
commands needs to be extended to 3D case in order to
be appropriate for quadrotors.

The work in [51] self-localizes the vehicle on
matched Scale-Invariant Feature Transform (SIFT)
features of omnidirectional camera images. The SIFT
feature-size relation with spatial distance is used in
the computation of the location probability values.
The approach produces very good results, and is com-
pared with the method of using average percentage
of matched features so as to validate its performance.
The method is a viable solution to improve image
transition in VT&R systems. It should be adopted to
quadrotor systems such as the Ar.Drone model which



J Intell Robot Syst (2016) 84:217–240 221

do not have the capability of omnidirectional visual
perception. The method, reported in [51], motivates
this paper to apply the feature-size relation with spa-
tial distance for improving self-localization of VT&R
navigation technique on quadrotor aerial vehicle.

3 Descriptions of VT&R System

3.1 Configurations

The VT&R aerial system is equipped with monocular
forward-looking camera that can be found in numer-
ous other commercial and research quadrotor models
[1, 19, 28]. Each reference image represents one seg-
ment of the desired route as in Fig. 1. Some notations
used in the paper are presented as follows.

– � is the desired route of VT&R system.
– {Segs |s ∈ {1, 2, ..., n}} are several continuous

segments constructing the desired route �.
– I

Ref
s is the reference image of the segment s in
the desired route, {IRef

s |s ∈ {1, 2, ..., n + 1}}.
– IC

k is the kth image feedback in repeating phase.
– IC is the current image feedback in repeating

phase.
– F

Ref
s,e is eth feature detected in I

Ref
s .

– FC
f is f th feature detected in IC

k .

– F
Ref

s+1,g is gth feature detected in I
Ref

s+1 .

– P
Ref
s is the position of MAV where taking I

Ref
s .

– P C is the current position of MAV for IC
k .

– P
Ref

s+1 is the position of MAV where taking I
Ref

s+1 .

The VT&R system is built on the observation of
visual landmarks in the working environment. These
visual landmarks appear as interest points (or fea-
tures) on the image plane. These features are detected
and matched between the current image and the ref-
erence images. In order to receive useful features, the
landmark should contain following properties:

– Being stationary and repeatable in the work-
ing environment for both teaching phase and
repeating phase: Landmarks on moving objects
such as other vehicles and humans should not
become observed features. It is complicated to
navigate basing on these dynamic features. The
adapted feature matching technique has ability to
reject the unwanted features of moving objects.

Additionally, the features should appear in both
phases of VT&R technique.

– Being robust in case of different lighting and
visual noise: The changes of working envi-
ronment between the teaching phase and the
repeating phase are inevitable. When considering
the changes of ambient lighting and the effects
of noise, the landmark should be still robust
enough for the vehicle to detect and to match its
features.

– Being distinctive in the working environ-
ment: Similar landmarks in working environ-
ment can produce inappropriate matched features,
which negatively affect the calculation of self-
localization.

3.2 Feature Detection and Description

Scale- and rotation-invariant feature detectors, such as
Speeded-Up Robust Features (SURF) [5] and Scale-
Invariant Feature Transform (SIFT) [30] features,
have recently demonstrated their useful applications
in computer vision as well as in robotics. Generally,
scale-invariant feature detection performs the scale-
space processing through image pyramid to reach the
scale-invariant property of features. The scale-space
consists of many octaves, where an octave contains
many levels according to the increasing or decreas-
ing of the scale σ values. With multiple values of
scaling σ parameters, Laplacian of Gaussian method
(LoG), a scale-space filtering, is performed for dif-
ferent octaves to define local maxima across scale
and space. In order to cope with the high computa-
tional cost associated with LoG, SIFT feature detec-
tion approximates LoG with Difference of Gaussians

Fig. 3 The SURF feature size relation with spatial distance
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Fig. 4 Test the feature-size
relation on images from
New College Database.
LEFT: IRef

s , RIGHT: IC

(DoG). And then these local maxima are defined by
comparing one pixel in an image with its 8 neighbors,
9 pixels in the next level and 9 pixels in the previ-
ous level. These defined local maxima need to pass an
evaluation step to become scale-invariant features. As
a result, the approach of SIFT feature detection still
requires large savings in memory to store the entire
image pyramid. The advent of SURF features is partly
inspired by the requirement of a speeded-up version
for SIFT features. The work in [5] use Hessian box
filter to approximate LoG in the support of integral
images. More details about SURF and SIFT features
can be found in the work, presented in [5] and [30]
respectively. In the view of VT&R system design,
the scale- and rotation-invariant properties of SURF
features provide considerable benefits as quadrotor
maneuvers in 3D and is subjected to image noise and
viewpoint disparity.

Besides these advantages, another noticeable prop-
erty of scale-invariant feature is the relation between
spatial distance and the feature size (or scale). When
the vehicle moves closely to the landmarks, the size
of the landmark features tends to increase. For exam-
ple, the position snapshot of IC locates between the
position snapshot of I

Ref

0 and the position snapshot

of I
Ref

1 as in Figs. 3 and 4. Matched features of IC

should have larger size than the features of I
Ref

0 but

smaller size than the features of I
Ref

1 .
The work [51] proposes to use SIFT features for the

VT&R ground system. Although SIFT and SURF fea-
tures apply the same principals, SURF features show
faster calculation than SIFT features, and still can

satisfy the accuracy and stability for self-localization
of the quadrotor. The scale-space representation of
the SURF features [5, 37, 39, 49] is approximately
estimated to decrease the average calculational time.
Therefore, the authors have chosen SURF features for
the VT&R aerial system. After detecting SURF fea-
tures in the current image and the reference images,
feature matching can be performed by SURF feature
descriptors. However, the descriptor of SURF features
is still calculated in the form of floating-point numbers
forming a 64-dim descriptor vector. As a result, the
memory footprint of one SURF descriptor requires at
least 256 bytes. Considering computational capabili-
ties of the embedded systems on the quadrotor, the use
of SURF descriptor will take considerable memory for
thousands or hundreds of features. Hence, the paper
proposes to use Binary Robust Independent Elemen-
tary Feature (BRIEF) descriptor in order to improve
the efficient computation of matching feature step [8,
26]. BRIEF descriptor is one of many binary descrip-
tors, which considering the statistical properties of
image region around the detected feature to perform
feature matching. BRIEF descriptor has shown fast
computation and compact presentation.

4 Appearance-Based Self-Localization

Self-localization is performed by processing the cur-
rent image feedback and the reference images to
determine the current segment. Three methods of
self-localization are proposed as follows:
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Fig. 5 Results of matching
features after matching
feature descriptor step

Fig. 6 Results of matching
features after eliminating
incorrect matched features
by its distance

Fig. 7 Results of matching
features after utilizing
feature-size relation with
spatial distance to filter
incorrect features
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Fig. 8 Results of matching
features after applying
RANSAC for feature
filtering

4.1 Method I

Normally, self-localization is performed by comparing
the number of matched features between the cur-
rent image and the reference images [19, 32, 51].
After matching SURF features between images by
its descriptors, the results contain considerable incor-
rect matches. Some methods of outlier rejection are
employed to provide reliable matched features for
self-localization. One filtering method is RANdom
SAmple Consensus (RANSAC), which is an itera-
tive method that fits a model to filtered data [9].
The model in this case is a homography between
two images. Incorrect features, which will not fit
the model, are eliminated. Our first feature matching
algorithm (method I) is presented below:

Algorithm 1 Matching features of method I between
{FC

f } of IC and {FRef
s,e } of I

Ref
s

Input: {FC
f }, {FRef

s,e }, IC and I
Ref
s

Output: Matching SURF feature result: {FM,3∗
s }

1 Calculate feature descriptors: {FC
f .descriptor} and

{FRef
s,e .descriptor}

2 Match feature descriptors between
{FC

f .descriptor} and {FRef
s,e .descriptor} in order

to produce {FM,1
s }

3 Eliminate incorrect matched results by its distance
(in feature space) to have {FM,2

s }:
{FM,1

s .distance}>0.5 ∗ Mean({FM,1
s .distance})

4 RANSAC feature filtering of {FM,2
s } to have

{FM,3∗
s }

{FC
f } SURF features of IC are matched with

{FRef
s,e } of I

Ref
s to have {FM,3∗

s }. {FC
f } SURF fea-

tures of IC are matched with {FRef

s+1,g} of I
Ref

s+1

to have {FM,3∗
s+1 } also by the Algorithm 1. The

probability calculation of self-localization is per-
formed by taking the average of percentage of
matched features (Eq. 1). This information is used
to estimate the segment where the vehicle is locat-
ing. If the quadrotor is currently at segment s,
it will have more matched features {FM,3∗

s } and
{FM,3∗

s+1 }. The segment receiving the maximum value
of MethodI{Segs} is taken as the vehicle’s true
location.

MethodI{Segs} = 1

2

⎛
⎝ |{FM,3∗

s }|
|{FRef

s,e }|
+ |{FM,3∗

s+1 }|
|{FRef

s+1,g}|

⎞
⎠

(1)

4.2 Method II

Method II intends to improve method I while using
additional condition of the relation between spatial
distance and the size of feature. Some incorrect fea-
tures are eliminated by using feature-size relation. It
means that the {FC

f } has larger size than {FRef
s,e } but

smaller size than {FRef

s+1,g} as in Fig. 3. Reasonably,

{FRef
s,e } and {FRef

s+1,g} are detected at the start posi-
tion and the end position of the segment. Any features
of {FC

f } should have the value of size between these
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constraints. Matching SURF feature of method II is
presented as in Algorithm 2.

{FC
f } SURF features of IC are matched with

{FRef
s,e } of I

Ref
s to have {FM,4

s }. {FC
f } SURF fea-

tures of IC are matched with {FRef

s+1,g} of I
Ref

s+1 to

have {FM,4
s+1 }. Then, the probability calculation of self-

localization is performed by Eq. 2 in order to estimate
the segment of vehicle location. The segment receiv-
ing the maximum value is taken as the vehicle’s true
location.

MethodII{Segs} = 1

2

⎛
⎝ |{FM,4

s }|
|{FRef

s,e }|
+ |{FM,4

s+1 }|
|{FRef

s+1,g}|

⎞
⎠ (2)

Results of matching SURF feature step-by-step is pre-
sented in Figs. 5, 6, 7, 8. The left image is IC while
the right image is I

Ref

s+1 .

4.3 Method III

Method III is an adaptation of self-localization
method, proposed in the work [51], into monocular
camera. Method III reuses the SURF feature match-
ing technique in method II (Algorithm 2). Segment
estimation is calculated by Bayes’s rule. Basically,
in order to perform self-localization, two dependent

events are considered: number of matched features,
{FM}, and segment estimation, {Segs}. The condi-
tional probability of their relationship obeys Bayes’s
rule [45]:

p(Segs |{FM}) = p({FM }|Segs)p(Segs)

p({FM }) (3)

p(Segs |{FM}) ∝ p({FM }|Segs) p(Segs) (4)

p(Segs) presents the belief of specific segment s.
This information is available if the quadrotor global
position during localization is provided. As the VT&R
system’s configuration excludes global positioning
system, p(Segs) is set to be the same for every
segment. Additionally, p({FM }) is eliminated since
the maximum value of p(Segs |{FM}) is considered.
p({FM }|Segs) is calculated by assuming the quadro-
tor is at segment s of the desired route between two
reference images I

Ref
s and I

Ref

s+1 in order to define
p(Segs |{FM}). The estimations basing on matched
features, p({FM }|Segs>i−1) and p({FM }|Segs<i+1)

are two independent events.

p({FM }|Segs=i ) = p({FM }|Segs>i−1)

p({FM }|Segs<i+1) (5)

{FC
f } are matched with {FRef

s,e } to produce matched

features {FM,4
s }. {FC

f } are matched with {FRef

s+1,g} to

produce matched features {FM,4
s+1 }. When matching

SURF features, the feature-size relation is added in
considering the {IRef

s } or {IRef

s+1 }. Probability calcu-

lation of p({FM
s }|Segs>i−1) and p({FM

s }|Segs<i+1)

are computed:

p({FM }|Segs>i−1) = |{FM,4
s }|

|{FRef
s,e }|

(6)

p({FM }|Segs<i+1) = |{FM,4
s+1 }|

|{FRef

s+1,g}|
(7)

As a result, p(Segs |{FM}) is defined as Eq. 8.

p({FM }|Segs=i ) = |{FM,4
s }|

|{FRef
s,e }|

|{FM,4
s+1 }|

|{FRef

s+1,g}|
(8)

MethodIII{Segs} = p({FM }|Segs=i ) (9)

The segment receiving maximum percent value
of estimation MethodIII{Segs} will provide data as
reference image for navigation.
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Fig. 9 Processing database
to choose reference images
and current images for
testing

4.4 Experimental Validations of Self-Localization

4.4.1 Databases for Validations

Three proposed methods of self-localization are
validated and analyzed with four databases. Two
databases are collected by the authors while other
two databases are collected by other research
groups.

– Route A (Fig. 25): Second Floor of Faculty
of Engineering and Applied Science including,
Memorial University of Newfoundland (MUN)
includes Engineering Lobby, Cafeteria and Engi-
neering Lounge, 61 images are collected at 11:00
am May 17, 2014, cloudy weather. Image dimen-
sions: 2592x1936, environment: indoor.

– Route B (Fig. 26): Outside Engineering Building,
MUN, along Kerwin PI road, 72 images are col-
lected at 3:00 pmMay 17, 2014, in sunny weather.
Image dimensions: 2592x1936, environment: out-
door.

– CoSy Localization Database [44]: Images are
collected by ActivMedia PeopleBot platform.
Image details are listed, dimensions: 640x480,
environment: indoor office, year: 2008, version:
COLD-Saarbrucken - Part B - night condition.
Robot travels with the speed 0.220 m/s.

– New College Database [47]: The images of
New College Database are collected by Segway
robotic platform in Epoch A Campus at New
College, Oxford, United Kingdom. The working

environment is outdoor with sunny weather in
May 2009. Image details are listed, dimensions:
384x512 pixels, environment: outdoor.

4.4.2 Results of Testing Self-Localization Technique

Tested databases are collected when the vehicle is
moving. Therefore, the images of databases show
the motion blur in their content. When processing
each database, some images are chosen as reference
images, and the other images between chosen ref-
erence images are considered as current images and
used to test the performance of self-localization tech-
nique (Fig. 9). The reference images are chosen so
that the different rate measurement between the cur-
rent image and the reference image is sufficient to
achieve self-localization, where the distance of the
segment is at-least 1m. The number of current images
between two reference images is not similar depend-
ing on the different rate measurement. More current
images provide less reference images, more advan-
tages of storing reference images, and faster self-
localizing operation. Three methods will be tested in
using the same databases and the set of m tested
images {IC

k } in order to have similarly operating
conditions.

The results of estimating location are compared
with the employed ground-truth data in order to define
the percentage of success in each of the method.
Additionally, entropy measurement is calculated as
in Eq. 10 to measure the uniformity of the proba-
bility distribution in three proposed methods [51]. In
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comparison, the method performing better has lower
entropy value.

Entropy({IC
k }) = −

m∑
k=0

sim(IC
k ) log2 sim(IC

k ) (10)

where sim is an output function calculated by method
I or method II or method III.

In addition, the paper also observes the differ-
ent rate between the current image and the reference
images. The difference rate is computed in the form of
correlation norm matching as Eq. 11 [7]. A value of
D, closer to 1, represents a small difference or a good
match, while a small D, closer to 0, is significantly
different or a poor match. R, being reference image,
and C, being current image, have the same size w×h;
x′ = 0...(w − 1) and y′ = 0...(h − 1).

D =
∑

x′,y′(R(x′, y′)C(x + x′, y + y′))√∑
x′,y′ R(x′, y′)2

∑
x′,y′ C(x + x′, y + y′)2

(11)

Table 1 presents the results of self-localization by
all three methods. Method II and method III provide
better in estimating the current segment than method
I. The use of the SURF feature size relation with spa-
tial distance has eliminated some incorrect features to
improve the performance of self-localization. Method
II has smallest failure numbers over trials. However,
the estimating accuracy of method II is not much dif-
ferent as compared to method III, and suffers higher
entropy evaluation. In other words, the estimation of
method III produces very small errors due to Bayes’

Fig. 10 Results of difference rate measurement in Segment 5 -
New College database

rule. For example, if the quadrotor is truly in segment
5, the errors of method III is ±1 segment (segment
4 or 6) while those of methods I and II are big-
ger (segment 1 or 9). Additionally, methods II and
III have taken less processing time than method I
because the elimination steps have removed incorrect
matched features before applying RANSAC feature
filtering.

Reference images (IRef

5 , I
Ref

6 ) and a set of cur-
rent image feedback (IC

k ) in segment 5 of New Col-
lege database (Fig. 24) are chosen to evaluate the
performance of self-localization methods within one
segment. Figure 10 expresses difference rate between
current images (IC

k ) and reference images (IRef
s ).

Figures 11 and 12 express the results of estimation
and entropy on the current images of segment 5 in
New College database (Fig. 24). When the vehicle is at
position 1 (Current Image 1), closest to the reference

image I
Ref
s , the value of the estimation reaches the

highest value. When the vehicle moves forward, far

from P
Ref
s and I

Ref
s , the value of the estimation tends

to decrease. When the vehicle moves closed to P
Ref

s+1

and I
Ref

s+1 the value of the estimation tends to increase.
Figure 10 can show the changes of the different rate

when the vehicle is moving from P
Ref
s to P

Ref

s+1 . The
property happens to be the same with the entropy dia-
gram. These results are different from those of the
work [51], where the centre position receives the max-
imum estimation. The difference is caused by the type
of camera used in the system. The work [51] uses cam-
era with hyperbolic mirror providing front and back

Fig. 11 Estimation results of Segment 5 - New Col-
lege database. Estimation results are the calculation of
MethodI{Seg5}, MethodII{Seg5} and MethodIII{Seg5}
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Fig. 12 Entropy results of three methods using Segment 5 -
New College database

images, while this paper uses a monocular camera
providing front images.

As a result, method III of self-localization is pre-
ferred to integrate with appearance-based motion con-
trol in VT&R aerial system.

5 Appearance-Based Motion Control

Self-localization determines the MAV’s true loca-
tion, current segment of the desired route. After that,

motion control module needs to generate desired
yaw and desired height commands for the MAV to
reach the end position of the segment. Appearance-
based motion control is developed on Funnel Lane
theory.

5.1 The Theory of Funnel Lane

Funnel Lane theory was originally developed for 2D
navigation by Z. Chen and S. Birchfield [11] in 2009
in order to navigate a ground vehicle to follow the
desired route. The method first qualitatively defines
possible positions where the vehicle can go straight
by the constraints of feature coordinates between the
current image and the reference image. Navigation is
based on funnel-lane guided motion. If the vehicle is
outside the funnel lane, it will be navigated back to
the funnel lane. In this paper, Funnel Lane theory is
extended to 3D navigation for MAV by considering
the vehicle altitude (Z-direction).

Applying Funnel Lane theory for the case of one
fixed landmark (FL), MAV, which is locating at the
current position, (P C - point C), wants to reach the
end of the segment s, (P E - point E, P E = P

Ref

s+1 ) as
in Fig. 14. Notably, the origin of feature coordinates
is assigned at the centre of the image plane, while the
optical axis of the camera is parallel to the heading
direction of the MAV. As shown in Fig. 13, the MAV

Table 1 Experiment results
with multiple databases for
validating three proposed
methods

Method I Method II Method III

Route A

FT 31/51 19/51 21/51

(2592x1936)

PS 39.22 % 62.75 % 58.82 %

AE 3.2224 3.1089 2.4035

PT 0.2901s 0.1255s 0.1252s

Route B

FT 15/60 04/60 05/60

(2592x1936)

PS 75 % 93.33 % 91.66 %

AE 3.3224 3.2327 2.3955

PT 0.0940s 0.0669s 0.0670s

COLD

FT 67/151 37/151 51/151

(640x480)

PS 55.63 % 75.50 % 66.22 %

AE 2.8448 2.7503 1.9643

PT 0.0661s 0.0384s 0.0383s

New College

FT 46/175 7/175 20/175

(384x512)

PS 73.71 % 96 % 88.57 %

AE 3.5758 3.3905 2.1477

PT 0.00862s 0.0603s 0.0602s

Note: FT: Failure number over
Trials; PS: Percent of Success;
AE: Average Entropy; PT:
average Processing Time per
image
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Fig. 13 Funnel lane created
by a fixed landmark in 3D
view (LEFT), X-Y view
(RIGHT-TOP), and X-Z
view (RIGHT-BOTTOM)

at point E sees the FL (red point) at point uE(uE
X, uE

Y )

in the destination image plane IE
s . At point C, the

MAV sees a landmark feature (red point) at point
uC(uC

X, uC
Y ) in the current image plane IC

k . A funnel
lane of one landmark feature is created by following
definitions:

Definition 1 A funnel lane of a Fixed Landmark (FL)
and an MAV at the end of the segment, point E, is the
set of locations FFL,E such that C ∈ FLFL,E for each
four funnel lane constraints are satisfied:

|uC
X| < |uE

X| (Horizontal Constraint 1)

sign(uC
X) = sign(uE

X) (Horizontal Constraint 2)

|uC
Y | < |uE

Y | (Vertical Constraint 3)

sign(uC
Y ) = sign(uE

Y ) (Vertical Constraint 4)

Definition 2 A funnel lane of a Fixed Landmark (FL),
an MAV position at point E, and a relative angle α is
the set of positions FFL,E,α ⊂ FFL,E such that ψC

s −
ψE

s = α for each C ∈ FFL,E,α . A relative angle α is
in the plane which is parallel with X-Y plane.

The purpose of using Funnel Lane theory is to
define possible positions where the MAV is maneu-

vered to fly straight. By this way, in Fig. 13, a funnel
lane is produced and presented in 3D space as a red
pyramid with respect to a red landmark corner feature
or pyramid with a flat top with respect to the MAV at
the end of the segment, point E. The red landmark fea-
ture appears in the image plane of the MAV, which is
indicated as a blue point. The MAV at P E is presented
in full-filled symbol while theMAV at P C is presented
in non-filled symbol. Figure 14 presents the case of
the MAV’s same heading angle (ψC

s − ψE
s = 0) at

the current position and the end of the segment s.
Figure 15 presents the case of different heading angles
(ψC

s − ψE
s �= 0). The funnel lane will rotate α angle

as in definition 2.
Each landmark feature has a unique funnel lane.

The intersection between these funnel lanes will sat-
isfy both constraint conditions as Fig. 16. If the MAV
is in the intersection funnel lane, it will fly forward.
Another advantage given from this point is the reliabil-
ity of navigation, the MAV needs a minimum of only
one landmark feature for navigation. When the MAV
falls outside the intersection funnel lane, the naviga-
tion is computed in such a way that the MAV will fly
back to the intersection funnel lane. Its performance
depends on the current position with respect to the
intersection funnel lane. Nine possible positions of the
MAV are defined on the violation of four constraints
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Fig. 14 MAV from current
position (non-filled symbol)
is navigated to reach the end
of the segment s (filled
symbol) by funnel lane
theory

and described in Fig. 17. The next two sections will
depict the implementation of Funnel Lane theory into
following the desired route.

Fig. 15 Funnel lane in case of different heading angles

5.2 Building of The Desired Route

The desired route � is broken into several continu-
ous segments {Segs |s ∈ {1, 2, ..., n}}. We have a set
of reference images: {IRef

s |s ∈ {1, 2, ..., n}}. If Fun-
nel Lane theory is applied into each segment, I

Ref

s+1

becomes IE
s and P

Ref

s+1 becomes P E . The Funnel-Lane
visual route is defined by the follows:

– Hypothesis 1: The MAV’s coordinate frame is in
the segment s at current position P C and the task
is to reach the destination position P

Ref

s+1 . Two

key images IC
k and I

Ref

s+1 are respectively associ-

ated with P C and P
Ref

s+1 . There always exists an

acceptable route χ from P C to P
Ref

s+1 .
– Hypothesis 2: In the segment s, a set of matched

features {FM
s } between two key images IC

k and
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Fig. 16 Multiple feature (four features) case with X-Y and Y-Z
views

I
Ref

s+1 is observed along the path � from P C to

P
Ref

s+1 and allows the funnel-lane computation of
the navigation. There exist nine possible locations
of the MAV with respect to the intersection funnel
lane formed by matched points {FM

s }, {FM
s |s ∈

{1, 2, ..., n}}.

– Hypothesis 3: In the segment s, the condition to
apply the Funnel Lane theory is that the transfor-
mation between P C frame and P

Ref

s+1 frame does
not include the case which contains only lateral
transformation.

5.3 Funnel-Lane 3D Motion Control Algorithm

During repeating mode, after self-localizing the cur-
rent segment of the quadrotor, funnel-lane 3D motion
control algorithm is performed to online generate the
motion commands of desired heading and desired
height:

5.3.1 The Desired Heading of Quadrotor

For each feature j , a signed distance to the line uC
X =

uE
X is calculated:

f (uC
X, uE

X) = 1√
2
(uC

X − uE
X) (12)

And a desired heading of feature j is computed by the
feature horizontal coordinate:

switch(uC
X, uE

X)

case : uC
X > 0 and uC

X > uE
X

ψ
(j)
d = γ1 · min{uC

X, f (uC
X, uE

X)}
case : uC

X < 0 and uC
X < uE

X

ψ
(j)
d = γ1 · max{uC

X, f (uC
X, uE

X)}
case : otherwise

ψ
(j)
d = 0

(13)

Fig. 17 Nine possible
positions of the MAV w. r. t.
the intersection funnel lane,
which are defined by the
violation of four constraints
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The final desired heading for quadrotor is given by:

ψd = η1
1

N

N∑
j=1

ψ
(j)
d + (1 − η1)ψ0 (14)

Where: γ1 is the approximate conversion from pixels
to degrees. N is the total number of matched fea-
tures used in the algorithm. ψ0 is the desired heading
obtained from magnetometery heading measurements
at the start and the end of the segment s in the teach-
ing phase. η1 (0 ≤ η1 ≤ 1) is the confidence
between visual measurements versus magnetometery
heading measurements. In experiment, η1 is chosen
as 0.5.

5.3.2 The Desired Height of Quadrotor

For each feature j , a signed distance to the line uC
Y =

uE
Y is calculated:

f (uC
Y , uE

Y ) = 1√
2
(uC

Y − uE
Y ) (15)

And a desired height of feature j is computed by the
vertical feature coordinate:

switch(uC
Y , uE

Y )

case : uC
Y > 0 and uC

Y > uE
Y

Z
(j)
d = γ2 · min{uC

Y , f (uC
Y , uE

Y )}
case : uC

Y < 0 and uC
Y < uE

Y

Z
(j)
d = γ2 · max{uC

Y , f (uC
Y , uE

Y )}
case : otherwise

Z
(j)
d = 0

(16)

The final desired height for quadrotor is given by:

Zd = η2
1

N

N∑
j=1

Z
(j)
d + (1 − η2)Z0 (17)

Where: γ2 is the approximate conversion from pixels
to meters. N is the total number of matched features
used in the algorithm.Z0 is the desired height obtained
from altimeter measurements at the start and the end
of the segment in the teaching phase. η2 (0 ≤ η2 ≤
1) is confidence between visual measurements versus
altimeter measurements. In experiment, η2 is chosen
as 0.5.

6 Experimental Result of VT&R System

Appearance-based self-localization and motion con-
trol are implemented in VT&R navigation system of
quadrotor. In teaching mode, quadrotor is manually
controlled along the desired route � to collect n + 1
reference images. It means that the desired route �

is divided into n segments. In repeating mode, the
online calculation steps are presented in Algorithm 3.
Method III of self-localization is chosen to integrate
with funnel-lane 3D motion control algorithm.

Fig. 18 Gazebo simulation of mountain area
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Fig. 19 ROS system architecture

The experiment is conducted on ROS Fuerte [2]
with Gazebo simulator, Linux Ubuntu 12.04. Ar.Drone
quadrotor model and simulated environment (Fig. 18)
are created to sufficiently validate the performance of
VT&R systems. The architecture of ROS system is
described in Fig. 19. Image processing step utilizes
OpenCV library [7]. ISLab V T&R Navigation

and ISLab Controller nodes are programmed to
execute proposed VT&R techniques. Visual markers
of the desired route � (ground truth, segment nota-
tions) are generated in Rviz application (Fig. 20) in
order to verify the properly working of the proposed
navigation technique. In the teaching phase, quadro-
tor is manually controlled along the desired route �

to collect reference images. The desired route � has
55 reference images in mountain area. In the repeat-
ing phase, quadrotor starts at the same initial position
as in the teaching phase. Online calculation steps in
Algorithm 3 are proceeded to navigate the quadrotor
follow the desired route �. The video of the experi-
ment is located at youtu.be/0YVGK1-ObGM. Table 2
presents the parameters used in the experiment.

7 Discussion

Experiments show that quadrotor with VT&R tech-
nique is able to navigate and follow the desired
route with acceptable errors. In VT&R technique, the
navigation is basing on the reference images. The
positional errors are inevitable. Therefore, the per-
formance of the system is not better than the other
strategies with VICON motion capture system [27,
31, 34, 35]. It is a limitation of appearance-based
VT&R technique but considered as practical within
GPS-denied environment.

Figures 21, 22 and 23 show the experiment with
the long desired route in mountain area, contain-
ing 55 reference images. A number of reference
images negatively increase the computation cost if
all reference images are processed at the same time.
However, this challenge can be overcome if estimat-
ing the quadrotor location on all reference images

Fig. 20 Simulation performance of tracking the desired route.
LEFT: Images showing matching SURF features between
the reference image (Top) and the current image (Bottom).
RIGHT-TOP: Rviz application with colorful visual markers

of the desired route in order to check ground truth tracking.
RIGHT-BOTTOM: Forward-looking camera-view of quadrotor
in Rviz

http://youtu.be/0YVGK1-ObGM
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Fig. 21 Simulation results of tracking the trained route in mountain area. TOP: 3D view; LEFT-BOTTOM: X-Z view; RIGHT-
BOTTOM: X-Y view

in the beginning of the repeating phase. Then, esti-
mating location is performed by 3 or 4 reference
images logically related to the current segment. For
example, if quadrotor is known at segment 5, self-
localization will use reference images of segment 4, 5
and 6.

In the experiment, the complexity of the pro-
posed technique is measured: average 0.35s for pro-
cessing time; 1360M for the virtual size of mem-
ory (VIRT); 66092 for the resident size of memory
(RES); 18780 of shareable memory in VIRT (SHR).
The Image Feedback topic from quadrotor camera



J Intell Robot Syst (2016) 84:217–240 235

Fig. 22 Errors of Route
following. LEFT-TOP:
Errors following time,
LEFT-BOTTOM: Box plot
of errors, RIGHT-BOTTOM:
Box plot of yaw errors

is received at the rate of 20Hz. Then the proposed
technique is performed following sequential steps of
calculation (Fig. 19) in order to produce the topic

of command velocities to the quadrotor at the rate
of 7Hz. The frequency configuration of publishing
these topics is adequate for the quadrotor tracking the

Fig. 23 TOP: Yaw in
teaching phase; BOTTOM:
Yaw response in repeating
phase
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Table 2 Parameters of the experiment

Number of reference image 55

Maximum number of feature 200

Feature Detection SURF

Feature Descriptor BRIEF

Descriptor BRIEF length 32 bytes

Descriptor BRIEF patch size 48

Descriptor BRIEF kernel size 9

Descriptor Matcher BruteForce-Hamming

Confidence between measurements η1 = 0.5, η2 = 0.5

route. The proposed technique can also perform with
higher frequency of image feedback in order to pro-
duce higher frequency of control topic. However, the
limitation of hardware computation should be consid-
ered at that time.

The structure of VT&R system requires consid-
erable memory to store the reference images of the
desired route. The quality and quantity of the refer-
ence images decide the size of required memories.
Hence, an effective method to store and update the
database of the desired route is also needed. Due to the
limitation of Ar.Drone quadrotor hardware, the paper
does not attempt to store the database of the desired
route onboard, which removes the independent opera-
tions of VT&R technique. However, this problem can
be easily overcome by the additional flight recorder
onto Ar.Drone quadrotor hardware [1] or using
other models of quadrotor. On the other hand, for
practical applications, the VT&R does not need to
store the whole set of reference images. Storing the
SURF features and its descriptors is enough to per-
form feature matching technique.

The construction of funnel-lane 3D motion control
algorithm indirectly handles the problem of acciden-
tal collision during the repeating phase. After acci-
dentally colliding to other objects in environment,
quadrotor can be rotated to unpredictable heading
angle. Hence, all matched landmarks will fall out
of the image plane of quadrotor camera, and fail
the VT&R system. However, since the paper utilizes
heading and height measurements from other sensors
than vision in the calculation of motion control com-
mands, quadrotor will rotate back as before collision
and correct matched features will come back to the
image plane of6 quadrotor camera (for video: youtu.
be/WVq9IttJx0g).

8 Conclusion and Future Work

The paper has developed appearance-based VT&R
technique on quadrotor aerial vehicle in order to
navigate in GPS-denied environment. VT&R tech-
nique can be considered as the simpler form of SLAM
technique, which reduces the demand of higher com-
putational cost and complexity in implementation.
Navigating while comparing reference images along
the desired route, VT&R technique can overcome
the drift problem of quadrotor. The proposed design
of VT&R aerial system is constructed using two
different components: self-localization and motion
control. Firstly, three methods of self-localization
technique are proposed to improve the performance of
estimating the current segment of quadrotor. Utilizing
the relation between spatial distance and the size of
SURF feature, method II and method III show better
self-localization than method I. Method II produces
insignificantly better self-localization than method
III but shows some disadvantages at the uniformity
of the probability distribution. Secondly, qualitative
motion control is developed on Funnel Lane theory
to decrease the computational cost and to reach the
simpler form of motion control command calculation.
Qualitative motion control commands are calculated
by funnel-lane 3D motion control algorithm.

In order to increase the stability and reliability of
the VT&R system for practical applications, addi-
tional parts such as obstacle avoidance, memory man-
agement will be developed. Obstacle avoidance and
path planning will handle the unexpected appearance
of obstacles on the desired route in the repeating
phase. Memory management is to effectively man-
age and adaptively update the database of the desired
route in dynamic environment. Path planning shows
potential to develop in case of multiple databases,
which allows many ways to reach destination. In addi-
tion, the ROS system should be redesigned to enable
onboard processing and fully autonomous applica-
tions. The considerable changes of the working envi-
ronment between the teaching phase and the repeating
phase can make the VT&R system unable to navi-
gate. It requires another effective fusion of numerous
sensors and advanced navigating calculation to help
quadrotor working in dynamic environment but still
satisfies the limitation of quadrotor’s payload. The
navigation on Funnel Lane theory is also extended for
the case of rear-looking or omnidirectional camera.

http://youtu.be/WVq9IttJx0g
http://youtu.be/WVq9IttJx0g
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Appendix A: Reference images from used
databases

Fig. 24 Reference images and tested current images of segment
5, New College database

Fig. 25 Reference images of the route A - Second Floor of
Engineering building

Fig. 26 Reference images of the route B - Outside of Engineer-
ing building
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