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Abstract This work is dedicated to the design of a
robust fault detection and tracking controller system
for a UAV subject to external disturbances. First, a
quadrotor modelled as a Linear Parameter Varying
(LPV) system is considered as a target to design and
to illustrate the proposed methodologies. In order to
perform fault detection and isolation, a robust LPV

F. R. López-Estrada
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observer is designed. Sufficient conditions to guaran-
tee asymptotic stability and robustness against distur-
bance are given by a set of feasible Linear Matrix
Inequalities (LMIs). Furthermore, the observer gains
are designed with a desired dynamic by consider-
ing pole placement based on LMI regions. Then, a
fault detection and isolation scheme is considered by
mean of an observer bank in order to detect and iso-
late sensor faults. Second, a feedback controller is
designed by considering a comparator integrator con-
trol scheme. The goal is to design a robust controller,
such that the UAV tracks some reference positions.
Finally, some simulations in fault-free and faulty oper-
ations are considered on the quadrotor system.

Keywords Quadrotor · LPV systems ·
LPV observer · Fault diagnosis ·
Tracking controller · Sensor fault

1 Introduction

In the recent years, quadrotor helicopter has become
a popular Unmanned Aerial Vehicle (UAV) [14].
Quadrotor UAVs have been proved to be effec-
tive mobile platforms in the tasks such as surveil-
lance, search, rescue, remote sensing, geographic
studies, recognition, aerial transportation, inspection
and maintenance, among others [32]. Comparing
to a conventional helicopter, a quadrotor is essen-
tially simpler to build. Nonetheless, the differential
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equations describing the dynamics of the quadrotor
are high nonlinear, unstable and constantly affected by
aerodynamic disturbances [22].

An attractive alternative to represent nonlinear
dynamics is through Linear Parameter Varying (LPV)
system approach. LPV systems are mathematical
models that are able to exactly represent or to approx-
imate a large class of nonlinear systems with an
arbitrary degree of accuracy in a compact set of Lin-
ear Time Invariant (LTI) models [28]. Convex gain
scheduling functions are considered to interpolate the
local models, and then obtain a global representation
of the nonlinear system. Note that in the past, the
gain scheduling functions were computed by consid-
ering Takagi-Sugeno (T-S) fuzzy rules as defined in
[29]. Nevertheless, T-S and polytopic LPV systems
are described by the same form. Then, the community
of researchers working on TS models uses the name
“TS fuzzy systems”, even if with the recent modeling
approaches (for example sector nonlinearity transfor-
mation), the obtained model is no “fuzzy” because the
weighting functions are completely deterministic that
corresponds to LPV or quasi-LPV (qLPV) systems as
detailed in [23].

The main advantage of qLPV systems is the capa-
bility of representing exactly a nonlinear model, which
is affine in the control, in a compact set of the state
variables [31]. Moreover, it is possible to apply con-
trol techniques developed for linear systems such as
Linear Matrix Inequality (LMI), optimization meth-
ods, among others. Furthermore, LPV theory can
be combined with H2, H−, and H∞ as shown in
[16], to produce enhanced control laws with per-
formance and robustness specifications [2]. In the
literature, there are many works for LPV systems
involving different topics as observer design [5], feed-
back control [1], and fault diagnosis [17, 30]. LPV
models of quadrotors have been proposed with good
results on observer design [13], stabilization [12], and
control [27].

Beyond the difficulties of the control systems
design, there is also the demand of reliability and
safety to maintain stability and an acceptable sys-
tem performance in the presence of component and/or
instrument faults [3, 26], which may cause the crash
of the UAV. As reported by the Office of the Secretary
of Defence of USA, development of self-repairing,
smart flight control systems is a crucial step in the
overall advancement of UAV autonomy [20]. To deal

with this problem, Fault Diagnosis (FD) techniques
are proposed to identify malfunctions at any time
during flight. In FD, the generation of residual sig-
nals is the core element of diagnosis. There are many
ways to generate residuals by observer design, par-
ity space, adaptive observers, among others. More
detailed information can be consulted in survey papers
[25, 33]. Some applications of LPV control theory and
FD to UAVs can be found in [10, 21, 24]. It is worth
highlighting that only few works are reported that
consider FD and LPV techniques applied to UAVs.
Moreover, the aim of this paper is not only to con-
sider LPV and FD, but also to apply a tracking LPV
controller, which has not been treated so far.

The main contribution of this paper is to develop
a robust fault diagnosis residual generator and track-
ing controller for a quadrotor system modelled as
LPV system. The results presented in this work are an
extension of our previous work in [18], with a signif-
icant extension by considering disturbance rejection,
robust pole placement, and robust tracking controller.
The observer and controller are designed based on
Lyapunov and L2-gain theory in order to minimize
the effect of disturbances. In addition, the tracking
controller is designed by considering an integrator-
comparator block and the LPV system. A bank of
residual generators based on Generalized Observer
Scheme (GOS) is built to perform robust fault detec-
tion and isolation. Finally, the fault diagnosis and the
tracking controller are applied to the quadrotor to
illustrate the proposed method.

The paper is organized as follows. In Section 2,
the dynamic model of the quadrotor and a general
formulation of the problem are given. Section 3 is
dedicated to the presentation of the main results: the
observer design is developed in first, then the sen-
sor fault detection and isolation is considered and
finally the tracking-controller is designed. Section 4
represents the simulation results in order to show the
effectiveness of the methodology when it is applied
to the quadrotor. Concluding remarks are given at the
end.

Notations The notations used in this article are stan-
dard. For a matrix A ∈ R

m×n, AT , A−1 and A† denote
its transpose, inverse and pseudoinverse respectively.
The symbol ∗ denotes the transposed element in the
symmetric positions of a matrix. He{A} is a shorthand
notation for A + AT .
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2 Dynamic Model and Problem Definition

The quadrotor is a helicopter composed of four inputs
provided by each propeller and six outputs as shown in
Fig. 1. The system under consideration is the nonlin-
ear model adopted from [19, 27], and the LPV system
given in [12]. From the parameters shown in Table 1,
the states and the control inputs of a quadrotor UAV
are defined as:

x = [
x0, y0, z0, ψ, θ, φ, u0, v0, ω0, p, q, ro

]T (1)

u = [
u1 u2 u3 u4

]T
, (2)

The nonlinear model for the quadrotor is given by
the following equations

ẋ = f (x) +
4∑

i=1

gi(x)ui (3)

where

f (x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

u0

v0

ω0

q sinφ secθ + rocosφ secθ
qcosφ − ro sinφ

p + qsinφ tanθ + rocosφ tanθ
Ax

m
Ay

m
Az

m
+ g

Iy−Iz

Ix
qro + Ap

Ix
Iz−Ix

Iy
pro + Ap

Iy
Ix−Iy

Iz
qro + Ar

Iz

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Fig. 1 Quadrotor configuration

and,

g1(x) = [
0, 0, 0, 0, 0, 0, g1,7, g1,8, g1,9, 0, 0, 0

]T

g2(x) =
[

0, 0, 0, 0, 0, 0, 0, 0, 0,
d

Ix

, 0, 0

]T

g3(x) =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
d

Iy

, 0

]T

g4(x) =
[

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
I

Iz

]T

,

with

g1,7 = − 1

m
(cosφ cosψ sinθ + sinφ sinψ)

g1,8 = − 1

m
(cosφ sinθ sinψ − cosψ sinφ)

g1,9 = − 1

m
(cosθ cosφ) .

To obtain the LPV equations of the quadrotor,
the nonlinear model is linearized around different
operation points. Then, by considering the different
sub-models the following representation is obtained

ẋ(t) =
h∑

i=1

ρi(x(t)) [Aix(t) + Biu(t) + Rid(t)]

y(t) = Cx(t) + Ddd(t) (4)

where x(t) ∈ R
n, u(t) ∈ R

m, d(t) ∈ R
q , and

y(t) ∈ R
p are the state vector, the control input, the

disturbance, and the measured output vector respec-
tively. Ai, Bi, Ri , C, and Dd are constant matrices of
appropriate dimensions. ρi(x(t)) are scheduling func-
tions which depend on x(t). The scheduling functions
of the h sub-models satisfy the following convex set
sum property:

∀i ∈ [1, 2, ..., h] , ρi(x(t)) ≥ 0,

h∑

i=1

ρi(x(t))=1, ∀t.

(5)

By assuming observable outputs and to generate the
residuals, a robust fault diagnosis observer of Eq. 4
described by the following equations is considered

ż(t) =
h∑

i=1

ρi(x(t)) [Niz(t) + Giu(t) + Liy(t)] (6)

x̂(t) = z(t) + T2y(t)

r(t) = W(y(t) − Cx̂(t)), (7)
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Table 1 Variables and
parameters of the quadrotor
UAV

Parameter (unit) Symbol Value

Position (m) (xo, yo, zo) –

Velocity (m/s) (u0, v0, ω0) –

Angular velocity expressed in a (p, q, ro)

body reference frame (rad/s)

Euler angles yaw, pitch and roll (rad) (ψ, θ, φ) –

Resulting thrust of the four rotors u1 –

Difference of thrust between the left u2 –

rotor and the right rotor

Difference of thrust between the front u3 –

rotor and the back rotor

Difference of torque between the u4 –

two clockwise turning rotors and

the two counter-clockwise turning rotors

Mass (kg) m 0.7

Aerodynamic forces and moments (Ax, Ay, Az)
T –

and (Ap, Aq, Ar)
T

acting on the UAV.

Moments of inertia along the x, y, and z directions (kg � m2)

⎡

⎢
⎣

Ix

Iy

Iz

⎤

⎥
⎦

⎡

⎢
⎣

1.241

1.241

1.241

⎤

⎥
⎦

Gravity of earth (m/s2) g 9.81

Distance from the motors to the d 0.3

centre of gravity (m)

where z(t) represents the state vector of the observer,
x̂(t) the estimated state vector. Ni, Gi, Li , and T2 are
the gain matrices of Eq. 6 to be synthesized. r(t) is the
residual signal and W the residual weighting matrix
to determine. The gain matrices of the fault diagnosis
observer (6) must be designed in order to guaran-
tee the convergence of the state estimation error and
maximize the robustness against disturbances d(t).

The second objective is to design a feedback con-
troller such that the steady-state response tends to
limt→∞ y(t) := w(t), where w(t) is the desired
position. To reach the desired position an integra-
tor comparator is added as shown in Fig. 2, such
that

ε̇(t) = w(t) − y(t) = w(t) − Cx(t) − Ddd(t). (8)

Fig. 2 Fault diagnosis and
tracking controller scheme
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The control law u(t) is given by the following
feedback controller

u(t) = K1ix(t) + K2iε(t) = Ki

[
x(t)

ε(t)

]
, (9)

where K1i and K2i are the state feedback gains matri-
ces to be synthesised. Then, the problem is reduced to
determine optimal values of the controller gains.

3 Main Result

3.1 Observer Design

The estimation error is defined as

e(t) = x(t) − x̂(t) (10)

e(t) = (I − T2C)x(t) − z(t) − T2Ddd(t), (11)

Under the assumption T1 ∈ R
n×n matrix such that

T1 = I − T2C (12)

In order to eliminate dd(t) from Eq. 11, the following
condition is considered

T2Dd = 0 (13)

Then, by considering Eqs. 12–13, the dynamic of the
error equation is computed as

ė(t) = T1ẋ(t) − ż(t)

ė(t) =
h∑

i=1

ρi(x(t)) [T1Aix(t) + T1Biu(t) + T1Rid(t)

−Niz(t) − Giu(t) − Li(Cx(t) + Ddd(t))] (14)

ė(t) =
h∑

i=1

ρi(x(t)) [(T1Ai − LiC − NiT1) x(t) + (T1Bi − Gi) u(t)

+ (T1Ri − LiDd) d(t) + Nie(t)] (15)

Let us consider also the following equations:

0 = T1Ai − LiC − NiT1 (16)

Gi = T1Bi (17)

By considering the error equation (11), the assump-
tions Eqs. 12, and 16, the following gain synthesis is
obtained

Ni = T1Ai − KiC (18)

Ki = Lj − NiT2. (19)

A particular solution of matrices T1 and T2 is
computed as:

[
T1 T2

] = [
In 0

] [
I 0
C Dd

]†

. (20)

Then, under previous gain synthesis and by consid-
ering the residual equation (7), the residual state-space
error system is given by

Ge :=
{

ė(t) = ∑h
i=1 ρi(x(t) [Nie(t) + (T1Ri − KiDd) d(t)]

r(t) = WCe(t) + WDdd(t).

Then, the problem is reformulated in order to guar-
antee asymptotic stability of the error system Ge

despite the disturbance vector d(t). The following
Theorem gives sufficient conditions to achieve this
objective.

Theorem 1 Consider the system (4) and the observer
(6), and let the attenuation level, γ > 0. The quadratic
stability of the estimation error is guaranteed if
‖ Ge ‖∞< γ and if there exist matrices P = P T >

0, Qj and 	i , such that the following holds ∀i, j ∈
[1, 2, ..., h]:
⎡

⎣
He

(
AT

i Q − CT 	T
i

)
PT1Ri − 	iDd (WC)T

∗ −γ 2I (WDd)T

∗ ∗ −I

⎤

⎦ < 0

(21)

where T1 is given by

[
T1 T2

] = [
In 0

] [
I 0
C Dd

]†

.

Then, the observer parameters are computed by Ki =
P −1	i and the relation given in Eqs. 18–17.

Proof In order to guarantee asymptotic convergence
to zero of the estimation error and robustness against
disturbances d(t), the following H∞ criterion is con-
sidered

Jrd := 
̇(t) + J1 < 0 (22)

J1 := rT (t)r(t) − γ 2dT (t)d(t) < 0, (23)

where Jrd represents the L2 gain of system (21) (from
d(t) to r(t)) bounded by γ . 
(t) is a Lyapunov func-
tion defined as 
(t) = V (xe(t)) = eT (t)P e(t).
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The derivate of the Lyapunov function is synthesized
as:


̇(t) = ėT (t)P e(t) + eT (t)P ė(t) (24)

Then, by considering Eq. 21, the following is equiva-
lent


̇(t) = (Nie(t) + (T1Ri − KiDd) d(t))T P e(t)

+eT (t)P (Nie(t) + (T1Ri − KiDd)) (25)


̇(t) =
[

e(t)T

d(t)T

]T [
NT

i P + PNi PT1Ri − PKiDd

* 0

]

×
[

e(t)
d(t)

]
. (26)

By manipulating Eq. 23, the following is obtained

J1 :=
[

CT WT WC 0
* −γ 2I

]
. (27)

Then, by considering Eqs. 26 and 27, the condition
(22) is rewritten as

[
e(t)T

d(t)T

]T

�i

[
e(t)

d(t)

]
< 0, (28)

where

�i =
[

NT
i P + PNi + CT WT WC PT1Ri − PKiDd

* −γ 2I

]
.

(29)

Then by considering Ni from Eq. 18, and defining
	i = PKi in order to eliminate the quadratic term,
�i is manipulated as:

�i =
[
He

(
AT

i Q − CT 	T
i

) + CT WT WC PT1Ri − 	iDd

* −γ 2I

]
.

(30)

Hence, if �i < 0 implies Jrd < 0. Finally
the Schur complement implies (21). This ends the
proof.

Theorem 1 guarantee an asymptotic stability of the
estimation error (21). Nevertheless in order to improve
the observer performance, the observer gains can be

placed in a defined LMI region D. The definition of
the LMI region is given as:

Definition 1 (LMI region [7]) The subset D of the
complex left half plane is called LMI region if there
exist a matrix α ∈ R

n×n and matrix β ∈ R
n×n such as

D =
{
z ∈ C : fD(z) = α + zβ + z̄βT < 0

}
(31)

Then by considering Definition 1, it is possible to
locate the observer gains in the domain of D of
the complex-left half plane. Then by considering the
method given in [7], the following corollary of Theo-
rem 1 is obtained:

Corollary 1 Consider the system (4) and the observer
(6), and let the attenuation level, γ > 0. The quadratic
stability of the estimation error is guaranteed if
‖ Ge ‖∞< γ and if there exist matrices P = P T > 0,
Qj and 	i , such that the eigenvalues are assignment
in a disk D(�, δ) with center(−�, 0) and radius δ, and
the following holds ∀i, j ∈ [1, 2, ..., h]:
⎡

⎢⎢
⎣

−δP �P + AT
i Q − CT 	T

i PT1Ri − 	iDd 0
∗ −δP 0 CT WT

∗ ∗ −γ 2I DT WT

∗ ∗ ∗ −I

⎤

⎥⎥
⎦ < 0

(32)

where T1 is given by

[
T1 T2

] = [
In 0

] [
I 0
C Dd

]†

.

Then, the observer parameters are computed by Ki =
P −1	i and the relation is given in Eqs. 17–18.

Proof The proof of Eq. 32 can be derived easily by
considering the procedure described in [7].

Table 2 Incident matrix

Fault F0 F1 F2 . . . Fp

‖ r1 ‖ 0 0 1 1 1

‖ r2 ‖ 0 1 1 1 1

. . . 0 1 1 0 1

‖ rp ‖ 0 1 1 1 0
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Fig. 3 Pole placement
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3.2 Sensor Fault Detection and Isolation

The purpose of this section is to use previous results to
generate residuals to detect and isolate sensor faults.
As pointed in [6], such that during fault-free opera-
tion, the magnitude of the residuals should be zero,
or close to. In the presence of a fault, the resid-
ual should change its value, bigger than a predefined
threshold, as an indication of fault occurrence. The
residual generation is a process for extracting fault
symptoms represented by the residual signals [6].
This step is necessary to avoid critical consequences
and helps in taking appropriate decisions, either by
shutting down the system safely, or continuing the
operation in a degraded mode, despite the presence
of the fault. To reach this objective, a General-
ized Observer Scheme (GOS), as proposed in [9,
11], can be considered. This process is described as
follows.

Under the presence of sensor faults, system Eq. 4
can be represented by

ẋ(t) =
h∑

i=1

ρi(x(t)) [Aix(t) + Biu(t) + Rid(t)]

y(t) = Cx(t) + Ddd(t) + Df f (t) (33)

where f (t) denotes the sensor fault vector. Clearly,
from Fig. 2 it is easy to see that the fault diagnosis

observer is decoupled from the controller, it means
that the fault diagnosis observer can be designed sep-
arately. Then, by considering the GOS scheme, p

observers are synthesized, where p is the number
of sensor faults under consideration. A subsystem
insensitive to a component fp of the fault vector f (t)

is extracted for each observer by deriving the output
vector y(t). In order to isolate the sensor faults, a nor-
malized residual vector is generated such that its pth

component is sensitive to all faults but pth one. The
bank of p fault diagnosis observers is given by

żp(t) =
h∑

i=1

ρi(x(t))
[
N

p
i z(t) + G

p
i u(t) + L

p
i Cpx(t)

]

x̂p(t) = zp(t) + T2C
px(t). (34)

‖ rp(t) ‖ = ‖ Wp(yp(t) − Cpx̂p(t)) ‖ . (35)

Each observer satisfies observability condition. By
solving the LMI system (21) for each set of given
input matrices Cp the robustness and convergence are
ensured. The bank of observers generates an incidence
matrix as shown in Table 2. Each column is called the
coherence vector associated to each fault signature.

It is clear from Table 2 that the decoupled observer
method provides an efficient FDI technique for sen-
sor faults. In the presence of a sensor fault, the
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observer, insensitive to the associated fault, estimates
state vector x̂(t) and consequently estimates the
output corrupted by the fault. Decision making can
be carried-out according to an elementary binary
logic.

3.3 Tracking Controller Design

By considering the comparator and integrator (8) and
the system defined by Eq. 4, an augmented system
xc(t) = [xT (t) εT (t)]T is obtained as:

ẋc(t) =
h∑

i=1

ρi(x(t)
[
Ācixc(t) + B̄ciu(t) + R̄id(t)

]

+B̄ww(t) (36)

with

Āci =
[

Ai 0
−C 0

]
, B̄c =

[
Bi

0

]
, B̄w =

[
0
I

]
,

R̄i =
[

Ri

−Dd

]
.

By assuming that pair (Āci , B̄ci) are controllable
and by considering u(t) as defined in Eq. 9, the
following closed-loop system is obtained

ẋc(t) =
h∑

i=1

ρi(x(t)

h∑

j=1

ρj (x(t)
[(

Āci − B̄ciKj

)
xc(t)

+R̄id(t)
] + B̄ww(t) (37)

Equivalently, Eq. 37 can be handled as:

ẋc(t) =
h∑

i=1

ρi(x(t)

h∑

j=1

ρj (x(t)

× [(
Āci − B̄ciKj

)
xc(t) + B̄Rωd̄ω(t)

]
(38)

with

B̄Rω = [
R̄i B̄ω

]
, d̄ω =

[
d(t)

ω(t)

]

Sufficient conditions are given through the follow-
ing Theorem to stabilize and control the system by
considering the L2-gain from d̄ω(t) to xc(t).

Theorem 2 Given system (4), the comparator-
integrator (6), the feedback controller defined by Eq. 9
and let the attenuation level γc > 0. The closed loop

system error (38) is globally stable with H∞ perfor-
mance if ‖ xc(t)‖2

2 < γ 2
c ‖ d̄ω(t)‖2

2 and if there exists
a matrix X = XT ≥ 0 such that ∀i, j ∈ [1, 2, ..., h],
the following holds:
[
He

(
XĀT

ci + �T
j B̄T

ci

)
+ B̄RωB̄T

Rω X

∗ −γ 2
c I

]

< 0.

(39)

Then, the controller gain matrices are computed by
Kj = [

K1j K2j

] = X−1
1 �j .

Proof Similar to the observer design, the synthesis of
the controller gains are done by considering the L2-
gain from d̄ω(t) to xc(t) such that

Jxcd := �̇(t) + J2 (40)

J2 = xT
c (t)xc(t) − γ 2

c d̄ω(t)d̄ω(t) < 0, (41)

Jxcd represents the L2-gain of system (38) (from
d to xc) bounded by γc. �(t) is a Lyapunov function
defined as �(t) = xT

c (t)P xc(t)(t). By considering the
procedure described in the previous section, sufficient
conditions are obtained as follows:
[ (

Āci − B̄ciKj

)T
P + P

(
Āci − B̄ciKj

) + I P B̄Rω

∗ −γ 2
c I

]
< 0.

(42)

By considering X = P −1 and pre- and post-

multipliying Eq. 42 by

[
X 0
0 I

]
, the following LMI is

rewritten as:

[
XĀT

ci + ĀciX + XT X B̄Rω

∗ −γ 2I

]
< 0,

Finally by considering the Schur complement of XT X

and B̄Rω the LMI (39) is derived. This complete the
proof.

Remark 1 The minimization of γc may result in slow
dynamics of the state estimation error. This problem
can be solved by pole assignment of the matrices
(Āci − B̄ciKj ) in left half complex plane such that

λj (Āci −B̄ciKj ) ∈ D, j = 1, 2, ..., n; i = 1, 2, ..., h,

D is the α stability region as defined in [8]. Then the
following Corollary is obtained.
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Corollary 2 Given system (4), the comparator-
integrator (6), the feedback controller defined by Eq. 9
and let the attenuation level γc > 0. The closed-
loop system error Eq. 38 is globally stable with H∞
performance if ‖ xc(t)‖2

2 < γ 2
c ‖ d(t)‖2

2 and if
there exist a matrix X = XT ≥ 0, and a positive
scalar α such that ∀i, j ∈ [1, 2, ..., h], the following
holds:
[

Zi + B̄RωB̄T
Rω + 2αP X

∗ −γ 2
c I

]
< 0 (43)

with

Zi = XĀT
ci + ĀciX + �T

j B̄T
ci + B̄ci�j .

Then, the controller gain matrices are computed by
Kj = [

K1j K2j

] = X−1
1 �j .

Proof The proof is easily derived by considering the
α-stability in the L2-gain equation (22), such that

Jxcd := �̇ + J2 + 2α
 < 0. (44)

By solving Eq. 44, the conditions described in the
LMI are derived.

Remark 2 The LMI set (43) can bring conservatism
into the observer design due to the LMI dimension,
the number of models, and the requirement of a single
matrix P and Q. Then, without loss of good com-
promise between complexity and conservatism, the
following LMIs set can be considered (see details in
[4]):

Υii < 0 (45)
2

h − 1
Υii + Υij + Υji < 0 (46)

where Υij is given by Eq. 43.

4 Simulation Results

The proposed design approach applied to the quadro-
tor is illustrated on this section. The matrices of Eq. 4
are not displayed here due to space limitations, how-
ever these can be consulted in the referenced paper
[12]. For simulation purpose, additional disturbance
matrices are considered as:

Ri = [1, 0, ..., 0]T , Dd =

⎡

⎢⎢
⎣

0.2
0.4
0.5
0.3

⎤

⎥⎥
⎦ ,

and in order to achieve the nonlinear dynamic, convex
scheduling functions are defined as:

ρi(x(t)) = μi(x(t))
∑3

i=1 μi(x(t))

μ1(x(t)) = exp

[
1

2

(
x4(t) + 1.8

0.8

)2
]

μ2(x(t)) = exp

[
1

2

(
x4(t) − 1.8

0.8

)2
]

μ3(x(t)) = exp

[
1

2

(
x4(t)

0.8

)2
]

. (47)

The synthesis of the stable LPV observer with H∞
performance (6) has been solved with Yalmip Tool-
box [15]. The attenuation level obtained by solving
Corollary 1. The observer eigenvalues are assignment
in a disk D(0.5, 0.5) with center (−0.5, 0) and radius
0.5. The computed attenuation level is γ = 0.4965.
The computed parameter matrices are:

P =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

0.39 −0.009 0 0 −0.0031 −0.000 −0.05 0.0009 0 0 0.002 0
−0.009 0.84 0 0 0.0049 0.027 0.004 −0.1785 0 0.0049 −0.004 0
0 0 2.48 0.0001 0 −0.00 0 0 −0.061 0.0001 0 −0.0
0 0 0.001 2.49 0.0002 0.002 0 0 0.0001 −0.0001 −0.0003 −0.06
−0.003 0.005 0 0.0002 5.62 −0.007 0.04 −0.006 0 −0.006 0.46 0
−0.002 0.028 −0.0004 0.0002 −0.007 6.2508 0 −0.23 0.002 0.079 −0.014 0
−0.056 0.04 0 0 0.04 0 0.174 −0.0002 0 0 −0.0005 0
0.0009 −0.17 0 0 −0.0058 −0.22 −0.0002 0.23 0 −0.0137 0.0005 0
0 0 −0.061 0.0001 0 0.002 0 0 2.3891 −0.0006 0 −0.
0 0.004 0.001 −0.0001 −0.00 0.079 0 −0.0137 −0.0006 3.45 −0.004 0.004
0.002 −0.004 0 −0.0003 0.46 −0.014 −0.0005 0.0005 0 −0.004 3.4 0.002
0 0 −0.001 −0.0615 0 0.002 0 0 −0.0003 0.0004 0.0002 2.3

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦
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	3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.3492 −0.3713 −0.0004 −0.0002
−0.2873 1.0983 −0.0004 −0.0003
−0.0001 0 1.2812 0.0001
−0.0005 0.0006 0.0002 1.2822
0.0542 −0.0042 0.0035 −0.0008
0.0368 −0.0472 −0.0046 −0.0084
−0.0401 0.0064 0.0004 0.0002
−0.0311 −0.0659 0.0003 0.0007
0 0.0001 0.0082 0.0003
0.0047 −0.0003 0.0042 0
0.0051 −0.0055 0 −0.0007
0.0009 −0.0006 −0.001 0.009

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The observer gain matrices are computed by Ki =
P −1	i and the relation given in Eqs. 17–18. Matrices
T1 and T2 are not displayed here due to space limita-
tion, but can be computed from Eq. 20. Furthermore,
as displayed in Fig. 3, the observer eigenvalues of Ni

are located in the selected LMI region.
The controller gains are computed by solving the

Corollary 2. A LMI region with α = 1.5 was chosen to
avoid slow dynamics. The computed attenuation level
is γc = 0.4501, which is small and can guarantee the
desired performance. The controller gains are:

Kx1 =
⎡

⎢
⎣

0 0 7.24 0 0 0 0 0 3.6 0 0 0 0 0 −3.93 0
14.6 −229 0 0 −38 −741 11.9 −185.4 0 −92.9 −4.6 0 −6.6 101 0 0

221.7 12.3 0 0 −737.5 36.5 180 10 0 4 −93 0 −98 −5.14 0 0
0 0 0 −12.842 0 0 0 0 0 0 0 −6.387 0 0 0 6.9

⎤

⎥
⎦

Kx2 =
⎡

⎢
⎣

0 0 7.24 0 0 0 0 0 3.60 0 0 0 0 0 −3.93 0
1.18 −226 0 0 −1.21 −729 0.80 −18 0 −91 −0.042 0 −0.36 100 0 0
219 −1.69 0 0 −726 −1.47 178 −0.86 0 −0.037 −91 0 −97 1.38 0 0
0 0 0 −12.8 0 0 0 0 0 0 0 −6.38 0 0 0 6.9

⎤

⎥
⎦

Kx3 =
⎡

⎢
⎣

0 0 7.24 0 0 0 0 0 3.6 0 0 0 0 0 −3.93 0
−12.19 −229 0 0 35 −741 −10.33 −185 0 −92 4.60 0 5.91 101 0 0

222 −15.8 0 0 −737 −39.5 180 −12.4 0 −4.77 −93.01 0 −98 7.95 0 0
0 0 0 −12.8 0 0 0 0 0 0 0 −6.38 0 0 0 7

⎤

⎥
⎦

For simulation purpose, the perturbation d(t) is
chosen as random signal uniformly distributed in
[−0.5, 0.5]. Initial conditions are considered as
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Fig. 4 Gain scheduling functions

x(0) = [0.2, 0.5, 0, 1.2217, 0, ..., 0]T and x̂(0) =
[0.2, 0.3, 0, ..., 0]T . In practice, initial conditions
are chosen according to the initial measured value
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Fig. 5 State estimation errors
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of the positions. Actuator saturation is not taking
into consideration. Simulation results are displayed as
follows. Figure 4 shows the contribution of each
model to the global behavior, as defined by the
scheduling functions.

Figure 5 displays the estimation errors between the
estimated and the simulated states. As displayed, the
observer converges fast and asymptotically. Moreover,
the disturbances are well attenuated, which validates
the observer performance.

Figure 6 shows the references and tracking trajec-
tory of the positions (x, y, z) and the yaw angle ψ in
fault-free operation. The tracking is well performed,
despite the disturbance and the set-up variations on the
reference.

In order to prove the effectiveness of the proposed
method under faults, a bank of 4 residual generators
(one for each output) are designed, as described in
Section 3.2. Two sensor faults are induced as dis-
played in Fig. 7e. The first fault, occurring on the

second sensor, after t = 45 s, is a fault with bias
behavior. The second fault, which appears from t =
12 s to 26 s, is a fault with sinusoidal behavior on
thethird sensor. The normalized residual signals are
displayed in Fig. 7a–d. The fault detection can be done
easily by comparing the residuals with the incidence
matrix given in Table 2. For example, for the second
fault occurred on the sensor 3, residuals r1, r2 and r4

present some changes at t = 12 s, and only residual r3

remains without change. So, it is possible to generate a
particular signature S = [1 1 0 1]. Then, by compar-
ing the signature with Table 2, it is possible to isolate
the fault on sensor 3. Clearly, for all cases, the fault
detection turns out to be successful.

The tracking positions are displayed in Fig. 8.
When the first fault appears at t = 45 s, the position y

is affected, but due to the fact that the controller was
designed with H∞ performance, after three seconds
the quadrotor reaches again the desired position. This
behavior is not reflected with respect to the second

Fig. 6 Desired position
(dashed line) and real
positions (continuous line)
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Fig. 7 a–d Normalized residuals in faulty-case; e induced
faults

fault, due that the fault is continuously changing
fast, because of the sinusoidal behavior. However,
once that fault disappears, the output converges again
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Fig. 8 Desired position (dashed line) and real positions (con-
tinuous line) in faulty-case

to the desired position. In order to guarantee tracking
for all outputs in the presence of faults, a fault tolerant
control strategy will be addressed in future work.

5 Conclusions

In this paper, a tracking controller and robust fault
diagnosis was developed for LPV systems in the pres-
ence of disturbances. Using Lyapunov and L2-gain
theory, sufficient conditions in the LMI formulation
were obtained. In the same spirit, sufficient conditions
were obtained to compute the gains of the controller
in order to stabilize the nonlinear system and track the
command signal. In order to detect and isolate sensor
faults, a set of residuals was generated with a bank
of observers so that each residual is sensitive to only
one fault. Each observer was designed to be robust
against disturbances. Then, using a LPV modelisation
of a quadrotor, the developed methodology is applied
to this type of UAV. The simulation results have shown
the effectiveness of the proposed methodology. Future
research will be addressed on the topic of fault tolerant
control.
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