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Abstract Two robot paths are said to be in the same
homotopic group if one can be obtained from the
other by multiple small deformations. Knowledge of
robot homotopic groups gives information regarding
the obstacle structure and enables timely computation
of optimal path. Making a roadmap which misses out
on a single homotopic group in such approaches may
lead to sub-optimal decisions. E.g. one may prefer
to go through a very narrow corridor if that reduces
the path length significantly, but not if the resulting
path has too many such narrow segments. Similarly
knowledge of homotopic groups may enable distribu-
tion and scheduling of robots across homotopic groups
for decentralized planning of multiple robots. For
an unstructured robot environment, sampling based
approaches give an insight into homotopic groups.
The aim of the work is to make a homotopy con-
scious Probabilistic Roadmap such that the roadmap is
capable of generating paths corresponding to as many
homotopic groups as possible. Experimental results
confirm that the proposed approach gives the best
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results as compared to the other sampling techniques
subject to the test scenarios run.
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1 Introduction

Mobile robots are expected to navigate from one state
to the other in order to perform various useful tasks
usually in home or office environments. Let the con-
figuration space of the robot be given by C. A robotic
environment may be filled with multiple obstacles
which need to be avoided while carrying out any nav-
igation. Robot states such that any part of the robot is
in collision with any obstacle are given by the obsta-
cle prone configuration space denoted by Cobs. The
obstacle-free configuration space, Cfree = C\Cobs,
hence denotes the states that a robot may take at any
time during its operation. The problem of path plan-
ning of a robot deals with finding a path τ from a
source to a goal. The source state (sr ∈ Cfree) and
the goal state (gr ∈ Cfree) is known in advance. The
path (τ) denotes the continuum of collision-free states
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from source to goal state, given by, τ : [0, 1] → Cfree,
τ (0)= sr, τ (1)= gr. Here τ(s) denotes any general
state in the robot path.

Infinitely many collision-free paths may be possi-
ble from the source to the goal. Each path is a specifi-
cation of the manner of avoiding obstacles at a coarser
level and specific distances to maintain from the obsta-
cles at a finer level. The obstacles divide the set of
paths into groups, each group or homotopy denoting
a specific strategy of overcoming obstacles. The con-
cept is shown in Fig. 1a. Two paths and are said to be
in the same homotopic group if one can be deformed
to the other by multiple infinitely small deformations,
such that all intermediate paths are collision-free. Let
τ1: [0,1]→ Cfree and τ2: [0,1]→ Cfree be two paths
with τ1(0)= τ2(0)= sr and τ1(1)= τ2(1)= gr. A defor-
mation/mapping function is defined as h: h0 = τ1,
h1 = τ2, ht(0)= sr, ht(1)= gr. Here ht represents the
path at any general step t of deformation, t ∈[0,1]. The
paths are said to be in the same homotopic group if
such a continuous mapping h exists from the first path
h0 = τ1 to the second path h1 = τ2 such that all inter-
mediate paths ht are collision-free from source ht(0)=
sr to goal ht(1)= gr. A related term is homology. Two
paths are said to be homologous to each other if the
area bounded by the two paths (that is the area made
by the first path and the reverse of the second path) in
a 2 D manifold embedded in the configuration space
is obstacle-free.

Here environment is assumed to be unstructured.
By unstructured environment we mean that no struc-
tural information of the obstacles is available. Even
though the complete environment is available, it is
available in the form of high-resolution grid points
specifying obstacle-prone and obstacle-free areas.
Even though it is possible to use algorithms to extract

structure out of an unstructured environment represen-
tation, such algorithms are themselves time consum-
ing and prone to resolution loss which for the specific
problem can be fatal.

Knowledge of homotopic groups in an unstruc-
tured irregular obstacle prone environment can lead
to establishing a structure in Cfree, which helps in
complex decision making of the robotic mission. In
generation of a roadmap it is important to consider
whether the roadmap is able to sight nearly all homo-
topic groups for the given scenario of operation. This
ensures that nearly all possible routes are discovered
for optimal decision making. Consider the case of
Fig. 1b, wherein any search algorithm cannot discover
homotopic groups that go from the right of obstacle
A. However once the edge E has been added to the
roadmap, it is possible to sight all possible homotopic
groups. A deformation retract is formed by shrink-
ing all free spaces to a unit size and the resulting
roadmap guarantees generation of all possible homo-
topic groups possible between any pair of source and
goal. The deformation retract with edges equidistant
to obstacles may not always be the best roadmap and
may be very hard to generate in a high-resolution
unstructured setting. It further does not allow redun-
dant edges. Here a more generalized term of homotopy
conscious roadmap is used to refer to roadmaps which
are capable of generating as many homotopic groups
as possible, subjected to the constraints of computa-
tion time.

Optimality of decision making may hence be
largely attributed to whether all homotopic groups can
be discovered. Missing out a single homotopic group
can be harmful if the optimal plan involved the missed
homotopic group while the missed homotopic group
was difficult to find. For the task of path planning,

Fig. 1 Homotopic groups

(a) Trajectories in same and different

Source 

Goal

Same 
Homotopy 

Different 
Homotopy 

Deformation 

A 
E 

(b) Roadmap capable of generating all 
homotopic groups homotopic groups 



J Intell Robot Syst (2016) 82:555–575 557

the path costs may nearly remain the same for all
paths within a homotopic group, while the costs may
significantly differ for different homotopic groups.
This is with the assumption that there are no highly
wide open spaces for the optimal path in which case
the planning is relatively easy. The choice of homo-
topic group or path cost may be based on a variety
of factors including the number of turns, smoothness,
clearance, path length, operational speed constraints,
terrain, uncertainty and dynamics of the environment,
etc. In motion planning computation of the optimal
homotopic group is more difficult in comparison to the
computation of the optimal path within a pre-specified
homotopic group. Consider the case wherein the opti-
mal path consists of going through a narrow corridor
as a short-cut to taking a long encircled route. The
narrow corridors are hard to find for sampling based
approaches. The algorithm is likely to miss out sight-
ing the corridor and instead take the long route around
the obstacles. However, the narrow corridor may be
wrong to take if it involves a lot of tight maneuvers,
thus risking collision unless the robot is very slow and
cautious.

This work is inspired from the earlier works of the
author in the problem of multi-robot path planning [1,
2], where the paths of all the robots need to be com-
puted, such that no robot collides with all the others.
A typical way of solving the problem is to choose
the homotopic groups independently for all the robots
considering only the static obstacles at a coarser level.
The coarser level path is then used for finer level plan-
ning in a decentralised manner, wherein a coordination
mechanism is applied for handling robot collisions.
A major drawback of the approach is that the homo-
topic group selection is independent for all robots, and
hence the coarser level planning can schedule a large
number of robots in the same areas at the same times,
leaving the other routes largely unused. All the robots
on the popular routes hence have to make their way
out in a crowded scenario which is sub-optimal.

A solution to the problem is to consider the other
robots in the homotopic group assignment which may
still be planned in a decentralized manner. Such an
approach was used in [3] wherein homotopic group
referred only to the static obstacles while the homo-
topic group assignments considered the motion of
other robots; and approach used in [4] wherein homo-
topic group referred to both the static and dynamic
obstacles (other robots). Both these solutions were

however for road/traffic scenarios wherein there is a
prior known structure in the form of a straight/curved
road with all robots/vehicles travelling inbound or
outbound. In the absence of this road structure, in
a widely bounded robotic environment, the task of
homotopic group computation is not naı̈ve. Once the
set of all homotopic groups are known, judicious
assignment and scheduling of robots at various regions
of the homotopic groups may be done.

The paper is aimed in making the roadmap gen-
eration conscious of homotopic groups for a given
robotic environment. Probabilistic Roadmap (PRM) is
used for getting a homotopic structure out of the envi-
ronment, while a sampling technique is proposed that
ensures that as many homotopic groups gets repre-
sented as possible in the constraints of time. Attempts
are made to make the samples get generated at the
best places, so as to have overall optimal plans of the
robots. This corresponds to promoting obstacle-prone
samples to the nearest obstacle-free areas, focussing
on the obstacle boundary and maintaining a reason-
able separation of the sample from obstacle boundary
if possible. The aim is to discover as many homotopic
groups as possible, especially the ones more difficult
to discover, with the least number of roadmap vertices
and edges.

The contributions of the paper are as follows: (i)
The problem of discovering all homotopic groups for
an unstructured environment is studied, which is a
rather untouched problem in the literature with most
solutions focussing on the structured counterpart. (ii)
The concept of local roadmaps with size proportional
to the difficulty of the region is devised. The local
roadmap facilitates redundant connectivity to the rest
of the roadmap. The approach can simultaneously
cater to narrow corridors, congested environments and
otherwise difficult areas. (iii) An edge connection
strategy is formulated which discounts the connectiv-
ity of an edge based on the sizes of the roadmaps that
it is directly or indirectly connected to. The strategy
saves computational time at the same time maintain-
ing nearly the same connectivity of the roadmap as a
k-connected PRM. (iv) The design of the algorithm
is made generic to suit a variety of cases includ-
ing narrow corridors, open spaces, multiple pathways
between obstacles of multiple widths and narrow cor-
ridors amidst wide open spaces. The aim is to have
a common algorithm that performs well in all such
mixed scenarios.
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This paper is organized as follows. Section 2
presents the problem formulation, including presen-
tation of a few basic concepts. Section 3 gives the
related works. Section 4 presents the proposed algo-
rithm. Results are given in Section 5. Section 6 gives
some discussions. The conclusions are presented in
Section 7.

2 Problem

2.1 Probabilistic Roadmap

PRM is a sampling based approach which relies upon
generation of random samples in the configuration
space, which become the vertices of the roadmap.
Possibility of an edge between all pairs of vertices
is checked by a local search technique. A typical
way is to use straight line connections as the local
search technique. This roadmap is computed offline
for any robotic environment, which can then be used
for online planning in the query phase. The number
of edges per vertex may be restricted to reduce the
computational time. The concentration is on edges of
a vertex with the neighbouring vertices, the feasibility
computation of which is relatively less expensive. A
roadmap with lesser number of vertices and edges is
more time-efficient in the online planning phase. The
approach is probabilistically complete and probabilis-
tically optimal. Practically the algorithm needs to be
terminated after a reasonable time to limit the roadmap
construction and online planning computation time.

One of the ways to restrict the number of edges is
to check connectivity and add an edge from any ver-
tex to a maximum of k closest neighbouring vertices
[5], which is the method used in this paper. The selec-
tion of this method was done after due consideration to
other popular methods which are very briefly critiqued
here. A popular method is to check connectivity with
any vertex within a radius of k [6]. The method works
well for general PRM, however it is not used here
since the number of vertices are very limited and some
vertices (connecting two regions separated by a nar-
row corridor) may be reasonably far. Another method
of restricting the edges is to use graph spanners or
related methods [7, 8], which work after the roadmap
construction, identifying and removing not very useful
edges. A typical way is to remove edges if the short-

est path between two vertices does not get worse by a
factor of k times. As the aim of the work is to reduce
the roadmap construction time at the first place, this
method is not used. Iterative solutions to the same are
possible [9], but the optimality of the roadmap in the
initial few iterations cannot be ascertained. The same
concept is extended to Adaptive Roadmaps [10, 11]
and Elastic Roadmaps [12, 13] wherein the roadmaps
can adapt to the changing environment.

A related method is Rapidly-exploring Random
Trees (RRT) wherein the samples are not used directly
as vertices of the roadmap, but are used to extend the
roadmap towards the regions of the generated sample.
The roadmap is in the form of a tree which is initiated
with source as the only node. At every time a ran-
dom sample is generated, the closest node in the tree
is found, and the closest node is extended towards the
sample by a modest step size; which forms a new node
in the tree. For better performance, it is nice to use
bidirectional search from both source and goal [14],
extend a node until it reaches the end (RRT-Connect
[15]), and use multiple trees [16–19].

2.2 Problem Formulation

This paper focuses on the problem of making roadmap
generation conscious of the homotopic groups, such
that nearly all homotopic groups can be represented.
Since the problem is motivated from the problem of
multi-robot motion planning, the definition of homo-
topy is extended to all sources and goals of all the
robots. Let G(V , E) be a roadmap graph where
V denotes the vertices and E denotes the edges. Let
{sr ∪ gr} be the set of sources and goals of all robots,
which all need to be present in the graph ({sr ∪ gr}
⊂V). Note that the constraint of sources and goals
pre-existing in the roadmap is only done to facilitate
the definition of homotopy. Let Path(V1, V2 . . . ..Vn)

denote the path from V1 to Vn such that any two con-
secutive pairs of vertices Vi and Vi+1 is an edge or (Vi,
Vi+1) ∈ E. The aim is to have the least number of ver-
tices (|V |) and preferably the least number of edges
(|E|) in this graph such that all homotopic groups can
be represented or Eq. 1.

∀τ, ∃Path(x1...x2) : Homotopic(τ, Path(x1...x2)),

x1, x2 ∈ {sr ∪ gr }, x2 �= x1, τ (0) = x1, τ (1) = x2 (1)
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Here Homotopic(x, y) states if x and yare in the same
homotopic group.

For a small number of samples or for difficult
regions the approach may not be successful in mak-
ing a roadmap which represents all homotopic groups.
The metric designed to measure the performance of
the approach is taken as the number of edges (|�|)
to be added in the roadmap so that the resultant
roadmap is capable of representing all possible homo-
topic groups. Here � denotes the collection of edges
added. In simple terms, edges must exist all around all
obstacles. If an edge is absent, the specific homotopic
groups around that obstacle may not be generated. The
roadmap can be completed by adding additional edges
such that all homotopic groups are represented. The
least number of such edges is the metric of study. Here
an edge (τ ∈ �) may denote a line, curve or any valid
path whose both ends are vertices of the roadmap, and
it does not touch or intersect any obstacle or any other
edge. This is given by Eq. 2. Note that the number of
homotopic groups is not recommendable as a metric
since it is hard to understand and for any missing link
such a metric can be infinite.

τ : τ(0), τ (1)∈V, τ(s)∈Cf ree, τ (s) �= e(t)∀e∈E,

0 ≤ s, t ≤ 1 (2)

min |�|∀τ ∈ � satisfies (2), {E ∪ �}satisfies (1) (3)

2.3 Problems with Uniform Sampling

The performance of sampling based approaches
depends largely upon the quality of samples gener-
ated. A typical way is to use a uniform sampling
technique where all states in the configuration space
are equally likely to be generated. This results in a rea-
sonable roadmap having vertices in roughly all parts
of the environment. The uniform sampling approach
faces a few problems:

(i) The probability of generation of samples inside
a narrow corridor is very low (Fig. 2a). A solu-
tion to the problem is to use obstacle based sam-
pling [20] technique wherein a sample inside the
obstacle is promoted to the nearby obstacle-free
space by travelling in a random direction. Thus
a narrow corridor takes much of the samples of
the surrounding obstacles. The problem of low
probability however still remains if the corridor

and surrounding obstacles combined are a small
part of the entire environment. A better variant is
the uniform obstacle based sampling [21] where
the samples are uniformly distributed along the
obstacle boundary, independent of the shape of
the obstacle. However the method may perform
better than bridge-test [22] and Gaussian sam-
pling [23] in cases where obstacles occupy a
significant portion of the environment and sam-
pling near the obstacle boundary is not simple,
which are also methods for solving the narrow
corridor problem. The two approaches [22, 23]
also face problems when the narrow corridor is
a small part of the entire environment, for which
combining them with a uniform sampler is a
viable solution [24]. Better sampling techniques
more suited for the narrow corridors include
Toggle-PRM [25]. Sections 3 and 4 show how
the proposed approach builds local roadmaps
upon discovery of a narrow corridor so as to
almost completely deal with it, without much
the need of re-discovery by generation of other
samples.
It must be mentioned that obstacle based PRM
[20] first attempts simple connections between
vertices, followed by more sophisticated mech-
anisms to connect disjoint vertex sets by edge
and node additions. However the author’s ini-
tial experiments revealed that while it was very
easy to have a connected framework between
vertices, it was challenging to get redundant
edges and useful cycles to discover all homo-
topic groups. Like in Fig. 2a, challenge was
the narrow corridor after the easier path was
already obtained. In such a condition the obsta-
cle based PRM reduces to a simple obstacle
biased sampling method used in the discus-
sions. The scenario would have been different
with only a single narrow corridor as a part of
the environment with no possibility of redun-
dant connections, for which finding a feasible
connection is a good enough solution.

(ii) It is better to generate more samples around
the obstacle boundary and obstacle corners in
contrast to the wide open spaces. Every sam-
ple becomes a prospective vertex in the path
of a robot from its source to its goal, wherein
the vertex usually denotes a point of turn for
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Fig. 2 Sampling strategy
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the robot which it must make in order to avoid
some obstacle. If the environment was struc-
tured with polygon obstacles all around, keep-
ing samples at the obstacle corners was enough,
thereby making a visibility roadmap. While vis-
ibility roadmap requires one sample at every
corner of the obstacle, random samplers may
require more number of samples per corner as
samples may be generated near the corner at
the boundary face, from where connection to
other samples is not easy. Since the obstacles
are un-structured and may not have corners, and
may be high dimensional, clearly many sam-
ples are needed. More samples should be near
the obstacle boundaries rather than open spaces.
The proposed approach solves the problem by
concentrating on obstacle boundaries, but also
taking a few samples in wide open space. A
local roadmap is generated to completely model
a seemingly difficult turn. The concept is shown
in Fig. 2b.

(iii) Though the specific problem of focus in this
paper is only to create a homotopy conscious
roadmap, the location of the individual vertices
or samples is important as it contributes towards
the generation of optimal paths. A path can be
a representative of the path cost of the homo-
topic group only if the representative path is

near-optimal. An ideal location of the sample
should hence be that facilitates a short path
length and large clearance. Clearance is defined
as the smallest distance between the robot and
obstacles. Let the robot be at configuration xand
occupy a space R(x) in the workspace. Let O

be the set of obstacles with o as one of the
point obstacles in O. The clearance, denoted by
clearance(x) is given by Eq. 4

clearance (x) = min
r∈R(x),o∈O

‖r − o‖ (4)

Though the optimality of the path does
not translate to the optimality of the individ-
ual samples, however an understanding of the
path optimality can lead to a judicious sam-
ple generation. The sample must be around the
obstacle boundary, preferably corner (for small
path length), and maintain a sufficient distance
from the obstacles (for large clearance and high
smoothness). The concept is shown in Fig. 2c.
Uniform sampling results in a random sample
generation and hence the initial few samples
lead to a highly sub-optimal sample placement.
Similarly approaches biasing sample genera-
tion towards the medial axis [26, 27] result in
samples being too far from the obstacles for
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wide open space scenarios. The proposed paper
attempts to generate samples around the obsta-
cle boundary so as to aim small lengths, while
being somewhat away to maintain a respectable
clearance.

3 Related Works

There has been an interest in being homotopy con-
scious in the use of PRM. Schmitzberger et al. [28]
proposed Homotopy Preserving PRM. They proposed
adding edges to a roadmap to make it connected as per
visibility, while eliminating any loops to get the least
possible paths. The focus of the work was on elimi-
nating and adding edges to get a homotopic structure,
while the proposed work focuses on best sampling
of the configuration space to get nearly all possible
homotopic groups. Of course, the results of the pro-
posed work can be used in the work of Schmitzberger
et al. [28] to eliminate excessive paths.

If the environment is structured or semi-structured,
the task of homotopy identification is reasonably sim-
pler. Bhattacharya et al. [29] used complex analy-
sis and electromagnetism principles to compute the
homotopy and the associated shortest paths. Demyen
and Buro [30] used triangulation to get a homotopic
structure which was later reduced, and then a search
was applied to get the shortest path. Grigoriev and
Slissenko [31] took semi-algebraic obstacles in a plane
to compute the shortest path within a given homo-
topic group. The focus of this work is however for
unstructured environment.

Hsu et al. [32] presented the limitations of the
sampling techniques and gave the idea of adaptively
combining the sampling techniques. This paper is
aimed at a similar notion wherein the sampling design
integrates the advantages of various approaches. The
notion of adapting between multiple samplers was
not taken due to high dependence of the sampler to
cost function judging the utility of the sampler, which
can be difficult for the problem of homotopy iden-
tification. It may further take time for the sampler
choice to be adapted. Hence the choice was to make
an extensive integrated design instead of adapting the
samplers.

Shi et al. [33] further used local roadmaps inside
narrow corridors and enabled their connection to the
rest of the roadmap using an RRT-like approach. Con-

trary to the work of Shi et al. [33], the proposed
approach does not demarcate corridors as wide and
narrow. It assesses the difficulty proportional to the
narrowness of the corridor and accordingly deputes
samples in the local roadmap. Further it facilitates
redundant connections to introduce cycles useful for
discovering as many homotopic groups as possi-
ble.

Visibility PRM [34] and related techniques explore
in a tree-like manner, and hence such approaches are
not designed to explore all homotopc groups for which
cycles need to be permitted. They however result
in generation of spars roadmaps. In another related
work Jaillet et al. [35] proposed a transition-based
RRT wherein the nodes were first generated. How-
ever to be inserted into the tree they must pass the
transition test wherein only those nodes were added
which do not severely add the traversal cost. In this
manner the number of nodes were limited while aim-
ing for paths with better costs. Similarly numerous
approaches use spanners [36–38] or related meth-
ods to produce roadmaps with limited vertices and
edges. The works aimed at eliminating online plan-
ning time of the roadmap, while the proposed work
is aimed at limiting the roadmap construction time,
while still discovering most homotopic groups. Com-
putationally intensive measures cannot hence be taken
in the roadmap construction phase.

A significant effort is put to make the RRT opti-
mal and time efficient. Raveh et al. [19] proposed
executing multiple RRTs, which were then combined
using a dynamic programming based approach. With
some additional computational cost, it induces opti-
mality to the solution. Similarly Ferguson and Stenz
[39] proposed an iterative format of RRT to make it
optimal, wherein the previously generated solutions
acted as heuristics to guide the current iteration of
RRT towards optimal regions. Kalisiak and van de
Panne [40] proposed the use of a flood-fill like mech-
anism for expansions in RRT called as RRT-Blossom.
This was used to bias the expansions towards the goal.

Expansions at critical parts of the environment can
be difficult for which Strandberg [41] proposed the
use of local trees from various parts of the envi-
ronment. Expansions of these trees resulted in an
insight into handling critical regions of the environ-
ment. Urmson and Simmons [42] proposed to use
heuristics in the selection of nodes. The heuristics
translated to node selection probability of expansion,
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Fig. 3 Generation of
Roadmap a Generation of
vertices in the proposed
approach. The sampled
vertices are coloured red.
The vertices produced by
the local roadmap are
colored green. The
corresponding edges of the
local roadmap are coloured
green. b Generation of
edges in the proposed
approach. The edges added
between different local
roadmaps are coloured blue (a) Generation of vertices in the (b) Generation of edges in the

proposed approach proposed appraoch

and thus the algorithm can be made biased to expand
along better paths. The focus of these techniques is
to empower node selection and expansion, and not
sample generation which is the focus of the proposed
work.

4 Algorithm

The algorithm follows the general methodology of
PRM [5] wherein the stages are modified to suit
the motivations as detailed in Section 2. The general
methodology includes the use of a sampler to gener-
ate samples which become the vertices of the roadmap
(V ), computing edges (E) between the roadmap ver-
tices and using the roadmap G(V, E) so formed for
query phase which for this paper corresponds to the
problem of multi-robot motion planning. Each step is
detailed in the following sub-sections. The roadmap
for a synthetic test case after the generation of vertices
is shown in Fig. 3a and the same roadmap after the
generation of edges is shown in Fig. 3b.

4.1 Sampling

The base sampler is a uniform sampler, which uni-
formly samples the configuration space, x ←U(C),
where x is a random sample. Since the aim is to focus
the samples towards obstacles, the base sampler is
modified to produce an obstacle biased sampler given
by Eq. 5.

x ← O(C) =
{

U(Cobs) with probability η

U(C) with probability 1- η
(5)

The strategy produces approximately η percent
samples in the obstacle prone configuration space
Cobs. Gaussian [23], bridge [22] and related sam-
pling techniques aim to concentrate on obstacle or
obstacle boundaries and hence suggest use of η as
100 %. However such methods may not well sample
out environments with wide open free spaces, plac-
ing no sample in such areas. Hence the approach uses
a large value of η, largely (η percent) focussing on
obstacles with a small focus (1-η percent) on open
spaces as well.

The obstacle prone samples are then promoted to
the nearest point in the free configuration space, given
by Eq. 6, which is similar to obstacle based sampling.
It is attempted that they further maintain a minimum
clearance of Cmin, in which case they are moved even
further by a small value given by Eq. 7.

xf ree =
{
x + r (θ) :x+r (θ)∈Cf ree, x+r ′ (θ) /∈ Cf ree∀0≤ r ′< r, x /∈Cf ree

x x ∈Cf ree

(6)

y = xf ree + c (θ) :
c = arg max

0≤c′≤Cmin

Clearance
(
xf ree + c′ (θ)

)
(7)

Here xf ree is sample promoted to the free config-
uration space (if needed) and y is the sample which
further maintains a minimum clearance of Cmin. θ is
the direction of movement of the point, r(θ) denotes a
vector of magnitude r and direction θ . Clearance(x) is
the clearance function which returns the distance from
the configuration x to the closest obstacle.

The number of vertices (|V |) in the roadmap need
to be limited so as to invest the least computation in
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the roadmap construction phase (and also the query
phase). The best way to do so is to avoid any unnec-
essary cycles in the graph, which can be approxi-
mately checked. However such approximate computa-
tions incur costs equivalent to multiple edge collision
checks and can be used only if query computational
time is to be reduced. It is better to add such vertices,
investing a part of cycle checking time to connect-
ing edges between the vertices, thereby adding query
computation time but saving on the roadmap construc-
tion time. However two vertices very close to each
other are clearly useless and this can be checked in
a small time. Samples are taken iteratively and added
to the roadmap as vertices. Any such sample (y) is
admissible as a vertex only if it lies at a distance of
more than dmin from the earlier existing vertices given
by Eq. 8.

min
v∈V

‖v − y‖ > dmin (8)

4.2 Local Roadmaps

The samples generated can be found anywhere in the
free configuration space including regions of narrow
corridors, situations requiring tight steering correc-
tions, wide open spaces, and obstacle boundaries with
wide open space at the other side. The first two situ-
ations are hard to handle for sampling based motion
planners, the first more than the second. The steps
taken in the literature for handling the situation have
been taken into account in the algorithm design prop-
erties noted in Section 4.1. However getting a sample
inside a narrow corridor can be valuable when the nar-
row corridor is a small part of the entire environment.
Approaches in the literature go forth with only adding
the detected sample in the narrow corridor. However
it is proposed here to generate a small local roadmap
around the location of the sample in the narrow corri-
dor, thus enabling the algorithm to almost completely
deal with the corridor when it is first discovered, rather
than waiting for the algorithm to be lucky in finding
another sample in the corridor later.

In order to test whether the sample is inside a
narrow corridor, a generalized bridge test [22] is pro-
posed. The first generalization made is that the check
is done in all (sampled) directions. The second gen-
eralization is that it is not only important whether the
corridor is narrow or not, but also how narrow the

corridor is. The check is given by Eq. 9.

D (y) = min
θ

(Clearance (y, θ)

+Clearance (y, π + θ)) (9)

Here Clearance (y, θ) denotes the clearance at
point y in direction θ . π + θ is the angle directly
opposite to θ . D(y) denotes the width of the corridor
that contains the sample y.

Let the local roadmap produced by the discovery
of a narrow corridor by the sample y be Gy(V y, Ey).
The total number of vertices that this roadmap may
have |V y|may be given by any function f (D) mono-
tonically decreasing with the width of the corridor,
implying that a narrower corridor is harder to deal
with and will hence have a larger size of the local
roadmap. The size is subjected to a maximum thresh-
old (V y

max) to avoid reserving too many nodes for the
local roadmap at the cost of the global roadmap, while
a minimum threshold of 1 naturally applies. A simple
way to set the function is to take a number of scenar-
ios, calculate the widths at key locations, and decide
the number of nodes that would be apt. A function can
be easily regressed from the data. Since the maximum
threshold is fixed and the output has to be rounded to
integer values, there are a few regions and a small set
of values to regress. Currently the function is taken as
inverse of the width as given in Eq. 10.

∣∣V y
∣∣ = f (D) = δ

D (y)
(10)

Here δ is an algorithm parameter that relates the
width to the number of vertices in the local roadmap.

To produce the local roadmap, starting from the
sample y, an RRT style exploration [15, 16] with
a variable step size is used. At any iteration a ran-
dom sample from the local roadmap so far is taken,
z’=rand(V y). Here rand returns a random sample
from the set taken from a uniform distribution. A ran-
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dom sample (z) is produced in the close vicinity of z’.
z is added as a vertex if (a) it is collision free, z ∈ Cfree.
(b) The edge from z′ to z is collision free, ∃e:e(t) ∈
Cfree∀0 ≤ t ≤1, e(0)= z’, e(1)= z. Currently only
straight lines are considered. (c) The minimum dis-
tance criterion to the other vertices as mentioned in
Eq. 8 is followed, which includes all the vertices added
to any local (or global) roadmap. If z is admissible as
a vertex of the local roadmap, the corresponding edge
is added to Ey.

The expansion is stopped when the required num-
ber of vertices (with edges) have been produced in
the local roadmap, or a maximum number of failed
attempts have been reached. The maximum failed
attempts naturally depends upon the total number of
vertices to be added as narrower corridors require
more failed attempts for each insertion of a vertex.
Figure 2a shows the local roadmaps produced on a
synthetic map. The red coloured nodes are the samples
generated. If a sample is in a narrow region, the local
roadmap is generated. The local roadmap vertices and
edges are shown in green.

Based on the discussions so far, it can alternatively
be stated that the global roadmap ς(V , E) is such
that each vertex v ∈ V is a local roadmap Gv(V v,
Ev), and each edge e ∈ Ecorresponds to connections
between two local roadmaps e<v1, v2>: v1 ∈ V 1,
v2 ∈ V 2 �= V 1. |V |denotes the total number of
disjoint local roadmaps. The task of production of ver-
tices of the global roadmap or production of local
roadmaps was done in this sub-section.

4.3 Computing Edges

The next task is to connect bridge edges that connect
two disjoint local roadmaps and serve as edges of the
global roadmap. Two connection schemes are used:
fully-connected and k-connected.

A fully-connected roadmap strategy seeks to find
connections between any two pair of vertices (say
vi and vj). If a collision-free connection exists (∃e:
e(t) ∈ Cfree∀0 ≤ t ≤1, e(0)= vi, e(1)= vj), the
corresponding edge is added to the graph. Here e(t)

represents any general point in the edge from vi at t=0
to vj at t =1. Currently only straight line connections
are checked (e(t) = vi + t .(vj-vi)).

The feasibility checking for any edge [43] is
first done by a lazy collision checker (e(t) ∈
Cfree∀t ∈Uα(0,1)). Here Uα(0,1) denotes α uniformly

sampled points in the interval of 0 and 1. α corre-
sponds to the granularity of collision checking. The
method checks for collision possibility across α sam-
pled points, followed by a complete collision checker
(e(t) ∈ Cfree∀0 ≤ t ≤1, e(0)= vi, e(1)= vj). A lazy
collision checking was not applied in Section 4.3 since
it was known that the vertices would be reasonably
near.

A fully connected roadmap incurs significant com-
putational costs. Hence a k-connected variant of the
algorithm is proposed, where an edge can have a maxi-
mum of k connections while the connections are made
with the priority of the nearest neighbours. Because
of the choice of the sampling technique, sometimes it
may be impossible to make connections between the
nearest samples with a need to consider the further
samples, still the number of connections should not
exceed k (say the sample is near an obstacle bound-
ary, outside one face, with most samples or a local
roadmap at the other face)

While a naı̈ve implementation of the connection
strategy is possible, it is intended to further use the
property of a fully connected local roadmap (directly
or indirectly through other vertices) to speed up the
computation. Although indirect connections are not
counted in designating a roadmap as fully connected,
it is done here because the local roadmap spans across
a very limited volume and reaching a vertex directly
or through some other vertex does not have a large
difference in path costs. If a vertex v is connected to
any vertex vj, it may hence be assumed that it is also
(indirectly) connected to all the vertices in the local
roadmap of vj (say vz).

Let κ(v) denote the number of connections main-
tained by the vertex v at any time. As per the above
discussions that includes all the vertices in the local
roadmap in which v is placed (say V y: v ∈ V y), as
well as all vertices of any local roadmap to which the
vertex v has a direct edge to (or all vertices of local
roadmap V zwhose any member maintains an edge
with v). κ(v) may be given by Eq. 11. Here the edge
function E is taken different from the function κ since
E stores only direct edges between the vertices as a
formal definition of the roadmap, while κ stores the
direct and indirect edges.

κ (v) =
∣∣∣∣∣∣
(
V y − v

) ∪
⋃

z �=y,〈v,vj 〉∈E,vj ∈V z

V z

∣∣∣∣∣∣ (11)
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Edges are added iteratively in an initially
completely disconnected roadmap obtained from
Section 4.3, barring the local roadmap edges. For any
vertex v, an edge is attempted to be added with any
vertex vi , such that: (a) v �= vi, (b) vi is the closest
disconnected neighbour for which edge feasibility
checking has not already taken place, (c) v is not
already connected to the fullest extent possible, or
κ(v)<k. (d) v and vi are not in the same local roadmap
in which case they are already assumed to be directly
or indirectly connected, or v ∈ V y ∧ vi /∈ V y, (e)
the local roadmap Gz(V z, Ez) to which vi belongs is
not already indirectly connected to v through a sister
vertex vj, or v is not already connected to a vertex vj

such that vj and vi are in the same local roadmap, or

vi /∈
⋃

z �=y,〈v,vj 〉∈E,vj ∈V z

V z.

The collision checking happens using a lazy colli-
sion checking followed by a complete collision check-
ing. The addition of edges in the map is shown in
Fig. 2. The edges added are coloured as blue to dif-
ferentiate them from the local roadmap edges. The
algorithm of computing the vertices is given by Algo-
rithm 1. The algorithm to compute the edges is given
by Algorithm 2. The set P in the algorithm stores
all elements iteratively used for condition (e) above.
The algorithm is for the k-connected variant, while the
fully connected variant is the simpler case that can be
easily derived from Algorithm 1 and Algorithm 2.

Algorithm 1 is used to compute the vertices of
the roadmap. A sample is generated using an obsta-
cle biased strategy (Line 3), which is propagated to
the obstacle boundary (Line 4), and still further to
maintain a preferred clearance, if available (Line 5).
If the sample is away from the pre-existing samples in
the roadmap (Line 6), it needs to be added. A small
local roadmap may be added as per the difficulty of
the region. The corridor width is assessed (Line 7)
to know the number of samples to produce in the
local roadmap (Line 8). A local roadmap is initial-
ized with the newly generated node alone (Line 9).
A random vertex is selected from this roadmap (Line
11), which is extended in a random direction (Line
12) by a random step size (Line 13) to generate a new
node (Line 14), which on meeting the acceptance con-
ditions of non-collision of vertex and edge and not
pre-existing in the roadmap (Line 15), is added to the
local roadmap by the addition of vertex (Line 16) and

edge (Line 17). All local roadmaps are added to the
roadmap, along with the vertices (Line 20) and edges
(Line 21). The list of connected vertices for each ver-
tex is kept as the vertices in each local roadmap (Line
22).

Algorithm 2 adds the edges in the roadmap. For
every vertex v (Line 1), first the disjoint vertex set
or the local roadmap is computed to which the ver-
tex belongs (Line 2). Then iteratively edge connection
attempts are made between the selected vertex (v) and
the other vertices (vi) in the increasing order of dis-
tance between the vertices (Line 4). An edge can only
be added till maximum connectivity is not reached
(Line 5) and if the two vertices are not directly or
indirectly connected, in other words, the two vertices
do not belong to the same local roadmap and do not
belong to local roadmaps connected to each other
(Line 6). The local roadmap of vi is computed (Line
7). A straight line connection is attempted (Line 8).
If the connection is collision-free (Line 9), the corre-
sponding bi-directional edge is added (Line 10). The
vertex v is said to be connected to all vertices in the
local roadmap of vi and vice versa, and hence their
connectivity is increased (Line 12 and 13). The set P

maintains all connections between the local roadmap
V y and other local roadmaps as they are made. It is
initialized by a NULL (Line 3) and upon addition of
any local roadmap, the set is updated (Line 11).

4.4 Multi-Robot Path Planning

The focus of the paper was construction of a roadmap
in order to represent nearly all possible homotopic
groups, which can be used to query for robotic tasks.
Although the focus of the paper is not multi-robot path
planning, the same was an inspiration of the work, and
is hence dealt with in this sub-section only for the sake
of completeness of the work.

Priority based planning [44] is used, wherein the
robots are given priorities and planned strictly in the
same order. The priority assignments can be optimized
[45] if the query computational time is small. Pri-
oritized A* algorithm is used for planning. The A*
algorithm uses the heuristic function as the Euclid-
ian distance to the goal upon the maximum speed,
which is the earliest that the robot can expect to reach
the goal. The historic function is the time from the
source which is edgewise discounted by a penalty
function for lack of maintenance of a high clearance.
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Algorithm 1 ComputeVertices(C, {sr, % gr})
Line 1 G<V,E>← <{sr, gr},∅>

Line 2 While Not Stopping Criterion
Line 3 x ← random sample from obstacle biased sampler (5)
Line 4 xfree ← sample from motion of x to nearest Cfree (6)
Line 5 y ← sample in Cfree maintaining preferred clearance Cmin ( 7)
Line 6 if minv∈V ‖v − y‖ > dmin(8) [Note that v iterates through all vertices of all member

local roadmaps]
Line 7 D(y)←Corridor width (9)
Line 8 M ←maximum vertices in Gy (10)
Line 9 Gy<Vy,Ey>← <y, ∅>

Line 10 while |Vy|<M or maximum failed iterations
Line 11 z′ ←rand(Vy)

Line 12 θ ← random direction vector
Line 13 r ← rand(min step size, max step size)
Line 14 z ← z′ + r(θ)

Line 15 if

( (
z ∈ Cf ree

) ∧ (∃e:e(t) ∈ Cf ree, 0 ≤ t ≤ 1, e(0) = z′, e(1) = z
)

∧ minv∈V ∪V y ‖v − z‖ > dmin

)
Line 16 V y ← V y∪z
Line 17 Ey ← Ey∪<z,z′>∪<z′,z>
Line 18 end if
Line 19 end while
Line 20 V←V∪V y

Line 21 E←E∪Ey

Line 22 κ(v)←|Vy|∀v ∈ V y

Line 23 end if
Line 24 end while
Line 25 return G<V,E>

The A* algorithm may prefer wide open spaces in
contrast to narrow passages computed in the roadmap
construction. It must be noted here that even if the
roadmap generation method is complete and guaran-
tees the generation of all possible homotopic groups,
prioritized A* algorithm may still not be complete.
Prioritization can reduce completeness as it does not
model plans wherein multiple robots mutually adjust
their paths, without any one robot taking a com-
plete priority over the other. The priority assignment
can also be made dynamic as displayed in the work
of Clark et al. [46], who used kinodynamic single-
query motion planning for navigating multiple mobile
robots, using a dynamic prioritization technique.

Let there be N robots in the system, each with
source sr and goal gr. The roadmap is built with a
static configuration space Cstatic, assuming no mobile
robots. The robots are prioritized. Let the priority of

any general robot be pr. The robots are planned in
the order of priority and at any state of planning of
the robot r , the trajectory of any robot q(say τq) is
known if pq<pr. A dynamic configuration space for
any general time t is hence given by Eq. 12.

C
dynamic
f ree (t) = Cstatic

f ree \
⋃

pq<pr

x : collides
(
τq (t) , xr

)
(12)

To check collisions a mapping to the workspace is
done. The function collides(τq(t), s) checks if the
robot q placed at a point τq(t) collides with the robot
r placed at a point x.

The same space is additionally used for collision
checking for all edges of the roadmap. Using the cri-
terion, let the path computed in the query phase of
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Algorithm 2 Compute Edges(C, G<V,E>)

Line 1 for all v∈V
Line 2 y: v∈Vy

Line 3 P← ∅
Line 4 for all vi(�=v)∈V in increasing order of ||v–vi||such that <v,vi>∈E
Line 5 if κ(v) ≥k, break, end if
Line 6 if vi /∈P∧vi /∈Vy

Line 7 z: vi ∈Vz

Line 8 e(t)=v+t.(vi-v)∀0 ≤t≤1
Line 9 if(e(t)∈Cfree∀t∈Uα(0,1)) ∧(e(t) ∈Cfree∀0 ≤t≤1)
Line 10 E←E∪<v,vi>∪<vi,v>

Line 11 P ← P∪Vz

Line 12 κ(v) ← κ(v)+|Vz|
Line 13 κ(vi) ← κ(vi)+|Vy|
Line 14 end if
Line 15 end if
Line 16 end for
Line 17 end for
Line 18 return G<V,E>

the roadmap be Path(sr , gr , C
dynamic
f ree ). The path is

further post-processed by using simple operators like
deletion of points for path shortening and locally opti-
mizing the points for path smoothening, along with the
use of spline curves for path smoothening. The post
processed path is traversed with uniform speed which
becomes the robot’s trajectory τr .

5 Results

The algorithm was tested via a number of simula-
tions. Initial testing involved generating a roadmap
over different scenarios. This was used for the prob-
lem of motion planning, while both the roadmaps
and the paths were displayed. The robot considered
was small and rectangular in shape and hence the
configuration space was SE (3), which has 3 compo-
nents, the position (x, y) and the orientation in SO (2),
which is basically the orientation angle (θ). The con-
figuration space was mapped on the 2D figure with
an R2 configuration space, by eliminating the orien-
tation angle in the plot. The map was taken of the
size 500×500 while the size of the robot was taken as
10×10. The roadmap was used to assess the working
of the algorithm. The metric used to judge the per-
formance is the additional number of edges required

that lead to representation of all homotopic groups
(3). While the algorithm works autonomously for any
scenario, the metric needs to be computed manually
due to no existent algorithm for the purpose. It is
however easy to compute the metric for an almost
fully connected roadmap. Automated methods could
be possible with the assumption of a structured envi-
ronment, wherein all possible homotopic groups can
be easily computed using a Voronoi roadmap and
listed using a typical graph search, and further using
algorithms to check if two paths belong to the same
homotopic groups. For an unstructured environment
this can only be done on coarser resolutions. Since
presence of a narrow corridor is a challenge, the res-
olution of homotopy checking cannot be kept low.
Since the test metric was not the specific focus of
the work and was not needed in the general wor-
king of the algorithm, a manual method was pre-
ferred over researching over algorithms for automated
checking.

The algorithm has little parameters which signif-
icantly affect the algorithm performance and are of
practical value. The algorithm does not add any spe-
cial parameter of relevance, not present in PRM or
other popular approach in robot planning. The stop-
ping criterion is fixed as the total number of vertices
and varies as per the scenario as experimented and set
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below. k is taken to be 10 to avoid an overly-connected
graph. η can be fixed to any convenient large value,
which is taken as 0.9. δ is taken as 100, while the
number of vertices are limited to lie between 1 and
5. Minimum distance allowed between vertices can
be fixed to any convenient small value, taken as 25
for experiments. The minimum clearance is a design
parameter and does not affect this algorithm perfor-
mance, which is fixed to a very small value of 5. The
factor α for lazy collision checking is also not directly
related to the algorithm and is kept such that sam-
ples at a distance of 40 are generated. The factor was
experimentally studied in [43].

The performance of the algorithm is judged against
a standard implementation of PRM using a uniform
sampler and a PRM using an obstacle based sampling
technique [20]. Note that Gaussian [23] and bridge
test [22] were excellent algorithms against which the
performance could be tested. However obvious limita-
tions on scenarios as noted in Section 2.3, as opposed
to the requirement of performance over a wide vari-
ety of scenarios, discouraged their use. Further manual
metric computation limited the number of algorithms
that could be tested and only the most competing ones
were retained.

Three scenarios are discussed here. Note that in all
experiments, due to the size of the robot, the widths
shown in the environment are smaller than the ones
available. The first scenario mostly consisted of wide
open spaces with some obstacles around. However
there was a small region between two obstacles where
the space was less. Further, for too less samples, it
may be difficult to connect between obstacle corners
and the environment boundary. The aim behind the
scenario was to test if all homotopic groups can be dis-
covered for a very small number of vertices, yielding
roadmap construction in small computational times.
The roadmap constructed with only 50 samples by the
algorithm is shown in Fig. 4a.

The second scenario had 3 small narrow corridors
which had to be discovered while the rest of the envi-
ronment had wide open spaces. All the three corridors
should be found as well as connected to each other
for a success. The scenario is shown in Fig. 4b with
the performance of the algorithm with 75 samples.
The last scenario consisted of multiple narrow corri-
dors with barely any open space with the rest of the
environment. Each of these corridors had to be con-
nected to all the neighbouring ones, while some space
was available for the connections to happen. The envi-
ronment and the performance of the algorithm for
100 samples is shown in Fig. 4c. It can be seen that
while the algorithm succeeded in discovering all the
corridors, it was unable to connect one of those and
hence connection is an equally important problem as
discovering.

The stopping criterion of the algorithm was kept
as the total number of vertices in the roadmap |V |.
The performance against a number of limiting values
was tested. Both the fully connected and k-connected
variants were tested separately. The performance was
tested over 100 cases and the results were averaged.
The computation time in each of the cases was also
noted. The results noting the algorithm performance
are given in Fig. 5 and the results giving the compu-
tational time are given in Fig. 6. For the last scenario
testing was not done with 50 samples as they were
clearly insufficient to discover all the corridors in the
scenario.

Figure 5a, b and c show the results for the three sce-
narios for the k-connected variant while Fig. 5d, e and
f show the results for the fully connected variant. It can
be easily seen that the proposed approach performs
best for all the scenarios followed by the obstacle
based sampling, while the uniform sampling approach
performs the worst. The results are an experimental
conformation to the fact that the proposed approach
can adjust to the different types of scenarios, very

Fig. 4 Maps and roadmaps
for various scenarios

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3
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Fig. 5 Performance of the
algorithms

(a) Scenario 1, k-connected  (b) Scenario 2, k-connected 

(c) Scenario - 3, k-connected (d) Scenario 1, fullyc onnected 

(e) Scenario 2, fully connected (f) Scenario 3,fully connected 

0

0.2

0.4

0.6

0.8

50 75 100

Av
er

ag
e(

|Γ
|)

Number of Vertices

Scenario 1 (k connected)

PRM-k

Obstacle-k

Proposed-k 0

1

2

3

4

50 75 100

Av
er

ag
e(

|Γ
|)

Number of Vertices

Scenario 2 (k connected)

PRM-k

Obstacle-k

Proposed-k

0
1
2
3
4
5

75 100
Av

er
ag

e(
|Γ

|)

Number of Vertices

Scenario 3 (k connected)

PRM-k

Obstacle-k

Proposed-k 0

0.2

0.4

0.6

50 75 100

Av
er

ag
e(

|Γ
|)

Number of Vertices

Scenario 1 (fully connected)

PRM

Obstacle

Proposed

0

1

2

3

4

50 75 100

Av
er

ag
e(

|Γ
|)

Number of Vertices

Scenario 2 (fully connected)

PRM

Obstacle

Proposed 0
1
2
3
4

75 100

Av
er

ag
e(

|Γ
|)

Number of Vertices

Scenario 3 (fully connected)

PRM

Obstacle

Proposed

quickly resulting in discovering most of the homotopic
groups. While the easier and relatively challenging
homotopic groups may be discovered in the initial
very few samples, the most challenging ones require
only some additional iterations.

Figure 6 shows a comparison of the computation
time for all the scenarios. For the first scenario having
open spaces, shown in Fig. 6a and d, all approaches
seem to be equally computationally expensive, which
is an expected trend. Since the environment mostly has
wide open spaces, there is a minimal computational
effort spent in advancing an obstacle-prone config-
uration to the nearest boundary. The results, shown
in Fig. 6b and e for the second scenario and Fig. 6c
and e for the third scenario, show that the proposed
approach has consistently less computational expense.
The uniform sampling PRM approach wastes a sig-
nificant time in finding a collision-free sample. The
obstacle based sampling approach saves that time by
advancing a collision-prone sampling to the collision-
free area, while such an advancing also takes time. The

proposed approach also saves the obstacle-free sam-
ple generation time by advancement of the sample,
while investing time on advancement of the sample.
However once such an advancement has been made,
the approach gains by generation of multiple con-
nected samples in the nearby area, which are computa-
tionally easy to find. Thus the generation of a local
roadmap is a boon for performance not only for the
metric of study, but also for reducing the computation
time.

For the sake of completeness, the results of plan-
ning multiple robots on the produced roadmap are also
presented. In each of the scenarios two robots were
taken at opposite corners, which had to reach the other
opposite corner. Since the robots have complementary
goals and sources and use the same roadmap, ideally
they would get the same optimal path, disregarding the
other robot. However, using priority based A* algo-
rithm, the second robot knows the path of the first, and
may hence aim to track a different homotopic group,
or may aim to modify its path in the same homotopic
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Fig. 6 Computation times
of the algorithms

(a) Scenario 1, k-connected (b) Scenario 2, k-connected

(c) Scenario 3, k-connected (d) Scenario 1, fully connected

(e) Scenario 2, fully connected (f) Scenario 3, fully connected
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group. Both the cases were seen. The post process-
ing algorithm attempted to maintain a clearance larger
than the minimal used in the roadmap computation.
The results for different scenarios are given in Fig. 7.
The time instance when the robots avoided each other
is given for each scenario, followed by the complete
path at the end.

6 Discussions

The algorithms are assessed from the point of view of
computational time. The complexity of the method is
difficult to understand, as most of the terms otherwise
stated as constant also need to be incorporated to best
understand the algorithm. If these terms are not incor-
porated, the complexities of the algorithm will come
out to be the same. In this section the computational
time of the methods is studied from a complexity
perspective. Let us define some terms first:

Vertices
n: The number of vertices in the roadmap

p: The probability of a random sample to be in free
space given by |Cf ree|/|C|

p̄ : The probability of a random sample to be
obstacle prone given by |Cobs |/|C|

Edges
k: The number of vertices considered for edge con-

nectivity
||E||: The average length of edge between any two

vertices
D : The maximum obstacle length

Proposed Method
S: The maximum step size for a local edge
η : The ratio of samples generated from obstacle

based sampling
W : Maximum width of the corridor considered
γ : Average number of vertices in every local

roadmap
n/γ : Number of local roadmaps (n/γ roadmaps

each with average γ vertices make a complete
roadmap of size n)

k/γ -1 or n/γ -1: The number of local roadmaps that
each local roadmap is connected to (Every vertex
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is connected to γ vertices in its own local roadmap
and k/γ -1 roadmaps, each with γ vertices, totalling
k vertices (γ + (k/γ -1). γ ) for a k-connected
roadmap) and n vertices (γ + (n/γ -1). γ ) for a
fully-connected roadmap)

The complexities of the different algorithms are as
under:

PRM
Vertex: O(n.(1+p)) where the term (1+p) is to

discard samples generated in obstacles.
Edge (fully-connected): O(n2.||E||) to attempt

connections between every combination of vertices
with an average edge length as ||E||.

Edge (k-connected): O(nk.||E||) with a similar rea-
soning

Obstacle-based
Vertex: O(n.(1+p̄).D) where the term (1+p̄) is

to discard samples generated in free space, while
every successfully generated sample needs to travel
a distance of D to reach the obstacle boundary with
a constant clearance.

Edge (fully-connected): O(n2.||E||)
Edge (k-connected): O(nk.||E||)

Proposed
Vertex Generation: The total number of vertices

generated by the obstacle biased sampling methods

are only (n − γ ) rather than n, because γ ver-
tices are produced by the local roadmap generation
method. Out of these η(n − γ ) vertices are pro-
duced by the obstacle based sampling method while
(1-η).(n − γ )vertices are produced by the uniform
sampling method. Noting the complexities above,
the complexity to generate the samples is:

Vertex generation complexity = O(η(n − γ ) .

(1 + p̄) . (D + W) + (1 − η) . (n − γ ) . (1 + p))

+ O(vertex generation of roadmap)

The term W is added to the first term as an additional
step is performed to find the width of the corridor. The
complexity of generation of local roadmap accounts
for generation of random sample in the local vicin-
ity and checking for the local edge, which gives the
complexity as O(γ S). Thus the resulting complexity is:

Vertex generation complexity = O(η.(n − γ ) .

(1 + p̄) . (D + W) + (1 − η) . (n − γ ) . (1 + p))

+ O(γ.S) ≈ O((n − γ ) . (1 + p) . (D + W))

Edge Connection (fully connected): Every vertex
is already connected to γ vertices directly as a
result of the local roadmaps made earlier. Every
local roadmap will be connected to (n/γ -1) ver-
tices directly and thus connecting to γ vertices
indirectly in each of those roadmaps. The local
roadmap edges were made during vertex genera-
tion and hence its complexity is not added. Only

Fig. 7 Simulation Results
for Multi-Robot Path
Planning

(a) Scenario 1 Halfway  (b) Scenario 1 Complete (c) Scenario 2 Halfway 

(d) Scenario 2 Complete (e) Scenario 3 Halfway (f) Scenario 3 Complete 
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connections between the local roadmaps are made.
Hence the complexity is O((n/γ -1).||E||)

Edge Connection (k-connected): O((k/γ -1).||E||)

The results are summarized in Table 1.
Based on Table 1 and Fig. 6, let us first analyze

the fully-connected variant. Obstacle-based sampling
generally spends more time in vertex generation as
compared to PRM with uniform sampling, however in
both methods the major cost is of edge connectivity.
Because vertices in obstacle based sampling are near
the obstacle boundary, the average edge length ||E||in
obstacle based sampling is smaller which overcomes
the extra time spent in vertex generation. Similarly
the proposed method clearly has a larger complexity
of vertex generation, however a smaller complexity of
edge connection. This is because some of the edges
are locally connected by small lengths. Also indirect
connections between edge of one local roadmap and
another local roadmap are said to be (indirectly) con-
nected (if the two local roadmaps are connected) with-
out adding a direct edge or checking for a connection.
This saves computation time.

The same reasons hold for k-connected variants
with the only difference that in k-connected variants,
because only nearest vertices are checked for con-
nectivity, the average edge length of obstacle based
sampling may not always be shorter than that of uni-
form sampling PRM. Hence the computational time of
obstacle based sampling method may be higher due to
larger time spent in the computation of vertices.

The next major issue is to prove the completeness
of the algorithm. By definition, a deformation retract
guarantees completeness while also holding the prop-
erty of generating all homotopic groups. The proof is
largely inspired by the notion of a deformation retract.
To prove completeness of the constructed roadmap,

essentially the notions of accessibility (it is possible
to go from the source to some point on the roadmap),
departability (it is possible to leave the roadmap at
some point and go to the goal) and connectivity (the
point of accessing the roadmap and the point of depart-
ing the roadmap are connected to each other) need to
be ascertained. We make use of the notion of homol-
ogy of paths to prove these properties as most of the
discussions of homotopy in this paper are also valid
for homology. Suppose a roadmap G(V, E) exists that
guarantees representation of all homotopic and homol-
ogous groups. Let s and g be any pair of source and
goal in the configuration space. To prove accessibility,
let us first assume that the vertex s is not visible to any
vertex or edge in G, or simply that it does not satisfy
the property of accessibility. In such case consider a
path τ(V1, s) from V1 (∈ V ) to s and another path τ(s,
V2) from s to V2 (∈ V ). Consider the path τ(V1, s, V2)

from V1 to V2 through s, formed by appending the two
paths τ(V1, s) and τ(s, V2) one after the other. Since
the roadmap guarantees representation of all homolo-
gies τ(V1, S, V2) is in some homologous group as
some other path τ(V1, V2) represented in the roadmap.
Hence the area formed by τ(V1, S, V2) and the inverse
of τ(V1, V2) from V2 to V1 is collision-free. By this
definition s can be connected to some point x in τ(V1,
V2) by a straight line without encountering obstacles,
which nullifies the notion of the roadmap being non-
accessible. Similarly the notion of departability can be
proved with some line leading from a point y in the
roadmap to the goal g.

To prove connectivity, first assume that no path
exists between x (∈ V ) and y(∈ V ) or that the
property of connectivity does not exist. This can only
happen when the roadmap consists of at least 2 sub-
graphs, one containing x and another one containing
y. Consider that a path τ(x, y) between x and y exists
and is not represented in the roadmap. A path τG(x, y)

Table 1 Algorithm Complexity Analysis

S. No. Algorithm Vertex Generation Edge Generation Total

1. PRM (k-connected) O(n.(1+p)) O(nk.||E||) O(nk.||E||)
2. Obstacle-based (k-connected) O(n.(1+p̄).D) O(nk.||E||) O(nk.||E||)
3. Proposed (k-connected) O((n − γ ).(1+p).(D + W)) O(n.(k/γ -1).||E||) O(n.(k/γ -1).||E||)
4. PRM (fully connected) O(n.(1+p)) O(n2.||E||) O(n2.||E||)
5. Obstacle-based (fully connected) O(n.(1+p̄).D) O(n2.||E||) O(n2.||E||)
6. Proposed (fully connected) O((n − γ ).(1+p).(D + W)) O(n.(n/γ -1).||E||) O(n.(n/γ -1).||E||)
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must exist in the roadmap which is homotopic to
this path, otherwise the guarantee of representation
of all homotopic groups is not satisfied. For this x

and y must belong to the same sub-graph or that the
connectivity property must hold.

Being built over PRM, the algorithm is probabilisti-
cally complete. The notion of optimality can be broken
down into the ability to find the optimal homotopic
group and subsequently to compute the optimal path
within the homotopic group. The necessity of any
optimal algorithm is hence representation of all homo-
topic groups, which is the property considered in the
roadmap. The notion of optimality is largely related to
the use of path length as the cost function with a lit-
tle consideration of clearance. In such a case sampling
near the obstacle boundaries makes the algorithm
generate better paths. As the approach does not com-
pute paths, rather concentrates on roadmaps alone, the
notion of optimality is discussed rather informally.

7 Conclusions

The paper studied the problem of making a roadmap
generation method using PRM such that most homo-
topic groups are represented in small computation
times. A new sampling technique was proposed that
preferred obstacle boundaries, created small local
roadmaps on identification of narrow corridors and
preferred to maintain a small local clearance. An
edge connection strategy was devised which dis-
counted for the number of connection attempts by
assuming that if two local roadmaps are connected
by an edge, all pairs of vertices between the two
local roadmaps are also said to be indirectly con-
nected without actually attempting the connections.
The approach was tested for a number of scenarios
ranging from open spaces to multiple narrow corri-
dors. The results revealed that the approach performed
better than popular approaches, while also taking
lesser time of computation.

The immediate next future work of the paper is to
use the proposed algorithm for the problem of multi-
robot path planning. The author aims to use the pre-
viously published work ([2] and its extension which
is currently under review) for the same. The extension
requires calculation of paths in multiple competitive
homotopic groups, execution of the earlier algorithm
across all homotopic pairs, decision of execution time

investment in each pair to have a quick idea of the ten-
tative computation cost, finally selecting a homotopic
group combination, and computation of the final plan.
Each step has some key research challenges to address
which would be dealt with in the future.

Further the process of judging the performance
metric needs to be automated. A major problem with
the performance metric is that it rewards the abil-
ity to find connections inside the narrow corridors,
but does not partially reward incomplete connections
depending upon the portion of the corridor covered.
Such a metric would have resulted in greater insights.
Finally the algorithm needs to be expanded to sce-
narios of incomplete environment information, infor-
mation shared across the robots, computation shared
across the robots and parallel processing for enhanced
offboard computation.
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