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Abstract In a recent paper, a few pioneers of adaptive
control review the classical model reference adap-
tive control (MRAC) concept, where the designer
is basically supposed to conceive a model of the
same order as the (possibly very large) plant, and
then build an adaptive controller such that the plant
is stable and ultimately follows the behavior of the
model. Basically, adaptive control methods based on
model following assume full-state feedback or full-
order observers or identifiers. These assumptions,
along with supplementary prior knowledge, allowed
the first rigorous proofs of stability with adaptive
controllers, which at the time was a very important
first result. However, in order to obtain this impor-
tant mathematical result, the developers of classical
MRAC took the useful scalar Optimal Control feed-
back signal and made it into an adaptive gain-vector of
basically of the same order as the plant, which again
had to multiply the plant state-vector in order to finally
end with another scalar adaptive control feedback
signal. It is quite known today, however, what hap-
pens when this requirement is not satisfied, and when
“unmodeled dynamics” distorts the controller based
on these ideal assumptions. Even though much effort
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has been invested to maintain stability in spite of so-
called “unmodeled dynamics,” in some applications,
such as large flexible structures and other real-world
applications, even if one can assume that the order
of the plant is known, one just cannot implement a
controller of the same order as the plant (or even a
“nominal” or a “dominant” part of the plant), before
even mentioning the complexity of such an adaptive
controller. Without entering the argument around their
special reserve in relation to claimed efficiency of
the particular L1-Adaptive Control methodology, this
paper first shows that, after the first successful proof
of stability and even under the same basic full-state
availability assumption, the adaptive control itself can
be reduced to just one adaptive gain (which multi-
plies one error signal) in single-input-single-output
(SISO) systems and, as a straightforward extension,
an m*m gain matrix in an m-input-m-output (MIMO)
plant. Not only is stability not affected, but actually
the simplified scheme also gets rid of most seem-
ingly “inherent” problems of the adaptive control
represented by classical MRAC. Moreover, proofs of
stability have all been based on the so-called Bar-
balat’s lemma which seems to require very strict
uniform continuity of signals. The apparent implica-
tions are that any discontinuity, such as square-wave
input commands or just some occasionally discontin-
uous disturbance, may put stability of adaptive control
in danger, without even mentioning such things as

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10846-015-0299-7-x&domain=pdf
http://orcid.org/0000-0003-0266-054X
mailto:ibarkana@gmail.com
mailto:i.barkana@ieee.org


4 J Intell Robot Syst (2016) 83:3–34

impulse response. Instead, based on old yet amazingly
unknown extensions of LaSalle’s Invariance Principle
to nonautonomous nonlinear systems, recent devel-
opments in stability analysis of nonlinear systems
have mitigated or even eliminated most apparently
necessary prior conditions, thus adding confidence
in the robustness of adaptive scheme in real world
situations.

Keywords Control systems · Adaptive control ·
Stability · Nonlinear systems · Autonomous
and nonautonomous systems

1 Introduction

In a recent paper [80], a few pioneers of adaptive
control review the classical model reference adap-
tive control (MRAC) concept, where the designer
is basically supposed to conceive a model of the
same order as the (possibly very large) plant, and
then build an adaptive controller such that the
plant is stable and ultimately follows the behavior
of the model. Adaptive control methods based on
model following assume full-state feedback or full-
order observers or identifiers. These assumptions,
along with supplementary prior knowledge, allowed
the first rigorous proofs of stability with adaptive
controllers.

It is quite known today, however, what happens
when this requirement is not satisfied, and when
“unmodeled dynamics” distorts the controller based
on these ideal assumptions. Besides, the adaptive con-
troller is basically of same order as the plant and again
multiplies a state-vector. Even though much effort
has been invested to maintain stability in spite of so-
called “unmodeled dynamics,” in some applications,
such as large flexible structures and other real-world
applications, even if one can assume that the order
of the plant is known, one just cannot implement a
controller of the same order as the plant (or even a
“nominal” or a “dominant” part of the plant), before
even mentioning the complexity of such an adap-
tive controller. Moreover, proofs of stability based on
the so-called Barbalat’s lemma seem to require very
strict uniform continuity of signals. The implications
seem to be that any discontinuity, such as square-wave
input commands or just some occasionally discon-
tinuous disturbance, put stability of adaptive control

in danger, without even mentioning such things as
impulse response.

Without entering the argument around their special
reserve towards claimed efficiency of the particular
L1-Adaptive Control methodology, which then seems
to strongly dominate [80] (for a response see [67, 94]),
recent papers [27, 29] remind us that, while the first
basic adaptive Model Following concepts required the
controlled plant itself to be strictly positive real (SPR),
the move towards the classical MRAC methodology
[80] managed to mitigate this condition and might
have been the first adaptive control scheme which,
assuming full-state availability, showed how to fulfill
an SPR condition and ended with the first rigorous
proofs of stability, without requiring the plant itself to
be SPR.

Therefore, our intention is first of all to empha-
size the importance of the MRAC original idea of
satisfying a passivity conditions that allowed the guar-
antee of stability of adaptive control. More than 35
years ago, classical MRAC developers managed to
introduce Lyapunov-style stability analysis and thus to
end with the first rigorous proofs of stability of adap-
tive control systems. However, 35 years later, it will
also be shown that this idea can be simplified and
adjusted to fit the real-world applications and the basic
knowledge that usually is available out there. In this
context, even though this is not explicitly mentioned
in [80], references [27, 29] show that, along with other
assumptions, this success was first of all based on the
use of the useful yet scalar Optimal Control combina-
tion signal bT Px(t). Nevertheless, even though most
certainly at the time this was a first and necessary
step for seeking the proof of stability, a second look
shows that, by using this scalar signal again in order
to build a full-order adaptive gain-vector, classical
MRAC might have spread its useful stabilizing prop-
erties around. Actually, because the Optimal Control
would be u(t) = r−1bT Px(t), it shows that the sig-
nal bT Px(t) already is the scalar state-feedback signal
(with only the addition of a proper scaling parameter).
In an unknown system, the proper weight (here, r−1)
is not known and so, invites adaptive thinking and yet,
is this the reason for making this scalar state-feedback
signal back into an adaptive gain-vector of the order
of the plant?

Therefore, the Simple Adaptive Control idea is that,
following along the same lines of Optimal Control
and even under the same basic full-state availability
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assumption as classical MRAC, the adaptive control
itself can be reduced to just one adaptive gain (which
multiplies only one error signal) in SISO systems and,
as a straightforward extension, an m*m gain matrix
in an m-input-m-output MIMO plant. Not only is
stability not affected, but the simplified scheme actu-
ally seems to get rid of most seemingly “inherent”
problems of classical MRAC.

Moreover, the long experience of classical con-
trol design teaches us that any plant “model” is only
an approximate representation of the actual plant,
approximation which can only reproduce some of the
actual plant properties in such a way that some con-
trol design is possible. Some of these properties are
obtained by frequency response, wind-tunnel exper-
iment, etc. Even if for a moment one considers the
plant to be perfectly linear time invariant (LTI), its
“representation” could be just a step-response line in
the time-domain or a frequency response line in the
frequency domain. This line may show a plant of very
large order n=30, 150, 2000, or even infinite. How-
ever, using large order models in design may introduce
numerical problems that may make any design impos-
sible. Therefore, while a very reduced model, such as
n=3 or 5, could be too crude, one may decide to use
a model of order, say, n=10 or 15, just good enough
to reproduce the experimental data or, in other words,
the actual plant properties, with sufficient approxima-
tion. In this context, one cannot help but admire the
outstanding advances of classical control design based
on good use of these approximate representations of
real-world plants.

However, one is also warned that not too much
weight can be awarded to the model and to its
order. Moreover, if in the LTI case, some unmodeled
dynamics may not affect the design too much if it
does not affect the reproduction of the experimental
data too much, things are not necessarily so in the
nonstationary case, when even unmodeled dynamics
that may not affect stability in the LTI world, can
lead to total destruction in the nonstationary world
[29, 91, 147].

On the other hand, there is almost no case when
the lack of precise knowledge can actually keep the
classical control designer from performing some basic
design. Planes and missiles fly, robots perform fast
and precise tasks, etc. Nevertheless, because some
basic design using the parameters of some nominal
plant has to perform with actual parameters of the

actual plant, which could be not only different from
the nominal, but also nonlinear and time-varying dur-
ing the operation, the safety of operation of real plant
is heavily checked for the predictable operational con-
ditions using Monte-Carlo and similar tests. However,
because one controller must guarantee safe operation
under various conditions, performance has to be lim-
ited. Here, the adaptive control idea of fitting the right
control parameter to the right situation is very attrac-
tive, assuming however that, first of all, stability of the
nonstationary adaptive control system is guaranteed.
This takes us all the way back to the so-called MIT-
rule in adaptive control [136, 177], which we consider
a very clever and even ingenious Engineering idea.
However, as it ended in an unfortunate disaster, it also
proved that, in the nonstationary world, even ingenuity
may not be enough and that theoretical guarantee of
stability is needed before one can think of improving
performance.

The Simple Adaptive Control methodology of this
paper attempts to explain why a classical control
designer would want to even consider Adaptive Con-
trol. In this context, right from its beginning, the
Simple Adaptive Control methodology proved to be
good control, with very good results. This approach
is based on the idea that Adaptive Control is not
called to do everything, but rather to improving the
limited performance of classical design. Neverthe-
less, as the mere use of nonstationary gains (even
within the assumable ”admissible domain”) may lead
to total instability [147], the Simple Adaptive Con-
trol methodology first tries to establish what available
prior knowledge about the actual plant properties that
was available for classical design could also guaran-
tee stability with nonstationary adaptive control. This
is only a first, yet vital, conditions that then allows
also reaching better performance. Like any nonstation-
ary and nonlinear system methodology, progress here
has been slow and required patience, as intermediate
theoretical results might have looked very poor.

We recall that, even though now it is the basis for
any modern stability analysis, the Lyapunov stability
approach itself needed some 60 years before people
started really paying attention to it. Moreover, after
its first happy and successful applications, it soon
became clear that finding an adequate Lyapunov func-
tion which has a negative definite derivative is not
that common in other than class-room examples. How-
ever, after many small steps that followed Lyapunov,
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and in particular, based on largely unknown extensions
of LaSalle’s Invariance Principle to nonautonomous
nonlinear systems, recent developments in stability
analysis have mitigated or eliminated most apparently
necessary prior conditions, thus adding confidence
in the robustness of adaptive and nonlinear control
schemes in realistic situations [27–30].

Before the following presentation, it is worth recall-
ing the following disclaimer that begins reference
[91]: “At no stage is it intended to claim that the
control problem is simple, or that adaptive control
methods are meant to obviate the need for diligent
learning and accumulation of knowledge or for the
patient modeling of plants, or to replace established
control principles. This being said, readers are encour-
aged to test the described adaptive techniques, either
with the numerous and various examples in this book
or with their own examples. Only this way can one get
some feeling and understanding of the authors’ own
surprise and enthusiasm with the performance that can
be obtained using minimal prior knowledge about the
controlled plant.”

In spite of the disclaimer above, as a result of the
advances in both the theory of simple adaptive control
and in the general nonlinear systems stability analysis,
this paper can claim that the same conditions which
are sufficient to guarantee stability with classical con-
trol design are also sufficient to guarantee stability
with the specific methodology called Simple Adaptive
Control (SAC). This basic guarantee is only the first
and necessary step, which then allows improving per-
formance to levels that would not have seemed to be
obtainable otherwise.

Section 2 gives a brief review of Optimal Con-
trol that the Simple Adaptive Control approach will
later carry into the world of uncertainty. Section 3
first reviews the Model Reference Adaptive Control
methodologies, their important contributions to first
rigorous proofs of stability and shows how further
development can simplify the MRAC algorithm and
at the same time mitigate some of its apparently
inherent problems. Section 4 revisits the passivity
conditions that can guarantee stability of adaptive
control schemes. Section 5 shows how the Sim-
ple Adaptive Control (SAC) approach simplifies the
classical MRAC and moves from basically state-
feedback approach towards output-feedback con-
trol in system that satisfy the “almost passivity”
conditions. Section 6 then shows that basic stability

and stabilizability properties of classical control sys-
tems are sufficient prior knowledge that can guarantee
stability of the SAC scheme through parallel feedfor-
ward. Section 7 presents a brief review of old and
new results in stability analysis, meant to eliminate
the confusion that seems to exist in present literature.
Its ultimate result, the new Theorem of Stability, is a
direct extension of the original Lyapunov Stability the-
orem to the case of semidefinite Lyapunov derivative.
In turn, it now guarantees stability of adaptive control
systems, without requiring the “customary” uniform
continuity conditions and other apparently necessary
conditions.

2 Optimal Control or Control before Adaptive
Control

The approach of this paper to Simple Adaptive Control
(SAC) assumes that adaptation is not meant to replace,
but only to help classical control design. In this con-
text, it intends to show that, even if one assumes that
full knowledge on the plant to be controlled is avail-
able, fitting the right control parameters to the right
operational situation can improve performance. More-
over, adaptive techniques are also meant to maintain
satisfactory performance in spite of uncertainty or
time-variation of plant parameter.

Note: Contrary to what some classical MRAC Col-
leagues may claim, this section is not meant ”to teach
the well known Optimal Control.” On the contrary, it is
mentioned to emphasize the useful properties of Opti-
mal Control solution that classical MRAC actually
spoiled in order to end with a first successful mathe-
matical result. Therefore, 35 year later, we show that
classical MRAC not only can be simplified, but also
with much better properties.

Towards the following presentation, it is useful to
first recall the basic Optimal Control Theory for LTI
systems of the form

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t). (2)

The Optimal Controller that minimizes the criterion

J =
∫ t

0

(
xT (τ )Qx(τ ) + uT (τ )Ru(τ )

)
dτ (3)
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where both Q and R are Positive Definite symmetric,
is given by the state-feedback control

u(t) = −Kx(t) = −R−1BT Px(t) (4)

Here, P is the solution of the algebraic Riccati equa-
tion (ARE)

PA + AT P − PBR−1BT P = −Q (5)

The Optimal Control solution requires using the
solution (4). However, we rewrite (5) as

P
(
A − 1

2
BK

)
+

(
A − 1

2
BK

)T

P = −Q (6)

Equation (6) is the Lyapunov equation for the closed-
loop system and shows that using half the value of the
Optimal gain already guarantees asymptotic stability
of the closed-loop system. The optimal gain K in Eq.
(4), which is double the stabilizing gain in Eq. (6),
implies that the Optimal Control solution guarantees
(at least) 6 dB stability gain margin from below.

If, for convenience (for now), we denote PB = CT

and 1
2R

−1 = Ke, and define a fictitious ’output’ signal
y(t) = Cx(t), we get from Eq. (6)

P (A − BKeC) + (A − BKeC)T P = −Q (7)

Therefore, the closed loop system

ẋ(t) = (A − BKeC)x(t) + Bu(t) (8)

y(t) = Cx(t) (9)

satisfies the Strict Positive Realness relations

P(A − BKeC) + (A − BKeC)T P = −Q (10)

PB = CT (11)

Therefore, the answer to the question raised by
Kalman’s seminal paper [90] ”When is Linear Sys-
tem Optimal?” is ”When it satisfies a Strict Positive
Realness (SPR) condition.”

What is important for the following developments
is that if one can use the particular state combina-
tion y(t) = BT Px(t) = Cx(t), the entire remaining
Optimal Controller is just a m ∗ m square gain Ke in
the multivariable case, or just a simple scalar gain ke

in the SISO case. Moreover, not only does this gain
selection shown above stabilize the closed loop sys-
tem, but also any positive addition to this gain main-
tains stability. This property is in particular important
for Nonlinear and Adaptive Control because, as shown

in [27, 29], one can also use any nonlinear and non-
stationary gain K(x, t) = Ke + �(x, t) where all
that must be known about the nonlinear addition is
that �(x, t) ≥ 0 (or uniformly Positive Semi-Definite
for matrices). With such a controller, the Lyapunov
algebraic equation for the new closed-loop system is

P(A − BK(x, t)C) + (A − BK(x, t)C)T P

= P(A − BKeC)

+ (A − BKeC)T P

−2CT �(x, t)C ≤ −Q < 0

(12)

and it shows that the closed-loop system remains sta-
ble for any �(x, t) ≥ 0, even arbitrarily large (see also
[91], pp. 48–49).

In order to prevent eventual comments that SAC
may require high gains, we mention that the above
property only guarantees that stability is not threat-
ened if, during adaptation stage the adaptive gains
must increase. The adaptive algorithm then makes sure
that the loop-gain increases if stability is in danger
and yet, no more than needed. Moreover, it is worth
emphasizing that this guarantee of stability is only a
first though vital step, which ultimately allows obtain-
ing superior performance without the need for high
loop-gains.

3 Model Reference Adaptive Control

3.1 First Model Reference Adaptive Control
Configurations

First attempts at using adaptive control techniques,
such as the MIT-rule [136, 177], were developed
during the sixties and were based on intuitive and
possibly ingenious ideas, yet they ended in failure,
mainly because at the time there was not very much
knowledge of stability analysis with nonstationary
parameters. Modern methods of stability analysis that
had been developed by Lyapunov at the start of the
19th century [110] were not broadly known, much less
used, in the West [63, 148]. Nevertheless, we remind
the MIT approach because, once stability conditions
can be analyzed and properly guaranteed, fitting the
right control gain to the right situation ultimately leads
to clear advantages upon using fixed controllers.
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After the initial problems with adaptive control
techniques of the sixties, stability analysis has become
a center point in new developments related to adap-
tive control. Participation of some of the leading
researchers in the control community at the time,
such as Monopoly, vanAmerongen, Narendra, Lan-
dau, Åström, Grimble, Kokotovic̀, Goodwin, Morse
[3, 11, 12, 55, 61, 62, 81, 102, 103, 117, 118, 120,
128–130] and many others [5, 47, 68, 82, 97, 98, 114,
124, 127, 135, 143, 151, 154, 174], added a remark-
able contribution to the better modeling and to the
understanding of systems adaptive control methodolo-
gies.

New tools and techniques have been used or specif-
ically developed for rigorous stability analysis and
they finally led to successful proofs of stability, mainly
based on the Lyapunov approach. The standard adap-
tive control methodology was the Model Reference
Adaptive Control approach which, as its name states,
basically requires the “bad” - or just not so good - plant
to follow the behavior of a “good” Model Reference.

ẋm(t) = Amxm(t) + Bmum(t) (13)

ym(t) = Cmxm(t) (14)

Here, before even mentioning adaptation, we recall
a very basic idea of Model Following, where the con-
trol signal that feeds the plant is a linear combination
of the Model state variables

u(t) =
∑

kixmi(t) = Kxm(t) (15)

In the deterministic case [54], if the plant closed-
loop system were just stable and the plant parame-
ters were fully known, one could compute the gains
of the corresponding feedforward signals from the
model in such a way that would force the not-so-good
plant to asymptotically behave exactly like the good
Model, or x(t) → xm(t) and correspondingly y(t) →
ym(t). This way, external signals supplied by the
Model allowed good tracking with very low errors and
even asymptotically perfect tracking, without requir-
ing high gain and bandwidth from the problematic
closed-loop system.

When the plant parameters are not (entirely)
known, one is naturally led to use adaptive control
gains. The basic idea is that the plant is fed a control
signal that is a linear combination of the model state
through some gains. If not all gains are correct, the
plant does not exactly behave like the Model, and its

measured output differs from the output of the Model
Reference. The resulting “tracking error”

ey(t) = ym(t) − y(t) (16)

can be monitored and used to generate adaptive gains.
The basic idea of adaptation is like that: assume that
one component of the control signal that is fed to the
plant comes from the variable xmi through the gain
kxi . If the gain is not perfectly correct, this compo-
nent contributes to the tracking error and therefore the
tracking error and the component xmi are correlated.
This correlation is used to generate the adaptive gain
k̇xi

(t) = γiey(t)xmi
(t), where γi is just a parameter

that affects the rate of adaptation. The adaptation con-
tinues until, under appropriate conditions to be further
discussed, the correlation diminishes and ultimately
vanishes and therefore the gain derivative tends to zero
and the gain itself is (hopefully) supposed to go to a
constant value. In vectorial form,

K̇x(t) = �γiey(t)xmi(t) = ey(t)xT
m(t)�x (17)

u(t) = �kxixmi(t) = Kx(t)xm(t) (18)

As also observed, there are various other compo-
nents that can be added to improve the performance of
the MRAC system such as K̇u(t) = ey(t)uT

m(t)�u, so
the total control signal is

u(t) = Kx(t)xm(t) + Ku(t)um(t) (19)

The basic approach was able to generate the first
rigorous proofs of stability that showed that not only
the tracking error but actually the entire state error

ex(t) = xm(t) − x(t) (20)

asymptotically vanishes. This result implied that the
plant behavior would asymptotically reproduce the
stable model behavior. In particular, the Lyapunov
stability technique revealed the prior conditions that
had to be satisfied in order to guarantee stability
and allowed getting rigorous proofs of stability of
the adaptive control system. Because along with the
dynamics of the state or the state error, adaptive con-
trol systems have also introduced the adaptive gains
dynamics, the positive definite quadratic Lyapunov
function had to contain both the errors and the adap-
tive gains and usually had the form

V (t) = eT
x (t)Pex(t)

+tr
[(
K(t) − K̃

)
�−1 (

K(t) − K̃
)T

]
(21)
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Here, K̃ is a set of the ideal gains that could per-
form perfect model following if the parameters were
known, and that the adaptive control gains were sup-
posed to asymptotically reach.

This approach ended in the first rigorous proof
of stability and yet, in spite of successful proofs of
stability, there was no use of these adaptive control
techniques in practice, because of some of the prob-
lems that are inherent to the basic MRAC approach.
The weakest point of basic MRAC was that stability
of the adaptive control could be guaranteed only if the
original plant were Strictly Passive (SP), which in LTI
systems implies that its input-output transfer function
is Strictly Positive Real (SPR). (We note that, while
the plant should be rigorously called SP and only its
transfer function should be called SPR, these names
are very often interchanged in LTI systems.)

Nevertheless, the basic Model Following is another
idea that is worth keeping here. In other words, once
stability can be guaranteed, good or even perfect fol-
lowing can be achieved with external signals that
come from the model, without having to require high
gains and bandwidth from the internal closed-loop
system.

3.2 Classical Model Reference Adaptive Control

It is interesting that at same time, because they
were dealing with large systems, other researchers
attempted a reduced order version of MRAC, that they
called such modest names as “adaptive command gen-
erator tracking,” or “adaptive output model following”
and finally “simple adaptive control (SAC)” [13, 15,
35, 37, 40, 159–163, 175]. What was also interest-
ing, the researchers observed that, although passivity
(or SPR for LTI systems) was very important, the
Plant to be controlled was not required to be “per-
fectly” SPR. As a first relaxation, it was sufficient
if the Plant was separated by some unknown output
feedback from being SPR and so, because only a con-
stant feedback would separate them from being SPR,
they were ultimately called “Almost SPR (ASPR)[15,
37].” Although, as we show below, these works were
a direct and natural continuation of classical MRAC,
the new direction was not well received by most main
representatives of adaptive control community, which
had difficulties accepting the new Almost SPR con-
cept instead of the customary SPR concept. Moreover,
no matter what applications were presented, a pretty

common response was “another example cannot make
this bad control method good.”

However, because, along with the first proofs of
stability, it became clear that basic MRAC required
conditions that were not inherently satisfied by real-
istic applications, the mainstream adaptive control
community had to also abandon the basic MRAC
configuration and to replace it with the so-called “clas-
sical” MRAC configuration. Stability conditions were
then fulfilled by first assuming full Plant state avail-
ability, then other elements such as full-order adaptive
observers, etc., and can be found in the references
cited above. As described in the recent [80], because
“classical” MRAC was developed for SISO plants, the
Plant has the basic representation

ẋ(t) = Ax(t) + b(u(t) + θ∗T x(t)) (22)

The plant is required to follow the Model

ẋm(t) = Amxm(t) + bmum(t) (23)

Under the basic assumptions that A = Am is a
known Hurwitz matrix, θ∗ an unknown constant vec-
tor, and vector b is known, the “classical” MRAC
control solution that must force the Plant state x to
ultimately follow the Model vector xm, is

θ̇ (t) = γ eT (t)Pbx(t) (24)

u(t) = −θT x(t) + k∗
0um(t) (25)

Here, e(t) = x(t) − xm(t) is the ”state error,” k∗
0 is

a matching coefficient (to be defined below) and P is
the solution of the Lyapunov stability equation

PA + AT P = −I (26)

Substituting the control (25) in Eq. (22) gives

ẋ(t) = Ax(t) + bmum(t) − b
(
θT (t) − θ∗T

)
x(t)

+bk∗
0um(t) (27)

Subtract the Model Eq. (23) to get the error equa-
tion

ė(t) = Ae(t) − b
(
θT (t) − θ∗T

)
x(t)

+(bk∗
0 − bm)um(t) (28)

Here, in order to eliminate the ’disturbing’ last
term, one actually assumes that supplementary prior
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knowledge is available such that the ”matching condi-
tion” bk∗

0 = bm is satisfied and one gets

ė(t) = Ae(t) − b
(
θT (t) − θ∗T

)
x(t) (29)

For convenience of the following development, we
now define

Pb = cT (30)

We notice that simultaneous satisfaction of the two
relations (26) and Eq. (30) is the so-called Strict Pas-
sivity (SP) property of systems (with Strictly Positive
Realness (SPR) transfer functions in LTI systems).
Therefore, by assuming that the Plant (or a “domi-
nant” part of the Plant) is stable and also assuming
the availability of (a desired combination of) the full
state vector x, classical MRAC manages to satisfy
an SPR-like condition and to end with a successful
proof of stability of classical MRAC under ideal con-
ditions. First of all, because only the ideal closed-loop
configuration was required to satisfy the SPR condi-
tion, the original plant, now {A + bθ∗T , b, c}, was at
the distance of a constant feedback from being SPR.
Therefore, by using state-feedback, classical MRAC
developers actually ’reinvented’ the ASPR property.
Besides, quite a bit of perfect knowledge has been
used in order to end with the simple Eq. (29).

Still, developers of classical MRAC point to some
problems related to its use. If the actual state order is
larger than the nominal order, the so-called “unmod-
eled dynamics” may affect stability of the adaptive
control system. Although in its most ideal form (29)
one can prove asymptotic stability of the Adaptive
Control system, transient response of MRAC is lim-
ited by the need of using only slow adaptation rate.
Furthermore, it is commonly accepted that even small
disturbances or deviations in Eq. (29) may lead to
“bursting” or other unwanted phenomena [5].

The following development will show how sim-
ilar assumptions can lead to simplified adaptive
controllers of much lesser order, fewer computing
demands and fewer problems, and how further sim-
plification and demands have ultimately lead to the
Simple Adaptive Control methodology.

3.3 Towards Using Output Error

Before moving on from classical MRAC, we revisit
one of its very basic assumptions. Equation (22) is

based on the assumption that the unknown Plant sys-
tem matrix, which we will call Ap, can be decomposed
into Ap = Am + b�∗. This decomposition inher-
ently assumes controllability of {Ap, b} and {Am, b},
which allows pole-placing with state feedback. In
other words, the state feedback that uses the com-
bination eT Pb (or bT Pe) or bT Px can stabilize the
plant. However, while in Optimal Control the useful
signal bT Px needs just one more appropriate scalar
coefficient in order to be the state feedback signal
that results in the scalar optimal command, classical
MRAC controller seems to need both the state error e
and the Plant state x in the computation of the adaptive
gain vector θ̇ (t). Moreover, the large resulting gain-
vector is again multiplied by the entire state-vector in
order to finally obtain the scalar control signal.

Therefore, towards the simplified techniques of
Simple Adaptive Control, we will only refer to the
original Plant system matrix Ap. The plant is

ẋ(t) = Apx(t) + bu(t) (31)

with the “output” signal

y(t) = bT Px(t) = cx(t) (32)

The plant is required to track the Model

ẋm(t) = Amx(t) + bmum(t) (33)

ym(t) = cmxm(t) (34)

Continuing the Optimal Control idea, we assume
that, with proper control, the plant could be forced
to move along some bounded “ideal trajectories” that
would perform perfect tracking. The ideal control
u∗(t) and the ideal trajectories x∗(t) that allow perfect
following satisfy the plant equations

ẋ∗(t) = Apx∗(t) + bu∗(t) (35)

y∗(t) = cx∗(t) (36)

Because the ideal trajectories perform perfect
tracking, we can write

y∗(t) = cx∗(t) = cmxm(t) = ym(t) (37)

We define the “state error” as the difference between
the ideal trajectory and actual trajectory

e(t) = x∗(t) − x(t) (38)
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Subtracting Eq. (31) from Eq. (35) gives the state error
equation

ė(t) = Ape(t) + b(u∗(t) − u(t)) (39)

and the output tracking error is then

ey(t) = ym(t) − y(t) = y∗(t) − y(t)

= cx∗(t) − cx(t) = ce(t) (40)

As shown above, even though classical MRAC also
makes use of the special combination that makes the
scalar signal ey(t), it then uses it in order to compute
a full state-vector adaptive control gain θ(t) by again
multiplying ey(t) by the entire Plant state-vector x(t),
which results in n multiplications and n integrations
for a system of order n. Furthermore, the resulting
adaptive gain θ(t) again multiplies the entire state vec-
tor x(t), thus performing n more multiplications in
order to obtain the scalar control u(t).

Instead, in order to avoid both the complexity and
various problems that seem to appear in classical
MRAC even with the use of full-state vector, one
could follow along the lines of Optimal Control for the
error system (39)-(40). Therefore, under same condi-
tions shown above for classical MRAC, we modify the
adaptive controller to just be

u(t) = k(t)bT Pe(t) = k(t)ce(t) (41)

and assume that there exist some constant gain k∗ such
that the “ideal control” is

u∗(t) = k∗bT Pe(t) = k∗ce(t) (42)

Here, we note that when the Plant reaches and moves
along an ideal trajectory, the ultimate ideal system
equation is

ẋ∗(t) = Apx∗(t) (43)

y∗(t) = cx∗(t) (44)

because, in the ideal case, the plant is perfectly track-
ing and ey(t) = 0. The error equation is then

ė(t) = Ape(t) − bk(t)ce(t) (45)

Subtracting and adding bk∗ce(t) gives

ė(t) = (
Ap − bk∗c

)
e(t) − b

(
k(t) − k∗) ce(t) (46)

or

ė(t) = Apce(t) − b(k(t) − k∗)ey(t) (47)

where Apc = Ap − bk∗c.

This way, the entire Adaptive Control has been
reduced to just a scalar adaptive gain (in SISO case)
that only multiplies the scalar output error. Even
before we define a specific rule for the nonstationary
gain k(t), we select the Lyapunov function

V (t) = eT (t)Pe(t) (48)

Differentiating Eq. (48) along the trajectories of Eq.
(47) gives

V̇ (t) = eT (t)(PApc + AT
pcP)e(t)

−2eT
y (t)

(
k(t) − k∗) ey(t) (49)

At this stage and only for starters, we stay with
classical MRAC assumption that state-feedback com-
bination can stabilize the Plant. In other words, even
though the matrix P has been computed in Eq. (26)
using the Model system matrix, the resulting Plant
state-feedback can indeed stabilize the Plant. In other
words, we expect the fictitious closed-loop system to
satisfy a stability equation of the form

PApc + AT
pcP = −Q (50)

for some (unknown) Positive Definite Symmetric
matrix Q. This gives

V̇ (t) = −eT (t)Qe(t) − 2eT
y (t)

(
k(t) − k∗) ey(t) (51)

Therefore, as Eq. (51) shows, under this simple
output feedback configuration, the error system can
end being asymptotically stable if the adaptive algo-
rithm only guarantees that the adaptive gain will reach
values that are beyond some minimal value, indepen-
dently of the specific selection of the adaptive gain
rule, as long as it keeps k(t) − k∗ nonnegative.

Eventual presence of a bounded external distur-
bance will naturally affect the behavior, yet would
only appear as just another input. For any bounded
disturbance that could affect the negativity of the Lya-
punov derivative and lead to increase in the tracking
error, the derivative would again becomes negative
for some bounded error. Therefore, the system would
just be a decent bounded-input-bounded-output sys-
tem and no peculiar phenomenon (bursting, etc.) can
occur. Besides, even though we want to keep the adap-
tive gains as small as possible, no negative effect on
stability of the adaptive control system occurs if, due
to noise or disturbances, the adaptive gains happen to
increase beyond the minimal desired value.

The error system represented by Eq. (39) and Eq.
(40) has been obtained by replacing the full-state
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adaptive feedback control with just one output adap-
tive feedback control gain and, besides its simplicity
of implementation, this basic configuration that does
not mix the error with the Plant state vector also man-
ages to avoid some problems that may appear with
classical MRAC in less than ideal situations. More-
over, while classical MRAC has become a problem
of identification of plant parameters, with impressive
works showing the ”equivalence of indirect and direct
Adaptive Control,” the simplified approach keeps the
Control developer and applicant focused on the Con-
trol problem, namely, fitting the right control gains to
the right situation.

Still, we only presented this configuration as a
basic idea that we do not further pursue here, because
in next sections we also gradually reduce the basic
assumption from full-state availability towards just
input and output availability. Furthermore, although
the SPR conditions are not inherently fulfilled in the
real-world, we will show that the use of the same prior
knowledge that exists in any (non-adaptive) classical
design allows modifying the plant such that it satisfies
the desired conditions that can provide the guarantee
of stable behavior with the Adaptive Control.

4 On Passivity Conditions

Although Positive Realness or, more precise, Passivity
of systems has been first introduced in networks [52],
it has also demonstrated its usefulness in dynamic sys-
tems within the context of “absolute stability,” when
Popov [142] showed that stability of a system for non-
stationary gains that can arbitrarily vary within some
range is guaranteed if the system is Positive Real. As
already mentioned, it has also been applied to dynamic
systems by Kalman [90] in the context of optimality
(and stabilizability). As also mentioned, Positive Real-
ness has also been shown to be a useful property that
allows the proof of stability with adaptive controllers.
At present, it is useful to present the state-space rep-
resentation of the SPR conditions which seems to be
the most useful for successful proofs of stability using
Lyapunov stability theory.

Definition 1 A linear time-invariant system with a
state-space realization {AK,B,C}, where AK ∈ Rn∗n,
B ∈ Rn∗m, C ∈ Rm∗n, with the m*m transfer function
T(s) = C(sI − AK)−1B, is called “strictly passive

(SP)” and its transfer function “strictly positive real
(SPR)” if there exist two positive definite symmetric
(PDS) matrices, P and Q, such that the following two
relations are simultaneously satisfied [6]:

P AK + AT
KP = −Q (52)

PB = CT (53)

The relation between the state-space conditions (52)-
(53) and the strict positive realness of the correspond-
ing transfer function has been treated elsewhere [83,
176]. Relation (52) is the common algebraic Lya-
punov equation and shows that an SPR system is
asymptotically stable. One can also show that condi-
tions (52)-(53) also imply that the system is strictly
minimum-phase, yet simultaneous satisfaction of both
conditions (52)-(53) is far from being guaranteed even
in stable and minimum-phase systems, and there-
fore the SPR condition seemed much too demanding.
(Some colleagues in the general control community
would also ask: if the system is already minimum-
phase and asymptotically stable why would one need
adaptive controllers?)

For a long time, the so-called passivity condi-
tion had been considered very restrictive (and rather
obscure) and for quite some time the adaptive con-
trol community has been trying to drop this condition
and do without it. The passivity condition has been
somewhat mitigated when it was shown that stability
with adaptive controllers could be guaranteed even for
the non-SPR system (1)-(2) if there exists a constant
output feedback gain (unknown and not needed for
implementation), such that the fictitious closed-loop
system with the system matrix

AK = A − BK̃eC (54)

is SPR, namely, it satisfies the passivity conditions
(52)-(53). Because in this case the original system
(1)-(2) was only separated from strict passivity by
a simple constant output feedback, it was called
“Almost Strictly Passive(ASP)” and its transfer func-
tion “Almost Strictly Positive Real (ASPR)” [18, 37].

At the time, this “mitigation” of the passivity con-
ditions did not make a great impression, because it
was not clear what systems would actually satisfy the
new conditions. (Some even claimed that because SPR
seemed to be just another name for the void class
of systems, the “new” class of ASPR systems was
only adding the ’boundary.’) Nonetheless, some ideas
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were available. Because a constant output gain feed-
back was supposed to stabilize the system, it seemed
apparent that the original plant was not required to
be stable. Also, because it was known that SPR sys-
tems were minimum-phase and because it was easy
to see that (53) implies that the product CB is Pos-
itive Definite Symmetric (PDS), it was intuitive to
assume that minimum-phase systems with Positive
Definite Symmetric CB were natural ASPR candi-
dates [37]. Indeed, simple Root-locus techniques were
sufficient to prove this result in SISO systems, and
many examples of minimum-phase MIMO systems
with CB product PDS were shown to be ASPR [18,
37]. However, it was not clear how many of such
MIMO systems actually were ASPR. Because the
ASPR property can be stated as a simple condition
and because it is the main condition needed to guar-
antee stability with adaptive controllers, it is useful
to present here the ASPR theorem for the general
multi-input-multi-output systems [21]:

Theorem 1 Any linear time-invariant system with the
state-space realization {A,B,C}, where A ∈ Rn∗n,
B ∈ Rn∗m, C ∈ Rm∗n, with the m*m transfer
function T(s) = C(sI − A)−1B, that is minimum-
phase and where the matrical product CB is PDS
is “almost strictly passive (ASP)” and its transfer
function “almost strictly positive real (ASPR).”

Although the original plant is not SPR, a (ficti-
tious) closed-loop system satisfies the SPR conditions,
or in other words, there exist two positive definite
symmetric (PDS) matrices, P and Q, and a positive
definite gain K̃e such that the following two relations
are simultaneously satisfied:

P(A − BK̃eC) + (A − BK̃eC)T P = −Q (55)

PB = CT (56)

It is useful noting that the ASPR property includes
the desired PB = CT combination and so, it directly
provides the desired control signal that is the basis
for Optimal and Adaptive Control as output signal,
without requiring full-state availability.

As a matter of fact, an early proof of Theorem 1
has been available in the Russian literature since 1976
[56, 59], yet it was not known in the West. Here, many
other works have independently rediscovered, refor-
mulated, and further developed the idea (see [20, 173]
and in particular [21] and references therein for a

brief history and for a simple and direct, algebraic,
proof of this important statement).

Theorem 1 has managed to explain the rather
obscure passivity conditions with the help of new
conditions that could be understood by control prac-
titioners. It is useful to notice an important property
that was hinted in the section on Optimal Control and
that makes an ASPR system to be a good candidate for
stable adaptive control: if a plant is minimum-phase
and its input-output matrical product CB is Positive
Definite Symmetric (PDS), it is stabilizable via some
static Positive Definite (PD) output feedback. Further-
more, if the output feedback gain is increased beyond
some minimal value, the system remains stable even if
the gain increase is nonstationary. At this stage, The-
orem 1 tells us that ASPR systems do provide us with
the appropriate desired signal y(t) = BT Px(t), with-
out requiring full-state availability. Later on, we show
how to use basic available knowledge in order to get
this combination in real-world application to systems
that, inherently, are not necessarily ASPR.

Notice that the required positivity of the productCB
could be expected, as it seemed to be a generalization
of the sign of the transfer function that allows using
negative feedback in LTI systems. However, although
at the time it seemed to be absolutely necessary for the
ASPR conditions, the required CB symmetry proved
to be rather difficult to fulfill in practice, and in par-
ticular in adaptive control systems where the plant
parameters are not known.

After many attempts that have ended in failure, a
recent publication [41] finally managed to eliminate
the need for a symmetric CB. First, it was easy to
observe that the Lyapunov function remains positive
definite if the gain term is rewritten as follows:

V (t) = eT
x (t)Pex(t)

+tr
[
W

(
K(t) − K̃

)
�−1 (

K(t) − K̃
)T

]
(57)

Here, W is a Positive Definite matrix. This new for-
mulation allowed the extension of useful passivity-like
properties to a new class of systems that was called
WASP, through the following definition:

Definition 2 Any linear time-invariant system with
state-space realization {A,B,C}, where A ∈ Rn∗n,
B ∈ Rn∗m, C ∈ Rm∗n, with the m*m transfer func-
tion T(s) = C(sI − A)−1B, is called “W-almost
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strictly passive (WASP)” and its transfer function “W-
almost strictly positive real (WASPR),” if there exist
two positive definite symmetric (PDS) matrices, P and
Q, a positive definite matrix W, and a positive defi-
nite gain K̃e such that the following two conditions are
simultaneously satisfied:

P(A − BK̃eC) + (A − BK̃eC)T P = −Q (58)

PB = CT W (59)

This new definition can be used with the following
theorem [25, 26, 41]:

Theorem 2 Any linear time-invariant system with
state-space realization {A,B,C}, where A ∈ Rn∗n,
B ∈ Rn∗m, C ∈ Rm∗n, with the m*m transfer function
T(s) = C(sI − A)−1B, is “W-almost strictly passive
(WASP)” in accord with Definition 2 if the eigenval-
ues of the not necessarily symmetric matrix product
CB are located in the right half-plane. If, in addition,
CB is also diagonalizable and its eigenvalues are real
and positive, matrixW is also PDS.

Note: We notice that the eigenvalues of a nonsym-
metric matrix M can be different from the eigenvalues
of its symmetric part Ms = (M + M′)/2. Therefore,
while a symmetric matrix with real and positive eigen-
values is Positive Definite, this is not necessarily so
when the matrix is not symmetric. Conversely, it is
interesting noting that a nonsymmetric matrix M can
be Positive Definite although its eigenvalues are not
real and positive, if its symmetric part Ms is Positive
Definite Symmetric. Therefore, while only the elimina-
tion of CB symmetry condition was sought, the final
result implies that CB does not have to be either sym-
metric or positive definite, as long as its eigenvalues
are properly located in the right half-plane.

While [41] only extended the ASP condition for
the symmetric W and only for the output stabiliza-
tion case, this was a first mitigation of a condition
that has been around for more than 40 years. Nev-
ertheless, it was very tempting to try to eliminate
(almost) any restriction on CB. Because any CB
product with eigenvalues anywhere in the right half-
plane would allow existence of non-symmetricW, this
can result in a considerable mitigation of passivity
conditions. Although a non-definite term containing
(W − W′)

(
K(t) − K̃

)
(that does not necessarily van-

ish unless W is symmetric) appears in the Lyapunov

derivative, recent research [26] shows that the nondef-
inite term is dominated by the negative definite terms
and cannot affect stability with respect to bound-
edness. Besides, it was shown elsewhere [23] that
the feedforward adaptive gains perform a steepest
descent minimization of the tracking errors, forcing
the adaptive gains K(t) to approach the ideal gains K̃.
Therefore, even though not a direct result of Lyapunov
stability approach (yet), tests do show asymptotically
perfect following [26] and so, symmetry of W is not
actually needed and stability of Adaptive Control can
be maintained under the most mitigated conditions.

5 Simple Adaptive Control (SAC), or the simplified
Approach to Model Reference Adaptive Control

Next sections will show that those ingenious adap-
tive control ideas and the systematic stability analysis
they introduced had finally led to adaptive control
systems that, using the prior knowledge usually avail-
able for design, can guarantee stability robustness and
superior performance when compared with alterna-
tive, non-adaptive, methodologies. This section will
first assume that at least one of the almost passivity
conditions presented above holds and will deal with
a particular methodology that first of all seems to
eliminate the need for plant order and therefore can
mitigate the problems related to “unmodeled dynam-
ics” and “persistent excitation.” Subsequent sections
will then extend the feasibility of the methodology to
those real-world systems that do not inherently satisfy
any passivity conditions.

The beginning of the alternative adaptive control
approach can be found in the intense activities at
Rensselaer (RPI), where such researchers as Kauf-
man, Sobel [159, 160], Barkana, Balas [15, 35, 40],
Wen[13, 175], Ozcelik[137, 138, 140] and others were
trying to use customary adaptive control techniques
with large order MIMO systems, such as planes, large
flexible structures, etc. It did not take long to real-
ize that it was impossible to consider implementing
controllers of the same order as the plant, or even of
the order of a “nominal” plant. Besides, those were
inherently MIMO systems, while customary MRAC
techniques at the time were only dealing with SISO
systems.

Towards using reduced order adaptive controllers,
the Optimal Control idea was adopted and, following
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this idea, a direct adaptive output feedback component
was added to the adaptive algorithm (that otherwise
is very similar to the very basic MRAC algorithms),
namely,

u(t) = Ke(t)ey(t) + Kx(t)xm(t)

+Ku(t)um(t) = K(t)r(t) (60)

where we denote the reference vector

r(t) = [
eT
y (t) xT

m(t) uT
m(t)

]T
(61)

and the adaptive gain

K(t) = [
Ke(t) Kx(t) Ku(t)

]
. (62)

Because this approach actually uses the model as a
command generator, it was called Adaptive Command
Generator Tracker. However, because it also uses low-
order models and, in particular, low-order adaptive
controllers, it was ultimately called Simple Adaptive
Control (SAC) [18].

Here, it is important to also review one issue that
was emphasised by the authors of [80]. They crit-
icize the filter that L1-Adaptive Control approach
uses in the internal loop, because it reduces the loop-
bandwidth. On the other hand, one may understand
that it could be dangerous to let an adaptive con-
trol system attempt to follow any command and most
probably, this argument stands behind the supple-
mentary filter. In the SAC approach, “filtering” the
command is exactly the role of the Model. Instead of
supplying the adaptive control plant such a command
as step-input and then let it try to track it, the plant is
supplied and asked to track the time response of the
model, which represents the behavior that the plant
can be expected and required to provide. Therefore,
even if the parameters of an helicopter are not known,
an appropriate model reference should only require
the plant to behave as a good helicopter and not as a
dog-fighter. The difference is that the model is out-
side the loop and does not affect the plant closed-loop.
Moreover, as discussed in [29] and below, supple-
mentary signals from the model alow high level of
performance without stressing the internal loop.

Before we discuss the differences between the SAC
approach and classical MRAC, it is useful to first
dwell over the special role of the direct output feed-
back term. If the plant parameters were known, one
could choose an appropriate gain K̃e and stabilize the
plant via constant output feedback control u(t) =
−K̃ey(t).

As we already mentioned above, it was known that
an ASPR system (or, as we now know, a minimum-
phase plant with appropriate CB product [21]) could
be stabilized by a positive definite output feedback
gain. Furthermore, it was known that ASPR systems
are high-gain stable, so stability of the plant is main-
tained if the gain value happens to go arbitrarily high
beyond some minimal value. Whenever one may have
sufficient prior knowledge to assume that the plant
is ASPR, yet may not have sufficient knowledge to
choose a good control gain, one can use the tracking
error to generate the adaptive gain

K̇e(t) = ey(t)eT
y (t)�e (63)

and the control

u(t) = Ke(t)ey(t) (64)

As hinted in the section on Optimal Control, it was
shown that this adaptive gain addition is able to avoid
some of the most difficult inherent problems related
to the standard MRAC and to add robustness to its
stability. Although it was developed as a natural com-
pensation for the low-order models and was just one
more element of the Simple (Model Reference) Adap-
tive Control methodology, it is worth mentioning that,
similarly to the first proof of the ASPR property, the
origins of this specific adaptive gain can again be
found in an earlier work of Fradkov [56] in the Rus-
sian literature. Moreover, later on, this gain received
a second birth and became very popular after 1983
in the context of adaptive control “when the sign of
high-frequency gain is unknown.” First in this context
[65, 121, 132] and then after a very rigorous math-
ematical treatment [51], it also received a new name
and it is sometimes called the Byrnes-Willems gain.
Its useful properties have been thoroughly researched
and some may even call this one adaptive gain Sim-
ple Adaptive Control as they were apparently able to
show that it can do “almost” everything [78, 115].
Indeed, because an ASPR system is high-gain sta-
ble, it seems very attractive to let the adaptive gain
increase to high values in order to achieve good per-
formance that is represented by small tracking errors.
However, although at first thought one may find that
high gains are very attractive, a second thought and
some more engineering experience with the real world
applications make it clear that high gains may lead
to saturations and may excite vibrations and other
disturbances. These disturbances may not have even
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appeared in the nominal plant model that was used
for design and may not be felt in the real-world plant
unless one uses those very high gains. Furthermore, as
the motor or the plant dynamics would always require
an input signal in order to keep moving and tracking
the desired trajectory, it is quite clear that the tracking
error cannot be zero or very small unless one uses very
high gains indeed.

On the other hand, designers of tracking systems
know that appropriate feedforward signals that come
from the desired trajectory can help achieving low-
error or even perfect tracking without requiring the
use of dangerously high gains (and, correspondingly,
exceedingly high bandwidth) in the closed-loop. In
the non-adaptive world, the use of feedforward signals
could be problematic because, unlike the feedback
loop, any errors in the feedforward parameters are
directly and entirely transmitted to the output track-
ing error. Here, the adaptive control methodology
can demonstrate an important advantage on the non-
adaptive techniques, because the feedforward param-
eters are finely tuned by the very tracking error they
intend to minimize. The issues discussed here and the
need for feedforward again seem to show the intrin-
sic importance of the basic Model Following idea,
and again point to the need for a model. However,
the difference between the Model Reference used by
the basic MRAC and the model used by SAC is that
this time the so-called “Model” does not necessar-
ily have to reproduce the plant, besides incorporating
the desired input-output behavior of the plant. At the
extreme, it could be just a first-order pole that per-
forms a reasonable step-response, or otherwise a low-
order system of order just sufficiently high to generate
the desired trajectory. As it generates the command,
this “model” can also be called [49] “Command Gen-
erator” and the corresponding technique “Command
Generator Tracker (CGT).”

In summary, the adaptive control system monitors
all available data, namely, the tracking error, the model
states and the model input command (see Fig. 1) and
uses them to generate the adaptive control signals

K̇e(t) = ey(t)eT
y (t)�e (65)

K̇x(t) = ey(t)xT
m(t)�x (66)

K̇u(t) = ey(t)uT
m(t)�u (67)

that using the concise notations (30)-(31) give

K̇(t) = ey(t)rT (t)� (68)

and the control

u(t) = Ke(t)ey(t) + Kx(t)xm(t)

+Ku(t)um(t) = K(t)r(t) (69)

It is worth noting that, initially, SAC was meant
to be a modest alternative to MRAC with appar-
ently very modest aims and that also seemed to be
restricted by the new conditions. Nevertheless, at the
time it probably was the only adaptive technique
that could have been used in MIMO systems and
with large systems, and therefore was quite immedi-
ately adopted by many researchers and practitioners
in such diverse applications as flexible structures [14,
42, 75–77, 107, 125, 156], flight control including
reconfiguration [22, 43, 60, 122, 123, 152, 180], flex-
ible spacecraft [74, 111] improving performance of
existing autopilot[150], power systems [33, 144–146,
181], robotics [34, 168, 169], motor control [19, 155,
165], systems with time-delay [157], drug infusion
and systems with saturation constraints [139, 140],
DC/DC boost converter [88, 89], structural perfor-
mance improvement [4, 44–46], vibration suppression
of piezoelectric smart structures [131], satellite mis-
sion life extension [71–73, 101], water hydraulic servo
systems [84, 85, 112, 113, 141, 166, 178], pneumatic
motion [133], active magnetic bearing systems [64],
control of voltage in proton exchange membrane fuel
cell [126], air-fuel ratio control [92] electrical stim-
ulation for upper limb motion [99], fractional-order
systems[100, 164] modified Delta operator and form
for intelligent systems [7], magnetic levitation [179],
quadrotor helicopter [53], and others [39, 48, 79, 95,
109, 116, 119, 167].

Nonetheless, although it was quite simple to imple-
ment, the theory around SAC was not simple at all
and many tools that, slowly and certainly, revealed
themselves over the years, were initially lacking to
support its qualities. It subsequently not only required
developing new analysis tools but also, probably more
important, better understanding of their implications,
before they could be properly used so that they ulti-
mately managed to highlight the very useful properties
of SAC. Finally, after developments that had spanned
over more than 30 years, SAC has in fact proved to
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be the stable MRAC, because right from the begin-
ning it avoids some difficulties that are inherent in the
standard MRAC. In particular, it is useful to notice
that SAC first assumes and then attempts to fulfill
some desirable Plant properties, and does not nec-
essarily deal with Plant parameters and in particular
plant order, so there is no “unmodeled dynamics.”
Also, because basically the stability of the system rests
on the direct output feedback adaptive gain, the model
is immaterial in this context and of course there is no
need to even mention “sufficient excitation.”

Besides, as we will later show, and as it was
observed by almost all practitioners that have tried to
use it, SAC proved to be good control. In this context,
while the standard MRAC may have to explain why
it does not work when it is supposed to work, SAC
may have to explain why it does work even in cases
when the (sufficient) conditions are not fully satis-
fied. Although, similarly to any nonstationary control,
in Adaptive Control it is very difficult to find the
very minimal conditions that would keep the sys-
tem stable, the need to explain why SAC seemed to
demonstrate some robustness even when the basic suf-
ficient conditions are not satisfied, ultimately provided
the motivation for continuously extending the domain
of feasibility of SAC by further mitigating these suffi-
cient conditions that guarantee stability. We must also
note that, in those cases when basic conditions are
fulfilled, they are always sufficient to guarantee the
stability of the adaptive control system, with no excep-
tions and no counterexamples. In this respect, along

with the proof of stability we will also again men-
tion that the so-called “counterexamples” to MRAC
[69] become just trivial, stable, and well behaving
examples for SAC [26].

It is also important to note the role of the vari-
ous components of the SAC control signal (69). Even
though the term ”Simple Adaptive Control (SAC)”
was initially intended for the combination (69), other
approaches may try to further ”simplify” it and may
only use the simple controller

u(t) = Ke(t)ey(t) (70)

(i.e., Kx(t) = 0 and Kx(t) = 0). This saves a few
real-time computations and may result in reasonable
similar performance. However, this apparent saving
may come at some heavy cost. Although we empha-
sised the importance of the main gain Ke(t) for the
guarantee of stability with SAC, Eq. (70) shows that,
having a control signal that can keep the plant moving
at low tracking errors may require very high internal
gain Ke(t) values. On the other hand, the control sig-
nal (69) shows that, in principle, as far as tracking at
low or even zero errors is concerned, Ke(t) is allowed
to be zero, as the control signal comes from the model
through the appropriate feedforward gains Kx(t) and
Kx(t). Therefore, if, for example, the initial value of
the main gain is Ke(0) = 1, one may see that, during
the entire adaptation, Ke(t) may hardly move and only
when called and may get values between 1 and 2. On
the other hand, even though the tracking errors may
look similar, if one uses Kx(t) = 0 and Kx(t) = 0,
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the remaining main gain Ke(t) may reach such high
values as 40 or even 70, with all potentially negative
effects of high gains and high loop-bandwidth on the
actual system, with its unmodeled dynamics, hidden
nonlinearities, oscillatory modes, etc.

It is worth mentioning that, although not com-
mon among ”classical” MRAC developers, some seem
to have become aware [70] that, instead, ”classical”
MRAC has problems moving from SISO to MIMO
and from state-feedback to output feedback as, in any
case, it uses lots of adaptive gains and looks for var-
ious appropriate ”decompositions” that would allow
satisfaction of various ”matching” conditions. They
even recommend considering SAC for large systems
[70]. The question is if even for a SISO system of
order, say, 6 it is worth using 6 adaptive gains when
one single gain does the job.

6 On Parallel Feedforward

We noted that, in real-world, systems do not necessar-
ily satisfy the ASPR condition, and then the so-called
“parallel feedforward configuration (PFC)” can be
added to allow the augmented system to satisfy the
ASPR conditions [17, 18, 37]. We must also mention
that, in spite of its successful application in many prac-
tical and difficult adaptive control applications, some
much respected readers still feel uneasiness at the PFC
idea, which is “adding something in parallel with the
actual plant and therefore does not control the actual

plant any more” (Fig. 2) and this comment deserves
our attention.

In spite of encouraging results with large flexible
structures (which, nevertheless, required collocation
of sensors and actuators), not many other examples of
ASP systems seemed to be readily available in prac-
tice. Therefore, the idea of maybe adjusting the plant
to be controlled in such a way that may satisfy an ASP
relation started being investigated.

The first idea was raised by an apparent prob-
lem with adaptive control of discrete-time systems
[15, 36], where SP (and ASP) relations require the
system to be of the form {A, B, C, D} with non-
singular D, while most systems are of the form
{A, B, C}. As a result, passivity relations were consid-
ered unattainable in discrete-time systems. However, it
was observed that in some systems, if in parallel to the
discrete transfer function G(z) one adds an appropri-
ate constant matrix D, the augmented plant Ga(z) =
G(z)+D does satisfy an ASP relation. In other words,
there exists some constant Ke such that the fictitious
closed-loop system T (z) = Ga(z)/(1 + KeGa(z)) is
SP [15, 36].

An interesting result was that a small addition
could allow implementing ASP configurations even of
unstable and non-minimum phase systems that, other-
wise, were usually considered taboo for adaptive con-
trol (unless some very precise prior knowledge on the
exact location of the problematic zeros of the assum-
able unknown plant could be assumed to be available).
The first explanation came with the observation that,
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if the (continuous or discrete) system G(•) is stabi-
lizable by some constant feedback K , then the inverse
D = 1/K is the “parallel feedforward” that makes
the augmented system ASP [37, 38]. In an attempt to
avoid direct input-output gains in continuous-time sys-
tems, the idea was first extended to simple dynamic
feedforward of the form D(s) = 1/[K(1+ s/w)], and
then further extended to general stabilizing controllers
C(s).

In general, if the (linear or nonlinear, continu-
ous or discrete) system G(•) is stabilizable through
some configuration C(•), then the augmented system
Ga(•) = G(•) + D(•), where D(•) = 1/C(•), is
minimum-pase (or it has stable zero dynamics, or has
a stable inverse). The augmented system is then ASP
if the relative degree of Ga(•) is zero or one [16–
18, 24, 91]. We mention that the references deal with
MIMO systems and this brief description here deals
with SISO plants only because of the convenience of
notation and presentation.

At this stage, maybe it is worth mentioning that
the terms “parallel feedforward” or “shunt” [15, 18,
36, 37, 57, 58, 86, 87, 114] (represented by D(s) in
Fig. 2) has been introduced because, for the guaran-
tee of stability of the adaptive control, the controlled
plant must indeed satisfy the required ASP conditions.
However, only the adaptive controller must “see” an
augmented ASP plant, because, in fact, nothing is
added “in parallel” to the real plant (same way as no
plane or motor axis has to be bent in order to use
position feedback). Thus, the PFC actually is only

a part of the controller and is only a supplemen-
tary feedback around the main adaptive gain Ke(t)

(Fig. 3).
Moreover, as new developments show, assume that

a “best” linear design (or at the end of some adaptive
control design) is G(s) and so, its tracking error is

e(s) = 1

1 + G(s)
u(s). (71)

The designer then realizes that the performance
could be less than satisfactory and yet, for improving
this performance, one would have to add another ideal,
possibly improper, controller C(s) and also with some
high gain. Instead, within the SAC methodology, one
is advised to use the inverse of C(s), D(s) = 1/C(s),
as PFC “in parallel” with the plant. As recently shown,
the ultimate tracking error of the actual plant with
SAC controller and with PFC is [172]

e(s) = 1

1 + C(s)G(s)
u(s). (72)

In other words, the adaptive control system with the
assumed PFC “ballast” achieves the performance of
the most ideal linear system without PFC. For a simple
example, the desired addition could be a supplemen-
tary PD controller C(s) = K(1 + s/s0), requiring a
supplementary, precise and expensive velocity sensor
or perfect differentiation, along with some high gain
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K , while, instead, the PFC configuration is only some
simple, inoffensive, first-order pole with low gain

D(s) = 1

K(1 + s/s0)
. (73)

While on paper the use of C(s) or of its inverse D(s)
may look similar, in reality is the difference between
using some advanced hardware components, and just
changing a few lines in the computer software [31].

While one may object that this good behavior
occurs only after adaptation, this is only for those
who got used with the ”slow adaptation” rule that
classical MRAC so strongly demands. Instead, the
guarantee of stability that PFC adds to the adaptive
controller frees SAC from the customary fear of fast
adaptation. Therefore, the adaptation time with SAC
is practically almost negligible when compared with
any expected time constants and so, as test results
show, the supplementary error introduced by the use of
PFC “in parallel” with G(s) only separates the actual
plant from the most ideal perfect following behavior.
As a result, this supplementary error is usually much
lower than otherwise and does not reduce, but rather
improves SAC performance in comparison with the
“best” classical design G(s) [32, 150].

For another attempt at easy introduction of “par-
allel” feedforward idea, let us assume that the plant
G(s) is known to be stabilizable and that the designer
would be allowed to chose any constant gain from
the minimal value Kmin (say, Kmin = 1) to maximal
value Kmax (say, Kmax = 100). However, the steady-
state tracking error with the low value Kmin = 1 is
e(s) = G(s)/(1 + G(s))u(s) and does not fit good
response to maneuvers. On the other hand, the high-
est admissible value Kmax = 100 results in the small
tracking error e(s) = G(s)/(1 + 100G(s))u(s), yet
would only amplify noise and maybe excite oscilla-
tions and nonlinearities when the plant is supposed to
be quiet and performance is not required. Therefore,
the designer would like to define rules that would use
nonstationary gains K(t), such that they fit the right
situation. However, time varying gains do not guaran-
tee stability any longer, even if they remain within the
so-called “admissible domain” Kmin < K(t) < Kmax

[29, 91]. Instead, we suggest using the small added
value D = 1/Kmax = 1/100 in “parallel” with the
plant. The word “parallel” was written within quota-
tion marks, because it only represents the idea that

an augmented plant is made ASP with parallel feed-
forward. In fact, D is part of the controller and is
connected in feedback around the main adaptive loop
gain Ke(t) (Fig. 3). With this simple constant gain
feedback (and for a moment ignoring the feedforward
gains), the “effective adaptive gain” that the plant sees
is Keff (t) = Ke(t)/(1 + DKe(t)). While, within
the SAC approach, the “parallel” feedforward con-
cept allows using the almost passivity properties for
the proof of stability, the Keff (t) above also reminds
various “projections” that were shown to improve
stability of various adaptive control scheme. In par-
ticular, even if the adaptive gain Ke(t) would tend to
diverge, the plant would receive at most the maximal
admissible value Kmax . The ”small” difference is that,
while direct use of the upper ’admissible’ bound Kmax

does not guarantee stability with nonstationary adap-
tive gains, the “parallel” feedforward configuration
concept does.

One can see how even members of the ”classical”
MRAC community may use Simple Adaptive Control
techniques and PFC if they have to deal with a really
large and MIMO system [1, 2].

Nevertheless, for a long time the existence of suit-
able PFC that can make real-world systems into ASPR
had been questioned. Therefore, in recent papers the
following results have been established:

1. PFC that renders plant ASPR always exist for
any proper plant (stable or unstable, minimum or
non-minimum phase plant, SISO and MIMO) (see
[150] , Appendix);

2. The whole set of PFCs has been parameterized;
3. The duality of PFC and negative feedback had

been established [149];
4. The set of all PFCs is larger than the set of all

stabilizing controllers.

For the question of robustness of passification
with unmodeled dynamics see [171]. Moreover, even
though one could expect the adaptive controller to ulti-
mately require same high loop-gain values as the ideal
classical controller, the numerous applications show
that the PFC is only needed to provide the guaran-
tee of stability. In turn, this guarantee then facilitates
computation of the appropriate values for the desired
feedforward adaptive gains, Kx(t) and Ku(t) (Fig. 3),
which ultimately allow reaching the desired perfor-
mance without requiring high Ke(t) gains and/or high
bandwidth from the internal loop. As tests show, even
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though the actual tracking error is e(s) = G(s)/(1 +
100G(s))u(s), the main adaptive loop-gain Ke(t)

barely moves above the initial value Ke(0) = 1.

7 New Results in Nonlinear Systems Stability
Analysis

We recall that the dynamics of the Adaptive Control
systems contains both the errors e(t) and the adaptive
gains K(t) (or θ(t)), while the Lyapunov derivative
is only a function of e(t). Thus, although the Lya-
punov derivative is Negative Definite in terms of e(t),
it is only Negative Semidefinite in terms of the entire
space {e(t),K(t)} and this is less than the Lyapunov
Theorem requires. Therefore, new developments were
needed in order to allow stability analysis of nonlinear
systems when the derivative of the Lyapunov function
is not exactly Negative Definite.

Unless mentioned otherwise, this section deals with
stability of non-autonomous nonlinear systems (where
the time explicitly appears) of the form

ẋ(t) = f(x, t). (74)

Because of the extreme importance of proper stability
analysis of the Adaptive Control systems, we present
here a few old and new results[27, 29, 30].

Lyapunov Direct Method The so-called Lyapunov
direct method is the methodology that allowed analy-
sis of nonlinear systems stability without requiring to
actually solve the nonlinear differential equations for
all initial conditions. Lyapunov proposed to associate
with the system an appropriate function, say positive
definite and radially unbounded. Such functions have
later been called “Lyapunov functions” V (x), where x
is the entire state vector. The Lyapunov theorem states
that if the derivative of V (x) along the trajectories
of the system is negative definite, then the system is
globally asymptotically stable.

Although Lyapunov works have been published at
the start of 20th century [110], it took more than
another half a century before they became the basic
tool upon which modern stability analysis is based
(for good presentations of Lyapunov direct method,
see, for example the excellent books [63] and [148]).
Nevertheless, in spite of the initial enthusiasm, pretty
soon developers were forced to realize that in real
world applications it is not easy to find an appropriate

Lyapunov function with a negative definite deriva-
tive. The main difficulty that limited the applicability
of the direct Lyapunov approach was the fact that,
in most applications, the derivative of the Lyapunov
function usually was at most negative semidefinite.
Here, things started looking pretty complex.

Krasovskii-LaSalle Invariance Principle First exten-
sions to Lyapunov-style approach for the case when
the derivative of the Lyapunov function is only neg-
ative semidefinite were first attributed in the West
to LaSalle [106], yet now are also attributed to
Krasovskii and Barbashin [96] . Their result has
become known as the Krasovskii-LaSalle Invariance
Principle, that was only covering strictly autonomous
functions of the form ẋ(t) = f (x) (where the time
does not explicitly show). In this case, they show that
bounded trajectories end within the domain that is
defined by V̇ (t) = 0. We notice that, unlike the strictly
negative definite case, this result does not necessarily
imply asymptotic stability as its implications depend
on the meaning of V̇ (t) = 0.

Moreover, most non-trivial control systems are
nonautonomous of the form (74) and, as one may usu-
ally read in the professional literature “unfortunately,
this system is nonautonomous and so, the invariance
principle cannot be applied.”

Therefore, because control systems are nonau-
tonomous, new extensions to the basic Lyapunov
stability theory have been sought.

Barbalat’s Lemma One of these extensions was pro-
vided by Barbalat’s lemma that we state here as it
appears in [158]:

Lemma 1 (Barbalat’s Lemma): If the differentiable
function V (t) has a finite limit as t → ∞ and if V̇ (t)

is uniformly continuous (or V̈ (t) is bounded), then
V̇ (t) → 0 as t → ∞.

Barbalat’s Lemma is very simple and, therefore,
very attractive. Furthermore, under some conditions,
it allowed to finally show that the function V̇ (t) ulti-
mately vanishes and in many cases even it allowed
reaching the desirable asymptotic stability or asymp-
totically perfect tracking conclusion. Nevertheless, it
also leaves the burdensome impression that any input
command, distortion or disturbance that may affect
the uniform continuity of Lyapunov derivative may
affect the proof and, therefore, the very guarantee of
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stability of nonlinear systems. However, as we show
below, it is only because Barbalat’s lemma deals with
the functions and not with the systems that it imposes
those strict conditions on continuity of functions and
even of their derivative. These conditions may happen
to hold in some systems, yet if they are not satisfied
under less than ideal conditions, it is not necessarily a
result of some lack of stability.

These conditions are needed because, as most Col-
leagues and some of the best publications seem to
think, ”Unfortunately, LaSalle’s Invariance Principle,
and better call it ’Krasovskii-LaSalle Invariance Prin-
ciple,’ only covers ’time-invariant’ (or, more exactly,
autonomous) systems.” Is it indeed so? Yes, yet only if
one still sticks to the 60s.

(The Real) LaSalle’s Invariance Principle As a matter
of fact, extensions of LaSalle’s Invariance Principle to
nonautonomous systems have been available at least
since 1976 [8–10, 104, 105], and have been imme-
diately adopted and used since 1980 for such special
problems as adaptive control of large space structures
and other applications (see for example [91] for a
proof and a brief presentation of the theory along with
some early examples). Nonetheless, as classical books
in nonlinear systems [93, 153, 158, 170] and even
recent publications [66, 108] seem to show, either the
Principle is largely unknown or, at least, has remained
misunderstood.

Therefore, it is important to first emphasize
LaSalle’s simple and ingenious idea. Instead of deal-
ing with the properties of some general function,
LaSalle’s Invariance Principle goes back to establish-
ing some milder conditions on the system. Using the

notation |f | =
√

f 2
1 + f 2

2 + ...f 2
n , satisfaction of one

of the following two assumptions along trajectories of
a system is checked:

1) |f (x(t), t)| is uniformly bounded for any
bounded x.

or

2)
∫ β

α
|f (x, τ )|dτ = μ(β − α).

We note that in LaSalle’s formulation, the function
μ(τ) is a “modulus of continuity,” to be discussed in
continuation. Furthermore, LaSalle’s Invariance Prin-
ciple deals with the more general case when not all
trajectories are necessarily bounded and so, it only
attempts to locate the limit points of those trajectories

that are bounded. Therefore, its Lyapunov function is
only required to be bounded from below and is not
necessarily required to be Positive Definite.

Under these assumptions, we can present LaSalle’s
Invariance Principle for nonautonomous systems:

Theorem 3 (LaSalle’s Invariance Principle): Con-
sider the nonlinear non-autonomous system (74).
Assume that there exists a Lyapunov function V (x),
which is bounded from below, and that its derivative
V̇ (x, t) along the trajectories of (74) is Negative Semi-
Definite and satisfies a relation of the form V̇ (x, t) ≤
W(x) ≤ 0. Now, define the domain � = {x|W(x) =
0}. Then, if one of the assumptions 1 or 2 holds, all
bounded trajectories ultimately reach the domain �

[105], [91].
Of course, whenever the case is and the appropri-

ate Lyapunov function is found, one may show that
all trajectories are bounded. Besides, LaSalle’s for-
mulation is that bounded trajectories end within “an
invariant set within the domain �.” The actual mean-
ing of this formulation may look pretty obscure and it
will be explain later below.

The new Invariance Principle As recently observed
[28], even the milder conditions that LaSalle’s origi-
nal formulation seems to impose are both difficult to
satisfy in realistic applications and also are not nec-
essarily needed. Therefore, a new Invariance Principle
for nonautonomous systems was presented [28] in a
form that is appropriate for the problems we discuss
and that further relaxes even the milder conditions of
LaSalle. Here, satisfaction of one of the following two
assumptions is checked along trajectories of a system:

A) |f (x(t), t)| is uniformly bounded for any
bounded x.

or

B)
∫ β

α
|f (x(τ), τ )|dτ is bounded along any bounded

trajectory x(t) and for any finite time interval p =
β − α.

Note that, while Assumption A is identical to Assump-
tion 1 in LaSalle’s formulation, our presentation of
Assumption B above is different from LaSalle’s orig-
inal presentations. In LaSalle’s formulation, the func-
tion μ(τ) in Assumption 2 is a “modulus of continu-
ity,” from which one can imply that the trajectory is
supposed to be a continuous function of time. Here,
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we replaced the modulus of continuity by a simple
bound, because although continuity is desirable, it
cannot be guaranteed in practical environments and it
is not necessarily needed for stability.

For a simple illustration, one may compare the
“decent” uniformly continuous converging function
x1(t) = e−t with the equally converging, though
not continuous, ladder function described by x2(t) =
e−(k+1) for k < t ≤ k + 1, k=0,1,2,... Nor is continu-
ity actually needed for stability under the Invariance
Principle approach, because, as the proof of stability
shows, the only condition that is needed is that the tra-
jectory, continuous or not continuous, cannot pass an
infinite distance in finite time.

On another point, LaSalle’s works could only deal
with those Lyapunov derivatives that satisfy a rela-
tion of the form V̇ (x, t) ≤ W(x) ≤ 0. However,
although in many cases this relation could be suffi-
cient, at a second look it may unnecessarily restrict the
applicability of stability theory. For example, while for
V̇1(x, t) = −x2(2 + sint) one can define W(x) =
−x2 and then write V̇1(x, t) ≤ W(x) ≤ 0, this is not
possible for V̇2(x, t) = −x2(1 + sint). Nevertheless,
one can define W(x) = −x2 and g(t) = 1 + sint

and get V̇2(x, t) ≤ W(x)g(t) ≤ 0. It is clear that
V̇2(x, t) ≤ 0 or, in other words, that V̇2(x, t) is uni-
formly negative semi-definite. In a more general case,
such as V̇3(x, t) = −x2

1(1 + sint) − x2
2(1 + cost) it

is still clear that V̇3(x, t) is uniformly negative semi-
definite although it cannot be written in any one of the
(more convenient) previous forms. Therefore, when-
ever needed, we will show that one can directly deal
with uniformly positive and negative definite explicit
functions of time.

Theorem 4 (The new Invariance Principle): Con-
sider the nonlinear non-autonomous system (74).
Assume that there exists a Lyapunov function V (x)
which is bounded from below and that its derivative
V̇ (x, t) along the trajectories of (74) is Negative Semi-
Definite, i.e., satisfies V̇ (x, t) ≤ 0. Now, define the
domain � where the Lyapunov derivative equals zero,
� = {x|V̇ (x, t) = 0)}, and the restricted domain �i

where the Lyapunov derivative is identically zero (i.e.,
not just equal zero), �i = {x|V̇ (x, t) ≡ 0)}. Then,
if one of the assumptions A or B holds, all bounded
trajectories ultimately reach the domain �. In partic-
ular, equilibrium points and limit cycles belong to the
restricted domain �i [28, 30].

Note also that this work emphasizes the identity
relation �i = {x|V̇ (x, t) ≡ 0} instead of simple
equality relation � = {x|V̇ (x, t) = 0}. Examples
illustrate the practicality and usefulness of defining
the limit set by the identity relation instead of sim-
ple equality relation, because it results in sharper
conclusions.

The example ė(t) = −e(t) + θw(t) θ̇(t) =
−e(t)w(t) of a very simple adaptive control system
was used in [158] for an illustration of Barbalat’s
Lemma application to stability analysis. Here e(t) is
a tracking error while θ(t) is the gain. Selecting the
Lyapunov function V (t) = e2(t) + θ2(t) results in
the derivative V̇ (t) = −2e2(t) ≤ 0. Because, as
stated in [158] “one cannot conclude the convergence
of e(t) because the dynamics is nonautonomous,”
[158] imposes conditions on the input command w(t)
that would guarantee uniform continuity of Lyapunov
derivative and therefore, application of Barbalat’s
Lemma indicates that e → 0 as t → ∞.

Because the system satisfies (the fairly mild)
Assumption A for any bounded w(t), LaSalle’s Invari-
ance Principle directly tells us that the state-vector
{e, θ} ends within the domain defined by W(e(t)) =
−2e2(t) = 0 which immediately results in same result
e(t) = 0 as above without requiring that W(e(t))

necessarily be uniformly continuous.
Still, this result is more restricted than it may look

at first sight. First, in both cases there is no clear con-
clusion that can be drawn with respect to θ . Moreover,
it does not say whether the set includes all points on
the e(t) = 0 axis, just some points that the trajecto-
ries pass when they occasionally cross the axis, or if
ultimately an entire motion occurs along this axis.

Instead, a full response is provided by the
new Invariance Principle. The clear satisfaction of
Assumption A for any bounded w(t) directly tells us
that the state-vector {e, θ} ends within the domain
defined by W(e(t)) = −2e2(t) ≡ 0 which immedi-
ately results in same result e(t) = 0 as above. How-
ever, because W(e(t)) ≡ 0 implies that the derivatives
of W(e(t)) are also zero at e(t) = 0, we differentiate
the function W(e(t)). The first derivative does not add
much, because Ẇ (e(t)) = −4e(t)ė(t) = 0 at e(t) = 0
for any value of ė(t). However, the second derivative
Ẅ (e(t)) = −4(ė(t))2 − 4e(t)ë(t) = −4(ė(t))2 = 0
implies ė(t) = 0. Substituting in both equations also
leads to θ̇ (t) = 0 and θw(t) = 0. In other words,
the fairly straightforward result of the Invariance
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Principle for this nonautonomous system is that the
tracking error ends at zero and stays at zero, while the
adaptive gain θ(t) ends at some constant value. If the
input command w(t) ends at a nonzero value, then the
gain θ(t) ends at zero, yet even if w(t) ends at a zero,
the gain θ(t) still ends at some constant value, without
requiring any of the “customary” persistent excitation
conditions [28, 30].

Moreover, even LaSalle’s original formulation
restricted the discussion to those systems where one
could write V̇ (x, t) ≤ W(x) ≤ 0. However, many
real-world examples [28] show that in many practical
situation one cannot define � as above, yet nonethe-
less � can be defined as � = {x|V̇ (x, t) ≡ 0}. As
one can prove [28], the new definition is legitimate
and is covered by the new Invariance Principle and
allows extending the stability analysis to large classes
of systems that were not covered before.

In other words, under fairly mild conditions, the
Invariance Principle extension to nonautonomous sys-
tems guarantees that all trajectories ultimately reach
the domain �. However, as examples illustrate [28,
30], its significance and efficiency and sometimes even
its mere existence seems to have remained unknown to
a large section of potential users.

Towards a new Theorem of Stability Note that sta-
bility theory based on the new Invariance Principle
approach eliminates the previous requirement for uni-
form continuity of the Lyapunov derivative and actu-
ally any other requirement, except for the guarantee
that any bounded trajectory x(t) cannot pass an infinite
distance in finite time.

The many examples of [28] showed that the use of
�i was very efficient in locating equilibrium points
and limit cycles. Also, as far as equilibrium points
and limit cycles are concerned, no one of the prior
assumptions above was actually needed, because the
way the trajectory reaches the isolated equilibrium
point or the limit cycle (i.e., in finite or infinite time)
is immaterial. Assumptions A and B were needed only
in order to show that limit points of type rosette, i.e.,
those isolated rosette-type limit points, that the trajec-
tories might reach, leave, and then come back to them
an infinite number of times, must belong to �e =
{x|V̇ (x, t) = 0}. However, already in [28] the useful-
ness of the equality relation was already considered
to be very doubtful, because without supplementary

knowledge about a particular system, it would be
hard to differentiate between rosette-type limit points
and all other points of the trajectory, with no special
meaning whatsoever, where at one time or other the
Lyapunov derivative just occasionally happens to be
zero.

For a very simple illustration, assume that the
Lyapunov function for a system in R20 is V (x) =
V (x1, x2, ..., x20) = x2

1 + x2
2 + ... + x2

20, while
the derivative along the trajectories of the system is
V̇ (x) = −x2

1 . All limit points must satisfy V̇ (x) =
−x2

1 = 0, which in turn results in x1 = 0. How-
ever, the converse is not necessarily relevant. Although
at first look the “solution” x1 = 0 may look satis-
factory, a second look shows that it does not have
much relevance in terms of system stability. The result
x1 = 0 not only contains all system trajectories that
keep moving within R19 but also all points and trajec-
tories that all trajectories of the entire space R20 may
form when, at this time or other, they occasionally
cross x1 = 0.

Here, it could be useful to recall that in the case of
the original Lyapunov Stability Theorem, where the
Lyapunov derivative is negative definite, the conclu-
sion V̇ (x) = 0 is equivalent to x = 0. Furthermore,
because the vector x contains the entire dynamics of
the system, there was no need to even mention that
the result x = 0 actually is equivalent to x ≡ 0.
However, although it may be difficult to accept it and
even though some points that satisfy the simple equal-
ity V̇ (x) = 0 in the semidefinite case V̇ (x) ≤ 0
could also have relevance with respect to stability,
most have no relevance at all and it is almost impos-
sible to separate those that may have any relevance.
In this context, although the result “trajectories ulti-
mately end within the domain defined by V̇ (x) = 0”
seemed as a good result, it should have been clear that
no “end of motion” is guaranteed by V̇ (x) = 0 unless
its next derivative is also zero, V̈ (x) = 0, and then
next derivative and so on, or in other words unless one
requires that at least the dynamics of the Lyapunov
derivative vanish, or in other words that V̇ (x) ≡ 0.

Nevertheless, although the great effort to guarantee
the mere V̇ (x) = 0 was motivated by the fear of miss-
ing those “special” rosette-type limit points, now one
can see [30] that, although most probably a necessary
step in the development of a complex idea, the special
treatment that rosette-type limit points have received
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might have been exaggerated and that the eventual use
of the assumptions and of �e = {x|V̇ (x, t) = 0} could
be redundant.

In retrospect, it is amazing that, while so much
thought and effort had been invested to investigate
what must happen at those particular rosette-type
point locations, not much room or thought was left
for all those segments that a trajectory must pass after
leaving the limit point and before coming back to
it. If the trajectory happens to only pass a rosette-
type point and then come back to it a finite number
of times, then this rosette-type point is not a limit
point at all. Only if the trajectory revisits the point
an infinite number of times would the rosette-type
point become a limit point. In this case, however,
except for those moments when the trajectory coin-
cides with the rosette-type point and when indeed
V̇ (x, t) = 0, at other times and along most sections
of the trajectory we are supposed to have V̇ (x, t) < 0
and this strict negativity of the derivative situation is
repeated again and again, for all times up to infin-
ity. In such a case, assuming that the trajectory first
reaches the rosette-type limit point at time t = t1,
then V (x(t), t) = V (x(t1), t1)+ ∫ t

t1
V̇ (x(τ ), τ )dτ and

therefore lim
t→∞ (V (x(t), t)) would tend to −∞ unless

for any ε positive and arbitrarily small there exists
some finite time t2 such that |V̇ (x, t)| ≤ ε for any
t ≥ t2. Thus, ultimately, V̇ (x, t) tends to zero all along
the trajectory or, in other words, even what might have
started looking as a rosette-type limit point ultimately
must also belong to �i , as part of a limit cycle or even
as an equilibrium point.

Another point to ruminate about before going on to
the theorem of next section is the very definition of
limit points. A limit point, or point of accumulation,
of a trajectory is such a point that any neighborhood,
arbitrarily small, around it contains an infinite number
of points of the trajectory. When one first hears this
definition, one could be confused, because it seems
pretty clear that any point of a continuous curve sat-
isfies this condition. Therefore, when one deals with
trajectories, one defines a discrete time sequence {tk}
and, correspondingly, discrete-time points on the tra-
jectory {x(tk)}. In this context, a limit point is that
point of the discrete sequence {x(tk)} that any neigh-
borhood, arbitrarily small, around it contains an infi-
nite number of discrete points of the trajectory. Next,
any bounded trajectory that leads to the creation of

such an infinite number of discrete points, must con-
tain at least one such accumulation. Therefore, as we
only want to know where these discrete-time limit
points are located, even though the ever diminishing
distances between points around a limit point may
sound similar to the definition of continuity, they have
nothing in common with, neither do they need to even
mention any continuity.

The new Theorem of Stability As explained above, all
limit points of any bounded trajectory must ultimately
either become equilibrium points or belong to a limit
cycle. In order to formulate the new Theorem of Sta-
bility in its most general form, we define the domain
�i as follows:

�i =
{
x| lim

t→∞
(
V̇ (x, t)

) ≡ 0
}

. (75)

Now we can write the new Theorem of Stability in
the following simple formulation:

Theorem 5 (The new Theorem of Stability) Consider
the nonlinear non-autonomous system (74). Let V (x)
be a differentiable function bounded from below. (Note
that V(x) is not required to be Positive Definite.)
Assume that its derivative V̇ (x, t) along the trajec-
tories of (74) is Negative Semidefinite, i.e., satisfies
V̇ (x, t) ≤ 0. Then, all limit points of any bounded
trajectory x(t) belong to the domain �i [27, 30].

Because limit points of trajectories are those points
that the trajectory reaches as time approaches infin-
ity, it is important to emphasize that is sufficient if the
identity relation that defines �i is also only satisfied
as time approaches infinity. In special cases, though,
as examples of [28] and [30] show, the identity could
be satisfied after some finite time and even for any
time, implying that for some limit points, if the trajec-
tory starts there or reaches there at some finite time, it
stays there thereafter. Note also that, for convenience,
because V (x) is a selected function, we assume that
both V (x) and V̇ (x, t) are continuous functions of x.
However, as shown in [28] and [30], their differen-
tiability with respect to t implies the Dini derivatives
(see for example [50, 134]). In other words, while it is
nice to have continuous functions that are also differ-
entiable in the classical sense, stability is not affected
if eventual discontinuity of x(t) leads to discontinu-
ity of V (x(t)). In this context, a piece-wise continuous
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function may still have a derivative everywhere, even
if its derivatives at the points of discontinuity are
δ-functions.

In its most general form, the new Theorem of Sta-
bility does not require that V (x) be positive definite
and, therefore, it does not guarantee that all trajecto-
ries are bounded. Of course, when special selections,
such as positive definite functions, functions of class
K, etc. [63, 148], are available, boundedness of either
some trajectories or of all trajectories is guaranteed.

It is also important to again explain the use of the
identity relation V̇ (x, t) ≡ 0. Because it implies that
higher order derivatives must also be zero, which in
turn seems to imply that the function must be infinitely
differentiable, it is easy to think about counterexam-
ples. Nevertheless, before thinking of counterexamples
in the general context of mathematical functions, the
reader is encouraged to check the various examples
of [28] and [30] where, again in the context of sys-
tems of equations that are entirely defined by the first
derivative f(x, t) of the n-dimensional state-vector
and, because only differentiation along the trajecto-
ries is concerned and only as time tends to infinity,
when the Lyapunov derivative reaches zero and comes
to rest there, the conditions are satisfied in most rel-
evant cases and allow solving situations that would
seem unsolvable otherwise.

8 Brief Review and Summary of Results

1. Although the name “Adaptive” got various inter-
pretations over the years, it was the attractive
idea of fitting the right gain to the right situ-
ation that was behind the first Adaptive Con-
trol approaches. In particular, the MIT Adaptive
Control rule, based on solid Engineering expe-
rience and intuition, looked very promising in
fulfilling the promises. Its ending in disaster
showed that in the nonstationary world, intuition
alone is not enough.

2. The first basic MRAC concepts attempted to
extend the LTI Model Following approach from
the fully deterministic world to the world of
uncertainty and thus, to use adaptive gains in
order to supply the Plant with appropriate sig-
nals from a “good” Model Reference that would
ultimately force the Plant state to reproduce the
behavior of the Model state. Even though it

ended with a first proof of stability, the nonsta-
tionary world proved to me much more demand-
ing that the stationary world and so, in order
to reach this proof, the Plant itself was required
to be SPR, condition that proved to be virtually
nonexistent in real-wold applications.

3. The move to “classical” MRAC was based on
assuming full-state availability and using and
extending the state-feedback Stabilization (or
Optimization) idea into the adaptive world. The
“classical” MRAC algorithm basically uses the
appropriate Stabilization (or Optimization) sig-
nal b′Px and then multiplies it by the state-
following error e in order to build the adaptive
gain vector θ̇ (t) = γ eT (t)Pbx(t) (of the order
of the plant). Along with assuming other mitigat-
ing assumptions, this approach managed to use
state feedback and fulfill an SPR-like condition
that managed to end with a proof of asymp-
totically perfect tracing under ideal conditions.
The developers immediately observed serious
problems when the conditions are less than ideal.

4. As this paper noted, except for a scalar factor,
the signal b′Px already is the state feedback sig-
nal needed to stabilize (or ”optimize”) the plant.
Therefore, although in the uncertain world this
scaling factor is not known, the entire MRAC
adaptive gain vector actually can be replaced by
just one single scalar adaptive gain that multi-
plies one single scalar tracking error. Not only
that the proof of stability is not affected, but all
“inherent” problems of MRAC seem to vanish.
One of the important properties of the special
signal b′Px is the guarantee of high-gain stabil-
ity. In other words, the adaptive algorithm that
will compute the unknown scale factor must only
be such that increases if something tends to go
wrong. This does not imply that high-gains are
or have to be used. It only adds the guarantee
that, if the adaptive gain has to increase because
of some temporary disturbance or other issue,
this does not lead to any bursting, etc, not to
mention divergence. This guarantee, in turn, ulti-
mately allows obtaining superior performance
without requiring high gains or bandwidth from
the internal control-loop.

5. Moreover, a new approach has been devel-
oped, which first of all attempts to do control
of large real-world systems without relying on
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high-order adaptive controllers and/or on full-
state availability. Instead of assuming availabil-
ity of full-state feedback, this so-called Simple
Adaptive Control (SAC) approach started look-
ing for special systems that may directly provide
the desired signal b′Px at their output. Such sys-
tems would then be stabilized by just some sim-
ple output gain feedback. In other words, there
exists some PDS matrices, P and Q, and a gain
K̃e such that the stability Lyapunov equation
relation (52) of the fictitious closed loop is sat-
isfied. Because it also satisfies a relation of the
form b′P = c, the closed-loop system is Strictly
Passive (or Strictly Positive Real). Because the
open-loop Plant itself is only at the distance of a
constant gain, it got the name Almost SP (ASP)
or Almost SPR (ASPR).

6. Even though, like the SPR concept before, the
ASPR concept was also initially received as
another obscure term, it was finally shown that
any minimum-phase plant {A, B, C} with CB >

0, i.e. PDS (which makes the system to be of
relative degree 1), is ASPR. Also, any minimum-
phase plant {A, B, C, D} with D nonsingular
is ASPR. Therefore, ALMOST SPR (ASPR)
brings the ideal SPR property from a better world
down to our Earth.

7. Nevertheless, in spite of the successful appli-
cation of the ASPR concept to Large Flexible
Structure with collocated sensors and actuators
(even if later on mitigated to “almost” colloca-
tion), not many real systems have been found
which inherently satisfy even the ASP property.
Here, the Simple Adaptive Control (SAC) made
an important observation. Given the tremendous
progress of Classical Control and, on the other
hand, given the reluctance of practitioners to use
adaptive control methods, because of their appar-
ent complexity and ’inherent’ problems, SAC
is not called to solve all problems of totally
unknown systems. On the contrary, it assumes
that some basic Classical Control design is avail-
able and that this does guarantee some degree of
stability. Therefore, SAC only intends to use the
information already available in order to improve
performance using adaptive techniques.

8. The important property that allows implemen-
tation of safe adaptive control is stabilizability.
In particular, assume that a basic design ends

with the Open-Loop system G. In order to
improve performance, the designer would want
to add another Controller C, yet this would
require expensive supplementary velocity sen-
sors or derivatives (and improper controllers)
and high gains, with all problems. Instead, it was
observed that if C maintains stability, then the
fictitious augmented system Ga = G+D, where
D = C−1 is minimum-phase. If then C is such
that the relative degree of Ga is 1 (or 0), then the
augmented system is ASP.

9. Important note: even though the term “paral-
lel” was introduced for convenience of the aug-
mented system and, in practice, the addition D
is only another feedback around the adaptive
gain Ke(t), the concept of “parallel feedfor-
ward,” which makes the adaptive gain ’see’ an
augmented ASP plant, is important. In order
to guarantee stability with the adaptive con-
troller, even though the PFC is connected in
feedback, the error signal that must be used for
adaptation is not the actual error ey , but rather
the augmented error eya of the ASP system
(Fig. 3).

10. The big surprise even for the developers of SAC:
As we mentioned, the developer may think about
some eventually better performance, with some
supplementary ideal controller, C(s), maybe
improper (more zeros than poles), with some
new sensors, high gains, etc., maybe a good idea
to pursue towards next generation controllers.
Instead, one just implements some simple feed-
back D(s) = C−1(s) and the Simple Adaptive
Control ultimately provides this ideal perfor-
mance. Because the use of PFC makes possible
to supply the exact feedforward signal from the
model, the performance is also obtained without
having to stress the gain and the bandwidth of
the internal closed-loop.

11. OT. Aristotle’s Paradigm: Aristotle, arguably the
greatest mind in the history of mankind, teaches
us why the moon is larger at the horizon than
up in the middle of the sky. The explanation
is clear and convincing and based on best rea-
soning. Nevertheless, the real explanation is that
Aristotle never felt the need to stick a finger out
and actually measure and see that the moon is the
same in both positions. This does not take any-
thing off from our estimation of Aristotle. It only
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shows the power of Paradigm that may affect
even the best of minds.

12. The problem is that we all live within some
Paradigm and it is difficult to accept that things
could be too different from what we have been
taught, in particular after we also start teach-
ing them. “Terrible” objections and accusations:
“I believe that, from the adaptive control view-
point, all that can be done has already been done.
Adding feedforward to the plant, is an artifi-
cial trick of little practical interest.” The problem
here is not that someone may not like some-
thing. The issue is that people, who practically
are in charge of deciding the fate of adaptive
control, feel they already know much too much
and do not feel the need to really read things
that are not their own or, at least, inherited from
their own Grandmaster. They may even just close
their eyes and ignore the myriads of ’impracti-
cal’ applications, and yet, this does not stop them
from making decisions.

13. Fact is, if practitioners only managed to end
with the “best possible” system G(s) and would
want to add the expensive system C(s) in order
to improve performance, at the price of new
expensive parts, high gains, and high bandwidth,
they could be surprised that same aim could
be obtained by just changing and adding a few
lines of the existent software, and without requir-
ing the cost, the high gain and bandwidth. Sure,
this sounds like pure bragging for someone who
never tried it. Fortunately, many people around
the world, most of them experienced classical
Control designers, who did not have the “good
luck” to hear that “this bad method doesn’t
work,” decided it was easy enough to just try it
and see and... it worked. They are now adaptive
control developers.

14. Now, do things really work? This is nonlin-
ear stuff, so what about the proofs of stabil-
ity? Even when one accepts to have a brief
look at some application, the answer could be
“I can kill all your proofs of stability with
even the tiniest discontinuity.” This is scary,
not because it threatens to ’destroy’ the proof,
but because potential applicants could be afraid
that their robot may break apart, or that their
flying plane may fall, just because they only
tried a square-wave command, or just because of

some occasional disturbance, not to even think
of mentioning impulse response. Why is this?
Because the Good Old Lyapunov required an
appropriate Lyapunov function with a Negative
Definite derivative, while, except for class-room
examples, the derivative is at most Negative
Semidefinite. Here, all Hell seems to have bro-
ken loose and all kinds of “absolutely necessary”
conditions (in particular uniform continuity of
the Lyapunov derivative) and limitations seem to
make the stability analysis of nonlinear systems
not only complicated and incomplete, but also
the stability itself to look fragile and unsafe.

15. In this context, it is peculiar how such impor-
tant contributions like the real LaSalle’s works
of 1976-1980 have remained totally unknown for
the vast majority of Nonlinear system users and
developers, including the best books and publi-
cations on Nonlinear Control. Moreover, seing
the name “LaSalle” in a new work makes the
most respected Colleagues to not only reject
and declare it ’routine’ without any more read-
ing, but they would actually want the author to
be ashamed and apologize for calling “LaSalle”
an Invariance Principle that should actually be
called “Krasovskii-LaSalle.”

Nothing is wrong... except for the fact that
they all talk prehistory (1950-1960) to the real
LaSalle’s Invariance Principle of 1976-1980.

16. In retrospect, as usually may happen, the ’bad’
reviews may end being the best and harsh
responses actually had a very positive effect, as
they ultimately forced the author to not only
explain and illustrate everything better, but actu-
ally to mitigate end even eliminate most remain-
ing “conditions” left there even by LaSalle.
The end result, the new Theorem of Stability,
is a direct extension of the original Lyapunov
theorem to the case of Negative Semidefinite
derivative. Indeed, one is still required to fit
an appropriate Lyapunov function with a Neg-
ative Semidefinite derivative, yet then stability
analysis is clear and straightforward, without
requiring any uniform continuity or any of all
those other “customary” ifs and maybes.

17. Bottom line, the forefathers’ adaptive control
ideas, their introduction of passivity and of its
use towards first successful proofs of stability
of the Adaptive Control algorithms are the good
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basis on which safe and simple adaptive algo-
rithms can be built, which are able to use the
flexibility of nonstationary gains and thus, to
improve upon the best classical Control design
even when all parameters are known. Moreover,
as many practitioners have observed, the perfor-
mance is maintained in the presence of either
stationary or nonstationary uncertainties (see, for
example, the recent [32] and [31]). In this con-
text, the Simple Adaptive Control methodology
is the stable Model Reference.

9 Conclusion

This paper presents a Simple Adaptive Control
approach that, while continuing and building on the
important contributions of Model Reference Adaptive
Control pioneers, it not only significantly simplifies
and reduces the order of the Adaptive Controller, but it
also avoids customary problems of Model Reference
Adaptive Control, thus making Adaptive Control into
a useful and reliable tool for continuous performance
improvement of Control design.
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