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Abstract In this paper, the distributed cooperative
control problem is considered for multiple type (1, 2)
nonholonomic mobile robots. Firstly, a local change
of coordinates and feedback is proposed to transform
the original nonholonomic system to a new trans-
formed system. Secondly, a distributed controller for
the transformed system is designed by using infor-
mation of the intrinsic system and its neighbors to
make the state converge to the same value asymptot-
ically. Furthermore, it shows that the same value can
be confined to the origin, which means that the prob-
lem of cooperatively converging to a stationary point
of a group of nonholonomic systems can be practically
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solved. Finally, due to the communication delays are
inevitable in practice, new distributed controllers for
the transformed system are also proposed making the
state converge to the same value or zero asymptot-
ically with considering communication delays. The
proposed methods are then extended to the case where
the nonholonomic mobile robot needs to form a pre-
scribed formation other than agreeing on a same value.
The stability of the proposed methods is proved rigor-
ously. Simulation results confirm the effectiveness of
the proposed methods.

Keywords Distributed control - Nonholonomic
mobile robots - Formation control - Cooperative
control

1 Introduction

In recent years, there has been an increasing research
interest in the distributed synchronization control of
multi-agent systems due to its potential applications in
many areas, such as formation control [1, 2], design
of distributed sensor networks [3], flocking control [4,
5], etc. Some seminal works are [6, 7], just to name a
few.

A large number of effective control approaches
have focused on two control problems of networked
systems, i.e., leaderless consensus problems and
leader-following consensus problems. For leaderless
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consensus problems, controllers are designed to drive
all the agents to a common value, which depends on
initial conditions (see [8, 9]). As for leader-following
consensus problems, controllers are designed to make
all the follower nodes track the trajectory of the leader
node (see [10, 11]). Besides, there are also many
works investigated for different types of agent dynam-
ics including first-order integrator systems [12, 13],
second-order integrator systems [14, 15] and higher-
order integrator systems [16, 17]. However, many
practical cooperative control applications involve
agents that are nonlinear and nonholonomic. The sta-
bilization problem of nonholonomic system cannot be
solved by many methods of classical linear system
for the fact nonholonomic system fails to meet the
three necessary conditions of the theorem of Brock-
ett [18]. Thus the above mentioned methods cannot
the solve the cooperative control of multiple non-
holonomic agents. To solve the single nonholonomic
system control problem, many scholars have done a lot
of relevant research in this area (see [19-23], etc.). But
most of the methods focused on the single nonholo-
nomic system cannot solve the cooperative control of
multiple nonholonomic systems directly, because we
consider multiple nonholonomic mobile robots and
the associated controller is distributed in nature-for
each robot has access to the state of its neighbors
only. Motivated by those observations, the authors in
[2, 24-28] have focused on the cooperative control
of multiple nonholonomic agents. In [2], Lin, Fran-
cis, and Maggiore have studied the feasibility problem
of achieving a specified formation among a group of
nonholonomic unicycles by local distributed control.
In [24], Dong and Farrell presented two controllers
for cooperative control problems of nonholonomic
systems. One distributed controller was proposed to
make a group of nonholonomic mobile agents coop-
eratively converge to some stationary point; The other
controller was proposed to make a group of mobile
agents converge to and track a target point which
moves along a desired trajectory under various com-
munication scenarios. And they also extended the
methods to solve the problem of cooperative con-
trol of multiple nonholonomic dynamic systems with
uncertainty in [25]. In [26], Liu and Jiang proposed
a new class of distributed nonlinear controller for
leader-following formation control of unicycle robots
by using nonlinear small-gain design methods. In [27],
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Dong studied the distributed tracking control of mul-
tiple nonholonomic chained systems. Different from
their works in [24, 25], the assumption that all fol-
lower robots have access to the information of the
leader robot is not needed. In other words, for each
robot, the available information for feedback is its
own information and its neighbours’ information. In
[28], Cao, Jiang, and Yue have also investigated the
consensus problems of multiple nonholonomic sys-
tems. Distributed controller was constructed by using
the theory of cascaded systems. Different to previous
assumptions on the group reference such as persistent
excitation or converging to nonzero constant in [24],
the condition on the group reference signal has been
further relaxed.

Campion, Basin, and D’ Andréa-Novel claimed that
the interesting nonholonomic wheeled mobile robots
are type (2, 0), (2, 1), (1, 1), (1, 2) robots in [29]. In
this paper, we study distributed cooperative control
problem of multiple type (1, 2) nonholonomic mobile
robots. This kind of systems is more complicated,
compared with type (2, 0), type (2, 1) and type (1, 1).
The idea exploited in this paper can be used to inves-
tigate the same problem of the other three nonholo-
nomic wheeled mobile robots. The main contributions
of this paper are threefold. First, a local change of
coordinates and feedback is proposed to transform the
original nonholonomic system to a new transformed
system. Second, distributed controllers for the new
transformed system are designed by using its own
information and its neighbours’ information to make
the state converge to the same value or zero asymp-
totically with and without considering communication
delays. Third, extension is provided to extend the pro-
posed schemes to the case, where the nonholonomic
mobile robot needs to form a stable formation other
than agreeing on a same value.

The remainder of this paper is organized as follows.
In Section 2, some notions and preliminaries about
the algebraic graph theory are briefly introduced, and
the kinematic of type (1, 2) and the distributed coop-
erative control problem of type (1, 2) are presented.
In Section 3, under two different communication sce-
narios, distributed controllers are designed to ensure
that the state of each transformed system converges
to the same value or zero asymptotically. Extensions
are provided in Section 4. In Section 5, the simulation
results are shown to illustrate the performance of the
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proposed methods. Some conclusions are given in the
last Section.

2 Problem Statement
2.1 Basic Graph Theory and Notations

In this subsection, some notions and preliminaries
about the algebraic graph theory are briefly intro-
duced.

Let G = {V, £} denote a directed graph, where V =
{1, ..., N} is the set of nodes corresponding to each
robot, and £ C V x V is the set of edges. (i, j) € £
means that robot j can obtain information from robot
i, but not necessarily vice versa for a directed graph.
In this paper, self-loop is not allowed in the graph, that
is, (i,i) ¢ E. N; = {j € V|(J,i) € &} denotes the
neighbors of robot i. A matrix A = [a;;] € RVV
denotes the adjacency matrix of G, where a;; > 0
iff (j,i) € &, else a;j = 0. It is assumed that the
topology is fixed which means A is time-invariant. A
matrix L = D — A is called the Laplacian matrix
of G, where D = diag(dy, ..., dy) is the in-degree
matrix with d; = Z;V:l a;j. A direct path from robot
i to robot j is a sequence of successive edges in the
form {(@, 1), (I,m), ..., (k, j)}. Graph G is strongly
connected if any two robots (i, j) with i # j, there
is a direct path from robot i to robot j. A directed
graph G has a spanning tree, if there exists a robot i
such that there is a direct path from robot i to every
other robot in the graph, where the robot i is called
the root of graph G. A directed graph G is balanced if
17L = 0, where 1 is a vector with element one. Bidi-
rectional graph is a special case of a directed graph, if
@i, j) € &, then (j, i) € £. Meanwhile, it is stipulated
that a;; = a;; in bidirectional graph.

2.2 Kinematic of the Mobile Robots

Consider a group of N(N > 2) type (1, 2) nonholo-
nomic mobile robots as shown in Fig. 1 Each robot
has two steering wheels (conventional centered ori-
entable wheels) and one castor wheel (conventional
off-centered orientable wheel). (x;, y;) denotes the
position P; of the center of the ith ( = 1,2,..., N)
robot’s mass, 6; denotes the angle between x;|—axis
and X —axis, and B;; and B> denote angles between

Steering
wheels

o X

Fig.1 Type (1,2) nonholonomic mobile robot

the orientation of the plane of steering wheels and
xj1—axis, I,(> 0) is half of the width of the ith
robot. The nonholonomic constraint of the ith robot is
defined by [29]

(cos Bi1, sin Bi1, L sin B;1) H(6;)& = 0,
(—cos Biz, — sin Bj2, I, sin i) H(6)&; = 0,

where & = (x;, yi, 6;), and

(D

cos@; sin6; O
—sin6; cosf; 0O
0 0 1

H(6;) =

In addition, Eq. 1 can be specifically written as

Xi = —lrvi[sin By sin(6; +Bi2) +sin By sin(6; + 1)1,
Yi = lrvii[sin Bji cos(6; + Bi2) + sin Biz cos(6; + Bin)l,
0; = viisin(Biz — Bi1), Bit = via, Pz = vis,

(@)

where g; = [x;, yi, 0i, Bi1, Bi2]” is the state of the ith
robot, and v;1, v;2, v;3 are the velocity of castor wheel
and two angular velocities of steering wheels of the ith
robot, respectively.

2.3 Cooperative Control Problem

The chained form systems were first introduced in
[30] as a class of systems to which one could convert a
number of interesting examples, and for which it was
easy to derive steering control laws. However, only
the systems that have two input and one chain were
focused on. In our manuscript, the type (1, 2) nonholo-

@ Springer



528

J Intell Robot Syst (2016) 83:525-541

nomic mobile robot has three inputs and two chains.
Thus, the state feedback and coordinate transforma-
tion proposed in [30] cannot be utilized directly. The
sufficient conditions for converting a multiple-input
and multiple-chain system with nonholonomic con-
straints into a chained form via state feedback and a
coordinate transformation were presented in [31, 32].
Here, we invoke the coordinate and state transforma-
tion which is similar to that in [32]. Then, to simplify
the distributed cooperative controller design, a novel
change of states by adding fé (s)ds based on chained
form is proposed as follows.

t
zil = 6; — Jyw(s)ds,
Zja = x; cosb; + y; sinb;,
zi3 = x; sin6; — y; cos6;,

P Qin O: ) . sin g;) sin B;
Zi4 = —X; sm@, + yi COos 9, — 21rm
+y1w(x; cos b + y; sinf;),
: in(Bi1+Bi
Zis = x; cosf; + y;sin¢; — lr%

+y20(x; sin6; — y; cos 6;),
uip = vi1sin(Biz — Bin),
uip = —v;1 sin(Bi2 — Bi1)(x; cos6; + y; sin;)

. sin? Bi1
2V G e
2lr'V12‘,in2 Br—Pi) +.ertl sin(Bi1 + Bi2)s
uiz = vji sin(Biz — Bi1)(x; sin6; — y; cos ;)
., sin(2B;1)
Hrvis sin (B2 —Bi1)
lrviz sinZ (Bia—Pi1) + 2/, v;1 sin ;1 sin Bja,

3
where w = psint, and p, y1, y» are positive con-
stants.

Taking derivative of Eq. 3, we have
Zil = Uj] — o,
Zin = —y1220* 4 wzis + i1 — 0)(2i4 — Y10Z2),
23 = — iz’ + wzis + (i) — 0)(zis — Y203),
Zia = up + n1@zi2 + yiouiizis — yio*unzi,
Zis = Wiz + 1202i3 + 20Ui12is — V30 Ui12i3.
4)

Remark 1 Tt should be noted that because of the local
nature of the state and feedback transformations (3),
the laws designed for the transformed system (4) do
not guarantee global stability properties for the orig-
inal model (2) of the ith type (1,2) nonholonomic
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mobile robot. Indeed, since the coordinate transfor-
mation and state feedback are well defined over the
subset @; = {(xi,yi. 0. Bi1. Bi2) € R°|Bn #
Bi» mod m}. We have that only within such a domain
can we obtain “global” stability.

Definition 1 The distributed cooperative control
problem of multiple type (1,2) nonholonomic mobile
robots (2) discussed in this paper is to design the dis-
tributed control input u; = [u;y, u;2, u;3]7 for the ith
system (4) using z; = [zi1, zi2, 2i3, Zi4, 2is]’ and the
relative state z; of its neighbors for / € N; such that
z; is bounded and lim,_ o (z;(t) — z;(t)) = O for
1<i#j=<N.

Remark 2 The control laws are required to make the
state z; of each transformed system converge to the
same value ¢(7) with ¢(t) = [c1, c2(¢), c3(2), ca, 517,
where c1, ¢4, and c5 are constants which are unknown
and depend on robots’ initial conditions and commu-
nication between robots, and ¢, (), c3(¢) are bounded
functions. Furthermore, if lim; _, oo (11;1 (1) —w(t)) = 0,
c1=0,c4 =0,and ¢5 = 0, then cp = 0, c3 = 0 (see
Lemma 2). Since the system (2) discussed in this paper
is nonholonomic, by the theorem of Brockett [18], the
state g; of each original system (2) cannot be stabilized
at a stationary point by a smooth pure state feedback
controller which is a smooth function of its own state
gi and the states g; of its neighbors for I € N;. To
overcome this difficulty, we design cooperative con-
trol laws such that the state z; of each transformed
system (4) converges to a moving vector c(¢). Then,
we will state that c(¢) can also be confined to the ori-
gin, which means that cooperatively converging to a
stationary point of a group of nonholonomic systems
(2) can be practically solved. For details, please refer
to the remarks after Theorem 2.

An additional assumption on the communication
topology is given below.

Assumption 1 The communication digraph G has a
spanning tree and G with weight matrix A is balanced.

Remark 3 Note that this assumption is very common
which has appeared in relevant literature such as Dong
[33]. And it is much more relaxed than undirected con-
nected graph as has been made in Hou, Cheng, and
Tan [8], Ou, Du, and Li [34], Feng and Wen [35].
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The following lemmas are useful in our design and
analysis of distributed controllers.

Lemma 1 (Dong and Farrell [24]) If the digraph G
has a spanning tree and the Laplacian matrix L of the
digraph G with weight matrix A = [a;;](a;; > 0), then

lim (e — 1w’) =0

11— 00

for any u € [0, Re(A2(L))), where 1y is the nonzero
eigenvalue of L with the smallest real part, w satisfies
wl'L =0and w'l = 1.

Lemma 2 (Dong [33]) If the digraph G has a span-
ning tree and the Laplacian matrix L of the digraph G
with weight matrix A is balanced, the matrix LT+ Lis
semidefinite. Furthermore, if lim;_, o X r (LT +L)x =

0 for a vector x = [x1, x2, .. L xn1T, then
lim (x; () —x;(t)) =0,1 <i #j<N. 5
11— 00

Before proceeding further, the following additional
lemma is required.

Lemma 3 For the ith transformed system (4), if uj; —
w, Zi4, Zj5 are bounded and converge to zero asymp-
totically, then zj», z;3 are bounded and converge to
zero asymptotically.

Proof Consider the Lyapunov function candidate

Vi = % (zizz + 11-23) . (6)

Differentiating V7 along with solutions of system (4),
we get

Vi = —0? (N2} + 1223) + wzinzia + 0zi3zis
+zi2(ui1 — 0)(zi4 — Y102i2) )
+zi3(ui1 — w)(2i5 — Y202i3)

< —Q,Za)zvl + 201 V1 + 202/ V1,

where Y= min{yy, y»}, and

o1 = Vlol|lui1 — ol, g2 = \L@(|Zi4| + lzisDlui1l,

8)

with y = max{y1, y2}.

Due to boundedness of w, and lim;_,oo(u;1 —
w) = 0, lim;_o02ia(t), zi5(t) = 0, we have
lim;— o0 @1 (1), ¢2(¢)=0. In order to facilitate the fol-
lowing analysis, we take o = JVi, then Dto <
—yw?o 4+ @10 + @2, where D7 is the upper Dini
derivative. Thus, we get

o) < efé(_ZwZ(S)erl(s))dsa(O)

+ fé ot CY@P )i ())ds ©)

p2(T)d.

Note that

t 1
/ - ya)z(s)ds = / — yp2 sin” sds
0 - 0 -

_ 5t sin2t
=\ )

With this observation in mind, since lim;_, ~ 1 (#)=0,

there always exists 77 > 0 such that ¢ (¢) < % for
all + > T;. Define function ¢;(f) = supg<,<, ¢1(7),
the following equation can be achieved

flois)ds = [ oi(s)ds + fT @1(s)ds

(10)
< <,01(T1)T1+ Lt —Th).
Thus
Jo (=y@*(s) + @1 (s))ds
< e’ (L - sz’) +OTT + I 21y
< ——t+ +<p1(T1)T1——T1
(11)
Hence
lim, _, o el0 Y@ ©+016)ds o ) -
Plimi— oo fs (—sz(s)+<p1(s))dso,(0) -0
Next, we will show that
ro, )
lim [ Gy @reieNds ,) (yge — 0. (13)
—00 0
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Due to lim;_, o, ¢2()=0, Vn > 0, we can always
find that 7> > Ti such that >(t) < n for all r > T5.
Define function ¢2(#) = supy, <, ¥2(7), we get

-
ik O+ n s 5 gy

T [N(—ya?
= [T o h PO+ Nds ) (g7

L)
+ fh, e PO s gy (1) g

< G oY@ ) =1 ()ds g, Jo v’ ($)+e1())ds
t 2
+n f}z ol (Y@t () +ei()ds g0
f( yw (s)+ )dv
<C+nfpe dt
2 t
—yYp ———s1n21+ Sin 27 |+ =— (t T)
<¢+ nsz = ( 2 4 ) S dt
Yo 2 Yo
< ;+;7fT e —*TU Ddr
ﬁ
=f+ ny 7€ 7
1 2
where ¢ = el OO Wiy =

L)

02(T2) f0T2 eJo @ ©)=¢16)ds 11 Dye to boundedness
of ¢, thus lim;_, o £(¢#) = 0. Furthermore Ve > 0,
there exists T3 > 0 such that {(t) < § forall > T3.

2 2
pe Y

Choose n = ZTe 2 g, we have
ro, )
/ f LI OO D Gy ()T <6, Vi = max{Ts, T3)

which implies lim_, o féef; (—y @ (s)+or (S))ds(pz(‘f)d‘[
=0.

Therefore, it can be concluded that the right-side of
inequality (9) will converge to zero as t — 0o. Conse-
quently, o (¢) is bounded and tends to zero asymptoti-
cally, which also suggests that V1, z;2, z;3 are bounded
and converge to zero asymptotically. This completes
the proof. O

Remark 4 1t should be noted that the proof of Lemma
3 is different from that in Lemma 6 of [24] and Lemma
2 of [25]. The requirements for the convergence of
©1, p2 must be exponential in [24] and [25], which are
relaxed to be asymptotical here, and the proof here is
much more rigorous.

Lemma 4 If u;y — o, uj1 — o, zi4, 2j4, 25, 2j5 are
bounded and u;1 — o, uj1 — o, Zis — Zj4, 2i5 — 75
asymptotically converge to zero for 1 <i # j <N,
then z;2, zi3, 2j2, 2j3 are bounded and z;3 — zj7 and
73 — 23 converge to zero asymptotically.
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Proof First, we will prove that z;7 and z;3 are bounded
fori = 1,...,N. By Eq. (4) and using means of
variation of constants and initial integral methods, we
have

2ia(t) = e hosn ¥ (2(0)
+[ygin2(0)eld 10 dg),
2i3(1) = e Jos 4 (2(0)
+ [y gin(0)eld 2105 gg),

(14)

where

g1l = Y10° + (Ui — ©)y10, gi12 = Ui1Zi4,
2
gi21 = Y20° + (Ui1 — W)Y2w, gi22 = Ui1Zi5-

Since u;1 — w, w, zja, zis are all bounded, thus

gill, &i12, &i21, &2 are bounded. Furthermore, it can

be proved that z;» and z;3 are bounded by Eq. 14.
Lete;jp =zip —zjpforl <i # j < N, we have

éija = —NZnw* + wzis + (Uil — 0)(Zis — Y10zi2)
+712j20° —07j4 — (uj1 — 0)(2j4 — V10Z)2)

= —y10’eijr + ¢ij1 (1),
(15)

where ¢;j1(t) = o(zi4 — zja) + Wil — 0)(zis —
Viwzi2) — (uj1 — 0)(zj4 — Y1wz;2). Since zi4 — Zj4
and u;] — w asymptotically converge to zero, and w,
Zi2, Zi4» Zj2, Zj4 are bounded, thus ¢; ;1 (¢) converge to
zero asymptotically. Choose the following Lyapunov
function

Vo = i (16)
Using the mimicking argument as the proof of Lemma
3, it can be easily proved that lim;_» €;j2(t) = 0,
namely, z;> — 22 converges to zero asymptotically for
1 <i # j < N. Also, with the similar technique, the
conclusion that z;3 — z 3 asymptotically converges to
zero can be given. U

3 Controller Design and Stability Analysis
3.1 Closed-loop System Stability
In this subsection, we will design the distributed con-

trol input u; for the ith system (4) using z; and the
relative state z; of its neighbors for / € N; such that
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z; is bounded and lim; oo (z;(t) — z;(t)) = 0O for
1 <i # j < N. The structure of system (4) suggests
Zi1, Zi4, Zi5 can be directly controlled via u;1, u;2, u;3.
Now we are ready to choose the distributed controller
u; as

ujp = — 27:1 a;j(zi1 — zj1) + o,

upp = — Zﬁy:l a;jj (Zi4 — 2j4) — V10Zi2 — VIOU;1Zi4
+)/12602Mi12i2,

Uiz = — ZﬂLl a;j(zis — 2j5) — Y202i3 — V20U;1Zi5
+)/220)2ui1Zi3.

(17)

Remark 5 The first term of Eq. 17 is a weighted
sum of the relative state information between sys-
tem ¢ and its neighbors. And the terms w, —yjwzij2 —
iouizia + yiotunzio, —oz3 — yrouiizis +
yzza)zu“zlg are the canceling terms, which are
designed to cancel the extra parts.

Substituting control input (17) into system (4), we
can get the following closed-loop error system for
Zils Zids Zi5

. N
Zin = — ) 1 a4ij(zin — zZj1),

. N

Zia = — )71 aij(Zia — 2j4), (18)

. N
Zis = — ) j=14ij(zis — 2js)-

Theorem 1 Consider the closed-loop system consist-
ing of N transformed systems (4) satisfying Assump-
tion 1, the proposed distributed controller (17). Then
the state z; of the ith transformed system (4) in the
closed-loop system is bounded and lim;_, oo (z; () —
zj(®) =0for1 <i # j <N.

Proof By Eq. 18, we have

Zy=—LZ\,Z4 = —LZ4, Z5s = —LZs, (19)

where Z; = [z14,224,...,2Nng] for g = 1,4,5, and
L is the Laplacian matrix of G. Therefore

Zi=eMZ1(0), Zy = e7M 24(0), Zs = e Z5(0).
By Lemma 1, we have

limy 00 Z1(1) = 1w’ Z1(0) =: ¢11,
limy 0 Z4(1) = Lw” Z4(0) =: e41, (20)
limy, 00 Z5(1) = Llw" Z5(0) =: ¢s1.

It is apparent that lim; .oo(z1;(1) — z1;(t)) =
0,1im;— 00(z4i (1) — z4j () = 0,limi—00(z5 (1) —
z5j(t)) =0forl1 <i #j <N.

By utilizing Eqs. 17 and 20, we can prove that
u;; — o is bounded and converges to zero asymptot-
ically for [ = 1,..., N. Then according to Lemma
4, we have that z;» and z;3 are bounded. In addition,
the conclusion that z; — z;7 and z;3 — z;3 converge
to zero asymptotically for 1 < i # j < N can
also be given by Lemma 4, namely, lim;_, o (z;2(¢) —
c2(t)) = 0, lim;00(z3(1) — ¢3(r)) = 0 for I =
1,...,N, where c¢(¢t) and c3(t) are unknown but
bounded functions. O

Remark 6 A distributed control law for system (4) is
given by Eq. 17. Control law (17) can make z; for/ =
1,..., N converge to c(¢) asymptotically with c(¢) =
[c1, 2, €3, c4, CS]T. By Eq. 3, it is easy to prove that

Am gi(1) —q;(1) =0, 1=<i#j=N (21
—00

where g; = [x;, y1, 617 forl=1,...,N.

The following theorem shows that we can make
z;i converge to zero. We redesign the distributed con-
troller u; as

ujp = — Z?’:l aij(zi1 — zj1) — pizi1 + o,

Upp = — Z?’:] a;ij(zia — 2j4) — qiZis — Y102
—Y10U;{1Zi4 + )/lzwzuuziz,

- Zﬁy:l a;j(zis — zj5) — kizis — y20zi3
—Y20Ui1zi5 + szwzuilzB,

U3

(22)

where p; > 0,¢; > 0,k; > 0, and vazl pi > 0,
Siigi >0, ki > 0.

Remark 7 These terms p;zi1, qizia, kizi5 in Eq. 22
can also be considered as relative information between
robot i and a virtual robot with its state being zero.

Theorem 2 Consider the closed-loop system consist-
ing of N transformed systems (4) satisfying Assump-
tion 1, the proposed distributed controller (22) with
the parameters satisfying p; > 0,q; > 0,k; > 0,
and YL pi > 0. X g > 0.2k > 0.
Then the state z; of the ith transformed system (4) in
the closed-loop system is bounded and converges to
zero asymptotically, i.e., lim;_00zi(t) = 0 fori =
I,...,N.
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Proof With the distributed controller u; defined in
Eq. 22, we have

. N
Zin = — ) =1 aij(zin — 2j1) — pizil,

. N

Zia = — ) i1 aij(Zis — 2j4) — qiZi4s (23)
Zis = — ) j=1 ij(zis — 2js5) — kizis.

Choose the Lyapunov function

N
V= (Zizl + Zi24 + Zi25) . (24)
=1

1
24

1

Differentiating V along the solutions of Eq. 23 yields

V=-1zIa"+ L0z, - $zI (LT + L)z4
-1z + L)zs (25)
— Y0 (pigh + @izl + kizk)

where Z; = [z14, 224, - .-, 2ZNglforg =1,4,5,and L
is the Laplacian matrix of G. Since LT + L is positive
semidefinite, % < 0, hence that V (¢) is bounded and
Zi1, Zi4, Zi5 are bounded. According to the definition
(24), Barbalat’s Lemma [36] can be employed to prove
that that lim;_, V(t) = 0. Thus we obtain,

lim; o0 plzlzl, q;zlz4, klzlzs =0, 1=1,...,N
lim o ZI (LT + L)Z) =0,
lim/ o0 ZJ (LT + L)Z4 =0,
lim/— oo ZI (LT + L)Z5 = 0.

(26)

Since there is at least one integer m such that p,, >
0, limy 0o Zm1(#) = 0. By applying Lemma 2,
lim/ 0o (zi1 (1) — zj1(®)) = O0for 1 <i # j < N.
Hence, lim; .50 z71(¢t) = Ofor!l = 1,...,N. And
lim; 5 o0 774(t) = 0,1lim;_ o 275(t) = 0 can also be
proved in the similar argument.

By utilizing Eqs. 22 and 26, we can prove that
u;; — o is bounded and converges to zero asymptot-
ically for [ = 1,..., N. Then according to Lemma
3, we have z;7, z;3 are bounded and converge to zero
asymptotically. In summary, the state z; of the /th
transformed system (4) in the closed-loop system is
bounded and converges to zero asymptotically, i.e.,
lim;,00z;(¢t) =0forl =1,...,N. O

Remark 8 By Eq. 3 and lim;_, 5z;(¢) = 0, we have
lim;— 50[6;(t) — p(1 — cost)] = 0, which means that
6; converges to a neighborhood Bd of the origin with
radius p. And from the second equation and third

@ Springer

equation of Eq. 3, we can also get x;, y; are bounded
and asymptotically converge to zero provided z;2, ;3
are bounded and converge to zero asymptotically.
From the fourth equation and fifth equation of Eq. 3,
it can also be proved that if lim;_, c0z;(#) = 0, then
lim; 00 Bi1(t) = kpm and lim, o B2(t) = kpom,
ki1, kip € Z. Thus, the problem of cooperatively
converging to a stationary point of a group of nonholo-
nomic systems (2) is practically solved. In addition,
if p decreases, then the 6, becomes small. How-
ever, the performance of x;, y; becomes bad, i.e., the
convergence rate of z;7, z;3 to zero decreases. There-
fore, there is a tradeoff between small 6; and a large
convergence rate of x;, y; when one chooses p.

3.2 Closed-loop System Stability
with Communication Delays

In practice, there are always time delays due to com-
munication and other factors. In this subsection, we
will consider communication delays in the control
design and analysis. For simplicity, in this paper we
assume that all communication delays are constant.

Assumption 2 The communication digraph G is bidi-
rectional and strongly connected.

Under Assumption 2, the distributed controller is
designed as

win(t) = = Y00 aij @i () — 2j1(t = 1) + o),

uin(t) = — Y01 aij zia(0) — 2ja(t — 1) — n&®zi2 (1)
—y10Oui1 ()zi4(t) + yio* Oui (Dzia (1),

uiz(t) = — Zj-v:l a;j(zis(t) — zj5(t — 1)) — ya(t)zi3(t)
=10 (Oui (1)zis(t) + y2o*(Oun (Dzi3(1),

@7

where communication delay 7;(> 0) is a positive
constant.

Fig. 2 The communication
graph G
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Fig. 3 Profiles of the states 1
zi1 with controller (17) and ‘ z,,
|
controller (22) 0sl ,
| 21
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Substituting the distributed controller (27) into sys-
tem (4), we can get the following closed-loop error
system for z;1, zi4, zi5

zi1(t) = — Z?’:l aij(zi1 (1) — zj1(t — ),
a0 = = Y0 @i (@) — 2jat —w), (28
zis() = — >y aij(zis(t) — zjs(t — 7).
Theorem 3 Consider the closed-loop system con-

sisting of N transformed systems (4) satisfying
Assumption 2, and the proposed distributed controller

Fig. 4 Profiles of the states

t/s

(27). Then the state z; of the ith transformed sys-
tem (4) in the closed-loop system is bounded and
lim o0 (zi (1) — 2, (1)) = 0for | <i # j < N.

Proof Let
Vi) = 3305 ( A0+ ai f il(s)ds)
im0+ X e f 14(5)ds)
:1 Zis(t)+2j:161ijft_n sz(s)ds>.

(29)

1
2
1
3
1
+3

MM

zi2 with controller (17) and
controller (22)

state dynamics
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Fig. 5 Profiles of the states

zi3 with controller (17) and
controller (22)

state dynamics

-3 L

Differentiate V along the solutions of Eq. 28 yields

V() = =33 a0 — 21— 1)?
SN SN i i) — 2t — T))>
—%ZLZ;:] a;j(zis(t) —z;s5(t—1;))* <0,

(30)

where the fact that the communication graph G is bidi-
rectional has been used. By the invariance principle

Fig. 6 Profiles of the states

10 15 20 25 30 35 40
t/s

[371, zi1, z1a, and z;5 will converge to constants for
I =1,..., N. The following proof is the same as the
proof in Theorem 1, but omitted here. O

Remark 9 In practice, there are always time delays
due to communication and other factors. In our
manuscript, we take time delays into account in our
design of distributed protocol and we allow the delays
to be arbitrarily large. In the theorem, communica-
tion delays only appear in the neighbors states. This

zi4 with controller (17) and
controller (22)

state dynamics

@ Springer
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Fig.7 Profiles of the states

zi5 with controller (17) and
controller (22)

state dynamics

assumption is reasonable because the communica-
tion delay is the dominated delay among all other
time delays. The first term of Eq. 22 can be treated
as a weighted sum of the relative state information
between the current states of system i and the delayed
state information of its neighboring. By applying the
invariance principle, it is proved that our proposed
cooperative control laws are still effective even exist-
ing communication delay. Assumption 2 is stronger
than Assumption 1, since the existence of delays is in
the communication.

Corresponding to Theorem 2, we have the follow-
ing delayed version result.

Theorem 4 Consider the system consisting of N
transformed systems (4) satisfying Assumption 2, and
use distributed controller given by

ui1(t) = —Z_’,yzl ajj(zi1 (1) — 21t — ) — pizit(t) + w(1),

uis(t) —Z?/:l a;j (zia (1) = 2j4(t = 7)) — qi 2ia (t) — y10(t) 2i2 (1)
o ®)ui (O)zia(t) + v (Ouin (HDzi (1),

ui3(t) = —Z?;l a;j(zi5(t) —zj5(t —1:)) —kizis (1) =2 (t)zi3 (1)
—po®Oui1 ()zist) + Y7o Ouin )z (1),

€1V

with the parameters satisfying p; > 0,q; > 0,k; > 0,
and "N pi >0, 3N g >0, 5N ki > 0, where
communication delay t;(> 0) is a positive constant.
Then the state z; of the ith transformed system (4) in

10 15 20 25 30 35 40
t/s

the closed-loop system is bounded and converges to
zero asymptotically, i.e., lim;_,0zi(t) = 0 fori =
1,...,N.

Proof The proof is analogous as that of Theorem 2
and Theorem 3 and is omitted here. [

4 Extensions

In practical applications, multiple type (1, 2) nonholo-
nomic mobile robots may need to achieve a prescribed
formation other than rendezvousing at a common
value. It is shown that, if convergence to a common
value is feasible, then other formations can also be
obtained by the simple transformation.

Definition 2 The formation control problem dis-
cussed in this paper is to design a distributed controller
for the ith system (2), based on its state information

Fig. 8 The communication
graph G, with time-delays

@ Springer
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Fig. 9 Profiles of the states 1 T \
zi1 with communication | z, 1(1 1=0.55)
delays T = 0.5s and |
0.8 = 7
T =2.5s ‘ z,,(1,=0.5s)
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g; and the relative state g; of its neighbors for / € N;
such that

(1525 )= [San k[ ]) o
t—00 Vi —Yj —Ssmy cos ) Piy — Djy
im0 (0i (1) —0; (1)) =0,1 <i#j <N

(32)

Fig. 10 Profiles of the 3

t/s

lim; o0 Z,N:1 Xi = Z,N:] Dix, lim; o0 Z,N:1 Yi = Z,N:] Piy,
im0 Y1y Bit = ki, limy—oo Yiey Bit = ko, ki ka € Z
(33)

where x is a free variable, and p;y, p;, are the pre-
scribed displacements between the state value x;, y;
of robot i and the system consensus value, which is

states z;p with
communication delays
T =0.5sand 7 = 2.5s

state dynamics

)
)
N
)

- 212(r1=2.53
— 222(12=2.53 |
- = 232(13=2.5s

- L = =

- = 242(r4=2.53
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Fig. 11 Profiles of the ‘
states z;3 with z..(1,=0.5s)
communication delays 1801
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Let Ui = v sin(Biz — Bi1),
-2
_ . - sin” B
¢ iy = —vir sin(Bi2 — Bi)Zi2 + 2pviz—5—————
_ sin“(Bi2 — Bi1)
Zil = 6; — | w(s)ds, sin Bin
1 .
_ 0 _ —2lvis—————— + Lt sin(Bj1 + Bi2),
zZi2 = (x; — pix)cosO; + (y; — p,'y) sin 6;, sin® (Bi2 — Bi1) inQBi)
_ . _ s il
Zi3 = (x; — pix) sin6; — (yi — piy) cos b, iz = virsin(Biz = Bi1)ziz + lrvis :

- sin f;1 sin B2

—Zi3 — - + y1wziz,
' "sin(Bi2 — Bi1) '

Zi4

Fig. 12 Profiles of the
states z;4 with

communication delays
7 =0.5sand T = 2.5s

state dynamics

-2

sin?(Bi2 — Bi1)
o
—lrvip— Sin(2fia) + 2l,v;1 sin By sin Bz, (34)

sin? (Bi2 — Bi1)
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Fig. 13 Profiles of the

states z;5 with
communication delays
T =0.5sand t = 2.5s

state dynamics
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-3 L L L L I
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t/s
where w = psint, and p, y1, y» are positive con- Section 2.3. Let N = 4 and the initial values of each
stants. Taking derivative of Eq. 34, we have system be
dr=woe ] i 21 =105,1,0,-2,0", 22 = [1,1,-2,3.1, 17,
G2 = Yol g = )G =), g5 00,4, -2.3]7, 24=[-0.8,-3,3, 1,31,
i3 = —y2zi3w” + wzis + (Uil — 0)(2is — Y20zi3),

- - P - - 2 2_ -
Zi4 = Uiz +y10Zi2 + V10U1Zi4 — V] O Ui1Zi2,
Zis = i3 + V20%i3 + Y2oili1 Zis — V3w i1 23
(35)

Lemma 5 If lim(Zi(t) — Z;(t)) = O for
1 < i # j < N, then Eq. 32 holds, where
Zi(t) = [Zi1,Zi2, Zi3s Zia, Zis)? . Furthermore, if
lim; 00 Z;(t) =0 forl =1,..., N, then Egs. 32 and
33 hold.

By replacing z;; in Egs. 17, 22, 27, and 31 with z;;
for j = 1,...,5, similar control algorithms can be
obtained. By Lemma 5, the formation control problem
is also solved.

5 Simulations
We consider some examples to illustrate the proposed

design schemes and verify the established theoret-
ical results. Consider the system (4) discussed in

@ Springer

Case 1 The communication graph G; without com-
munication delays is described in Fig. 2. Note that this
communication graph G; satisfies Assumption 1. The
corresponding adjacency matrix A is given by

0 01 0
0500 05

Ar=1"9 10 0 (36)
0500 0

Two simulations are respectively implemented for the
distributed control law (17) and the distributed control
law (22) with p; = 0.5, g» = 0.5, k3 = 0.5 and other
control parameters are all zero. We choose the param-
eter p = 1 in local change of coordinates and feedback
(3). The simulations are conducted by the Matlab
“ode45” method. The trajectories of states versus time
plotted using solid line and dash-dot line shown in
Figs. 3, 4, 5, 6 and 7 are corresponding to the dis-
tributed controller (17) and the distributed controller
(22), respectively. Note that the states do not converge
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to zero directly, but are the same as its neighbors’. It
demonstrates that if z;, z;4, z;5 converge to nonzero
constants, then z;7 and z;3 are bounded. Furthermore,
if z;1, zia, and z;5 converge to zero asymptotically,
then z;7 and z;3 also converge to zero asymptotically.

Case 2 The communication graph G, with commu-
nication delays is described in Fig. 8. Note that this
communication graph G, satisfies Assumption 2.

The corresponding adjacency matrix A, is given by

0 0.7 04 05
07 0 06 0

A2=10406 0 0 | 37)
05 0 0 0

To simplify the simulation, we assume all the commu-
nication delays are common to each system, namely
71 = 7» = 13 = 74 = 7. The simulation is imple-
mented for the distributed control law (27). We choose
the parameter p = 1 in local change of coordinates
and feedback (3), p1 = 1.5,¢> = 1.5,k3 = 1.5 and
other control parameters are all zero. In order to bet-
ter analyze the influence of communication delays for
the system, t is set to be 0.5s, 2.5s in the two sim-
ulations, respectively. The simulations are performed
by the Matlab “dde23” method. The trajectories of
states versus time plotted using solid line and dash-dot
line shown in Figs. 9, 10, 11, 12 and 13 are corre-
sponding to the time delay t = 0.5s and t = 2.5s,
respectively. Figs. 9-13 verify the fact that the states
of every system (4) converge to zero asymptotically
even with communication delays. It also indicates that
the asymptotical convergence of the states can also be
achieved for large constant delays. However, the coop-
erative performance is bad if communication delays
are large.

6 Conclusion

In this paper, the distributed cooperative control prob-
lem has been investigated for type (1,2) nonholo-
nomic mobile robots. Four distributed controllers are
designed to ensure that the state of the transformed
system converges to the common value or zero asymp-
totically with and without considering communication

delays. Extension is also provided to extend the pro-
posed schemes to the case, where the nonholonomic
mobile robot needs to form a stable formation other
than rendezvousing at a common value. The stability
of the proposed methods is proved rigorously. Simula-
tion results confirm the effectiveness of the proposed
methods. It is our future work to solve the consen-
sus problem for multiple nonholonomic mobile robots
based on visual servoing.
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