
J Intell Robot Syst (2016) 84:601–620
DOI 10.1007/s10846-015-0304-1

A Vision-based Quadrotor Multi-robot Solution
for the Indoor Autonomy Challenge of the 2013
International Micro Air Vehicle Competition

Jesús Pestana · Jose Luis Sanchez-Lopez ·
Paloma de la Puente ·Adrian Carrio ·
Pascual Campoy

Received: 9 January 2015 / Accepted: 30 October 2015 / Published online: 28 November 2015
© Springer Science+Business Media Dordrecht 2015

Abstract This paper presents a completely
autonomous solution to participate in the Indoor
Challenge of the 2013 International Micro Air Vehi-
cle Competition (IMAV 2013). Our proposal is a
multi-robot system with no centralized coordination
whose robotic agents share their position estimates.
The capability of each agent to navigate avoiding
collisions is a consequence of the resulting emergent
behavior. Each agent consists of a ground station
running an instance of the proposed architecture
that communicates over WiFi with an AR Drone
2.0 quadrotor. Visual markers are employed to sense
and map obstacles and to improve the pose estima-
tion based on Inertial Measurement Unit (IMU) and
ground optical flow data. Based on our architecture,
each robotic agent can navigate avoiding obstacles
and other members of the multi-robot system. The
solution is demonstrated and the achieved navigation

J. Pestana (�) · J. L. Sanchez-Lopez · P. de la Puente ·
A. Carrio · P. Campoy
Computer Vision Group, Centre for Automation
and Robotics, CSIC-UPM, Calle Jose Gutierrez Abascal,
2, 28006 Madrid, Spain
e-mail: jesus.pestana@upm.es; jespestana@gmail.com
URL: www.vision4uav.eu/

J. L. Sanchez-Lopez
e-mail: jl.sanchez@upm.es

P. Campoy
e-mail: pascual.campoy@upm.es

performance is evaluated by means of experimental
flights. This work also analyzes the capabilities of
the presented solution in simulated flights of the
IMAV 2013 Indoor Challenge. The performance of
the CVG UPM team was awarded with the First Prize
in the Indoor Autonomy Challenge of the IMAV 2013
competition.

Keywords Aerial robotics · Distributed robot
systems · Multi-robot coordination · Visual
navigation · Quadrotor · Obstacle avoidance · Mobile
robots · Remotely operated vehicles · MAV

1 Introduction

This paper presents a vision-based solution designed
to participate in the 2013 edition of the International
Micro Air Vehicle Flight Competition (IMAV 2013).
These competitions are very relevant at the Euro-
pean level in the field of Autonomous Aerial Robotics
and Small Remotely Piloted Air Systems (sRPAS).
Another motivation for this paper is the develop-
ment of an aerial multi-robot architecture that can be
employed in different civilian applications.

The Computer Vision Group (CVG), our research
group, was awarded for its participation in the
IMAV 20121 [29], showcasing the potential of the

1http://www.vision4uav.com/?q=imav12

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-015-0304-1&domain=pdf
mailto:jesus.pestana@upm.es
mailto:jespestana@gmail.com
www.vision4uav.eu/
mailto:jl.sanchez@upm.es
mailto:pascual.campoy@upm.es
http://www.vision4uav.com/?q=imav12

602 J Intell Robot Syst (2016) 84:601–620

CVG in the field of autonomous Unmanned Aerial
Systems (UAS). The learning experience and the
development of common core software modules
encouraged us to keep on working in the same direc-
tion and try a multi-robot approach in the 2013 edition.
This edition’s rules were significantly different with
respect to the former edition’s. At IMAV 2013 there
was only one indoor competition, which could be
addressed with different levels of autonomy. The sce-
nario was a semi-structured environment with known
obstacles, a wall and four fixed poles; and various
obstacles located at unknown positions, four poles
and two windows. The scoring tasks included: fly-
ing through a window, path following and precision
landing, flying through an obstacle zone, and target
detection and recognition, among others.

The first contribution of this paper is the imple-
mentation and successful exhibition of a vision-based
quadrotor multi-robot solution for the IMAV 2013
Indoor Autonomy Challenge. The system is reliable,
even though it is based on the low-cost AR Drone 2.0.
Its weakest point is the dependency on a minimum
available WiFi bandwidth to receive the video stream
from each drone on their corresponding ground com-
puters. The system was made scalable by leveraging
the capabilities of the Robot Operating System (ROS).
The second contribution is an analysis of the opti-
mal performance of our multi-robot system to achieve
the navigation tasks of the IMAV2013 competition.
As a performance metric we decided to determine the
maximum number of drones that can fly the mission
without being a significant amount of time hovering
in position, waiting for their next checkpoint to be
free. Several simulations were run for this purpose,
and the result of this analysis is presented in Section 4.
The third contribution is the successful experimen-
tal testing of a localization strategy using different
kinds of data. In order to solve the localization prob-
lem, an EKF based algorithm formulation [31, 32] was
adapted to work with multicopters instead of ground
robots. This fact also required to adapt it to artificial
6D pose landmarks. The algorithm makes use of an
initially known map and enlarges it when new land-
marks are observed. In this case the odometry-based
estimate is a full 6D pose instead of a horizontal posi-
tion and a heading, and we use a very different sensing
technology: filtered Inertial Measurement Unit, ultra-
sound altimeter and optical-flow speed measurements.
The resulting odometry estimate is integrated with the

detection of both a priori known and unknown visual
markers to correct the drift of the odometry. The last
contribution is that the presented architecture has been
made publicly available as open-source.2 For a more
detailed analysis on the general design considerations
of our architecture the reader is referred to the paper
by Sanchez-Lopez et al. [37].

The layout of the paper is the following. In the
first place, the state of the art and a description of
the architecture are presented in Sections 2 and 3. In
Section 3, the modules of our agent-level architecture
are described. Secondly, a discussion about the opti-
mum number of quadrotors that can be flown simul-
taneously in the IMAV 2013 competition environment
using our solution is presented in Section 4. Then,
a experimental flight in a replica of the IMAV 2013
environment and a performance analysis are presented
in Section 5. Lastly, the conclusions and the future
work are discussed in Sections 6 and 7.

2 State of the Art

Localization in indoor environments is a challeng-
ing task for UAVs, especially if a low cost and very
lightweight solution is required [9, 17, 23, 36]. In the
absence of GPS signal and heavier sensors such as
laser or RGB-D sensors, visual approaches based on
landmarks or visual markers are very popular [9, 17,
36]. The method presented by Jayatilleke and Zhang
[17] requires all the landmark poses to be known a
priori and only works in limited areas, making use of
quite a simple approach without filtering of any kind.
The work by Faig et al. [9] presents an interesting
approach for local relative localization in swarms of
micro UAVs, which requires to keep external markers
always visible. Our method was mainly inspired by the
work by Rudol [36], but our models and formulation
are quite different from those proposed by Conte [6].

Much research work is conducted using motion
capture systems such as Vicon3 to explore small
UAV collaboration. The active and dynamic collab-
oration among a team of quadrotors is a subject of
active development at the ETH Zürich Flying Machine
Arena4, where, for instance, they are able to throw a

2http://www.vision4uav.com/?q=quadrotor stack
3http://www.vicon.com/
4http://flyingmachinearena.org/

http://www.vision4uav.com/?q=quadrotor_stack
http://www.vicon.com/
http://flyingmachinearena.org/

J Intell Robot Syst (2016) 84:601–620 603

ball using a net held by a team of quadcopters [35] or
make two quadrotors play, exchanging a pole [4]. Sim-
ilar feats have been achieved by the GRASP Lab of
the University of Pennsylvania.5,6 This Lab actively
researches dynamic maneuvering [19] and quadrotor
collaboration which is, for instance, demonstrated by
having a team of quadrotors build structures [22].

Other research groups have focused on outdoor
multi-robot systems, e.g. collaborative localization
and mapping with multiple Micro Aerial Vehicles in
unstructured environments [12]. The goal of the sFly
FP7 European Project7 was to develop small flying
vehicles which can fly autonomously in city-like envi-
ronments. As part of this project, strategies for cover-
age and surveillance of a target area were developed
[33]. As a result of the sFly project a software frame-
work to control Asctec quadrotors using Visual SLAM
and IMU fusion was released as open-source8 [41,
42]. The Pixhawk project advertised a MAVmesh9

[24] concept to communicate quadcopters using reli-
able decentralized serial link communications, but the
experimental testing of the concept has not been pub-
lished. In a similar line, very recent ground breaking
research has achieved decentralized multi-copter flock
flight [40] in outdoor environments which is based on
GPS usage. The flock can perform stable autonomous
outdoor flights with up to 10 flying multirotors.

3 System Description

Based on the analysis of the contest rules, a local-
ization system using visual markers and fusing with
IMU and ground optical flow data was estimated
to be robust enough against the inherent uncertainty
of a competition environment. In addition, a solu-
tion that utilizes low-cost quadrotors could lever-
age the usage of multiple drones to achieve a bet-
ter score. Thus, a vision-based quadrotor multi-robot
architecture was selected as our best option to par-
ticipate in the IMAV 2013 competition. A multi-
robot system composed by 3 or more relatively sim-
ple quadrotors is designed to achieve all navigation

5https://www.grasp.upenn.edu/
6http://www.kumarrobotics.org/, 2014
7http://www.sfly.org/
8http://wiki.ros.org/asctec mav framework
9https://pixhawk.ethz.ch/software/mavmesh/start

missions autonomously. Our solution requires a small
number of human operators to start and monitor the
whole system; who, in case of malfunction, can stop
independent robotic agents.

The multi-robot system is composed by low-cost
AR Drone 2.0 quadrotors, see Fig. 1a. Each quadrotor
is paired through a WiFi link with a ground computer
to achieve an autonomous drone or robotic agent that
can complete a predefined navigation mission while
avoiding collisions with obstacles and other drones
of the multi-robot system. The intelligence is imple-
mented at the agent level without a centralized plan-
ning approach. The system displays thus a swarming
or emerging behavior. All the drones perform self-
localization in world coordinates by means of visual
markers, and broadcast their estimated pose to the oth-
ers. By using the other robotic agents’ positions each
one of them can plan collision-free trajectories during
the execution of the mission.

Therefore, our multirobot-system is composed by
identical robotic agents, who consist of an instance
of the software architecture that commands an AR
Drone 2.0 over WiFi, as shown in Fig. 2. The com-
munications between modules on each ground station
and also among robotic agents are implemented using
the Robot Operating System (ROS) middleware,10

and the interface with the drones is achieved using
the ardrone autonomy ROS package.11 A thorough
description of the AR Drone 2.0 is given in [5].
This quadcopter is a popular platform for prototyping
projects, which has been used by other research groups
to perform autonomous navigation in unstructured
environments [8, 26].

As explained, each drone is paired to a separate
ground computer which runs a full-instance of the
architecture depicted in Fig. 2. The communication
with the drone is performed over WiFi. The commu-
nication between agents is achieved over a common
Local Area Network (LAN) to which all ground com-
puters are connected. One of the ground computers
runs the roscore. This ROS program provides the nec-
essary network addressing information that allows all
our modules to seamlessly communicate with each
other. In ROS, each module can be addressed sep-
arately by using a generic name and a namespace.

10Robot Operating System (ROS), http://www.ros.org/
11ardrone autonomy ROS package, https://github.com/
AutonomyLab/ardrone autonomy/

https://www.grasp.upenn.edu/
http://www.kumarrobotics.org/
http://www.sfly.org/
http://wiki.ros.org/asctec_mav_framework
https://pixhawk.ethz.ch/software/mavmesh/start
http://www.ros.org/
https://github.com/AutonomyLab/ardrone_autonomy/
https://github.com/AutonomyLab/ardrone_autonomy/

604 J Intell Robot Syst (2016) 84:601–620

Waiting
to avoid
collision

Performing
laps

Performing
laps

Performing
laps

pole obstacle
avoidance

(a) (b)

(c) (d)

Fig. 1 The presented architecture has been designed for
AR Drone 2.0 platforms. Figure a shows a picture of three of
these quadrotors. The experiments are performed in a replica
of the IMAV 2013 Indoor Challenge environment, shown in
Fig. (b). This environment consists of a wall with two win-
dows and eight poles. The position of the wall is previously
known but not the location of the windows along it. The wall
and the poles represent obstacles that must be avoided by the
mUAVs while flying. Only the position of the four corner poles
is previously known. All the poles and the windows are stamped
using ArUco visual markers, see (b) and (c). Figure c shows an

experimental flight at the moment when the quadrotors are
crossing the unknown poles area. The unknown poles are
robustly located in previous laps, when the drone performs laps
around the known poles, ensuring a good estimation of their
positions. The collision avoidance with other agents is solved at
the trajectory planning step. For instance in (d), a drone has to
wait until the path to cross the window is free. The flight shown
in (c) is described and analyzed in Section 5. Videos of this and
other flights are available at the website http://www.vision4uav.
com/?q=node/386

We leverage this capability by employing one separate
numbered namespace per drone, for instance drone1,
drone2 and drone3.

3.1 Coordinate Frames

The IMAV2013 environment has several elements that
need to be located with respect to the world frame
for the drone to be able to plan obstacle-free trajec-
tories. These elements are: the two wall sections, the
four known and four unknown columns, the known
and unknown visual markers and the other drones. The
walls and columns are defined by their size and the
horizontal location of their center point. The drones
and visual markers require to be localized using a
full 6D pose, composed of position and attitude. The
coordinate frames of these objects is shown in Fig. 3.

In the rest of this article, the coordinate transfor-
mation from a frame A to a frame B, which trans-
forms position coordinates xA with respect to frame
A to coordinates xB with respect to frame B, will be
denoted as TB A. TB A can be represented as a 4 by 4
homogeneous transformation matrix that performs the
coordinate transformation, xB = TB AxA . It is noted
that pose measurements, which include position and
attitude, are also estimates for a relative coordinate
transformation between two frames.

3.2 Quadrotor Dynamics Model

Figure 4 shows the free body diagram of a quadrotor.
Other than aerodynamic effects, which are not con-
sidered on this model, the principal magnitudes that

http://www.vision4uav.com/?q=node/386
http://www.vision4uav.com/?q=node/386

J Intell Robot Syst (2016) 84:601–620 605

Pose
Estimator

Localization

Visual Marker
Detector

Trajectory
Controller

Trajectory

Odometry
Pose

Obstacle
Detector

Mission
Scheduler

Mission

Trajectory
Planner

Yaw
Commander Estimated

Pose

Aruco
List

Aruco
Pose List

Commands
Mission
Point

Obstacle
List

Te
le

m
et

ry
F

ro
nt

 C
am

er
a

Im
ag

e

S
up

er
vi

so
r

(n-1)

Mission
Command

Society
Pose

[ROS] Agent-Level Architecture Low-Level Control
AR Drone 2.0

Multi-Robot
System
(LAN)

Aruco[] obstacles Marker[] sizes

Marker[] known poses
take-off point
[input] variances

Fixed obstacles
PRM config
Map config

take-off point

Estimated
Poses

Point to look
or Yaw

Yaw

roscore

WiFi

Fig. 2 Software architecture instantiated by each robotic agent.
The architecture consists of several modules that communi-
cate using the Robot Operating System (ROS) middleware.
Each white box represents a module, and the green text spec-
ifies configuration parameters. The localization module fuses
the odometry pose estimate with the detected visual markers’
information, and broadcasts the estimated pose to the rest of
the architecture and to the other robotic agents. The trajec-
tory planner calculates collision-free paths avoiding collisions
with obstacles and other members of the multi-robot system.
The obstacle detector outputs the location of the unknown posi-
tioned poles as their ArUco markers are gradually mapped by
the localization module. The trajectory controller receives the

calculated paths and executes them or makes the drone hover in
position, while making the drone look at an specific pole based
on references delivered by the yaw commander. The mission
scheduler module monitors the execution of the navigation tasks
and delivers a predefined sequence of goal positions as they are
attained. The supervisor monitors that all modules are online
as well as the quadrotor’s battery level. Additionally, it is in
charge of the startup and poweroff sequences of the architecture.
All the robotic agents’ ground computers are connected through
a Local Area Network (LAN) and communicate among each
other using ROS. The communication between robotic agents
is limited to sharing their estimated position, thus keeping the
desired swarm behavior

affect the quadrotor behavior are: the mass proper-
ties of the vehicle’s body, and the forces and torques
generated by the propellers. The following variables
and symbols, introduced in Fig. 4, are later used in
equations and cited in the discussion: the pose, posi-
tion and attitude, of the drone coordinate frame with
respect to the world coordinate are specified by its
position vector, denoted by the { x, y, z} coordinates,
and the attitude of the vehicle, represented by the

{ψ, yaw}, {θ, pitch} and {φ, roll} Euler angles follow-
ing the z − y′ − x′′ intrinsic rotations convention (also
known as nautical angles); the quadrotor rigid body
is characterized by its mass m and its three principal
mass moments of inertia {Ix, Iy, Iz}; each propeller
i generates a thrust Ti and a heading torque Mi ; the
l constant is the distance between the centers of each
pair of opposite propellers, such us propellers 1 and 3
in Fig. 4; and each propeller rotates at speed ωi and

Fig. 3 Relevant coordinate frames of our proposed solution.
The figure shows a simplified depiction of the IMAV2013 envi-
ronment: the initial take-off position is shown in gray; the static
obstacles, the wall and columns, in green; two drones in green

and a marker in red. The world coordinate frame, Fworld , is
located in one of the corners of the wall. The frames of the
drones, Fdrone1 and Fdrone2; and the marker, Fmarker , are also
shown

606 J Intell Robot Syst (2016) 84:601–620

Fig. 4 Free body diagram of a quadrotor. The four pro-
pellers, and each of their performed thrusts Ti and torques Mi

are labeled 1–4. The axes of the drone coordinate frame are
{Xm, Ym, Zm}. The Euler angles of the drone coordinate frame
with respect to the world coordinate frame are denoted {φ, roll},
{θ, pitch} and {ψ, yaw}

generates a torque of magnitude l/2 · Ti with respect
to the quadrotor body that can tip the quadrotor body
frontward, backward or sideways.

The quadrotor rigid body dynamics model, see
Eq. 1 and Fig. 4, can be inferred from the laws of
motion of the rigid body, as explained in multiple arti-
cles [16, 25]. In these equations {sψ, sθ, sφ} are the
sine and {cψ, cθ, cφ} the cosine of the corresponding
Euler angle.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ix φ̈ = ψ̇ θ̇ (Iy − Iz) +
√

2
2 l (+T1 − T2 − T3 + T4)

Iy θ̈ = φ̇ ψ̇ (Iz − Ix) +
√

2
2 l (−T1 − T2 + T3 + T4)

Iz ψ̈ = θ̇ φ̇ (Ix − Iz) + (−M1 + M2 − M3 + M4)

m ẍ = (−sφ sψ − cφ sθ cψ)
∑4

i=1 Ti

m ÿ = (−cφ sθ sψ + sφ cψ)
∑4

i=1 Ti

m z̈ = mg − cθ cφ
∑4

i=1 Ti

(1)

It is generally accepted to approximate Ti and Mi as
Ti = kT · ω2

i and Mi = kM · ω2
i , where ωi , kM and

kT are the propeller rotational speed and two propeller
characteristic constants. However, it is important to
note that in our solution the low-level stabilization of
the attitude and altitude of the drone is achieved by
the AR Drone 2.0 itself, and that our trajectory con-
troller provides the corresponding commands directly
to this low-level controller. These commands are:
altitude speed dz

dt c
, pitch θc, roll φc and yaw speed

dψ
dt c

.

3.3 Agent-Level Modular Architecture

In this section, the main characteristics and technical
aspects of each module of the agent-level architec-
ture, depicted in Fig. 2, are introduced. In this section,
droneI stands for one of the nd drones flying on the
current mission, and markerJ stands for one of the nm

markers placed on the competition environment.

3.3.1 Pose Estimator module

For droneI, the pose estimator, which is based
on the EKF algorithm, estimates the coordinate
transform {Tworld droneI }odom, and speed esti-

mates,
{
vx, vy, vz,

dψ
dt

}

odom
, for the variables

{x, y, z, ψ}odom. However, these estimates are biased
by the inherent drift related to odometry-based esti-
mation. As explained later, the localization module
calculates a bias-free estimate of {Tworld droneI }
by fusing only the odometry-based pose estimate
{Tworld droneI }odom with the detected visual markers.

The employed measurement model is depicted in
Fig. 5, and it is fused with the drone commands{
θc, φc,

dz
dt c

,
dψ
dt c

}
, the filtered IMU measurements

{ψm, θm, φm,
dψ
dt m

}, the ultrasound altimeter measure-
ments {zm, vzm}, and the ground optical flow horizon-
tal speed measurements {vxm, vym}. The altitude and

yaw speed measurements
{
vzm,

dψ
dt m

}
are obtained by

a careful numeric derivation of the altitude and yaw
measurements {zm, ψm}.

This pose estimator requires measurements from
the ground optical flow sensor in order to work prop-
erly. It differs from other research in that it fuses the
high-level commands and the filtered IMU measure-
ments.

– In comparison to the work by Weiss et al.
[41], they fuse the raw IMU measurements with
visual-based pose measurements. These measure-
ments are the direct readings from the three-axis
accelerometers and gyroscopes from the drone’s
autopilot, and require the estimation of the IMU
biases during flight.

– Recent research [1, 21] has shown that the fil-
tered IMU measurements in quadcopters are com-
monly biased due to the neglect of the propeller
aerodynamic frictions which dominate any other
aerodynamic friction during normal multicopter
flight.

J Intell Robot Syst (2016) 84:601–620 607

1/s

aerodynamic
friction

model in
vehicle

reference frame
1/s

thrust
horizontal
proyection
calculation

ktr

ktr

change
to world

reference
frame

1/s1/s1/s

1/s

-

-

LTI
system

LTI
system

LTI
system

LTI
system

1/s

Fig. 5 Simplified model of an AR Drone multicopter proposed
in [28], which includes the action of the control commands.
Fxm and Fym are the projection of the thrust vector on the
horizontal plane, which are added to the aerodynamic friction
force, Fxm f r and Fym f r , generated by the movement of the

main body of the vehicle. ktr is a characteristic constant that
sets the response time of the linear speed of the vehicle’s body.
{axm, aym} and {ax, ay} are the predicted acceleration in the
mobile and world frames, respectively

– Arguably, there are better physical grounds to
fuse the propeller thrust and torque commands,
but with the AR Drone 2.0 only the higher-level

commands
{
θc, φc,

dz
dt c

,
dψ
dt c

}
are known.

In spite of these differences, our odometry-based pose
estimator has repeatedly allowed stable and precise
quadrotor flight, and our research group has suc-
cessfully used it in its participation on various Inter-
national Micro Aerial Vehicle competitions. More
details about the pose estimator can be found in the
Master’s Thesis [28].

3.3.2 Visual Marker Detector Module

This module processes the images acquired by the
on-board camera of the drone. Given the real size of
the fiducial markers located on the environment, see
the markers on the images in Fig. 1b, c, d, it returns
the poses of the detected markers with respect to
the drone, TdroneI markerJ . For known markers, these
estimations are equivalent to a pose measurement
with respect to the world frame, Tworld droneI . For
unknown markers the localization module needs to
additionally estimate the pose of the fiducial marker,
Tworld markerJ . The type of visual markers used in
this work are ArUco [14],12 whose implementation is
open-source. A comprehensive comparison between

12ArUco: a minimal library for augmented reality applications
based on opencv http://www.uco.es/investiga/grupos/ava/node/
26

various visual marker libraries was performed by
Krajnı́k et al. [18].

3.3.3 Localization Module

Localization is achieved by an Extended Kalman Fil-
ter (EKF) Simultaneous Localization and Mapping
module that calculates the complete 6 DOF pose of
the drone by fusing the odometry based pose estimate
and the measured pose with respect to the detected
visual external markers. The map is initialized with the
known 6D landmarks. The take-off point coordinates
in a common global reference frame are used as initial
localization pose.

In the prediction stage, an incremental motion
model is used. The odometry estimate with respect
to the previous iteration is composed with the cur-
rent localization estimate by means of 6D pose rela-
tive transformation composition using homogeneous
matrices. The covariance matrix is accordingly modi-
fied using the Jacobians of the composition.

In the correction stage, data association is not nec-
essary since the external markers have unique ids.
Recognized landmarks are used for setting up the
Jacobian matrices to be used for the EKF correction
update. A simple observation model in the Euclidean
space is used with subsequent angle normalization, a
manifold representation [10] could be tested in future
work. Once the best current estimate is obtained, it can
be used for the addition of new observed landmarks
to the map. This way, the localization method bene-
fits from the existence of known landmarks but also
incorporates detected visual markers with unknown
positions.

http://www.uco.es/investiga/grupos/ava/node/26
http://www.uco.es/investiga/grupos/ava/node/26

608 J Intell Robot Syst (2016) 84:601–620

Similar methods for ground mobile robots were
developed in previous work by de la Puente et al., ini-
tially based on the observation of 2D point features
with a laser scanner [30] and later based on the extrac-
tion of planar features from 3D point clouds generated
by a tilting laser scanner [31]. One important dif-
ference is that in the work presented here an initial
map was already a priori known, so this approach is
very close to a pure EKF standard localization algo-
rithm. Other important differences are related to the
sensors and data used, and to the less stable and
less smooth 3D motion of the vehicle. All modules
that are upstream of the Localization module benefit
from its drift-free estimation of the pose of the drone,
Tworld droneI .

3.3.4 Obstacle Detector Module

The unknown markers are located on the four center
columns and the windows. Their position is unknown
but the identification number of the ArUco mark-
ers located on these columns is known. This module
reports the position of the mentioned environment
elements by calculating the mean position of the mark-
ers of the obstacle that have been already localized.
The markers are located at known position offsets
from the center of the obstacle. These offsets are
known and used in the calculations. The produced
list of obstacles is reported to the Trajectory Planner
module.

3.3.5 Supervisor Module

This module performs four basic operations. Firstly, it
monitors the system during the startup of the agent-
level software architecture. Secondly, it coordinates
the actions of other modules during flight mode tran-
sitions like take-off, landing or the beginning of tra-
jectory following operations. Thirdly, it reports the
position of the agent to the other drones of the multi-
robot system. And fourthly, it gathers the pose mea-
surements from other drones, Tworld dronek , monitors
that the other drones keep reporting their positions
and passes all their poses as a single message to the
Trajectory Planner module. Other drones are consid-
ered as obstacles when they are nearby, nearer than
a threshold distance. A drone that stops reporting its
pose for a long enough period of time, 5 s, is consid-
ered as off-line by the rest of the multi-robot system.

Off-line drones are not reported to the Trajectory
Planner.

3.3.6 Mission Scheduler Module

The Mission Scheduler utilized to participate in the
IMAV 2013 competition was basically sequential.
Thus, the mission was divided in a sequence of tasks.
In order to add versatility to the mission definition,
its tasks are read from a configuration file. The avail-
able tasks included all the navigation related goals of
IMAV2013: take-off, land, navigate to a desired way-
point while looking in a given direction or towards a
column and sleep for a given time. Each task is moni-
tored to determine its completion by this module. The
completion event launches the execution of the next
task in the sequence.

3.3.7 Yaw Commander Module

This module calculates the yaw reference, with respect
to the world frame, depending on the agent’s current
task. This reference sets the direction at which the
drone’s on-board camera is looking. Thus, it is set
to potentially observe the maximum number of fidu-
cial markers. For the IMAV2013, the looking direction
was set to look at a particular position occupied by
a column, for instance while moving in the column
area; or to look in a given direction, for instance while
crossing the window.

3.3.8 Trajectory Planner Module

This module computes a free collision 2D trajectory
(horizontal coordinates x and y) to reach the current
mission point, which is set by the Mission Scheduler.
The yaw attitude angle is not considered by the plan-
ner. Taking into account the other agents’ positions
a collision-free trajectory for each drone is generated
by using a combination of state of the art trajec-
tory planning algorithms: probabilistic road maps [7],
a potential field map algorithm [20] and an A-Star
algorithm [27].

This paragraph summarizes the calculations per-
formed by the Trajectory Planner. The node map
utilized by the planning algorithm is precalculated and
unchanged during mission execution. The potential at
each node must be recalculated during execution due
to the changing position of unknown obstacles and the

J Intell Robot Syst (2016) 84:601–620 609

other agents. Each of the static obstacles, wall sections
and columns, and nearby drones, which are nearer
than a threshold distance (2.5 m), generate potential
and, thus, cost for the obstacle-free path calculation
algorithm. The resulting planned path is the optimal
solution that minimizes the cost to reach the mission
point from the currently estimated pose. This path
naturally avoids obstacles, and it is only recalculated
when a moving obstacle is present in the currently
planned trajectory. Other agents that are further away
are not considered as obstacles whatsoever. If this
module fails to find a feasible path to the mission
point, then an empty trajectory is commanded. This
event is triggered only when the agent does not have
a feasible obstacle-free path available to his current
mission point. In our convention, when the trajectory
controller receives an empty trajectory, then it starts to
hover on the current estimated pose.

The implemented collision avoidance strategy only
uses the current position estimate of the other robotics
agents. Given that the agents navigate the competition
environment at low speeds, to minimize the blurring
of the acquired images, this approach is enough to
avoid collisions on our multi-robot system. Relevant
related work on this characteristic are approaches that

consider the relative speed of the obstacles [2, 3, 11]
or the incertitude of their localization [15].

3.3.9 Trajectory Controller Module

The Trajectory Controller is composed of a state
machine and a high-level controller. The state
machine’s main role is to set the references for the
high-level controller while tracking the completion of
consecutive checkpoints, switching between straight-
line movement and turning modes, and setting a
hovering mode at the end of the trajectory. The high-
level controller in turn calculates the commands that
are sent through WiFi to the low-level controller of
the AR Drone. This controller, depicted in Fig. 6,
implements four feedback control loops to command
the drone in position, speed and yaw. The horizon-
tal linear position loops are approximately decoupled
by taking into account the current yaw of the vehi-
cle. The controller was inspired by prior work by
Hoffmann et al. [16] and Michael et al. [25]. In
comparison to the work by Hoffmann et al. [16],
our experiments were carried out in indoor environ-
ments and using different sensing solutions: ground
optical-flow and LIDAR [29], and, in the current

+

+
PID

+

+

-
PID

PD

PD

change
to body

reference
frame

dr
on

e
(in

te
rf

ac
ed

 w
ith

 a
rd

ro
ne

_a
ut

on
om

y)

PD

PD
NLF

NLF

+

+

-

trajectory
tracking

Fig. 6 High-level controller architecture, used in IMAV2012
and IMAV2013. Out is a cascade controller, which consists of
an inner speed loop and an outer position loop. The controller
includes non-linear laws to model the drone’s speed capabilities,
and a coordinate transformation to decouple the yaw control

from the position control in the horizontal plane. There are
many saturation blocks that allow a proper configuration of the
controller with regards to maximum velocity limitations on the
sending capabilities of the drone

610 J Intell Robot Syst (2016) 84:601–620

work, ground optical-flow and fiducial markers. Other
than the sensing solution, the main difference of our
controller when compared to these two prior works is
the addition of several saturation laws that can intrin-
sically take into account speed limitations established
by the on-board sensors. In IMAV2012, our drone
had to deal with low frame-rate optical-flow measure-
ments [29]. In this work, these saturations were used
to configure a desired maximum navigation speed for
each agent. These saturations have proved to be the
main advantage of this controller as they allow to
integrate it in different navigation applications.

As shown in the “trajectory tracking” diagram in
Fig. 6, the controller assumes that the navigation
is along straight trajectory segments. In this figure,
the variables with an at subindex stand for “along-
track” variables, for instance the x speed command
along the trajectory vatxc. Similarly the ct subindex
stands for “cross-track” referring to commands that
are perpendicular to the trajectory. As shown, the
controller follows position, yaw, {xc, yc, zc, ψc};
and speed references {vatxc, vatyc, vatzc}. For this
it requires estimates on these same variables,
{xest , yest , zest , ψest }; and {vxest , vyest , vzest }. The
configuration of the controller consists mainly of
PD and PID gains and the saturation values,
{vat max, vct max, vatzmax, vctzmax,

dψ
dt max

}. The con-
troller is described in more detail in the article [29]
and Master’s Thesis [28].

3.4 Multi-Agent-Level Emerging Intelligence

From the design and conventions in the specifications
of the Trajectory Planner, see Section 3.3.8, and know-
ing that the drones perform only navigation related
missions; the overall expected behavior of the agents
during mission execution is:

– Each agent follows a sequence of waypoints given
by its mission specification. The mission sched-
uler executes it sequentially.

– During execution, the trajectory planner will
attempt to find trajectories that are collision-free.
If it fails, the quadrotor will be controlled to stay
in the current position.

– If other robotic agents enter the current trajec-
tory, the trajectory planner will detect it and it
will command the trajectory controller, and thus
also the quadrotor, to stay in its current position
while attempting to find a collision-free path to
the current waypoint.

– If another robotic agent is on or enters the current
waypoint, then the trajectory planner handles the
situation in the same manner. The trajectory con-
troller is commanded to stay in the current posi-
tion. A new collision-free path will be calculated
when the current waypoint is free again.

The interesting characteristic of our multi-robot
system is that there is no central mission supervisor.
Rather, the synchronization of the drone navigation
mission is achieved by the set of rules and conventions
specified in the Trajectory Planner and the Trajec-
tory Controller, see Sections 3.3.8 and 3.3.9, of which
one instance is running on each agent. Arguably, this
intelligence does not allow to solve every possible
navigation conflict between the robotic agents. How-
ever, if the mission is specified correctly the conflicts
will not occur often.

The number of drones that can be flown using our
architecture is limited by the WiFi bandwidth require-
ments of the AR Drones. Experimental testing has
shown us, that by limiting the quality of the video
stream sent by each drone, it is possible to fly up
to 6 drones, which share the three available indepen-
dent WiFi channels in pairs. Otherwise, using drones
with an on-board computer running an instance of our
agent-level architecture would allow for higher num-
bers of drones. In this case, the WiFi bandwidth would
only be used, during execution, to share the pose esti-
mate of each drone, Tworld droneI , and the information
required by the human-supervisor for monitoring pur-
poses. The robotic agents would be able to navigate in
a structured area while avoiding collisions with other
drones of the proposed multi-robot system, without
the requirement of implementing a complex “Global
Mission Planner”.

4 Simulation Results

This section shows the final result of a series of sim-
ulations that were run to benchmark the designed
swarm behavior of the architecture in a simulation
of the IMAV 2013 competition environment. Taking
advantage of the modularity of our architecture, the
simulations are run using most of the actual software
architecture. Two simulators were developed for this
purpose, see Fig. 2, a quadrotor simulator and a Visual
Marker Detector simulator:

J Intell Robot Syst (2016) 84:601–620 611

– The quadrotor simulator is achieved by means of
a state machine that mimics the flying modes of
the AR Drone which include: landed, taking-off,
hovering, flying, landing and emergency modes.
Most of the modes are substituted by simple
behaviors. In the flying mode a basic dynamics
model explained in [28] is used. This model is not
intended to be used for controller tuning or precise
quadrotor dynamics simulation. The intent of this
quadrotor simulator is to allow the testing of the
mission specification and of the logic rules imple-
mented on separate modules that affect module
interfaces and module-level internal logic.

– The Visual Marker Detector simulator module
implements a simple set of visibility rules, such as
the requirement that the visual marker has to be
in front of the simulated quadrotor and a range of
distances were the visual marker is considered to
be detectable by the software. This simulator out-
puts a noisy measurement of the visible markers
pose with respect to the drone, TdroneI markerJ ,
whose positions are specified in the map configu-
ration files.

The simulator modules allow the execution of sim-
ulations with all the rest of the architecture. An image
of the visualization software used to inspect the sim-
ulations, or to interpret the behavior of the robotic
agents in real flights is shown in Fig. 7. Then, the
rest of the modules are the same as during real flights,

Fig. 7 Visualization in Rviz of a simulated flight performed by
five drones in a replica of the IMAV 2013 environment. Drone
axes: red x axis, green y axis and blue z axis. The blue cylinders
represent the map columns, the blue rectangles represent the
wall and its windows, and the green grid represents the floor.
The red line shows the current planned trajectory of the selected
agent and the red dot is the current waypoint

and thus can be tested and debugged without prepar-
ing time-consuming experimental flights. Two exam-
ples of these simulations, where five drones fly in
a simulated replica of the IMAV 2013 environment
are shown in Figs. 8 and 9. In both simulations all
the agents were able to accomplish the mission suc-
cessfully. The launch of the drones was timed and
performed at about every 15 s. The conflicts during
navigation where a drone had to avoid another one

0 2 4 6 8

−2

0

2

4

6

8

10

12

14

drone1
drone2
drone3
drone4
drone5

Fig. 8 Simulated flight where five drones flew simultaneously
to perform navigation tasks in a replica of the IMAV 2013 envi-
ronment. The poles are plotted as black circles, and the wall
is plotted by three black rectangles, with the two free collision
passages represented as windows. The size of the AR Drone 2.0
is too big for the small window, so all the drones have to cross
the big window. The trajectory executed by each agent is shown
as a distinct line, whose color and line style are specified in
the figure’s legend. In this simulation, all the agents managed
to accomplish their respective missions. The conflicts during
navigation when a drone had to avoid another one are easily
perceived, because they stand out from the normal execution of
the mission. Only two such conflicts occurred during this sim-
ulation: the first one resulted in drone3 taking a detour during
the laps execution when another drone was traversing the win-
dow; and the second one occurred while drone2 was finishing
the crossing of the unknown poles area

612 J Intell Robot Syst (2016) 84:601–620

0 2 4 6 8

−2

0

2

4

6

8

10

12

14

drone1
drone2
drone3
drone4
drone5

Fig. 9 Simulated flight where five drones flew simultaneously
to perform navigation tasks in a replica of the IMAV 2013 envi-
ronment. The interpretation of this is the same as for Fig. 8.
Again, in this second simulation, all the robotic agents managed
to accomplish their respective missions. The main difference
between both simulations is the higher number of navigation
conflicts that occurred during the mission execution

are easily perceived, because they stand out from the
normal execution of the mission.

A second capability of these simulations is that they
allow to estimate the limits of our multi-robot solu-
tion, except for actual flight dynamics, measurements
noise, WiFi bandwidth limitations and other problems
related to real flights. In order to determine the maxi-
mum number of drones that could simultaneously fly
using our solution in the Indoor Autonomy Challenge,
a set of simulations in a replica of the IMAV 2013
environment were conducted. Two of such simula-
tions with five drones are shown in Figs. 8 and 9. In
order to interpret these figures the modules specifica-
tions, which are described in the Agent-Level Modular
Architecture section (Section 3), have to be taken into
account. The expected behavior of the agents, dis-
cussed in Section 3.4, is mainly determined by the

mission definition, provided by the Mission Sched-
uler’s configuration file, and by the design of the
Trajectory Planner module, described in Section 3.3.8.

In Figs. 8 and 9, the simulated drones are ordered
by their launch times and their executed trajectories
are shown with lines plots. The mission specification
used to run both simulations is the same that was
used during the IMAV 2013 competition, which is the
following sequence of tasks:

1. take-off and start the whole architecture,
2. move in front of the window and then move to

one corner of the poles area (thus, crossing the
big window). During this task, the quadrotor is
controlled to look at the poles area perpendicu-
larly to the wall, which results in a constant yaw
reference,

3. perform laps around the poles area for 5 min,
4. cross the poles area moving towards the upper

right corner of the map,
5. navigate to the final scoring location and perform

the landing, hovering and landing task specified
in the IMAV 2013 rules. During this task, the
quadrotor is controlled to look at the poles area
perpendicularly to the wall, which results in a
constant yaw reference.

The laps and the crossing through the unknown
poles area tasks are specified so that all the drones will
probably navigate in the same direction. This mission
specification requirement minimizes the occurrence of
navigation conflicts. During tasks 3 and 4, the quadro-
tor is controlled to look at a specific corner column.
The laps around the poles area are specified by way-
points in the corners and in the middle points of the
square lap. The drone switches to looking at the next
column in these middle points.

Considering the size of the map, 10×15 m, and the
size of the AR Drones, around 52×52 cm, the compe-
tition environment gets relatively crowded when more
than 5 drones are navigating around the columns’ area.
Taking this into account, the results of the simula-
tions for two to seven drones, with the above described
mission specification, are the following:

– 2–4 drones: the robotic agents will automatically
synchronize during mission execution solving the
conflicts when they occur.

– 5–6 drones: the robotic agents do sometimes
enter a conflictive situation, because of a lack of

J Intell Robot Syst (2016) 84:601–620 613

initial synchronization. As time goes on, the
drones become automatically synchronized and
they are able to navigate the laps in a continu-
ous manner. Two of these simulations are shown
in Figs. 8 and 9. For six drones, the synchroniza-
tion time increases due to a higher number of
navigation conflicts; also the crossing through the
middle area of the map caused many more navi-
gation conflicts than in the case of a five drones
simulation.

– 7 drones: once the multi-robot system becomes
synchronized to perform the laps, the navigation
is not continuous. During lap execution, there are
only two agents actually moving at any given
time; while the other five agents are staying at
their current positions waiting for their next way-
point to be free.

The main factor, more important than localiza-
tion and control inaccuracies, that affects the selected
safety distance between quadrotors is the necessity
to avoid interference among the ultrasound altimeters
of the AR Drones. In simulation, the safety distance
is the main cause limiting the maximum number of
drones that may fly in the IMAV 2013 challenge using
our solution. In real flights, WiFi bandwidth limita-
tions may also limit the maximum number of drones to
around six, in our experience maximally nine, drones
flying simultaneously.

From the previous analysis of the simulations, it
was concluded that the optimum number of drones for
this mission is five. With this group size, the robotic
agents tend to execute their individual missions almost
with no interruptions, leading to a maximum score
for our solution in the IMAV 2013 Indoor Challenge
environment.

5 Experimental Results

In this section one experimental test with three drones
is described. This test shows the performance of our
architecture in a replica of the IMAV 2013 competi-
tion environment. The mission specification is iden-
tical, except for a shorter time of 3 min performing
laps outside the pole area, to the mission specification
described in the Simulation Results section (see the
enumerated sequence of tasks written in Section 4).
Fig. 1c shows the drones attempting to cross the

unknown pole area during this flight. And the Figs. 10
and 11 summarize the experimental flight. In these
figures, the obstacles, the wall with two windows
and the eight poles, are shown in black. The trajec-
tories executed by the drones, as estimated by the
localization module, are shown with lines. The agents
know the position of the four corner poles and the
wall, and the size of the windows; but need to esti-
mate the position of the four unknown poles and
the windows.

A 2D overview plot of the flight is shown in Fig. 10.
As shown in the videos the quadrotors are commanded
to look at specific known poles to control the odome-
try position error. At the middle of each side the agents

0 2 4 6 8
−4

−2

0

2

4

6

8

10

12

14

drone1
drone2
drone3

Fig. 10 Experimental flight, three drones fly simultaneously
performing navigation tasks. The environment is a replica of
the IMAV 2013 Indoor Challenge environment. Figures 10, 11,
13, 14 and 15 correspond to this experimental flight. The inner
unknown pole locations are the estimates of drone1. The flight
through this area is usually successful even when the position of
the unknown poles is not precisely known, because the agents
localize themselves with respect to these poles when they see
them, thus planning obstacle-free trajectories with respect to
their position estimate. The execution of this flight was suc-
cessful, with all agents accomplishing their missions. A video
of this test is available at the website: http://www.vision4uav.
com/?q=node/386

http://www.vision4uav.com/?q=node/386
http://www.vision4uav.com/?q=node/386

614 J Intell Robot Syst (2016) 84:601–620

−2 0 2 4 6 8

−2

0

2

4

6

8

(a)

0 5 10

−2

0

2

4

6

8

10

(b)

drone1
drone2
drone3

0 5 10

−2

0

2

4

6

8

10

(c)

0 2 4 6 8
0

2

4

6

8

10
(d)

0 2 4 6 8
0

2

4

6

8

10

(e)

0 5 10
0

2

4

6

8

10

12

14(f)

Fig. 11 Same experimental flight as shown in Fig. 10. These
figures, labeled a–f, are ordered in time, and each agent’s plots
have a different color and line style. The drones ordered by
their launch times are plotted with: (drone1) green-solid lines,
(drone2) blue-dash dotted lines and (drone3) red-dashed lines.
The planned trajectory is shown with a thicker width than the
actual executed trajectory. The dotted lines are the current tra-
jectory references at the end of the plotted time period. The
arrows indicate the direction at which the quadrotor is estimated
to be looking in the plotted position. As shown, the quadrotors

are commanded to look at one of the four known corner columns
of the map. The unknown poles localized by drone1 are shown
in these figures. a, b, c and d show consecutive flight intervals
of 30 s showing the startup sequence of the multi-robot system.
In this period, drone1 crosses the window and performs 1.25
laps. e and f show consecutive flight intervals of 30 s of the final
stages of the mission. The drones cross the unknown poles area
by planning and executing obstacle-free trajectories. A video of
this flight can be found in the website http://www.vision4uav.
com/?q=node/386

are commanded to look at the next corner pole. At this
moment the position estimate might change. These
events increase the localization error in specific points

of the mission execution and trigger the planning of
new trajectories. In this flight they occur repeatedly in
the points [−0.5, 7.75] and [5.5, 10.5], see Fig. 10.

http://www.vision4uav.com/?q=node/386
http://www.vision4uav.com/?q=node/386

J Intell Robot Syst (2016) 84:601–620 615

The explained emergent synchronized behavior of
the drones is shown in Fig. 11. The mission is
specified to minimize navigation conflicts and maxi-
mize the final achieved competition score. For exam-
ple, as described in the Simulation Results section

(Section 4), all the agents perform laps in the same
direction.

In Fig. 11 the current estimated position and ori-
entation of each quadrotor is shown with a marker
and an arrow, the last 30 seconds of the executed

Fig. 12 Same experimental
flight as shown in Fig. 10.
These figures, labeled a–f,
are ordered in time, all the
plotted elements are from
drone1. The timestamps at
which these plots were
generated are the same as in
Fig. 11a–f. The Localization
module drift-free estimate
from drone1 is shown with
thin green-solid lines, the
odometry-based estimate
from the Pose Estimator
module is shown with
blue-dash dotted lines, the
known environment
elements are shown with
thick black lines and the
unknown environment
elements are shown with
thick red lines. The drone
estimated positions are
shown with diamonds and
the yaw estimates with an
arrow of the same color. The
thick green line plot, shows
the currently commanded
trajectory. These figures
show how the Localization
module is able to calculate a
drift-free pose from the
odometry-based estimate.
The corrections are
specially visible after the
yaw turns, when the drone
can localize with respect to
the next corner column. It is
noted that in this experiment
some known markers were
placed on the wall in the
taking-off side, but that the
windows were localized as
unknown elements

−2 0 2 4 6 8

−2

0

2

4

6

8
(a) localiz

odom
known
unknown

0 5 10

−2

0

2

4

6

8

10
(b)

0 5 10

−2

0

2

4

6

8

10
(c)

0 5 10

−2

0

2

4

6

8

10

(d)

0 5 10

−2

0

2

4

6

8

10
(e)

−5 0 5 10

0

5

10

(f)

616 J Intell Robot Syst (2016) 84:601–620

trajectory are shown by a line and the currently
planned trajectory is shown by a segmented line with
markers. Figure 11a–d show the startup sequence,
where the drones cross the big window and the auto-
matic synchronization is achieved. Figure 11e–f show
the final steps of the mission execution, where the
drones cross the unknown pole area and land in the
final position. More details of the execution of this
mission can be read in the caption of the experiment
Figs. 10 and 11.

Additionally, Fig. 12 shows, for drone1 only, plots
of the drift-free (green) and the odometry-based
(blue) estimates. The known environment elements
are shown in black and the progressively mapped
unknown elements are shown in red. This figure shows

20 40 60 80 100 120 140 160 180 200

0
2
4
6
8

20 40 60 80 100 120 140 160 180 200

0

5

10

15

20 40 60 80 100 120 140 160 180 200
−2

−1

0

20 40 60 80 100 120 140 160 180 200
0

0.5

1

20 40 60 80 100 120 140 160 180 200

−2

0

2

Fig. 13 Flight performance of drone1, same experimental
flight as shown in Figs. 10 and 11. The plots show the estimated
position and yaw of the quadrotor and the inputs given to the
position and speed control loops inside the trajectory controller
module. The ecross track plot shows the absolute position con-
trol error based on these commands and the estimated position,
as calculated by the localization module. The yaw command
only changes sharply when the drone is commanded to look at
a different column. The rest of the time when a sharp change is
shown it has just evolved to the opposite side of the [−π, +π]
interval

how the Localization module is able to calculate a
drift-free pose from the odometry-based estimate.

The performance in terms of trajectory follow-
ing capabilities, and tracking error of each drone are
shown in Figs. 13, 14 and 15. In each of the fig-
ures the control references and the estimated positions,
output of the localization module, are shown. There
is no ground truth available, so these estimates are
utilized to measure the performance of the system.
{X, Y,Z, yaw} are expressed in the same reference
system as Fig. 10. ecross track is the trajectory follow-
ing position error, including horizontal and vertical
error. In these figures it can be appreciated that the
tracking error is less than 0.5 m most of the time
and that yaw is commanded slowly to limit the blur
in the acquired video stream, so as to improve the
performance of the marker detector module.

The overall performance of the navigation tasks is
summarized by the RMS error of {X, Y,Z, yaw} dur-
ing trajectory following. These values are shown in
Table 1. The RMS horizontal tracking error is around
10–15 cm, which is between a fourth and a third of the

40 60 80 100 120 140 160 180 200 220 240

0
2
4
6
8

40 60 80 100 120 140 160 180 200 220 240

0

5

10

15

40 60 80 100 120 140 160 180 200 220 240
−2

−1

0

40 60 80 100 120 140 160 180 200 220 240
0

0.5

1

40 60 80 100 120 140 160 180 200 220 240

−2

0

2

Fig. 14 Flight performance of drone2, same experimental
flight as shown in Figs. 10 and 11. The interpretation of this
figure is similar to that of Fig. 13

J Intell Robot Syst (2016) 84:601–620 617

100 150 200 250 300

0
2
4
6
8

100 150 200 250 300

0

5

10

15

100 150 200 250 300
−2

−1

0

100 150 200 250 300
0

0.5

1

100 150 200 250 300

−2

0

2

Fig. 15 Flight performance of drone3, same experimental
flight as shown in Figs. 10 and 11. The interpretation of this
figure is similar to that of Fig. 13

size of the drone. The RMS horizontal tracking error
is around 10–15 cm, which is between a fourth and
a third of the size of the drone. The RMS yaw error
is between 2deg and 25deg depending on the current
mission task that the agent is performing. The lowest

Table 1 Flight performance of the drones in the experimental
flight shown in Figs. 10 and 11

drone1 drone2 drone3

ect [m] 0.1971 0.1986 0.1290

horizct [m] 0.1723 0.1678 0.1166

vertct [m] 0.0957 0.1063 0.0551

yawerror [deg] 26.97 26.40 24.37

The values are the RMS error over the whole mission execu-
tion shown in Figs. 13, 14 and 15. ect , horizct , vertct are the
total, horizontal and vertical position errors with respect to the
trajectory reference respectively. The yawerror is the error with
respect to the commanded yaw, which corresponds to looking
to one of the map columns or in an specific direction (which
happens only in the first and last tasks)

value corresponds to a constant yaw reference, dur-
ing the first task before crossing the window, and the
highest values correspond to the maximum yaw ref-
erence variations, during the navigation task around
the columns. The reason for this surprisingly high
RMS yaw error is that its controller is tuned with a
very low proportional gain, so that the blurring on
the acquired images is minimized. This was required
to accommodate the image acquisition for the low-
est light conditions that could occur in the indoor
environment of the competition.

6 Conclusions

An overview of an autonomous quadrotor multi-robot
architecture designed to participate in the indoor chal-
lenge of the IMAV 2013 competition has been pre-
sented. All the robotic agents have access to the global
position of all the agents of the team. Our multi-robot
solution consists of low-cost AR Drone 2.0 platforms
and their corresponding ground computers and WiFi
links which communicate using the ROS middleware.
Its deployment is quite fast thanks to the fact that only
a limited number of visual markers must be placed.

The presented work is a continuation of [30]. On
top of this prior work, firstly, our solution to IMAV
2013 has been analyzed in simulation to determine
the architecture capabilities and the optimal number
of quadrotors that could be flown in the competi-
tion environment based on our solution. And secondly,
the experimental performance of the presented archi-
tecture has been analyzed to determine how precise
the MAVs can navigate using this version of our
localization and controller modules.

The first contribution of this paper is the pre-
sentation of our vision-based quadrotor multi-robot
solution for the IMAV 2013 Indoor Autonomy Chal-
lenge, which was awarded with the First Prize in
this challenge. Our architecture was robust enough
to work properly during the competition, but encoun-
tered problems due to its dependency on WiFi commu-
nication links. The second contribution is an analysis
of the optimal performance of our multi-robot sys-
tem to achieve the navigation tasks of the IMAV2013
competition. The third contribution is the success-
ful experimental testing of a localization strategy
using different kinds of data. An EKF based algo-
rithm formulation [31, 32] was adapted to work with

618 J Intell Robot Syst (2016) 84:601–620

multicopters instead of ground robots. The last contri-
bution is that the presented architecture has been made
publicly available as open-source.13 To the authors
knowledge this is the only indoor visual-based quadro-
tor multi-robot solution whose code is publicly avail-
able. The authors hope that this open-source software
will benefit other developers in their research.

7 Future Work

The first work to be conducted by the authors is to
accommodate the developed architectures to bigger
MAVs that can carry an on-board computer, thus con-
tinuing our research group’s, the CVG-UPM’s, efforts
towards the research of MAVs and Computer Vision
for civilian applications.

The main drawbacks of the presented system are
the off-board computation, and the dependency on
visual markers. The work by other groups present
tested approaches to perform autonomous naviga-
tion in indoor and outdoor unstructured environments
using only on-board computation in low-end comput-
ers [34, 38, 41, 42] and higher-end ones [13, 39].

In order to move in that direction higher-end
quadrotors with an on-board computer should be used.
Many modules of the system can be improved taking
into account this literature to obtain pose estimates at
a high frequency based on the IMU data and precise
timestamping of all sensor data and the use of faster
and more precise controllers. The trajectory planning
can be improved to perform 3D trajectories and also
highly aggresive maneuvers as developed by [34, 38].

On the side of the multi-robot system develop-
ment, it would be beneficial to improve the system
to use only the visual markers with no previously
known positions and also a visual quadrotor detec-
tion system. This would be an intermediate step to
move to a full visual SLAM based system, where the
MAVs would need to figure out whether they are look-
ing at the same scene as the others and where they
could avoid collisions and collaborate. Additionally,
other multi-robot advanced behaviors or active mis-
sions, such as collaborative 3D reconstruction, could
be tested.

13http://www.vision4uav.com/?q=quadrotor stack

Acknowledgments The authors would like to thank the Con-
sejo Superior de Investigaciones Cientificas (CSIC) of Spain for
the JAE-Predoctoral scholarships of two of the authors, and the
Spanish Ministry of Science for funding the projects MICYT
DPI2010-20751-C02-01 and MICYT DPI2014-60139-R.

References

1. Abeywardena, D., Kodagoda, S., Dissanayake, G., Munas-
inghe, R.: Improved state estimation in quadrotor mavs: a
novel drift-free velocity estimator (2013)

2. van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal
velocity obstacles for real-time multi-agent navigation. In:
IEEE International Conference on Robotics and Automa-
tion 2008 (ICRA 2008), pp. 1928–1935. IEEE (2008)

3. Berg, J., Guy, S., Lin, M., Manocha, D.: Reciprocal n-
body collision avoidance. In: Pradalier, C., Siegwart, R.,
Hirzinger, G. (eds.) Robotics Research, Springer Tracts in
Advanced Robotics, vol. 70, pp. 3–19. Springer, Berlin
Heidelberg (2011). doi:10.1007/978-3-642-19457-3 1

4. Brescianini, D., Hehn, M., D’Andrea, R.: Quadrocopter
pole acrobatics. In: 2013 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pp. 3472–
3479. IEEE (2013)

5. Bristeau, P.J., Callou, F., Vissière, D., Petit, N., et al.: The
Navigation and Control Technology inside the ar. drone
micro uav. In: 18th IFAC World Congress, vol. 1, pp. 1477–
1484 (2011)

6. Conte, G.: Vision-based localization and guidance for
unmanned aerial vehicles. PhD thesis, Linkopings Univer-
sitet (2009)

7. Hsu, D., Motwani, R., Latombe, J.C.: Path planning in
expansive configuration spaces. In: Proceedings of the
IEEE International Conference on Robotics and Automa-
tion, p. 27192726 (1997)

8. Engel, J., Sturm, J., Cremers, D.: Camera-based navigation
of a low-cost quadrocopter. In: Proceedings of the Inter-
national Conference on Intelligent Robot Systems (IROS)
(2012)

9. Faigl, J., Krajnı́k, T., Chudoba, J., Saska, M., Přeučil, L.:
Low-Cost embedded system for relative localization in
robotic swarms. In: Proceedings of the IEEE Int. Conf. on
Robotics and Automation (ICRA). IEEE (2013)

10. Fernandez-Madrigal, J.A., Blanco-Claraco, J.L.: Simul-
taneous Localization and Mapping for Mobile Robots:
Introduction and Methods, chapter 10: Advanced SLAM
Techniques. IGI Global (2012)

11. Fiorini, P., Shillert, Z.: Motion planning in dynamic envi-
ronments using velocity obstacles. Int. J. Robot. Res. 17,
760–772 (1998)

12. Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collabo-
rative monocular slam with multiple micro aerial vehicles.
In: 2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 3962–3970. IEEE
(2013)

13. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier,
L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous
mapping and exploration using a quadrotor mav. In: 2012

http://www.vision4uav.com/?q=quadrotor_stack
http://dx.doi.org/10.1007/978-3-642-19457-3_1

J Intell Robot Syst (2016) 84:601–620 619

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 4557–4564. IEEE (2012)

14. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas,
F.J., Marı́n-jiménez, M.J.: Automatic generation and detec-
tion of highly reliable fiducial markers under occlusion.
Pattern Recogn. 47(6), 2280–2292 (2014)

15. Hennes, D., Claes, D., Meeussen, W., Tuyls, K.: Multi-
robot collision avoidance with localization uncertainty.
In: Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1,
International Foundation for Autonomous Agents and Mul-
tiagent Systems, pp. 147–154 (2012)

16. Hoffmann, G.M., Waslander, S.L., Tomlin, C.J.: Quadrotor
helicopter trajectory tracking control. Electrical Engineer-
ing (2008), pp. 1–14 (2008)

17. Jayatilleke, L., Zhang, N.: Landmark-based localization for
unmanned aerial vehicles. In: IEEE International Systems
Conference (SysCon’13), pp. 448–451 (2013)

18. Krajnı́k, T., Nitsche, M., Faigl, J., Vaněk, P., Saska, M.,
Přeučil, L., Duckett, T., Mejail, M.: A practical multirobot
localization system. J. Intell. Robot. Syst. 76(3–4), 539–562
(2014). doi:10.1007/s10846-014-0041-x

19. Kushleyev, A., Mellinger, D., Powers, C., Kumar, V.:
Towards a swarm of agile micro quadrotors. Auton. Robot.
35(4), 287–300 (2013)

20. Latombe, J.C.: Robot Motion Planning. Kluwer Academic
(1991)

21. Leishman, R.C., Macdonald, J.C., Beard, R.W., McLain,
T.W.: Quadrotors and accelerometers: State estimation with
an improved dynamic model. IEEE Control. Syst. 34(1),
28–41 (2014)

22. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with
quadrotor teams. Auton. Robot. 33(3), 323–336 (2012)

23. Mao, G., Drake, S., Anderson, B.D.O.: Design of an
extended Kalman filter for UAV localization. In: Informa-
tion, Decision and Control, 2007 (IDC’07), pp. 224–229
(2007)

24. Meier, L., Tanskanen, P., Heng, L., Lee, G.H., Fraundorfer,
F., Pollefeys, M.: Pixhawk: a micro aerial vehicle design for
autonomous flight using onboard computer vision. Auton.
Robot. 33(1–2), 21–39 (2012)

25. Michael, B.Y.N., Mellinger, D., Lindsey, Q.: The GRASP
multiple micro UAV testbed. IEEE Robotics & Automation
Magazine (September), pp. 56–65 (2010)

26. Mostegel, C., Wendel, A., Bischof, H.: Active monoc-
ular localization: towards autonomous monocular explo-
ration for multirotor mavs. In: Proceedings of the 2014
IEEE International Conference on Robotics and Automa-
tion (ICRA 2014) (2014)

27. Hart, P.E., Raphael, B., Nilsson, N.J.: A formal basus for
the heuristic determination of minimum cost paths. Systems
Science and Cybernetics, IEEE Transactions on 4(2), 100–
107 (1968)

28. Pestana, J.: On-board control algorithms for Quadrotors and
indoors navigation Master’s thesis, Universidad Politécnica
de Madrid, Spain (2012)

29. Pestana, J., Mellado-Bataller, I., Sanchez-Lopez, J.L., Fu,
C., Mondragón, I.F., Campoy, P.: A general purpose config-
urable controller for indoors and outdoors gps-denied nav-
igation for multirotor unmanned aerial vehicles. J. Intell.
Robot. Syst. 73(1–4), 387–400 (2014)

31. de la Puente, P., Rodriguez-Losada, D., Pedraza, L., Matia,
F.: Robot goes back home despite all the people. In: Pro-
ceedings of the 5th Conference on Informatics in Control,
Automation and Robotics ICINCO 2008 Funchal, Portugal,
pp. 208–213 (2008)

32. de la Puente, P., Rodriguez-Losada, D., Valero, A.: 3D map-
ping: testing algorithms and discovering new ideas with
USARSim. In: USARSim Workshop, IEEE Int. Conf. on
Intelligent Robots and Systems (IROS) (2009)

33. Renzaglia, A., Doitsidis, L., Martinelli, A., Kosmatopoulos,
E.B.: Multi-robot three dimensional coverage of unknown
areas. The International Journal of Robotics Research,
p. 0278364912439332 (2012)

34. Richter, C., Bry, A., Roy, N.: Polynomial trajectory plan-
ning for aggressive quadrotor flight in dense indoor envi-
ronments. In: Proceedings of the International Symposium
on Robotics Research (ISRR) (2013)

35. Ritz, R., Muller, M., Hehn, M., D’Andrea, R.: Coop-
erative quadrocopter ball throwing and catching. In:
2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4972–4978. IEEE
(2012)

36. Rudol, P.: Increasing autonomy of unmanned aircraft sys-
tems through the use of imaging sensors. Master’s thesis,
Linkoping Institute of Technology (2011)

37. Sanchez-Lopez, J.L., Pestana, J., de la Puente, P., Carrio,
A., Campoy, P.: A reliable open-source system architecture
for the fast designing and prototyping of autonomous multi-
uav systems: Simulation and experimentation. Journal of
Intelligent & Robotic Systems (2015)

38. Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Vision-
based state estimation and trajectory control towards high-
speed flight with a quadrotor. In: Robotics: Science and
Systems, Citeseer (2013)

39. Shen, S., Mulgaonkar, Y., Michael, N., Kumar, V.: Vision-
based state estimation for autonomous rotorcraft mavs in
complex environments. In: 2013 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 1758–
1764. IEEE (2013)

40. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N.,
Szörényi, T., Nepusz, T., Vicsek, T.: Outdoor flocking and
formation flight with autonomous aerial robots. In: 2014
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (2014)

41. Weiss, S., Achtelik, M.W., Chli, M., Siegwart, R.: Versa-
tile distributed pose estimation and sensor self-calibration
for an autonomous mav. In: 2012 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 31–38.
IEEE (2012)

42. Weiss, S., Achtelik, M.W., Lynen, S., Chli, M., Siegwart,
R.: Real-time onboard visual-inertial state estimation and
self-calibration of mavs in unknown environments. In: 2012
IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 957–964. IEEE (2012)

30. Pestana, J., Sanchez-Lopez, J.L., de la Puente, P., Car-
rio, A., Campoy, P.: A vision-based quadrotor swarm for
the participation in the 2013 international micro air vehi-
cle competition. In: 2014 International Conference on
Unmanned Aircraft Systems (ICUAS). IEEE, pp. 617–622
(2014)

http://dx.doi.org/10.1007/s10846-014-0041-x

620 J Intell Robot Syst (2016) 84:601–620

Jesús Pestana achieved his double undergraduate degree (2009)
in: Automatics and Systems at École Supérieure d’Électricité
(Supélec, France) and Industrial Engineering at Universidad
Politécnica de Madrid (UPM). Later, he obtained his Mas-
ter’s in Automation and Robotics (UPM, October 2012). He
worked two years in the Department of Automatic Control
and Legged Locomotion of the Consejo Superior de Investi-
gaciones Cientı́ficas (CSIC) in Madrid. Since 2011 he started
pursuing his research interests in Control, State Estimation
and Computer Vision by applying them to Micro Aerial Vehi-
cles (MAVs), specifically multicopters, when he started work-
ing in the Computer Vision Group (CVG) of the Centre for
Automation and Robotics (CSIC-UPM). In 2013, he did a short
research stay at Arizona State University, AZ (USA), in the
Autonomous System Technologies Research & Integration Lab-
oratory (ASTRIL); and since the end of 2014 he pursues his
research in the Institute for Computer Graphics and Vision, Graz
University of Technology, Austria. During his research career,
he has been part of teams participating in multiple International
MAV competitions and co-authored open-source code for the
autonomous control of MAVs.

Jose Luis Sanchez-Lopez is a Ph.D. candidate at the Com-
puter Vision Group of the Centre for Automation and Robotics,
CSIC-UPM. He received his Degree in Industrial Engineering
(September 2010) and the Master in Automation and Robotics
(October 2012) at the Technical University of Madrid. In 2009,
he joined the Computer Vision Group, and since then, he has
been conducting research in the area of Autonomous Unmanned
Systems. He started working with Unmanned Ground Vehicles
(UGVs), but during his PhD he moved to the Unmanned Aerial
Systems (UASs).

He did a six months research stay at Arizona State University
(AZ, USA) at the end of 2012, and a three months research stay
at LAAS-CNRS (Toulouse, France) at the end of 2014.

His research goal is to provide UASs with the maximum
level of autonomy allowing them to perform different missions
without human operation. His research interests are autonomous
navigation, visual localization and mapping, visual control,
trajectory planning and multi UAS-swarming.

Paloma de la Puente obtained her engineering degree in Auto-
matic Control and Electronics in November 2007 and her Ph.D.
in Robotics and Automation in December 2012, both from
Universidad Politecnica de Madrid (UPM). She was a post-
doctoral researcher at DISAM-UPM and at ACIN Institute of
Automation and Control–Vienna University of Technology. She
is currently working at Ixion Industry and Aerospace. Her main
research interests are related to navigation, mapping, spatial
cognition and sensor data processing.

Adrian Carrio holds a degree in Industrial Engineering from
the University of Oviedo, Spain. He is currently a Senior
Researcher in the Computer Vision Group at the Technical Uni-
versity of Madrid, Spain, where he is currently working towards
a PhD in Automation and Robotics. His research interests
include vision-based collision avoidance systems for unmanned
aerial vehicles, machine learning for pattern recognition and
stereo vision systems.

Pascual Campoy is Full Professor on Automatics at the Univer-
sidad Politécnica Madrid (UPM), where he received his PhD in
Engineer in 1988. He is presently Visiting Professor at TUDelt
where he lectures on Visual Pattern Recognition and Machine
Learning.

He is leading the Research Group on Computer Vision at
U.P.M., which is aimed in increasing the autonomy of the
Unmanned Aerial Vehicles (UAV) by exploiting the power-
ful sensor of Vision. His group has a large experience in
several techniques and applications of Vision for UAV since
over 15 years, which includes object tracking, visual servoing,
visual control and guidance, visual SLAM, stereo and omni-
directional vision. He is presently working on new learning
paradigms for bio-inspired Neural Networks that are aim to be
used in image segmentation, detection and recognition.

He has been leading of a wide variety of research projects
concerning different applications of Computer Vision and its
transfer to the Industry. He has been international coordinator
of three European projects, national leader of five European
Projects, over 20 technological transfer projects contracted with
the industry and seven National Fundamental R&D projects. He
is inventor of 9 patents in the field of Computer Vision, three of
them registered internationally in several countries all over the
word. His research activities have been gathered in more than
100 international publications in technical journals and con-
gresses, having more that 700 cites since 2009 and a H number
15. He was founder of the company “I4: Innovation in Indus-
trial Images Inspection”, which is a spin-off of the U.P.M. and
it is aimed to transfer R&D results to the industry in the field of
Machine Vision.

In the educational arena he strongly believes in active learn-
ing and collaborative learning, being pioneer in using the
SCALE-UP methodology in ETSII-UPM since 2007, when
the collaborative classrooms were implemented. He is also the
funder of the ISA Student Association at UPM and its advi-
sor Professor in the period 2004-2012. www.disam.upm.es/
campoy.

www.disam.upm.es/campoy
www.disam.upm.es/campoy

	A Vision-based Quadrotor Multi-robot Solution for the Indoor Autonomy Challenge of the 2013 International Micro Air Vehicle Competition
	Abstract
	Introduction
	State of the Art
	System Description
	Coordinate Frames
	Quadrotor Dynamics Model
	Agent-Level Modular Architecture
	Pose Estimator module
	Visual Marker Detector Module
	Localization Module
	Obstacle Detector Module
	Supervisor Module
	Mission Scheduler Module
	Yaw Commander Module
	Trajectory Planner Module
	Trajectory Controller Module

	Multi-Agent-Level Emerging Intelligence

	Simulation Results
	Experimental Results
	Conclusions
	Future Work
	Acknowledgments
	References

