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Abstract Anetworked system consisting of unmanned
aerial vehicles (UAVs), automated logistic service
stations (LSSs), customer interface software, system
orchestration algorithms and UAV control software
can be exploited to provide persistent service to its
customers. With efficient algorithms for UAV task
planning, the UAVs can autonomously serve the cus-
tomers in real time. Nearly uninterrupted customer
service may be accomplished via the cooperative
hand-off of customer tasks from weary UAVs to ones
that have recently been replenished at an LSS. With
the goal of enabling the autonomy of the task planning
tasks, we develop a mixed integer linear program-
ming (MILP) formulation for the problem of pro-
viding simultaneous UAV escort service to multiple
customers across a field of operations with multiple
sharable LSSs. This MILP model provides a for-
mal representation of our problem and enables use in
a rolling horizon planner via allowance of arbitrary
UAV initial locations and consumable reservoir status
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(e.g., battery level). As such, it enables automation of
the orchestration of system activities. To address com-
putational complexity, we develop efficient heuris-
tics to rapidly derive near optimal solutions. A
receding horizon task assignment (RHTA) heuris-
tic and sequential task assignment heuristic (STAH)
are developed. STAH exploits properties observed in
optimal solutions obtained for small problems via
CPLEX. Numerical studies suggest that RHTA and
STAH are 45 and 2100 times faster than solving the
MILP via CPLEX, respectively. Both heuristics per-
form well relative to the optimal solution obtained
via CPLEX. An example demonstrating the use of the
approach for rolling horizon planning is provided.

Keywords Persistent UAV service · Cooperative
UAV service · UAV task planning · Mixed integer
linear programming · Heuristic

1 Introduction

The integration of unmanned aerial vehicles (UAVs),
automated logistics service stations (LSSs), commu-
nication networks, control algorithms, system orches-
tration algorithms and software can enable the UAVs
to provide a persistent service to multiple customers.
The UAVs provide service to the customers in turn,
handing the tasks to replacement UAVs in a coopera-
tive fashion as required. LSSs situated across the field
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of operations replenish consumables, such as a UAV’s
battery, and enable the persistent operations. The com-
munication network distributes the system state infor-
mation and control/planning commands across the
field to the networked resources. Ensuring that essen-
tial resources are provided to the UAVs before they
are required while maximizing the system objectives
are tasks conducted by the orchestration algorithms.
The control algorithms direct the UAV actions in real
time. Taken together, such an automated system –
in which UAVs cooperate to provide nearly persis-
tent service to its customers – may find application
roles in surveillance, border patrol, target tracking,
disaster search and rescue, crop dusting and aerial
photography.

Here we develop a mixed integer linear program-
ming (MILP) formulation and heuristics to enable
the autonomous orchestration of the path planning
tasks for such a system. We focus on a system of
UAVs and LSSs distributed across a field of oper-
ations and connected via networked communication
systems. The objective is to simultaneously provide
nearly continuous escort or surveillance to customers
while minimizing total UAV travel distance (as a sur-
rogate for energy expenditures). We assume that the
customers largely traverse known time-space trajecto-
ries and deviations are addressed via a flexible MILP
together with a rolling horizon approach.

1.1 Relevant Literature

Here we review relevant work on automated LSSs,
networked cooperative systems and orchestration
methods.

Automated LSSs for UAVs have been studied,
developed or used for demonstrations in [1–9]. In
[8], the location of stations on an n by n grid is
determined by solving the p-median problem. In [4]
and [9], automatic battery replacement systems were
developed and tested to support nearly uninterrupted
UAV flights.

Networked cooperative systems also have been
reported in [10–13]. In [10], the development of a
novel real time operation environment for networked
control systems was discussed. In [11], an intelli-
gent cooperative control architecture was developed; it
included a cooperative planner and learning algorithm
to control UAVs with fuel limitations and stochas-
tic risks. The authors in [12] developed a system that

focused on the interaction between unmanned ground
vehicles (UGVs) and UAVs to extend the endurance of
the UAVs. The UGVs act as docking stations and host
the UAVs during the mission. The synchronization and
coordination is managed by a ground control station
(GCS) based on C code and the robot operating system
(ROS). In [13], localizing a stationary target in a GPS
denied environment was addressed using a team of
UAVs equipped with bearing-only sensors. The UAVs
used cooperative localization to localize themselves
and the target.

We now turn our attention to efforts related to
system orchestration (task planning). In [14], the
approaches for such problems are categorized into
Markov decision processes (MDP), integer program-
ming (we will call it MILP for convenience) and
game theory. For MDP and MILP approaches, there
have been some efforts to incorporate LSSs into the
planning process.

MDP approaches have been studied in [1, 4–6,
11]. Centralized real time algorithms to enable persis-
tent operation in a stochastic environment, directing
UAVs to conduct multiple flights in the planning hori-
zon and including visits to LSSs, were conducted.
Uncertainties such as UAV health and fuel levels
were addressed. They combined approximate dynamic
programming and reinforcement learning to address
challenges associated with MDP formulations. Indoor
demonstration of persistent operations was discussed
with LSSs positioned at a single location.

MILP approaches with fuel awareness have been
conducted in [2, 3, 17, 18, 20–25]. In [17–22], fuel
limitations are incorporated, but persistence is not
pursued (the UAVs do not return to the field after
depletion). In our efforts detailed in the sequel, our
decision variables are inspired by the classical MILP
formulation for the VRP as used in [21].

MILP based research incorporating logistics tasks
for persistent operations has been pursued since about
2007. In [2], a receding horizon task assignment
(RHTA) approach was developed to enable persis-
tence with a single site for the LSSs. In [3], policies
and reduced MILP models were used to manage the
health of UAVs.

MILP based methods for persistent operations of
a system of UAVs with LSSs distributed across a
field of operations were conducted in [23–25]. Their
task was to provide uninterrupted security escort ser-
vice to customers over a finite horizon. The customer
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paths were assumed deterministic and there were no
disturbances. Their problem was thus a finite horizon
deterministic optimization. MILP models were used
and a genetic algorithm (GA) proposed for tractability.
A small scale indoor demonstration was discussed in
[24]. The UAVs used vision feedback for target track-
ing and landing [26]. Recently, in [27], a single UAV
routing problem where there are multiple depots and
the vehicle is allowed to refuel at any depot was stud-
ied. Each target is visited at least once by the UAV
and total fuel consumption is minimized via objective
function.

The authors in [25] pursued a similar problem to
that of [23, 24]. However, in addition to determining
which UAV should accomplish which task, their MILP
determines the type of UAVs, number of UAV, loca-
tions of station and number of stations. An RHTA and
branch and bound algorithm (B&B) were developed
and studied.

These MILP formulations are not suitable for real
time application. They do not allow for arbitrary
UAV location and fuel levels. The exceptions are [2,
3], which do not allow for multiple sharable LSSs
distributed across the field.

The MDP approach benefits from an explicit
consideration of random events. However, it suf-
fers from the curse of dimensionality together with
strong assumptions on the random variables. As
such, with approximations seeking to overcome the
inherent computational intractability, it can be use-
ful for systems with significant randomness. The
MDP approach also benefits from easy applicabil-
ity in the real time contex; the state based deci-
sions it provides can be used directly for task
planning.

The MILP approaches benefit from a formulation
that directly optimizes the objective under consid-
eration and provides an optimal solution under two
conditions: the MILP can be solved and the deter-
ministic assumptions employed are not violated. The
formal MILP formulations typically assume some ini-
tial location for the resources. The MILP can be
used in a rolling horizon approach for real time
task planning if the formulation allows for arbitrary
resource location and consumables (e.g., fuel). Heuris-
tics such as the RHTA can be used, at the expense
of optimality for the single stage optimization, to
allow for real time decision making and computational
tractability.

1.2 Contribution

In this study, we consider a system of UAVs and LSSs
geographically distributed across a field of opera-
tions. Heterogeneous UAVs are considered; the UAVs
have different maximum travel speeds and fuel capac-
ity. During service, a drained UAV may hand off
its mission to a replacement UAV and travel to the
LSS for replenishment. After replenishment, UAVs
can return to serve customers. The goal is to assign
UAV task which provide nearly uninterrupted service
to customers while minimizing the total UAV travel
distance. Customers provide their time-space trajec-
tory when they request service. It may change if the
customer desires, but they will inform the system of
their new trajectory.

Our customer paths are assumed largely determin-
istic (they can deviate in the rolling horizon approach)
with randomness coming from the arrival of new
customers. As such, we consider the MILP formula-
tion pursued here as more appropriate than an MDP
approach.

The persistent UAV systems studied in [1–4, 15,
16] considered a single location for their LSSs. They
developed real time centralized task planning meth-
ods. Here, we also focus on centralized task plan-
ning for persistent UAV service. However, we con-
sider LSSs geographically spread across a field of
operations– our focus is on pushing toward large scale
persistent operations.

We will formulate our problem as a MILP, but
structure it such that it can directly be used for rolling
horizon real time task planning. The exact solutions to
this formulation provide insight into the solution struc-
ture that we exploit to develop a heuristic that is about
2,100 times faster than solving the MILP via CPLEX.

Our efforts extend the work of [23–25] to allow for
use in real time path planning. This is done by allow-
ing for arbitrary initial fuel levels and location for each
of the UAVs. Further, rather than requiring that all jobs
be served (as in [23–25]), which may not be feasi-
ble in general, we allow for jobs to be dropped where
required.

Toward real time path planning, the contributions
of this paper are as follows. We

• Describe a UAV system to cooperatively pro-
vide persistent automated security escort service
and detail how a MILP formulation may be used
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in a rolling horizon approach for real time path
planning (Section 2).

• Develop a MILP formulation for the problem
allowing for arbitrary UAV initial locations and
fuel levels and enabling the rolling horizon
approach (Section 3).

• Develop computationally efficient heuristics
capable of solving the problem in near real
time. Inspired by optimal solutions obtained via
CPLEX for small problem instances, we develop
the sequential task assignment heuristic (STAH)
(Section 4.3). We extend RHTA approaches to
our context (Section 4.4).

• Conduct numerical experiments (Section 5).
RHTA and STAH are about 45 and 2,100 times
faster than the MILP solved via CPLEX. The real
time rolling horizon approach is demonstrated via
example.

It is important to note that we do not include flight
dynamics in our models. This decision is intentional,
well motived by the literature and necessary for com-
putational tractability. In many industries, a hierar-
chical decomposition of decisions is used for com-
putational and modeling tractability. For systems of
UAVs, the task planning tier seldom includes detailed

information about flight dynamics. In [16–25] and
[27, 28], task planning is conducted in the absence
of flight dynamics. Detailed information about exact
flight paths and flight dynamics are often considered
at lower levels of detail when controlling the UAVs to
accomplish their assigned tasks. As is well supported
by the literature, we relegate detailed flight dynam-
ics information as outside of our scope. As we shall
see, task planning is already highly computationally
intractable.

Some parts of the paper, including ideas and mod-
els detailed here, appeared in the conference paper
[28]. Section 3, the allowance for not all split jobs to
be served in the MILP, modified RHTA and STAH
heuristics and numerical studies are newly developed
in this full version of the paper.

2 Persistent Cooperative UAV Service

2.1 System Architecture

Systems of unmanned aerial vehicles (UAVs) hold
much application promise due to their high capa-
bilities. However, their capabilities are restricted by
a fundamental dependence on a consumable energy

Fig. 1 Persistent
automated UAV service
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source. To remove these limitations and enable contin-
uous UAVmissions, one may use an automated system
consisting of the convergence of UAV control sys-
tems, automatic recharge platforms, network commu-
nication methodologies and optimization techniques
for orchestrating the component activities. Figure 1
illustrates such an autonomous system. The system
supervisor receives information about the determin-
istic customer paths (GPS coordinates) and times
from the service requester. The supervisor coordi-
nates the UAV task plans. Controllers next receive the
schedule via the communication network and execute
the commands at their designated times. Each UAV
relies on the communication network to send vision
and geolocation information to their controllers.
Drained UAVs hand off their mission to fully charged
UAVs and travel to the automatic LSSs for fuel
recharge services.

To achieve real time path planning, one can
directly solve the MILP or use STAH or RHTA
heuristics developed in the sequel in a rolling hori-
zon approach. The optimization routine is called
either when specific events occur or at fixed time
intervals.

If any component of the communication network
or controllers fails, the UAVs are assumed to exe-
cute their original plans until they must return to
a station.

2.2 Event Based Rolling Horizon Operation

During the operation of a system of UAVs, many
events may occur: new customer service requests may
arrive, customers may change their planned path, UAV
fuel may be consumed faster than anticipated, UAVs
may fail, etc. Tasks must be allocated to the UAVs
accounting for these disturbances. Persistent UAV ser-
vice should be pursued. In the event based rolling
horizon approach, new coordinated UAV task plans
are derived and dispatched across the communication
network every time there is a new event. During this
process, more than one event may occur. These will
be stacked in an event queue. Multiple events that
occur during the processing of the previous event are
merged into a single new system state and treated as an
event. Figure 2 describes the procedure of event based
rolling horizon operation. There, e indicates the time
at which a particular event is processed. The events in
the event queue represent unanticipated system state
changes and will all be grouped into the next event.
Red arrows indicate the flow of information across the
communication network.

2.3 Time Based Rolling Horizon Operation

The time based approach is similar. At given inter-
vals of time, if there is a deviation from the previously

Fig. 2 Event based rolling
horizon operation
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determined plan, new UAV path plans are determined
using the MILP, STAH or RHTA. Let l and t be the
index of the increment (e.g., the 347th time increment)
of the planning process and the duration of the incre-
ment, respectively. Also let p(< t) be the planning
time allocated/required. At every time instant T = t ·l,
deviation from the existing plans is checked. If there
are deviations, a new plan is derived by time T =
t · l+p and new UAV task plans are automatically dis-
patched across the communication network. Figure 3
depicts the procedure of time based rolling horizon
operation.

3 Mathematical Formulation

We now develop a MILP model for the coordinated
task planning problem that allows for arbitrary ini-
tial UAV location and battery or fuel level. It extends
the models of [23–25]. The arbitrary initial conditions
allow it to be used together with a rolling horizon
approach.

We assume that all UAV locations, UAV fuel lev-
els and customer time-space trajectories are known.
(Changes are accounted for in the rolling horizon
method described in Section 2.) Customer trajectories
are discretized by dividing them into segments called
split jobs that may each be served by a different UAV.
The conversion from trajectory to split jobs is up to

the system designer – we typically use a fixed interval
of time for splitting the trajectories such as 15 seconds
or one minute. There is a tradeoff between optimality
and computation. More split jobs will allow for greater
pursuit of the system objectives at the cost of more
computation.

Each split job i is defined by a start location
(xis, yis) and end location (xie, yie). It has a strict start
time Ei and end time Li. Its processing time Pi =Ei-Li
is the duration of time the customer is following that
segment of their path. (We assume the speed during
that split job is constant.) Figure 4 shows an exam-
ple time-space trajectory divided into five split jobs.
The travel distance Dij from split job i’s end point or
station i to split job j ’s start point or station j is cal-
culated using the Euclidean distance. These distances
form an asymmetric network because Dij need not
equal to Dji (the start and end points change).

We assume the following are given and constant
parameters of the problem: split job start/end points,
split job start/end times, station locations, current UAV
locations and UAV fuel levels. We will use two indices
for each LSS to distinguish between arriving UAVs
and departing UAVs.

3.1 Notation

i, j : Indices for jobs
s: Index for stations

Fig. 3 Time based rolling
horizon operation
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Fig. 4 A time-space
trajectory is divided into
split jobs

k: Index for UAVs
r: Index of a UAV’s r th flight
NJ : Number of split jobs
NUAV : Number of UAVs in the system
NST A: Number of recharge stations
NR: Maximum number of flights per UAV dur-

ing the time horizon
M: Large positive number
Dij : Distance from the finish point of split job i

to the start point of split job j

Ei: Start time of split job i

Li: End time of split job i

Pi: Processing time of split job i(Li –Ei)
H : Required time for fully recharge (refuel) the

empty fuel tank (battery).
U : Setup time for recharge/refuel process
qk: Maximum traveling time of UAV k

qk,ini : Initial level of battery(fuel) of UAV k

TSk: Travel speed of UAV k

w1: Weight factor between objective criteria, 0≤
w1 ≤1.

w2: Positive integer Scaling factor on the num-
ber of served jobs in objective function.

ΩJ : = {1, . . . , NJ }, Set of split jobs
ΩSS : = {NJ + 1, NJ + 3, . . . , NJ + 2 ·NSTA − 1}

, set of UAV flight start stations
ΩSE : = {NJ + 2, NJ + 4, . . . , NJ + 2 · NSTA} ,

set of UAV flight end stations
ΩA: = (ΩJ UΩSSUΩSE) = {1, . . . , NJ + 2 ·

NST A}, set of all jobs and recharge stations
ΩINI : = {1INI , . . . , KINI }, set of initial UAV

location
Xijkr : Binary decision variable, 1 if UAV k pro-

cesses split job j or recharges at station
j after processing split job i or recharg-
ing at station i during the r th flight; 0,
otherwise.

Cikr : Real number decision variable, split job i’s
start time by UAV k during its r th flight

or UAV k’s recharge start time at station i;
otherwise its value is 0.

qkr : Real number decision variable, total battery
(fuel) consumption for UAV k during its rth

flight

3.2 Recharge/Refuel Time Function

UAVs are assumed to fully replenish their fuel source
when they visit an LSS. In this study, the duration
of replenishment time depends on the remaining fuel
level of the UAV:

RTf

(
H

qk

)
· (

qkr−1 + qk − qk,ini

) + U (1)

RT r =
(

H

qk

)
· qkr−1 + U (2)

where H and U are constants. For the first visit to an
LSS, Eq. 1 is used to calculate the replenishment time
of a UAV. After the first visit, Eq. 2 is applied because
each UAVwas fully charged in a previous station visit.

3.3 MILP Path Planning Formulation

Appendix A1 provides the MILP model for our sys-
tem. The objective function (11) minimizes the sum
of weighted total travel distance and number of served
jobs. Weight factor w1 balances the two objectives.
The constant w2 converts the objectives into the same
unit. High values of w1 will give energy efficient UAV
schedules by the reducing flight distance (speeds are
assumed constant in each split job and between them).
However, it may decrease the service quality due to
the presence of uncovered split jobs. On the other
hand, low value of w1 will guarantee service quality
by serving as many as split jobs possible.

Constraints (12–17) coordinate the UAV paths.
Constraint (12) ensures that each UAV starts its flight
from its initial location or start station. It allows UAVs
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to serve split jobs or move to an LSS. Constraint (13)
guarantees each UAV finish its flight at an LSS. The
dual index for the LSSs is used in constraint (14).
When UAV k finishes its r th flight at LSS s − 1, its
r + 1th flight starts at LSS s. Constraint (15) ensures
that a UAV cannot finish its flight at its start station
or UAV initial location (start stations have a different
index than end stations). Constraint (16) required that
split jobs in ΩJ be served by at most one UAV. As
such, a split job need not be served at all. UAVs do not
finish their flights at a split job via constraint (17).

Constraints from Eq. 18 to Eq. 23 determine the
start time of split jobs and replenishment at LSSs.
Constraint (18) requires the finish time of a UAV’s r th

flight and the start time of the UAV’s r + 1th flight
to be same. Constraint (19) dictates that the split job
start time or LSS visit start time (when consumable
replenishment begins) equals that of the next task for
each UAV in its r th flight. Constraint (20) determines
the job start time of unserved split jobs. Cikr is set to
zero if split job i is not assigned to UAV k’s r th flight.
Constraints (21) and (22) dictate the recharge time for
each UAV and the split job start time after replenish-
ment. They are distinguished based on the flight order.
If r = 2, which means the start of second flight, con-
straints (21) and Eq. 1 determine the initial fuel level
of UAV k(qk,ini). If r > 2, constraint (22) and Eq. 2
are used instead. Constraint (23) forces UAVs to pro-
vide service at the correct start time of split job iin
ΩJ .

Fuel restrictions are described via constraint (24),
(25) and (26). Constraint (24) ensures that UAVs do
not fly longer than they have fuel to fly. Constraints
(25) and (26) ensure that the decision variables qkr

obey their appropriate range.
Finally, constraints (27), (28) and (29) specify the

real and binary decision variables for our MILP. We
require that NR > 1 due to constraints (14) and (18).
NR is the maximum number of flights allowed for
each UAV; this nonnegative integer value can be set
arbitrarily.

4 Addressing Computational Complexity

MILP formulations are computationally complex. In
this section, we will discuss the problem complexity
via transforming approach. We also discuss how we

solve our MILPs as well as develop a heuristic and
extend an RHTA approach to significantly improve
computation.

4.1 Equivalence with an NP-hard Problem

In this section, we study the computational complex-
ity of the proposed problem by transforming it to a
capacitated vehicle routing problem (CVRP). Such
problems belong to the NP-hard class; see [29]. The
transformation approach is a widely used methodol-
ogy to assess the complexity of such problems. In [30],
the authors studied the complexity of a capacitated arc
routing problem using a transformation to the CVRP.
In [31], the authors transform their CVRP problem
to a Multiple Travelling Salesman Problem and Bin
Packing Problem. The following steps transform our
problem to a CVRP.

STEP1: Time is removed from the model:

1-1) Decision variable Cikr (Eq. 28) is
deleted.

1-2) Constants Ei , Li are deleted.
1-3) Constraints (19) ∼ (24) are deleted.

STEP2: Our heterogeneous UAVs are considered as
identical (each with the same fuel capacity):

2-1) T Sk is deleted from the model.
2-2) Qk is replaced with Q.

STEP3: Replace fuel restriction with capacity
restriction

3-1) Pi is considered as demand of cus-
tomer i.

3-2) Q stands for maximum capacity of
vehicle.

3-3) Decision variable qkr is deleted:

– Equation 29 is deleted.
– Constraints (26) and (27) are

deleted.

3-4) Change constraint (25) to

∑
i∈ΩJ

∑
j∈ΩA

Pi · Xijk ≤ Q(k ∈ K)

3-5) Dij is considered as travelling cost in
CVRP.
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STEP4: Only one flight is considered:

4-1) Xijk will replace the decision vari-
able Xijkr

T4-2) Dimension r is deleted in constraints
(12) ∼ (18) and (25)

4-3) We do not distinguish between start
station and end station.

STEP5: Multiple depots will be unified into single
depot:

5-1) NST A becomes 1.
5-2) ‘0’ becomes the index of the sin-

gle depot instead of set of UAV
stations.

STEP6: Downgrade of problem characteristics:

6-1) Split jobs will be defined as stationary
jobs

– (xie, yie) = (xis, yis). Therefore,
Dij = Dji .

– Asymmetric graph becomes sym-
metric graph.

6-2) UAVs will initially located at the (sin-
gle) depot instead of arbitrary initial
locations.

6-3) Serve every customer instead of maxi-
mize job coverage:

– Objective function will be changed
to

Minimize
∑
i∈ΩA

∑
j∈ΩA

∑
k∈K

Dij · Xijk.

– Change constraint (17) to

∑
k∈K

∑
i∈ΩA

Xijk = 1 (j ∈ ΩJ ).

Via the simplification approach, the transformed for-
mulation is a capacitated vehicle routing problem.
Therefore, the proposed problem also belongs to the
NP-hard class. As discussed in [32], obtaining opti-
mal solutions is time-consuming and computationally
intractable. To address the computational tractability
of our problem, we developed an efficient heuristic
called STAH as well as an RHTA heuristic.

4.2 CPLEX

CPLEX is a commercial solver designed to solve large
scale MILPs. We employ CPLEX 12.4 to obtain an
optimal solution to our MILP when CPLEX can solve
the problem. We will compare the results with our
heuristics.

4.3 Sequential Task Assignment Heuristic

The content and presentation of this subsection first
appeared in the conference paper [28]. We quote it
here for clarity and completeness.

We develop the Sequential Task Assignment
Heuristic (STAH) to address the computational
intractability of the MILP formulation. Refer to
Appendix A2 for the pseudo code of STAH. We
describe some of the key points next.

Customers are ordered by the start time of their ser-
vice from earliest to latest. Let P = {1, 2, . . . , p} be
the set of customers and Pt be the set of split jobs
for customer t . Elements of Pt are arranged in non-
decreasing order of split job start time. We assume
that the customer split jobs form a continuous path. If
not, consider them as two customers. We also assume
that every UAV has sufficient speed to serve the split
jobs (that is, no customer moves faster than the slow-
est UAV and we are free to assign any UAV to their
split jobs).

Let l be the split job index in Pt,t ∈ P . Starting
with t = 1 and l = 1, its split jobs are assigned in
chronological order, starting from the first. To assign
a UAV to a particular split job l, two values are
calculated for all UAVs.

• The first value VD(k) corresponds to the UAV
k directly proceeding to split job l from the end
of its most recent assigned task and sequentially
serving as many of customer k’s split jobs for
which it has sufficient fuel (and can then make it
to an LSS). This is a direct flight.

• The second value VI (k) corresponds to the UAV
k proceeding to the station nearest the end of its
most recent assigned task, prior to proceeding to
split job l and sequentially serving as many of cus-
tomer k’s split jobs for which it has fuel (and can
then make it to an LSS). We refer to this as an
indirect flight.
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Throughout, for simplicity of notation, we suppress
the dependence of these values on anything other than
the UAV index k. The other variables will be imme-
diately obvious as a function of where in the pseudo
code the calculation is located. The UAV achieving
the maximum value is assigned to that split job. If two
UAVs achieve the maximum, one is selected arbitrar-
ily. In the case of ties, a UAV and direct/indirect flight
are selected randomly. We require some notation.
Let Cl(k) and Cq(k) be the location and battery/fuel
level of UAV k, respectively (after completing its last
scheduled task).

Let A(k) be the time at which UAV k completes
its last scheduled task and is available to serve. Recall
that l is our split job index. Use the notation (.)’
and (.)” to denote the start and end locations of
the split job (.), respectively. E.g., l′ and l′′. Let
s(a, b) ∈ R2 ∪ (+∞, +∞) be the location of the
LSS that gives minimal distance when UAV k flies
from point a to that station and then to b, if the
fuel level Cq(k) is sufficient to reach the station
(and then reach point b). If no such station exists,
the function returns the point at x = +∞, y =
+∞. That is, s(a, b) = argmins∈ΩSE{Da,s +
Ds,b | Cq(k) ≥ Da,s/T S(k), q(k) ≥ Ds,b/T S(k)},
if feasible, (+∞, +∞) otherwise. If there are several
such stations, chose one arbitrarily. We will have par-
ticular interest in s(Cl(k),l’). Let s(a) = argmin s ∈
ΩSE{Da,s} denote the location of the station nearest
to a (selected arbitrarily if more than one).

Let ND(k) be the maximum number of split jobs
that UAV k can sequentially serve for customer t, start-
ing with l via a direct flight. Let D(k) be the indicator
for feasibility of the direct flight.

ND(k) = max{n ∈ Z+ | DCl(k),l′/T Sk +
∑l+n−1

i=l
P i

+D(l+n−1)′′,s((l+n−1)′′)/T Sk

) ≤ Cq(k)
}

(3)

D(k) = 1−[I {ND(k) ≥ 1}∗I {A(k)+DCl(k),l′/T Sk ≤ El}]
(4)

Here Z+ is the non-negative integers. ND(k) = 0
if no such value exists. Where the indicator function
I {.} is 1 if the condition {.} is true, and 0 otherwise.

Similarly, let NI (k) be the maximum number of
split jobs that UAV k can sequentially serve for cus-
tomer t, starting with l via an indirect flight. Let

Ind(k) be the indicator for feasibility of the indirect
flight.

NI (k) = max{n ∈ Z+ | DCl(k),s(Cl(k),l′)/T Sk ≤Cq(k),

Ds(Cl(k),l′),l′/T Sk +
∑l+n−1

i=l
P i +

D(l+n−1)′′,s((l+n−1)′′)/T Sk ≤ qk} (5)

Ind(k) = 1 − I {NI (k) ≥ 1} ∗ I
{
DCl(k),s(Cl(k),l′)/T Sk + U+

(H/qk) · [qk − (Cq(k) − DCl(k),s(Cl(k),l′)/T Sk)] +
Ds(Cl(k),l′),l′/T Sk < El − A(k)

}
(6)

Here Z+ is the non-negative integers. NI (k) = 0 if no
such value exists. The indicator function I {.} is 1 if the
condition {.} is true, and 0 otherwise.

Together, these feasibility indicators will be used
to check that a particular UAV assignment for the
split job is feasible for constraints (23–24). They also
enforce constraints (21–22). If no UAVs are feasible
for the split job, the split job cannot be served. Set
l = l + 1 and repeat the feasibility check.

The values assigned to UAV k when we seek to
assign split job l are as follows.

VD(k)={
α ·β (ND (k))−(1−α)·DCl(k),l′

}−M ·D(k)

(7)

VI (k) = {
α · β (NI (k)) − (1 − α)

(
DCl(k),s(kl′)+

Ds(kl′),l′
)} − M · Ind(k) (8)

M is a large positive value, α and ω are parameters
to balance the terms. The UAV achieving the great-
est value for VD(k) or VI (k) is selected to prosecute
those split jobs via that kind of flight. This procedure
is repeated until all split jobs have been investigated or
assigned. Then, we proceed to the next customer. After
every split job in

⋃
t∈P

Pt is investigated or assigned, all

UAVs not at an LSS travel to the nearest station. STAH
is complete.

4.4 Receding Horizon Task Assignment

The RHTA is a popular heuristic. We modify the
RHTAd from [25] for our purposes. As our sys-
tem components are determined initially, we remove
the resource selection decisions and constraints from
RHTAd. The replenishment time for a UAV at an LSS
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Fig. 5 Geographical
information of Example 1

is adjusted for our assumptions (1–2). Appendix A3
provides the detailed pseudo code. Internal to the
RHTAd is an IP sub-problem; we remove the resource
selection components from it. We delete constraints
(12–13) in [25] and replace the objective function (1)
in [25]:

Min w1

NUAV∑
k=1

Nkp∑
p=1

SkpXkp − (1 − w1) · w2

·
∑
i∈W

NUAV∑
k=1

Nkp∑
p=1

AkipXkp (9)

We replace the constraint (11) in [25]:

∑
i∈W

NUAV∑
k=1

Nkp∑
p=1

AkipXkp ≤ P (10)

5 Numerical Examples

In this section, we provide example problems to
study computational behavior of the MILP, STAH and
RHTA. The MILP was solved directly via CPLEX.
These studies use a personal computer with Intel(R)
Core(TM)2 Quad CPUQ8400, 2.66 GHz and 4.00 GB
RAM.

5.1 Example 1: Scheduling Two Customers

The geographical locations of customer paths, LSSs
and UAVs for Example 1 are depicted in Fig. 5. Split
job data is given in Table 1. The trajectory of cus-
tomer 1 was divided into 12 split jobs. Customer
2 requires 3 split jobs. UAV 3 and 5 are initially
located at station 2 and 1, respectively. Other UAVs
are located on the field initially. Initial fuel levels of
each UAVs are set to {3, 8, 8, 6, 6, 8} and maximum

Table 1 Splitjob information of example 1

Customer Split Start point End point Start

job x y x y time

1

1 596 167 532 161 5

2 532 161 483 129 6

3 438 129 432 94 7

4 432 94 372 91 8

5 372 91 315 87 9

6 315 87 262 74 10

7 262 74 218 99 11

8 218 99 171 134 12

9 171 134 142 186 13

10 142 186 102 225 14

11 102 225 54 251 15

12 54 251 6 266 16

2

13 458 64 479 105 8

14 479 105 514 63 9

15 514 63 536 15 10
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Table 2 Split job information at T = 11

Customer Split Start point End point Start

job x y x y time

1

1′ 262 74 218 99 11

2′ 218 99 171 134 12

3′ 171 134 142 186 13

4′ 142 186 102 225 14

5′ 102 225 54 251 15

6′ 54 251 6 266 16

3

7′ 413 210 430 184 13

8′ 430 184 454 162 14

9′ 454 162 482 137 15

10′ 482 137 451 10 16

11′ 451 10 442 82 17

12′ 442 82 428 65 18

travelling time of UAVs are set to 12. The three sta-
tions are located at the x-y coordinates (394, 126),
(170, 79) and (72, 229). The LSS constants H = 3
and U = 0.5.

CPLEX, STAH and RHTA are implemented and
compared in terms of total travelling distance and
computational time. w1 and w2 are set to 0.3 and 50.
For STAH, α and β are set to 0.3 and 50. We set P
as 5 for RHTA. The MILP via CPLEX obtained an
optimal solution with 809.067 of total travelling dis-
tance in 71.59 seconds. All 15 split jobs were served.
Let Ik be the initial location of each UAV, k ∈ K ,
1, 2, . . . , 15 be the split job index and S1, S2, S3

be the station notation. CPLEX determines the UAV
split job assignments as follows; UAV1 : {I1, 1, 2, S1},
UAV2: {I2, S1, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, S3}, UAV3:
{I3(S2)}, UAV4: {I4, 13, 14, 15, S1}, UAV5: {I5(S1)}
and UAV6: {I6, S3}. STAH obtained the same travel-
ling distance with an alternate UAV schedule in 0.006
seconds. In the STAH solution, UAV 5 performs split
jobs from 3 to 12 instead of UAV 2. UAV 2 is tasked to
do {I2, S1} while UAV5 conducts the sequence of split
jobs {I5(S1), 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, S3}. RHTA
served every split job and obtained a solution with
911.949 total travelling distance in 0.187 s. This is a
12.72 % gap.

5.2 Example 2: Real Time Operation

We now consider real time operation. During the UAV
service of Example 1, a new customer request arrives
at time T = 10. Customer 3 wishes to be escorted
from T = 13 to T = 19. Therefore to serve customer
1 and 3, we reallocate system tasks from T = 11. All
split jobs for customer 2 have been served by T = 11.
Table 2 provides information on the 6 remaining split
jobs for customer 1 and 6 newly added split jobs for
customer 3 from T = 11.

At T = 11, UAV 1 and 5 are at station 1 with fully
charged energy sources. UAV 2 is at the end point of
split job 6 in Table 1 with 7.629 remaining fuel. UAV
3 is fully charged and located at station 2. UAV 4 is
at the end point of split job 15 in Table 1 with 2.325
remaining fuel. Fully charged UAV 6 is at station 3.
Figure 6 depicts the layout.

Fig. 6 Geographical
information at T=11
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The revised schedule assigns UAV 2 to the remain-
ing trajectory of customer 1 as in the original schedule.
UAV 5 serves customer 3 instead of resting at station
1 in the example 1.

5.3 Various Problem Sizes

Consider Example 1. We vary the number of split jobs
used for the same customer paths. Refer to Table 3.
w1 and w2 were set to 0.3 and 50. For STAH, α

and β were set to 0.3 and 50. We set the initial fuel
of each UAV (q1,ini , . . . , q6,ini) = (6, 8, 8, 10, 6, 8)
and (3,8,8,6,6,8) for cases of (NJ,NSTA,NUAV) =
(15, 3, 6). Initial fuel level significantly changes the
computation time. Due to the higher level of initial
fuel, the sum of travelling distances for the UAVs is
reduced.

For the cases with more than NJ = 15 split jobs,
initial fuel of each UAV (q1,ini , . . . , q10,ini) was set to
(6,8,8,10,6,8,6,8,8,10). CPLEX issues an out of mem-
ory error; it cannot solve the problem. STAH and
RHTA can derive feasible solutions with a second.
STAH is at least 31 times faster than RHTA in these
examples. Due to the strong computational power,
STAH and RHTA may be effective for use in task
planning in real time UAV service.

6 Concluding Remarks

We developed a task planning model for a system of
UAVs to provide nearly uninterrupted security escort
service. Logistic service stations (LSSs) enable the
persistent operation of the system. A mixed integer
linear program (MILP) was developed which allows
for arbitrary initial UAV locations and fuel levels.
As such it can be used in a rolling horizon formula-
tion. The objective balances between system service
quality (via the minimizing number of split jobs not
served) and energy efficiency (via minimizing the
total flight distance). As the problem is NP-hard, we
developed a new heuristic and extended a classic one.
The heuristic that we developed, STAH, was inspired
by features observed in optimal solutions obtained in
small problems (and solved via CPLEX). The RHTA
heuristic was extended based on one in [25]. We stud-
ied the computational behavior of the approaches via
examples. RHTA and STAH were at least 45 and
2,100 times faster than CPLEX, respectively. Their
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solutions, though suboptimal, were acceptable. We
also considered an example in which a new cus-
tomer arrived and the schedule required adjustment.
Real time operation, including disturbances such as
new customers, unexpected disturbances and devia-
tions from the plan may be addressed by the rolling
horizon formulation.
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Appendix

A1: MixedInteger Linear Program

Minimize w1

∑
i∈ΩA

∑
j∈ΩA

∑
k∈K

∑
r∈R

Dij · Xijkr + (1 − w1) · w2 ·
⎛
⎝|J | −

∑
i∈ΩJ

∑
ΩJ ∪ΩSE

∑
k∈K

∑
r∈R

Xijkr

⎞
⎠ (11)

Subject to

∑
i∈ΩSS∪ΩINI

∑
j∈ΩJ ∪ΩSE

Xijkr = 1 (k ∈ K, r ∈ R) (12)

∑
i∈ΩJ ∪ΩSS∪uΩINI

∑
s∈ΩSE

Xiskr = 1 (k ∈ K, r ∈ R) (13)

∑
i∈ΩJ ∪ΩSS

Xiskr =
∑

i∈ΩJ ∪ΩSE

Xs−1,ikr+1 (k ∈ K, r = 1, . . . NR − 1, s ∈ ΩSE) (14)

∑
i∈ΩJ ∪ΩSS

Xiskr = 0 (k ∈ K, r ∈ R, s ∈ ΩSS∪ΩINI ) (15)

∑
k∈K

∑
r∈R

∑
i∈ΩA

Xijkr ≤ 1 (j ∈ ΩJ ) (16)

∑
j∈ΩA

Xijkr −
∑

j∈ΩA

Xjikr = 0 (i ∈ ΩJ , k ∈ K, r ∈ R) (17)

Cskr = Cs−1,kr+1 (k ∈ K, r = 1, . . . NR − 1, s ∈ ΩSE) (18)

Cikr + Pi + Dij

T Sk

− Cjkr ≤ M
(
1 − Xijkr

)
(i ∈ ΩJ , j ∈ ΩJ ∪ ΩSE, k ∈ K, r ∈ R) (19)

M ·
∑

j∈ΩJ ∪ΩSE

Xijkr ≥ Cikr (i ∈ ΩJ ∪ ΩSS, k ∈ K, r ∈ R) (20)

Cikr + RT f + Dij

T Sk

− Cjkr ≤ M
(
1 − Xijkr

)
(i ∈ ΩSS, j ∈ ΩJ ∪ ΩSE, k ∈ K, r = 2) (21)

Cikr + RT r + Dij

T Sk

− Cjkr ≤ M
(
1 − Xijkr

)
(i ∈ ΩSS, j ∈ ΩJ ∪ ΩSE, k ∈ K, r > 2) (22)

∑
k∈K

∑
r∈R

Cikr = Ei (i ∈ ΩJ ) (23)

∑
i∈ΩA

∑
j∈ΩA

Dij

T Sk

· Xijkr+
∑
i∈ΩJ

∑
j∈ΩA

Pi · Xijkr ≤ qkr (k ∈ K, r ∈ R) (24)

qkr ≤ qk,ini (k ∈ K, r = 1) (25)

qkr ≤ qk (k ∈ K, r 
= 1) (26)

Cikr ≥ 0 (k ∈ K, r ∈ R, i ∈ ΩA) (27)

qkr ≥ (k ∈ K, r ∈ R) (28)

Xijkr ∈ {0, 1} (i ∈ ΩA, j ∈ ΩAk ∈ K, r ∈ R) (29)
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A2: Pseudo Code of STAH
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A3: Pseudo Code of RHTA
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