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Abstract We study the problem of optimally coordi-
nating multiple fixed-wing UAVs to perform vision-
based target tracking, which entails that the UAVs
are tasked with gathering the best joint vision-based
measurements of an unpredictable ground target. We
utilize an analytic expression for the error covari-
ance associated with the fused measurements of the
target’s position, and we employ stochastic fourth-
order models for all vehicles, thereby incorporating a
high degree of realism into the problem formulation.
While dynamic programming can generate an opti-
mal control policy that minimizes the expected value
of the fused geolocation error covariance over time,
it is accompanied by significant computational chal-
lenges due to the curse of dimensionality. In order to
circumvent this challenge, we present a novel policy
generation technique that combines simulation-based
policy iteration with a robust regression scheme. The
resulting control policy offers a significant advan-
tage over alternative approaches and shows that the
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optimal control strategy involves coordinating the
UAVs’ distances to the target rather than their viewing
angles, which had been a common practice in target
tracking.
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Carlo · Motion planning · Probabilistic planning

1 Introduction

Small unmanned aerial vehicles (UAVs) are relatively
inexpensive mobile sensing platforms capable of reli-
ably and autonomously performing numerous tasks,
such as mapping, search and rescue, surveillance
and tracking, and real-time monitoring. One problem
of particular interest is that of using small, fixed-
wing UAVs to perform vision-based target tracking,
which entails that one or more camera-equipped UAVs
is responsible for autonomously tracking a moving
ground target.

In vision-based target tracking, image processing
software determines the centroid pixel coordinates
of a target moving in the image frame. Given these
pixel coordinates, the intrinsic and extrinsic camera
parameters, and the terrain data, one can estimate
the three-dimensional location of the target in inertial
coordinates and compute the associated error covari-
ance. This is the process of geolocation for video
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cameras [1]. The geolocation error is highly sensi-
tive to the relative position of a UAV with respect to
the target. When a UAV is far from the target, rela-
tive to its height above the target, the associated error
covariance is significantly elongated in the viewing
direction. The smallest geolocation error comes when
the UAV is directly above the target, in which case the
associated covariance is circular. While a UAV would
ideally hover directly above the target to minimize the
error, the relative dynamics between a UAV and tar-
get typically preclude this viewing position from being
held over a period of time.

To mitigate the effects of a single UAV’s inability to
maintain close proximity to the target, one can employ
multiple UAVs to gather the best joint measurements.
In this scenario, the objective is to minimize the fused
geolocation error covariance of the target position esti-
mate obtained by fusing the individual geolocation
measurements. Thus, in this work, we seek optimally
coordinated behavior between two UAVs aimed at
improving the estimate of the target state.

The fused geolocation error is small when at least
one UAV is close to the target and only slightly
less when both aircraft are directly above the target.
When both UAVs are far from the target relative to
their altitudes, the fused geolocation error is greatly
reduced when the UAVs have orthogonal viewing
angles, though this error is still significantly greater
than when at least one UAV is on top of the target. Of
course, these configurations are static, yet in a real-
istic scenario, the target motion is unpredictable and
the UAVs have limited control effort and experience
stochasticity in their dynamics.

The purpose of this work is thus to present and
study an effective solution to the problem of optimally
coordinating two UAVs to track a moving ground
target under fairly realistic conditions. More specifi-
cally, the objective for the camera-equipped UAVs is
to gather the best joint vision-based measurements of
a randomly moving ground target whilst themselves
being subject to limited control effort and experienc-
ing stochasticity in their dynamics. The class of UAVs
under consideration are hand or catapult launched
fixed-wing aircraft that fly at a constant altitude and
have an autopilot that regulates roll angle, airspeed,
and altitude to the desired setpoints via internal feed-
back loops. Furthermore, these underactuated aircraft
are assumed to fly at a constant airspeed since the
range of permissible airspeeds for such small aircraft

may be very limited, as noted in [2] and §5.1 of [3]. In
addition, frequent changes in airspeed may be either
undesirable for fuel economy or simply unattainable.
The roll angle setpoint is hence the sole control input
that affects the horizontal plant dynamics. The target
is modeled as a nonholonomic vehicle that randomly
turns and accelerates.

As determining the optimal control policy (feed-
back law) is a challenging problem in the area of
stochastic optimal control, we now take note of the
numerous solutions that have been proposed over the
past decade for similar problems in the area of target
tracking.

1.1 Related Work

Much research has proposed coordinated target track-
ing controllers in a deterministic setting without
directly optimizing mission performance with respect
to a desired objective function. For two UAVs, a gen-
erally accepted practice is to have the UAVs orbit the
target at a nominal standoff distance (to remain out-
side a critical threat range) and maintain an angular
separation of 90◦. The 90◦ separation angle minimizes
the joint / fused geolocation (target localization) mea-
surement error for the given standoff distance, as the
individual measurement error ellipses are orthogonal
[4]. These principles give rise to what is henceforth
referred to as cooperative (or coordinated) standoff
tracking, which constitutes the majority of the work in
the general area of coordinated target tracking. When
more than two UAVs are considered, the goal gen-
erally becomes having the group achieve a uniform
angular separation on a circle centered at the target.

Standoff tracking has been a longstanding goal
in the general area of target tracking and has been
addressed using numerous approaches that include
“Good Helmsman” steering [5], Lyapunov guidance
vector fields [6], nonlinear model predictive control
[7], nonlinear feedback [8], and methods combining
vector field guidance with adaptive control [9, 10].
Since multiple fixed-speed aircraft cannot maintain
a uniform angular spread at a fixed distance from a
constant-velocity target, works such as [3] and [11]
have explored the notion of spreading agents uni-
formly in time along a periodic trajectory at a fixed
distance from the moving target.

A number of approaches have employed stochas-
tic optimal control to mitigate the effects of stochastic
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target motion while also respecting a maximum turn-
rate / bank angle. In [12], Anderson and Milutinović
studied the problem of optimal standoff tracking in
the continuous time setting and model the target as
a Brownian particle and the UAV as a determinis-
tic Dubins vehicle. By minimizing the expected cost
of the total squared distance error discounted over an
infinite horizon, the authors generate an optimal bang-
bang turn-rate controller that is highly robust to unpre-
dictable target motion. In [13], the authors studied the
problem of having a single UAV optimally perform
vision-based target tracking with a limited sensing
region, wherein the cost objective was a function
of the desired viewing geometry. A comparison was
made between a game theoretic approach (address-
ing evasive target motion) and a stochastic optimal
control approach (addressing random target motion)
and showed that the latter approach performed bet-
ter in actual field tests. Hence, in the present work,
we use a refined version of the stochastic kinematic
UAV model from [13] and adopt a similar stochastic
target model.

Others have employed optimal control to study
optimal UAV coordination when the objective is to
improve target state estimation. Miller et al. pose the
problem of multiple UAVs tracking multiple targets
as a partially observable Markov decision process
(POMDP) in [14] and present a new approximate
solution, as nontrivial POMDP problems are typically
intractable to solve exactly [15]. In [16], Stachura
et al. studied the problem of two variable-airspeed
UAVs with bearing-only sensors tracking a stochas-
tic ground target in the presence of packet losses in
the communication with the base station, where tar-
get state estimation takes place. The solution involved
an online receding horizon controller that maximized
the expected information (inverse covariance) of the
target state estimate in an extended information filter
over a short planning horizon, showing that one UAV
will act as a relay to the base station when the target is
far from the base. In [17], Ding et al. studied the prob-
lem of optimally coordinating two camera-equipped
Dubins vehicles with bang-off-bang turn-rate control
to maximize the geolocation information of a stochas-
tic ground target over a short planning horizon. The
results showed that a 90◦ separation in the viewing
angle was essential in the case of terrestrial pursuit
vehicles and less pronounced with airborne pursuit
vehicles.

We emphasize the fact that the preceding opti-
mal control approaches illustrate a trend among
optimization-based coordination strategies. Namely,
shorter planning horizons are often considered to
reduce the computational complexity of the dynamic
optimization. While this is justified from a pragmatic
standpoint, short horizons are not adequate for the
cost function considered here. In particular, since the
main feature of the cost function is that it (in effect)
penalizes the minimum UAV distance to the target, a
short planning horizon inhibits the UAVs from real-
izing the long term benefits of distance coordination,
i.e., keeping their peak distances from the target out of
phase. Moreover, if the target is traveling considerably
slower than the UAVs, the aircraft must perform loops
to remain close to it and must realize the long term
benefit of doing these loops in a coordinated fashion.

In [18], however, the authors optimized the coor-
dination of two UAVs over long planning horizons of
at least one minute by minimizing the fused geoloca-
tion error covariance, thereby gathering the best joint
vision-based measurements of the target. The results
showed that coordination of the distances to target
is more effective for achieving the said goal than
the traditional practice of solely coordinating view-
ing angles, thus motivating the use of optimization-
based control strategies with longer planning horizons.
These studies were conducted in a deterministic set-
ting for UAVs that used bang-off-bang turn-rate con-
trol to track a constant-velocity target. Lastly, we note
that a number of works including [19] and [20] have
proposed using sinusoidal turn-rate control inputs that
approximate the optimal behavior of [18] at higher
speeds; however, our tests indicate that the proposed
oscillatory control strategies appear to be non-robust
to stochastic target motion while roll dynamics are not
considered.

In all of the preceding works, at least one or more
assumptions are made that impose severe practical
limitations. Namely, the works mentioned thus far
assume at least one of the following:

1. Coordinated circular trajectories are optimal,
namely those trajectories resulting from standoff
tracking.

2. Input dynamics are first order and roll dynamics
have been ignored.

3. The UAV airspeed can be changed quickly and
reliably over a significant range
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4. Target motion is predictable
5. Short/greedy planning horizons are adequate for

optimal tracking

The present paper removes all of these assump-
tions to promote a more practical solution that yields
optimal coordination under more realistic conditions,
namely higher order stochastic dynamics with explicit
input constraints.

1.2 Contributions

To remedy the aforementioned simplifications/
assumptions, we formulate a stochastic optimal con-
trol problem whose objective is for two fixed-wing
UAVs to gather the best joint vision-based measure-
ments of a randomly moving ground target over a
sufficiently long planning horizon. The cost function
utilizes an analytical expression for the geolocation
error covariance while fourth order stochastic kine-
matic models are utilized for all vehicles to describe
realistic vehicle dynamics. More specifically, the
stochasticity in the ground vehicle model encom-
passes the unpredictable nature of the target motion
while that of the UAV model addresses environmental
disturbances, e.g., wind gusts, as well as unmodeled
dynamics. Most importantly, this aircraft model has
produced successful field test results in related tar-
get tracking applications [13, 21]. Lastly, an upper
limit is imposed on the maximum absolute roll-angle
setpoint, which is the sole control input for each
aircraft.

To determine the optimal control policy, one must
solve a moderate dimensional stochastic optimal con-
trol problem for which grid-based approximations to
the dynamic programming value function are infea-
sible. Hence, we present a regression-based dynamic
programming technique that has been adapted from
the simulation-based policy iteration technique known
as regression Monte Carlo (RMC). More specifically,
the original RMC algorithm has been modified to
become a policy generation technique so as to remove
the need for an initial policy that is close to the opti-
mal. In addition, to address the high dimensionality
of the system dynamics, we use a partitioned robust
regression scheme (based on work in [22]) that is both
fast and scalable with the number of Monte Carlo

simulations. Since the overall method generates an
approximately optimal control policy offline, this con-
troller can be readily implemented in realtime. While
the original RMC algorithm has been successfully
applied to stochastic control problems in finance and
epidemic management, here we demonstrate its util-
ity for high-dimensional autonomous vehicle applica-
tions.

Lastly, we provide a thorough demonstration of
the nature and performance of the resulting con-
trol policy. First, we show the benefits of the pro-
posed approach over alternative methods, including
an uncoordinated control strategy in which the multi-
ple UAVs solve independent optimizations and (non-
optimal) stand-off tracking. Second, we show that
while viewing-angle coordination is certainly facil-
itated by the optimal policy, the more pronounced
behavioral characteristic of the optimal strategy is
the coordination of distances to the target. Overall,
we show that optimization-based control techniques
can produce results that differ from and signifi-
cantly outperform traditional techniques relying on
heuristics.

1.3 Paper Outline

The remainder of the paper is organized as fol-
lows. Section 2 describes the main components of
the stochastic optimal control problem, namely the
stochastic kinematic models for the vehicles, the fused
geolocation error covariance, and the overall state
space. Section 3 firstly provides an overview of the
basic dynamic programming solution to the problem
and secondly details the more sophisticated regression
Monte Carlo algorithm. The remainder of the section
is devoted to describing the partitioned robust regres-
sion tool. Section 4 discusses some of the parameters
and modifications to the algorithm that are specific
to the present target tracking application. Section 5
opens with a description of the overall simulation
setup for a realistic scenario. The remainder of the
section provides a comparison with alternative meth-
ods to establish the benefit of the proposed approach;
the section concludes with an analysis of the coor-
dination behavior. Section 6 provides conclusions of
the overall work and discusses opportunities for future
research.
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2 Problem Formulation

Consider a group of two UAVs tasked with
autonomously tracking an unpredictable moving tar-
get vehicle using gimbaled video sensors. The UAVs
fly at a constant altitude and fixed nominal airspeed
yet experience stochasticity in their dynamics. The
target is a nonholonomic ground vehicle that moves
on the ground and exhibits stochasticity in both its
turning and acceleration. The main objective is to
optimize the coordination of the UAVs to gather the
best joint vision-based measurements of the target.
Since all vehicles experience stochasticity in their
dynamics, the dynamic optimization is inherently a
stochastic optimal control problem, whose key com-
ponents are a description of the stochastic evolution
of the states and the cost associated with each state.
Accordingly, we first describe the stochastic kine-
matic models for the UAVs and target and then dis-
cuss the video measurement model and the associated
geolocation error covariance, which will constitute
the cost.

2.1 Overview of Stochastic Dynamics

The UAV and target states are assumed to evolve
stochastically according to discrete-time Markov
Decision Processes. Accordingly, the probability of
transitioning from UAV j ’s state ξ j at the current time
k to the next state ξ ′

j at time k+1 under control action
uj is given by the controlled state transition probabil-
ity function pa(ξ

′
j | ξ j , uj ). For simplicity, we assume

that the UAVs have identical stochastic kinematics,
though this can be easily generalized to a heteroge-
nous team. Likewise, the probability of transitioning
from the current target state η to the next target state
η′ is given by the state transition probability function
pg(η

′ | η).
Rather than deriving explicit formulas for these

state transition probabilities, which are not needed
for our approach, we use the agents’ kinematics to

draw Monte Carlo samples ξ̃
(i,u1)

1 , ξ̃
(i,u2)

2 , and η̃(i),
i ∈ {1, 2, . . . , Np}, from the conditional probability
density functions of UAV 1, UAV 2, and the target,
respectively. These Monte Carlo samples provide an
empirical characterization of the stochastic dynamics
of the overall system’s state z, which includes UAV

states relative to those of the target and evolves accord-
ing to a controlled state transition probability function
p(z′ | z, u). The ability to sample this state transition
probability will suffice to effectively approximate the
dynamic programming solution.

2.2 UAV Dynamics

In practice, the UAVs are subject to environmental dis-
turbances, such as wind gusts, that introduce stochas-
ticity into the dynamics. Although a real UAV’s kine-
matics are most accurately described by a 6 degree-
of-freedom (DoF) aircraft model, we use a 4-state
stochastic model of the kinematics, in which stochas-
ticity accounts for the effects of both unmodeled
dynamics (arising from the reduced 4th order model)
and environmental disturbances. The model was suc-
cessfully employed in field tests both for a single UAV
performing vision-based target tracking with sens-
ing limitations in [13] and for flocking with multiple
UAVs in [21].

While the majority of the work on target track-
ing uses continuous-time motion models, this work
treats the optimization in discrete time. Thus, each
UAV is initially modeled by fourth-order continuous-
time dynamics, and then a Ts-second zero-order hold
(ZOH) is applied to each UAV’s control input to arrive
at the discrete-time dynamics for the aircraft.

Each UAV is assumed to have an autopilot that reg-
ulates roll angle, airspeed, and altitude to the desired
setpoints via internal feedback loops. In our model,
UAV j flies at a fixed airspeed sj and at a con-
stant altitude hj above the ground. UAV j ’s planar
position (xj , yj ) ∈ R

2 and heading ψj ∈ S
1 are

measured in a local East-North-Up (ENU) earth coor-
dinate frame while its roll angle φj ∈ S

1 is measured
in a local North-East-Down (NED) body frame. In
the latter coordinate frame, the x-axis points out of
the nose, the y-axis points out of the right wing,
and the z-axis completes the right-handed coordinate
frame. As in [13] and [21], the roll/bank angle of
the aircraft is the only controllable state that affects
the horizontal plant dynamics. The roll angle is con-
trolled through setpoint control, which entails that
a given control policy determines the desired roll
angle uj that is provided to the autopilot’s low-level
control loops.
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Fig. 1 Monte Carlo
simulations to sample roll
trajectories. Once every
Ts = 2 seconds the
roll-angle setpoint is
randomly changed to
u(kTs) ∈ U(r(kTs)), where
each element of U(r(kTs))

occurs with equal
probability and � = 15◦ is
the maximum allowable
change in roll-angle
setpoints 0 2 4 6 8 10 12 14
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The development of the stochastic discrete-time
kinematic model for the UAV begins with the deter-
ministic continuous-time model:

d

dt

⎛
⎜⎜⎝

x

y

ψ

φ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

s cosψ

s sinψ

−(αg/s) tanφ

f (φ, u)

⎞
⎟⎟⎠ , (1)

where αg denotes the acceleration due to gravity and
the subscript j denoting the UAV index has been omit-
ted, as the same dynamical model is used for both
UAVs. The quantity f (φ, u) denotes the roll dynam-
ics, and could be, for example, f (φ, u) = −αφ(φ−u)

with αφ > 0. In this case, 1/αφ > 0 can be regarded as
the time constant corresponding to the autopilot con-
trol loop that regulates the actual roll angle φ to the
current roll-angle setpoint u. However, we actually
use a much more detailed model for the roll dynamics
wherein we apply a Ts second zero-order hold (ZOH)
on the roll-angle setpoint u and sample roll trajecto-
ries from a high-fidelity flight simulator that utilizes
an aircraft model with 6 degrees of freedom. In this
sampling process, we assume u ∈ C, where

C := {0, ±�, ±2�},
and that the changes in u from one ZOH period to
the next belong to the set {0, ±�}. Thus, � > 0
is in essence the maximum allowable change in the
roll-angle setpoint from one ZOH period to the next.
In order to regulate the maximum allowable change
in the setpoint, we must keep track of the previous
setpoint uk−1 = u(kTs − Ts), where k ∈ Z≥0. To
this end, we note that an autopilot with a properly
tuned controller for roll will approximately achieve
the setpoint at the end of the ZOH period, i.e., ∀k ∈
Z≥0, φ(kTs + Ts) ≈ u(kTs). Moreover, we assume

this is the case and define the discretized roll angle at
time k as

rk := argmin
c∈C

|c − φk|,

and assume rk+1 = uk , which means rk = uk−1. Thus,
our requirements that uk ∈ C and (uk − uk−1) =
(uk − rk) ∈ {0, ±�} are summarized by requiring
uk ∈ U(rk), where for c ∈ C

U(c) := {c, c ± �} ∩ C.

We sample roll trajectories from a high fidelity
flight simulator per the description of Fig. 1 and gen-
erate a collection �(r, u) of Np roll-angle trajectories
φi(τ, r, u), where i ∈ {1, 2, . . . , Np} and τ ∈ [0, Ts],
for each combination of r ∈ C and u ∈ U(r). Figure 2
illustrates a typical collection of roll-angle trajectories
for particular values of r and u. One should observe
that all of the roll-angle trajectories in the example
approximately achieve the setpoint in accordance with
the assumption that rk+1 = uk . In like manner, all
of the roll trajectories used in the model have this
property. Since r well approximates the roll angle φ

at discrete time instances t = kTs seconds for all
k ∈ Z≥0, we define the state of a UAV as ξ :=
(x, y, ψ, r) ∈ R

4.
To make the aircraft model more realistic we also

introduce stochasticity into the airspeed s, which is
drawn from a symmetric triangle distribution (wherein
the mode is equidistant from the support bounds) that
is centered at a nominal value of μs and has sup-
port over the interval [μs − σs

√
6, μs + σs

√
6], where

σs denotes the standard deviation of the distribution.
Also, the airspeed s in Eq. 1 is assumed to be con-
stant over each ZOH period and independent across
different ZOH periods.
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Fig. 2 One hundred
roll-angle trajectories over a
Ts = 2 second ZOH period
resulting from an increase
of � = 15◦ from the
previous roll-angle setpoint
of uk−1 = rk = −15◦.
Moreover, the current
setpoint is uk = 0◦.
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This modeling technique allows us to generate sam-

ples ξ̃
(i,u)

for the next state ξ ′, given the current state
ξ and the roll setpoint u. Specifically, the first three

components of a sample ξ̃
(i,u)

are the implicit solution
to

d

dτ

⎛
⎝

x

y

ψ

⎞
⎠ =

⎛
⎜⎝

si cosψ

si sinψ

−αg

si
tan

(
φi(τ, r, u)

)

⎞
⎟⎠

at the end of the Ts-second ZOH period with si drawn
from the symmetric triangle distribution with mean
μs and standard deviation σs and φi(τ, r, u) randomly
selected from the set �(r, u), where each element
occurs with equal probability. The fourth compo-

nent of ξ̃
(i,u)

is deterministic and is simply r̃ (i,u) =
u. The samples of the UAV’s position and heading

thus have two sources of randomness: stochasticity
in the roll-angle dynamics captured by the collection
of roll-angle trajectories �(r, u) and stochasticity in
the airspeed. Figure 3 illustrates the stochastic UAV
model.

2.3 Target Dynamics

As with the UAV state, the target state η is assumed to
evolve stochastically according to a Markov Decision
Process, where the state transition probability func-
tion pg(η

′ | η) is implicitly defined by the following
construction for the target motion.

The target is assumed to be a nonholonomic vehi-
cle that travels in the ground plane and has the ability
to turn and accelerate. Its state comprises its planar
position (xg, yg) ∈ R

2, heading ψg ∈ S
1, and speed

Fig. 3 Sample trajectories generated from the stochastic
kinematic model for the UAV with s distributed accord-
ing to a triangle distribution with mean μs = 10 [m/s]
and standard deviation σs = 4/5 [m/s]. Also, Ts =
2 seconds, and � = 15◦. The initial UAV state is

identically zero. For each u ∈ U(0◦) = {0◦, ±15◦}, 1,000 sam-
ple trajectories were generated. For each command, the vertical
spread in final UAV positions is due to sampling different roll
trajectories while the horizontal spread results from stochastic
airspeed
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Fig. 4 Sample positions
generated from the
stochastic target motion
model. The two initial
target states depicted with
different colors correspond
to identical initial positions
at the origin, but two
distinct initial speeds of 6
and 12 [m/s]. For each
initial condition, 1,000
samples are generated

v ∈ R≥0 and is hence defined as η := (xg, yg, ψg, v).
The target’s dynamics are those of a planar kinematic
unicycle, i.e.,

η̇ = d

dt

⎛
⎜⎜⎝

xg

yg

ψg

v

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

v cosψg

v sinψg

ω

a

⎞
⎟⎟⎠ , (2)

where ω and a are the turn-rate and acceleration
control inputs, respectively.

To model the behavior of an operator driving the
ground vehicle safely and casually, yet unpredictably,
the target’s control inputs ω and a are drawn from
continuous probability density functions. These inputs
are assumed to be held constant over a Ts-second
ZOH period synchronized with that of the UAVs and
independent across different sampling intervals.

The target’s acceleration a is drawn from a sym-
metric triangle distribution with support over the inter-
val [max{(v − v)/Ts, −α},min{(v̄ − v)/Ts, α}], for
given positive scalars α, v̄, and v. The support for the
distribution guarantees that the absolute value of the
acceleration does not exceed α and that the velocity
v′ = v+aTs at the end of the sampling period remains
in the interval [v, v̄].

The distribution for the target’s turn rate ω is sym-
metric triangular with support in the interval [−ω̄, ω̄],
where ω̄ > 0 is given by ω̄ := min{ω̄
, ω̄a}. The
support for the distribution guarantees that the tar-
get respects both the upper turn rate limit ω̄
 =
min{v/
, (v + aTs)/
} set by the target vehicle’s
minimum turning radius 
 > 0 as well as a given max-
imum allowable turn rate ω̄a > 0. The quantity ω̄a

is typically less than ω̄
 at moderate to high speeds
and is used to further govern the target’s turning
behavior beyond the inherent minimum turning-radius
limitation.

The discrete-time stochastic kinematic model is the
solution of Eq. 2 at the end of the Ts-second ZOH
period with the acceleration and turn rate having been
drawn from their respective triangle distributions at
the start of the ZOH period. This kinematic model is
illustrated in Fig. 4 with the parameters in Table 1.

2.4 Target-Centric State Space

We consider a target-centric state space Z that has
dimension n = 9. For j ∈ {1, 2}, we denote by rj the
relative position of UAV j , which is given by

rj :=
[

cosψg sinψg

− sinψg cosψg

] [
xj − xg

yj − yg

]
. (3)

Also, we define the UAV j ’s pose (position and
heading) relative to the target as pj := (rj , ψr,j ) ∈
R
2 × [−π, π), where ψr,j = atan2(sin(ψj −

ψg), cos(ψj − ψg)) and atan2 is the four-quadrant
inverse tangent function. The state vector z ∈ Z ⊂ R

9

is thus given by

z := (p1, r1, p2, r2, v),

where rj and v denote UAV j ’s discretized roll-angle
and the target’s speed, respectively. The overall state
transition probability p(z′ | z, u), where u ∈ U(r1) ×
U(r2), is given implicitly by combining the stochastic
kinematic models for the vehicles with the preceding
description of the components of the states in Z .

Table 1 Stochastic target motion parameters

Parameter: α v v̄ 
 ω̄a Ts

Value: 0.5 4.5 12.5 7 0.2 2

Units: m/s2 m/s m/s m rad./s s
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2.5 Geolocation Error Covariance

Each UAV has a video sensor that makes image-plane
measurements of the target. The dominant source of
geolocation error stems from the error in the sensor
attitude matrix that relates the line-of-sight vector in
the sensor frame (centered at the UAV position) to
that in the topographic coordinate frame. This error is
amplified on the ground by UAV j ’s three dimensional
distance dj to the target. Hence, UAV j ’s individual
error covariance, denoted by P j ∈ R

2×2, is propor-
tional to the product of d2

j and the covariance R
θ̃

∈
R
3×3 of the 3-2-1 Euler-angle sequence θ j ∈ R

3

describing UAV j ’s sensor attitude. For simplicity of
notation, we take the covariance R

θ̃
of each UAV’s

sensor attitude angle to be constant and equal for all
UAVs, which would be the case if the UAVs had sim-
ilar sensors. The exact analytic expression for P j is
derived in [18].

With the UAVs collecting independent measure-
ments of the target, the fused geolocation error covari-
ance (GEC) P can be computed according to the
following relationship

P−1 =
∑
j

P −1
j . (4)

The nature of the error covariances, both individual
and fused, is illustrated in Fig. 5. Note that the fused
covariance is determined by three degrees of freedom,
namely the planar distances from the target and the

Fig. 5 Individual error ellipses P 1 and P 2 corresponding
to the vision measurements from the blue and red UAVs
having (x, y, z) coordinates (in meters) of (−100, 0, 40) and
(0, 100, 45) respectively, where the latter UAV is not shown.
Also depicted by the magenta, dash-dot line is the error
ellipse P corresponding to the combination (fusion) of the
measurements obtained from both UAVs, and the separation
angle γ

UAVs’ separation angle γ , which is given implicitly as

r�1 r2 = ‖r1‖2‖r2‖2 cos γ,

where the relative planar positions rj ∈ R
2 are given

by Eq. 3.
To minimize the estimation errors associated with

the fused GECP , we take the objective function of the
stochastic optimal control problem to be

g(z) := trace(P), (5)

which has units of meters squared and essentially min-
imizes the sum of the variances corresponding to the
major and minor axes of the fused error ellipse.

The nature of this cost function is illustrated in
Fig. 6 for two UAVs. Note that if the second UAV’s
position is on the x-axis, then the UAVs are collinear,
which entails that the major axes of their error ellipses
are perfectly aligned. If however, its position is on
the y-axis, then the UAVs have orthogonal viewing
angles. Thus, one can see that the UAVs certainly
benefit from having orthogonal viewing angles. How-
ever, being close to the target is even more beneficial.
For example, if the second UAV’s (x, y)-position is
(0, 100), such that the UAVs have orthogonal view-
ing angles, then g(z) ≈ 56 [m2]; but if the second
UAV is on top of the target, then g(z) ≈ 10 [m2].
Thus, an effective coordination strategy would be to
have at least one UAV close to the target (if possible),
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Fig. 6 Cost function g(z) = trace(P) with the target located at
the origin and the first UAV located at three dimensional posi-
tion (x, y, z) = (100, 0, 40), where this UAV’s (x, y) position
is indicated by a black “×.” The second UAV has an altitude of
45 [m], and the (x, y) coordinates in the plot represent its planar
position
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as a UAV’s individual GEC is smallest in this setting
and will dominate the cost through Eq. 4. The solution
to the stochastic optimal control problem will deter-
mine if such a strategy is indeed possible and, in fact,
optimal.

2.6 Stochastic Optimal Control Objective

The stochastic optimal control problem is to determine
the optimal feedback control policy μ∗

k : Z → C2,
k ∈ {0, 1, . . . , K − 1}, that minimizes

J (z) = E

[
K∑

k=0

g(zk)

∣∣∣∣∣ z0 = z

]
, ∀z ∈ Z, (6)

where zk = z(kTs), K ∈ N, E[·] denotes expec-
tation, g(·) is given by Eq. 5, and z0, z1, . . . , zK is a
Markov Decision Process that evolves according to the
transition probability p(z′ | z, u) determined by the
models in Sections 2.2 and 2.3 and the state definitions
in Section 2.4, under the feedback law uk = μ∗

k(zk).
Note that the state transition probability p(z′ | z, u)

can also be written as p(zk+1 | zk, uk). To solve this
problem, we present a novel optimal policy generation
algorithm based upon the policy iteration technique
known as regression Monte Carlo. To describe the
method, we first introduce a few basic definitions and
principles underlying dynamic programming.

3 Dynamic Programming

Dynamic programming exploits the Markovian nature
of the dynamics and hinges on the notion of the value
function, or cost-to-go from state z ∈ Z at time k ∈
{0, 1, . . . , K − 1}, which is defined as

Vk(z) := g(z) + min
uk ,uk+1,...,uK−1

E

⎡
⎣

K∑
=k+1

g(z)

∣∣∣∣∣∣
zk = z

⎤
⎦ ,

where uk ∈ U(zk) and U(z) denotes the state-
dependent action space, which we assume is finite for
all z ∈ Z throughout this work. For k = K , one has
that VK(z) = g(z), and for k ∈ {0, 1, . . . , K − 1}, the
cost-to-go is computed (offline) in reverse chronolog-
ical order according to the following recursion

Vk(z) = g(z) + min
u∈U(z)

E
[
Vk+1(z

′)
∣∣ z, u]

= g(z) + min
u∈U(z)

∫
Vk+1(z

′)p(z′ | z, u)dz′, (7)

which holds due to Bellman’s principle of optimality
(see [23], Chapter 6). As the minimization is per-
formed, the optimal control policy can be formed as

μ∗
k(z) = argmin

u∈U(z)

(
g(z) + E

[
Vk+1(z

′)
∣∣ z, u])

. (8)

Performing the sequence of computations in Eq. 7
for k ∈ {K − 1, K − 2, . . . , 0} ultimately yields
J ∗(z) = V0(z),∀z ∈ Z , where J ∗(z) is the minimum
value of Eq. 6 under the feedback law Eq. 8.

3.1 Basic Monte Carlo Solution

A significant hurdle in computing Eq. (7) is the expec-
tation, i.e., the integral over the implicitly specified
state transition probability p(z′ | z, u). In standard
Monte Carlo methods, this computation is approxi-
mated through empirical averaging. In particular, for a
given z ∈ Z , one can take

Vk(z) ≈ g(z) + min
u∈U(z)

1

Ns

Ns∑
i=1

Vk+1

(
z̃(i)

)
,

where the z̃(i) are the Ns Monte Carlo random sam-
ples, extracted from the distribution p(z′ | z, u). Fur-
thermore, to limit the computation of the value func-
tion to a finite number of points, one may restrict the
computation of the value function Vk(z) to a finite set
Z ⊂ Z having M distinct elements. This leads to
the following approximation of the value function and
optimal control policy in Eqs. 7 and 8, respectively:

Vk(z) ≈ g(z) + min
u∈U(z)

1

Ns

Ns∑
i=1

Vk+1

(
q

(
z̃(i), Z

))

μ∗
k(z) = argmin

u∈U(z)

[
g(z) + 1

Ns

Ns∑
i=1

Vk+1

(
q

(
z̃(i), Z

))]
, (9)

where the computation is carried out only for z ∈ Z

and q denotes the quantization function given by

q(s, X) := argmin
x∈X

‖s − x‖1

for s in R
n and a finite set X ⊂ R

n. To lookup the
optimal command uk for an arbitrary state z ∈ Z \ Z,
one takes uk = μ∗

k (q(z, Z)).



J Intell Robot Syst (2016) 82:135–162 145

This method is suitable for smaller stochastic opti-
mal control problems, such as the single-UAV tar-
get tracking scenario for which the state dimension
n is 5, as demonstrated in [13]. However, such a
state space quantization method is simply infeasi-
ble for larger state spaces, such as that correspond-
ing to the two-UAV scenario wherein n = 9. The
multi-agent stochastic optimal control literature has
addressed even larger problems using tools such as
factored MDPs [24] and path integral control [25],
which would allow one to address problems involv-
ing larger UAV teams and even multiple targets.
However, such approaches typically have restrictive
requirements that involve such needs as an explicit
state transition probability function, the solution of
complex integrals, continuous state spaces with small
hypervolume, and additive noise dynamics. To avoid
such limitations that hinder a realistic problem for-
mulation, we employ the sophisticated Regression
Monte Carlo technique to determine an approximately
optimal policy in the present setting of two agents
tracking a single target. This will provide insight into
the nature of the optimal solution required for larger
problems as well as a policy suitable for real-world
implementation. The topic of more UAVs and multi-
ple targets is discussed in the concluding remarks of
Section 6.

3.2 Regression Monte Carlo

Regression Monte Carlo (RMC) is a simulation-
based policy iteration algorithm that was introduced
to stochastic control in the context of optimal stop-
ping by Longstaff and Schwartz in [26] and further
formalized by Egloff in [27] with additional conver-
gence analysis. It is suitable for moderate dimensional
stochastic optimal control problems, e.g., those hav-
ing state dimension in the 1 − 10 range, wherein
one may not have an analytic expression for the state
transition probability but can easily generate samples.
The power and versatility of RMC is underscored by
its use in determining optimal policies for managing
influenza outbreaks in [28], as well as optimal policies
for autonomous vehicle coordination in the current
setting. Here we present the method in the general set-
ting following the description of [28]; however, we
provide a novel perspective of the algorithm. In partic-
ular, we present RMC as a policy generation technique
rather than as a policy iteration technique and discuss

its relationship to the state space quantization method
of Section 3.1.

3.2.1 Policy Generation

This work utilizes the Q-value (referred to as the con-
tinuation cost in [28], or perhaps more commonly as
the Q-factor [29]), which is defined as

Qk(z, u) := min
uk+1:K−1

E

[
K∑

=k

g(z)

∣∣∣∣∣ zk = z, uk = u

]
,

where uk+1:K−1 is shorthand notation for the
sequence uk+1, uk+2, . . . , uK−1. The Q-value is the
expected cumulative (or pathwise) cost of being at a
state z at time k, applying control action u ∈ U(z)

at that time, and then applying an optimal policy from
time k+1 onward. Since, for t ∈ {k+1, k+2, . . . , K−
1}, ut is a feedback policy, i.e., ut = μt (zt ), the opti-
mization is not over a fixed sequence but over the
sequence of mappings {μt (zt )}K−1

t=k+1.
The Q-value and the value function are related as

follows:

Qk(z, u) = g(z) + E
[
Vk+1(z

′)
∣∣ z, u]

= g(z) +
∫

Vk+1(z
′)p(z′ | z, u)dz′, (10)

and

Vk(z) = min
u∈U(z)

Qk(z, u).

Thus, the optimal control policy is also formed as

μ∗
k(z) = arg min

u∈U(z)
Qk(z, u). (11)

The main idea of RMC methods is to determine
μ∗

k(z) from Eq. 11 for k ∈ {K − 1, K − 2, . . . , 0},by
approximating Qk(z, u) for each u ∈ U(z) and for
all z ∈ Z through Monte Carlo simulations of the
right-hand-side of Eq. 10. To simplify the introduc-
tory discussion of RMC, we assume for now that the
control action space U(z) is the same for all z ∈ Z
and hence refer to it simply as U . In RMC, the con-
tinuation costs are estimated in reverse chronological
order by regressing sample continuation costs onto
statistics derived from the starting points in a stochas-
tic mesh Z ⊂ Z that is generated at the start of the
algorithm and is fixed over time. Moreover, in RMC,
one generates a single realization of the continuation
cost for each of the M points in the stochastic mesh
Z = {z(1), z(2), . . . , z(M)} and for each control action
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in U and then carries out cross-sectional regression to
fit the entire map (z, u) �→ QK−1(z, u). For now we
take Z as a given quantity and discuss the selection of
this quantity in the section that follows.

The use of a single Monte Carlo simulation for
each point in Z differs from the state space quan-
tization method of Section 3.1, where one estimates
the expectation in Eq. 10 by generating Ns scenar-
ios for each state z ∈ Z and each control action
u ∈ U at time k and then taking the empirical aver-
age. While this is reasonable for a single point, it
is impractical to do so for each control action in U

and point z ∈ Z, as this would require NuMNs

Monte Carlo simulations, where Nu = |U | and M

is typically large for sizable state spaces, e.g., those
having dimension n ≥ 5. Thus, whereas the state
space quantization method yields a pointwise estimate
for the value function using multiple Monte Carlo
simulations at each point in Z, RMC utilizes regres-
sion to produce a parametric form of the Q-value
based on a single Monte Carlo simulation for each
point in Z.

In RMC, the algorithm begins at time k = K − 1
by generating a “noisy” instance of the continuation
cost QK−1(z, u) for each of the points in Z and for
a particular control action u ∈ U . These samples of
the continuation cost are denoted by q̃

(i,u)
K−1 and are

given by

q̃
(i,u)
K−1 = g

(
z
(i)
K−1

)
+ g

(
z̃
(i,u)
K

)
,

where each z̃
(i,u)
K is a Monte Carlo sample of the state

at time K starting from each of the points z(i) ∈ Z

at time K − 1 and applying control action u to each
of these points. In the preceding equation we have
appended the subscript K − 1 to each of the points in
Z to distinguish them from future states. Furthermore,
in this context, “noisy” refers to the stochastic uncer-
tainty in the state transition probability distribution

p(zk+1 | zk, uk). At this point, one regresses
{
q̃

(i,u)
K−1

}

onto statistics derived from
{
z
(i)
K−1

}
in order to gener-

ate an approximation Q̂K−1(z, u) to the correspond-
ing continuation cost QK−1(z, u). As the regression
step is crucial to the performance of RMC, this will be
addressed in one of the following sections.

Once this is done for each u ∈ U , the approx-
imately optimal policy at time K − 1 is then given
by

μ̂
∗
K−1(z) = argmin

u∈U
Q̂K−1(z, u),

where in general the notation Q̂k(z, u) denotes the
estimate of the continuation cost at time k obtained
through regression. Similarly, μ̂∗

k(z) refers to the esti-
mate of the optimal policy map at time k. In standard
Monte Carlo value iteration one would note that

V̂K−1(z) = min
u∈U

Q̂K−1(z, u)

and repeat the same procedure for k = K−2 by substi-
tuting V̂K−1(z) for VK−1(z) in Eq. 10. However, this
practice generally leads to rapid error accumulation.
To minimize this, RMC focuses on approximating
the optimal policy map μ∗

k(z) rather than the con-
tinuation cost. More specifically, at each time k one
simulates a single trajectory for each point zk in the
stochastic mesh Z using control action u at time k and
implementing future controls based on the newly con-
structed policy map μ̂

∗
t (z), where t ∈ {k + 1, k +

2, . . . , K − 1}. One then sums the associated stage
costs to generate a “noisy” sample forQk(z, u), which
is denoted by q̃

(i,u)
k and is an exact realization of the

pathwise cost based on the policy constructed so far.
In general, for k ∈ {0, 1, . . . , K −2}, q̃(i,u)

k is given by

q̃
(i,u)
k = g

(
z
(i)
k

)
+ g

(
z̃
(i,u)
k+1

)
+

K−1∑
t=k+1

g
(
z̃
(i,ut )
t+1

)
,

where ut = μ̂
∗
t (z). As in the case of k = K − 1, one

then regresses the values of these sample continuation
costs onto statistics derived from the corresponding
points in the stochastic meshZ to generate an approxi-
mator Q̂k(z, u) for the continuation cost at the current
time k. Once this is done for each u ∈ U , the opti-
mal policy is formed in the same manner as when
k = K − 1. The algorithm then marches backward
in time, repeating the same procedure of Monte Carlo
simulations and regression until reaching time k = 0.

The overall produce described above is given by
Algorithms 1 and 2 and has an overall computational
complexity of O(K2MNu). In a typical implementa-
tion, the inner for loop of Algorithm 1 is computed
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in parallel while the outermost for loop of Algorithm
2 is eliminated through the use of vectorized opera-
tions, i.e., the procedures described within the loop
are performed on all elements of the stochastic mesh
at (practically) the same time. Two key components
of the algorithm must be selected to obtain acceptable
performance, namely the stochastic mesh Z and the
regression type used.

Algorithm 1 Regression Monte Carlo

Require: Set Z containing M states in Z
1: Nu ← |U |
2: for k = K − 1, K − 2, . . . , 0 do
3: for  = 1, 2, . . . , Nu do
4: Using Algorithm 2, generate cumulative

cost realization vector q ∈ R
M corre-

sponding to control action u() ∈ U

5: Regress qi’s against statistics derived
from each z(i) ∈ Z to determine
Q̂k(z, u

())

6: end for
7: end for
8: return Q-value approximators Q̂k(z, u), where

k ∈ {0, 1, . . . , K − 1}

3.2.2 Forming the Stochastic Mesh

In traditional RMC, the stochastic mesh Z corre-
sponds to a collection of simulated paths

{
z
(i)
0:K

}
,

where i ∈ {1, 2, . . . , M}, that are generated with
an initial policy μ

(0)
k (z) starting from a collec-

tion of initial conditions
{
z
(i)
0

}
. Here, z

(i)
0:K denotes

the ith realization of the Markov Decision Process
z0, z1, . . . , zK with initial condition z

(i)
0 and feed-

back law uk = μ
(0)
k (z). Thus, Z is in reality a

time dependent quantity in traditional RMC and is

equal to
{
z
(1)
k , z

(2)
k , . . . , z

(M)
k

}
at time k. As with any

regression, a higher concentration of samples in a
given neighborhood improves the prediction accuracy
therein. Hence, one major source of influence on the
performance of the resulting policy map μ̂

∗
k(z) is the

initial policy map μ
(0)
k (z), since it steers the stochas-

tic evolution of the states to generate the stochastic

mesh
{
z
(i)
0:K

}
. Therefore, an initial policy map close

to the optimal will lead to re-simulation trajectories

Algorithm 2 Generate a sample of the pathwise cost
for each point in Z

Require: Set of states Z ⊂ Z; con-
trol action u() ∈ U ; time index k;
Q̂k+1(z, u), Q̂k+2(z, u), . . . , Q̂K−1(z, u) if
k ≤ K − 2.

1: M ← |Z|
2: for i = 1, 2, . . . , M do
3: Sample z̃(i) ∼ p(z′ | z(i), u()), where z(i) ∈

Z

4: qi ← g
(
z(i)

) + g
(
z̃(i)

)

5: if k + 1 < K then
6: for t = k + 1, k + 2, . . . , K − 1 do
7: z(i) ← z̃(i)

8: u∗ = argmin
u∈U

Q̂t (z
(i), u)

9: Sample z̃(i) ∼ p(z′ | z(i), u∗)
10: qi ← qi + g

(
z̃(i)

)

11: end for
12: end if
13: end for
14: return q ∈ R

M

in Algorithm 2 that lie close to the original trajectory
set where the prediction accuracy is highest; other-
wise, one is forced to perform extrapolation with the
Q-value approximators Q̂k(z, u), which may lead to
large errors.

To circumvent the need and influence of an ini-
tial policy map, we propose choosing a set Z ⊂ Z
for which the majority of trajectories corresponding to
the optimal controller μ∗(z) will always remain close
to this set in some sense. This avoids extrapolation
in the regression-based prediction of the continuation
cost, and hence, in principle, the prediction accuracy
should remain sufficient for choosing the correct con-
trol action. Moreover, with intuition and insight into
the problem, one can construct Z to have a majority of
the samples near the steady-state optimal trajectories.
Thus, we take the stochastic mesh Z to be randomly
generated at the start of RMC according to some dis-
tribution over the state space. One may also generate
deterministic grids for Z, as is common for the state
space quantization method of Section 3.1; however,
the dimensionality of the problem may hinder such an
approach.
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3.2.3 Regression

The regression type used is crucial to the performance
of RMC because inaccurate estimates of the Q-value
lead to incorrect control decisions. One should note
that in Algorithm 2, at time k = 0, running the for-
ward simulations to generate samples of the pathwise
cost requires K sequential samples of the state tran-
sition probability for each point in Z. Moreover, as k

decreases in Algorithm 1, the variance of the pathwise
costs increases, and accordingly, robust / regularized
regression is required to mitigate these effects.

A number of solutions are available to deal with the
said challenge, and include such techniques as radial
basis functions, smoothing splines, neural networks,
multivariate adaptive regression splines (MARS), 1-
regularized regression, random forests, and others.
Each approach has its own tradeoffs in regard to tun-
ing, computational requirements, scalability (both in
the number of observations and dimensions), and pre-
dictive power, and we refer the reader to [30] for a
detailed overview of each approach.

We adopt here a particularly effective technique
that is inspired by [22] and involves building a k-d
tree for the initial condition set Z and applying least-
squares regression at each leaf. In particular, one takes
Lj partitions of the j th component of the state vector,
such that there are a total of Np = ∏

j Lj partitions of
the state space, each having the same number of sam-
ples. One should also take care to bound the domain
of the local functions at each leaf for the purposes
of extrapolation, which we discuss later. This entire
process is illustrated in Fig. 7 with a 2-dimensional
example, where the bounds of each domain, denoted
by D for  ∈ {1, 2, . . . , Np}, are determined by the
outermost points along each direction. In the presence
of outliers, one may also wish to either remove the
outliers before setting the domain limits or limit the
domain to a fixed number of standard deviations along
each direction, where standard deviation is computed
using only the particles at the given leaf. We employ
the former practice, which is illustrated in Fig. 7. The
overall domain is D := ⋃

 D.
The algorithm scales well with the number of sam-

ple points M , which we take to be a multiple of Np.
However, it is exponential in the dimension n and is
hence suited to moderate dimensional problems. The
original algorithm from [22] fits linear models at each
leaf using standard least squares; consequently, the fits

Fig. 7 Partitioning scheme for L = (2, 2) and ζ (i) ∼ N (0,C)

with C ∈ R
2×2. Here, i ∈ {1, 2, . . . , M} with M = 1, 200,

c1,1 = c2,2 = 10, and c2,1 = c1,2 = 2. The black rectangles
indicate the individual domains. The split in the ζ1 coordinate
happens roughly at zero to divide the number of points in half,
while the splits in the ζ2 coordinate further subdivide the points
such that each bin contains 300 samples

are not robust to the high variance samples and have a
limited ability to capture nonlinearities in the contin-
uation cost. To address these limitations, we propose
using an 1-regularized quadratic fit in each partition.

Let I ⊂ {1, 2, . . . ,M} denote the subset of the
indices of the particles that belong to partition ,
with |I| = m = M/Np. Furthermore, with I =
{i1, i2, . . . , im}, we take y() := (qi1 , qi2 , . . . , qim) ∈
R

m. Here, qi is the pathwise cost sample that is gen-
erated from Algorithm 2 and associated with state
z(i) ∈ Z ⊂ R

n, where i ∈ I. Additionally, we
denote by H (�) ∈ R

m×Nb the predictor matrix, where
Nb = n+n(n+1)/2 is the number of basis functions,
not including the constant term. Thus, the rows of the
predictor matrix take the formH

(�)
i∗ = h�(z(i)), where

h : Rn → R
Nb is used to evaluate the quadratic basis

functions for each point z(i) in partition . We assume
that the regression equation is of the following form

y() = H (�)β() + β
()
0 1m×1 + ε().

Here ε() ∈ R
m is the vector of residuals in par-

tition , 1m×1 is an m-length vector of all ones, and
β

()
0 ∈ R and β() = (β

()
1 , β

()
2 , . . . , β

()
Nb

) ∈ R
Nb

are the coefficients to be determined in the regression.
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To determine the regression coefficients in a robust
fashion, we minimize

‖y() − β
()
0 1m×1 − H (�)β()‖2 + λ‖β()‖1, (12)

where λ > 0 is a tuning parameter. As noted in §3.4.4
of [30], this problem can be solved in the same time
complexity as regular least squares, and hence it is
suited for repeated use in the partitioned regression
scheme, i.e., for each  ∈ {1, 2, . . . , Np}.

Once the regression coefficients have been deter-
mined, then the estimator for the Q-value in Algo-
rithm 1, takes the form

Q̂k(z, u) = 〈β(,u)
k , h(zk)〉 + β

(,u)
0,k , zk ∈ D

where 〈 , 〉 denotes inner product, h(zk) ∈ R
Nb is the

aforementioned mapping that forms the rows of the
predictor matrix H (�), and  is the index of the parti-
tion D to which zk belongs. Also, we have indicated
the dependency of the regression coefficients on both
the time k and the control action u, which had been
temporarily omitted for simplicity.

Ideally, the controller keeps the steady state tra-
jectories in the domain D; however, in the case that
extrapolation must be performed, one should be wary
of the behavior of the quadratic fit outside D. Thus, if
z /∈ D, we evaluate Qk(z, u) at the point in D closest
to z using the 1-norm, as we have found this practice
to produce satisfactory performance. Moreover, we
expect the partitioned quadratic fits to interpolate well
in the domain but avoid their use for extrapolation.

3.2.4 Convergence and Sample Size

Regarding the algorithm’s convergence to the optimal
solution, we note that this subject has been formally
studied in [31], and the reader is referred to the said
work for formal proofs of convergence. Nonetheless,
we note that convergence to the true Q-values (and
hence the optimal policy and true value function) are
obtained in the joint limit as the total number of Monte
Carlo samplesM and the total number of partitionsNp

(and in particular each Lj ) tends to infinity. In [31],
the obtained result is rather general, principally requir-
ing the Q-values to be bounded. A limitation is that
M must be exponential in Np, i.e., the number of sam-
ples grows very quickly as the number of degrees of
freedom for the regression is increased. We also note
that [31] assumes unpenalized regression, i.e., λ = 0
in (12), though this is unlikely to affect the results.

Since computational tractability necessitates a
finite sample size M , one particularly noteworthy
result from [31] is that the approximation error is of
order O((logc M)/

√
M) for a certain c > 0, which is

close to the classical Monte Carlo error ofO(1/
√

M).
The precise estimates are rather complex and depend
on a number of factors including functional smooth-
ness of theQ-values and smoothness of the underlying
stochastic dynamics, to name a few. More precise and
detailed results about convergence rates have been
given for the case of optimal stopping in [27].

To balance computational considerations with the
accuracy of the solution using the partitioned robust
regression scheme of the previous section, we recom-
mend using a large number of samples per partition
m that is linear in the number of basis functions and
is on the order of a few hundred or more samples
per basis function. As an example, for the problem
setup that we consider in Section 5, we have found
that just over 275 samples per degree of freedom in
each of the partitioned quadratic fits produces satisfac-
tory performance. Without symmetry arguments that
eliminate the need for certain state space partitions to
be considered, M = mNp = m

∏
j Lj , and hence

the total number of simulations M is exponential in
the number of partitions. Thus, for moderate dimen-
sional problems, the number of partitions Lj for state
j is usually small (less than 3) unless the state enters
into the dynamics in a more nonlinear fashion, thus
requiring a greater number of partitions.

4 Regression Monte Carlo for Target Tracking

We now specialize the algorithms described in
Section 3 to the problem of vision-based target track-
ing. In particular, we first present an adaptation to
Algorithm 1 that addresses the fact that some of the
components of the state space described in Section 2.4
were discrete. Next, we describe the stochastic mesh
Z, and finally, we discuss a modification to the cost
function that makes it radially unbounded, thereby
ensuring the distances of the UAVs relative to the
target remain bounded.

4.1 Modified Algorithm

Since the state space of the stochastic kinematic model
of the UAV described in Section 2.2 had a few discrete
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components, the standard RMC algorithm must be
slightly modified for the application of vision-based
target tracking with two UAVs. In particular, we need
to runMonte Carlos simulations for all roll-angle pairs
r belonging to a finite set C ⊂ C2 combined with all
(finitely-many) allowable roll action pairs u ∈ U(r),
where C = {r(1), r(2), . . . , r(Nr )},

U(r) := U(r1) × U(r2),

and Nr = |C| = 15 (versus 5 × 5) due to symmetry
arguments discussed in the appendix. To accommo-
date these modifications, we remove the roll states
fromZ and denote the resulting continuous state space
by X ⊂ R

7, where χ ∈ X is given by

χ := (p1, p2, v)

and pj is described in Section 2.4. The resulting
stochastic mesh described in Section 3.2.2 is denoted
by X.

The modified RMC algorithm for vision-based tar-
get tracking with two-UAVs is presented in Algorithm
3. The primary differences with respect to Algorithm
1 is the addition of a for loop over all discrete-valued
states, as well as the formation of the full initial con-
dition set Z from the set X of continuous initial
condition states and the given roll-angle pair r ∈ C.
Furthermore, the regression is performed using only
the continuous states in X, and thus the dimensional-
ity of the regression problem is reduced to nr = 7.
In practice, the two innermost loops are often com-
bined and run in parallel for increased computational
performance. On a final note, when generating the
cumulative cost samples for each roll action with
Algorithm 2, one should replace U with U(r) in the
requirements section and U with U(r(i)) in Line 8.

4.2 Stochastic Mesh

While modified RMC approach offers significant
computational savings over a basic Monte Carlo
method for value iteration, it generally requires adjust-
ing the initial condition set and the regression to obtain
satisfactory performance. Thus, we now describe the

Algorithm 3 Regression Monte Carlo for Target
Tracking

Require: Initial condition set X ⊂ R
7, where |X| =

M; set of roll-angle pairs C ⊆ C2; action space
U(r)

1: Nr ← |C|
2: for k = K − 1, K − 2, . . . , 0 do
3: for s = 1, 2, . . . , Nr do
4: Form initial condition set Z from X, such

that for each χ (i) = (p
(i)
1 , p

(i)
2 , v(i)) ∈ X,

the following relationship holds:
z(i) = (p

(i)
1 , r

(s)
1 , p

(i)
2 , r

(s)
2 , v(i)), where i ∈

{1, 2, . . . , M}
5: Nu ← |U (

r(s)
) |

6: for  = 1, 2, . . . , Nu do
7: Using Algorithm 2, generate continua-

tion cost realization vector q ∈ R
M by

applying control action u() ∈ U
(
r(s)

)
to each point z(i) ∈ Z

8: Regress qi’s against statistics derived
from corresponding χ (i)’s to determine
Q̂k(z, u

())

9: end for
10: end for
11: end for
12: return Q-value approximators Q̂k(z, u), where

k ∈ {0, 1, . . . , K − 1}

initial condition set X of Algorithm 3 that comprises
the continuous states. For UAV j , if the relative posi-
tion states of (χ3j−2, χ3j−1) are represented in polar
coordinates as (ρj cosϑj , ρj sinϑj ), then we take ρj

to be normally distributed with mean μρ > 0 and
variance σ 2

ρ and ϑj to be uniformly distributed on

[ϑ, ϑ]. Typically, (ϑ, ϑ) = (−π, π). However, if one
exploits symmetry per the discussion of the appendix,
this need not be the case. Also, in the process of gen-
erating M samples of ρj , we only retain those samples
that have strictly positive values and those that are
within 3σ of the mean, as the outer boundaries of the
partitioning domain are set in the manner discussed
and illustrated in Section 3.2.3. Next, we take χ3j ,
the relative heading angle of UAV j , to be uniformly
distributed on [−π, π ] and the target speed χ7 = v

to be uniformly distributed on [v, v̄], where v and v̄

are discussed in Section 2.3. Moreover, at the start of
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Algorithm 3, we generate M samples of the continu-
ous states in the manner just described to form X =
{χ (1), χ (2), . . . , χ (M)}, where the mean μρ and vari-
ance σ 2

ρ of the radial distribution of the relative planar
position states are tuning parameters set beforehand.

4.3 Barrier Function

While in the single UAV case, the stage cost given
by Eq. 5 directly penalizes distance from the target,
this is not the case for both agents in the two-UAV
scenario. In particular, having UAV 1 directly above
the target and UAV 2 far away is only slightly worse
than having both UAVs directly above the target, since
the smallest planar UAV distance from the target is
the dominant factor in the fused GEC. This is illus-
trated in Fig. 8, where the range of trace values is
drastically smaller than that of Fig. 6. This disparity
in the range of trace values arises from UAV 1 hav-
ing zero planar distance from the target in Fig. 8 and
a planar distance of 100 [m] from the target in Fig. 6.
Moreover, UAV 2’s position has an almost negligi-
ble effect on the fused GEC in the former scenario
while in the latter scenario its position has a consider-
able impact on the fused GEC. Overall, this suggests
that the cost function is not radially unbounded with
respect to the second UAV’s planar distance from the
target.

To avoid using the Q-value approximators far from
the stochastic mesh, we added a barrier-type func-
tion to the stage cost that is non-negative, radially
unbounded, and only nonzero for large distances.

Hence, we present the following augmented cost func-
tion to be used in the dynamical optimization of
Algorithm 3:

gb(z) := trace(P) + b(z), (13)

where

b(z) =
2∑

j=1

max{0, ρj − (μρ + 2σρ)},

ρj denotes UAV j ’s planar distance from the target,
and μρ and σρ are the mean and standard deviation
of the normally distributed planar distances from the
target that form the initial condition set described in
Section 4.2. While the barrier function b(z) penal-
izes trajectories where the UAVs wander very far from
the target, it has a negligible effect along optimal
trajectories, which should remain close to the target.

5 Results

We now study the nature of the optimal coordination
strategy and the effectiveness of the modified RMC
approach in the optimal coordination of two UAVs
to perform vision-based target tracking in a stochas-
tic environment. To establish the benefit of the pro-
posed control approach, we compare the performance
of our (approximately) optimal controller against an
effective baseline strategy, as well as the previously
proposed approach of coordinated standoff tracking.
Additionally, we seek to gain insight regarding the

0 15 30 45 60 75 90 105 120 135 150 165 180
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Fig. 8 Cost function g(z) = trace(P) with the target located
at the origin and the first UAV located on top of the target at an
altitude of 40 [m]. Note that the separation angle γ is 0 since the
first UAV’s planar distance is ρ1 = 0; consequently, the fused

GEC is completely characterized by the second UAV’s planar
distance ρ2 from the target. The second UAV has an altitude of
45 [m]
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Table 2 Parameters in Stochastic UAV dynamics

Parameter Description Value Units

μs nominal airspeed 18 m/s

σ 2
s airspeed variance 16/25 m2/s2

αg gravitational accel. 9.81 m/s2

C roll command set {0, ±�, ±2�} deg.

� max roll change 15 deg.

optimal control policy to understand the predomi-
nant behavior of the two fourth-order UAVs, as they
cooperatively track the stochastic ground target.

5.1 Problem Setup and Solution Parameters

Throughout this section we extensively analyze the
results of a fairly realistic tracking scenario that is
summarized by the parameters pertaining to the tar-
get and UAVs provided in Tables 1 and 2, respectively.
The scenario is similar to that considered by [2],
wherein the authors presented field test results for
a single UAV (capable of 15 − 20 [m/s] airspeeds)
tracking a target that traveled between 5 − 10 [m/s].

The parameters pertaining to the general dynamical
optimization of Section 2.6 are presented in Table 3.
The planning horizon of KTs = 30 seconds was cho-
sen so that, within this time, the UAV could perform
a loop at max bank, which for a maximum turn rate
of ωmax = αg tan(2�)/s [rad./s] is approximately 20
seconds. With the 30-second horizon, the optimization
takes into account long-term impact of committing to
a loop, as the control policy μ̂

∗
k(z) is applied in a

receding horizon fashion, i.e., we always apply μ̂
∗
0(z)

at every time step.
The parameters pertaining to the RMC solution are

presented in Table 4, where the augmented cost from
Eq. 13 was minimized using Algorithm 3 along with
the techniques for computational savings presented in
the appendix. However, throughout this section the

Table 3 General Parameters

Parameter Description Value Units

R
θ̃

sensor attitude covariance 9I3×3 deg2

(h1, h2) UAV altitudes (40, 45) m

Ts zero-order hold period 2 s

K planning horizon 15 -

Table 4 RMC Parameters

Parameter Description Value

m samples per partition 10,000

L partitioning scheme (2, 2, 4, 2, 2, 4, 2)

λ regularization parameter 3

μρ radial distribution mean 70

σ 2
ρ radial distribution variance 352

terms cost and stage cost refer to the original cost
function given by Eq. 5, which is simply the trace
of the fused GEC. Also, we henceforth refer to the
resulting policy as the optimal policy with the under-
standing that this policy is in reality an approximation
to the true optimal policy.

Regarding the regression, each partition had 36
degrees of freedom in the quadratic regression, as the
dimension of the continuous state spaceX is 7. Hence,
we chose m (the number of samples per partition)
to avoid overfitting, while the regularization parame-
ter λ was chosen to add robustness to process noise,
where λ ∈ [3, 10] constitutes a considerable degree
of regularization and generally works well. Regard-
ing the partitioning scheme, recall that L ∈ N

7 is
the vector denoting the number of partitions for each
component of the continuous state space X , and hence
the total number of partitions is Np = ∏

j Lj =
512, though one does not need to estimate the Q-
value in more than 320 partitions according to the
symmetry considerations of the appendix. Thus, the
size of the stochastic mesh X is M = 320 · 104.
Note that choosing 2 partitions for the relative x and
y coordinates implies that the partitions of the pla-
nar positions correspond (approximately) to standard
Cartesian quadrants, since the 2-dimensional distri-
butions that generate the individual (planar) position
samples of the initial condition set are radially sym-
metric per the discussion of Section 4.2. The mean and
variance of the normally distributed planar distances
are also given in this table. Also, we have found that
the relative heading coordinates are the most sensitive
to the number of regression partitions (due to the non-
linearity) and hence choosing L3 or L6 to be less than
3 typically yields poor performance. Through consid-
erable testing, we found that this particular partition
configuration is a good compromise between compu-
tational feasibility and mitigating the effects of the
nonlinearity through additional partitions.
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Fig. 9 Optimally coordinated trajectories over a three minute
window. The starting positions of all vehicles are marked by an
“◦” while the ending positions are denoted by an “×”. The target
(denoted by T ) begins at the origin travelling at approximately
5.4 [m/s] and finishes its trajectory travelling at approximately
7.3 [m/s]. Both UAVs (denoted byA1 and A2) begin with zero
roll

To highlight key features of the optimal trajectories,
we have provided a representative sample trajectory
in Fig. 9 and the corresponding performance param-
eters in Fig. 10. From Fig. 9, one should note how
the optimal trajectories comprise both sinusoidal and
orbital trajectories, where the latter is not necessar-
ily centered around the target. At the beginning of

the simulation, one UAV is performing an “S” turn
(sinusoidal pattern) while the other is performing a
loop. The UAVs switch roles and perform the same
joint maneuver before both UAVs make out-of-phase
loops and then out-of-phase “S” turns. From the top
plot in Fig. 10, distance coordination becomes appar-
ent, as the peaks of the distance curves alternate.
The second subplot of this figure indicates that the
UAVs do not strive to maintain orthogonal viewing
angles, as the curve does not cluster around γ = 90◦.
However, the UAVs do benefit from orthogonal view-
ing angles when they are both moderately far, e.g.,
t = 82 [s], where the cost is kept from spiking
by such a configuration. Overall, minimum distance
is the dominant factor in the cost function, though
viewing angle coordination does benefit the UAVs
when they find themselves moderately far from the
target.

While this particular instance of a controlled
stochastic process does not establish distance coor-
dination as the predominant coordination strategy,
it does illustrate typical behaviors encountered with
this policy. Namely, the optimal trajectories comprise
a rich mixture of sinusoidal and orbital trajectories
that occasionally pass over or near the target rather
than just a single trajectory type, which is the pri-
mary goal in the vast majority of the target tracking
literature.

Fig. 10 Performance
metrics of optimally
coordinated UAVs: planar
distances ρj , separation
angle γ , and trace of the
fused GEC P
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Table 5 State Space Discretization in One-UAV Scenario

Set Description Value Units

Y relative positions {−225, −220, . . . , 225} m

� relative headings {0, 15, . . . , 345} deg.

C roll commands {0, ±15, ±30} deg.

W target speeds {4.5, 5.0, . . . , 12.5} m/s

Z discrete state space Y 2 × � × C × W -

5.2 RMC Performance

We now compare our RMC solution against alterna-
tive control strategies that roughly consider the same
problem formulation. In particular, we first compare
the strategy with two UAVs that are running unco-
ordinated optimal policies, and secondly we compare
the strategy with the common approach of coordinated
standoff tracking.

5.2.1 Comparison with Uncoordinated Optimal
Controllers

To generate an appropriate uncoordinated baseline
strategy, we solve the stochastic optimal control prob-
lem of Section 2.6 for a single UAV and then apply
the same optimal control law for the two UAVs inde-
pendently. Since the problem for a single UAV has
modest dimension, one can solve it using the basic
Monte Carlo solution of Section 3.1. As a result, we
performed value iteration according to Section 3.1 to
generate two individual control policies with the cost
function Eq. 5 and the parameters of Table 3. We used
M = 1, 000 Monte Carlo samples in Eq. 9 with a
finite state space Z described by Table 5. We denote

the resulting policies as π
(1)
k

(
ζ

(1)
k

)
and π

(2)
k

(
ζ

(2)
k

)
,

where k ∈ {0, 1, . . . , K − 1}, ζ (1) = (p1, r1, v),
ζ (2) = (p2, r2, v), and pj is defined in Section 2.4.
As in the case of coordinated UAVs, we always apply
these policies in a receding-horizon fashion, i.e., we

always use the time-stationary policies π
(1)
0

(
ζ

(1)
k

)

and π
(2)
0

(
ζ

(2)
k

)
for the uncoordinated UAVs for all

k ∈ Z≥0.
To illustrate the nature of this control strategy, we

have provided plots in Fig. 11 and Fig. 12 illustrat-
ing the behavior and performance of uncoordinated
controllers for the same initial conditions and target
trajectory realization as in Fig. 9 and Fig. 10. While

each UAV minimizes its own individual GEC, we plot
the fused covariance in the bottom chart of Fig. 12.
The most noticeable feature of Fig. 11 is the fact that
the UAVs primarily make orbital trajectories around
the target, which enables them to keep their worst-case
distance from the target smaller. This is confirmed by
the top chart of Fig. 12, where the peak planar distance
from the target is approximately 114 [m], whereas that
of Fig. 10 is approximately 150 [m]. One can also see
the lack of coordination for t ∈ [126, 132], as cost is
above 100 during this time period when both UAVs
are moderately far from the target and have viewing
angles that are quite far from being orthogonal. On
a final note, the time-averaged cost for this run was
approximately 39.6 [m2] while that of the coordinated
control policy was 32.4 [m2]. It is interesting to note
that coordination allows the UAVs to deviate further
from the target without sacrificing performance. Of
course, this deviation must be done in an alternating
fashion, as illustrated by the distance curves of Fig. 10.

To better demonstrate the temporal nature of both
control strategies in an expected sense, we have
selected an initial condition that is a good starting
point for both strategies and run 50,000 Monte Carlo
simulations from this initial condition with the same
realizations of target trajectories to compute both the
mean value and 98th-percentile statistics of the cost,
which are provided in Fig. 13. By inspecting Fig. 13a,
one can see that the optimal control policy converges
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Fig. 11 Uncoordinated trajectories over a three minute win-
dow. The starting positions of all vehicles are marked by an “◦”
while the ending positions are denoted by an “×”. The remain-
ing notation, initial conditions, and target trajectory are the same
as in Fig. 9



J Intell Robot Syst (2016) 82:135–162 155

Fig. 12 Performance
metrics of uncoordinated
UAVs: planar distances ρj ,
separation angle γ , and
trace of the fused GEC P
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to the mean steady-state cost of (approximately) 35
[m2] within one minute while the uncoordinated con-
trollers take nearly 2 minutes to converge to the mean
steady-state cost of (approximately) 38 [m2]. In addi-
tion, the peak average value is significantly less in the
case of the optimal coordinated control policy than in
the case of uncoordinated policies. Note that the dis-
tribution of steady-state costs is independent of the
initial conditions.

Another benefit of the coordinated control policy
can be seen in Fig. 13b, where the plot indicates that
the tail of the steady-state cost distribution is often sig-
nificantly wider in the case of uncoordinated policies.
In fact, the 98th-percentile of the steady-state costs for
the uncoordinated policies is about 33 % higher than
that of the optimal policy. Moreover, although we have
illustrated transient response performances for a spe-
cific initial condition, the plots in Figs. 13a and 13b
illustrate typical benefits of the optimal control policy.
Namely, with coordination, the recovery from initial
conditions is typically faster (in an expected sense),
and the tail of the cost distribution is significantly
smaller in steady state, which entails that high cost
events are more rare than in the uncoordinated case.

To provide a more objective comparison, we
have performed another test over a wide range of
initial conditions. More specifically, we generated
M = 50, 000 initial conditions randomly according

to Section 4.2 and then ran 12-minute Monte Carlo
simulations with each control strategy from these ini-
tial conditions using the same realizations of target
trajectories for each approach. To reduce the effects
of initial conditions, we truncated the first two min-
utes of each run. Computing the sample mean (over
time) of the stage costs associated with each run yields
the histogram presented in Fig. 14. Hence, whereas
the previous test illustrated the first few minutes of
a transient response and computed certain statistics
across samples, here we are computing the mean over
time with the first few minutes of each simulation
removed. In this plot, the sample mean and sample
standard deviation of the time-averaged costs associ-
ated with the optimal policy are 34.91 [m2] and 2.33
[m4], respectively; those associated with the uncoor-
dinated control policies are 37.92 [m2] and 4.09 [m4],
respectively. Furthermore, the standard error of the
mean is less than 0.02 [m2] in both cases. One can
observe that, while the optimally coordinated con-
trol policy reduces the mean of the time-averaged
costs by only about 8 %, it reduces their standard
deviation by nearly 43 %. This reduction in standard
deviation is illustrated by the widths of the distribu-
tions, which is considerably less in the case of the
optimally coordinated strategy. Thus, the optimally
coordinated control policy improves the predictability
of the tracking performance substantially.
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Fig. 13 Transient response for initial condition z0 =
(−60, 0, −π/2, −30◦, 0, −60, 0, −30◦, 8.5), where zk =
z(kTs). In this initial condition, the UAVs have orthogonal view-
ing angles and are banked max left at a distance roughly equal
to their minimum turning radius of 57.2 [m]. The lighter, thin-
ner lines indicate the 95 % confidence intervals for the given
statistics

One final comparison is provided by plotting the
histogram of the steady-state costs with the effects of
time-averaging removed. More specifically, in Fig. 15
we provide a histogram of the stage costs given by
Eq. 5 at each time step for each of the M = 50, 000
ten-minute Monte Carlo simulations in steady state.
The number of counts is presented with a logarithmic
scale to focus on the tails of the distributions. One can
see that the tail of the cost distribution corresponding
to the uncoordinated policies decays slower than that
corresponding to the optimally coordinated policy.
This plot highlights that rare events are less frequent
and less severe with the coordinated control policy
than with uncoordinated control policies. In fact, for
stage costs exceeding 400 [m2], the frequency of such
costs with the coordinated control policy are an order
of magnitude lower than with the uncoordinated poli-
cies. Since we expect the controlled processes to be

ergodic, these histograms are representative of a sin-
gle very-long run for each of the cooperative tracking
approaches, e.g., a run lasting hundreds of hours.

5.2.2 Comparison with Standoff Tracking

To establish a fair comparison with the standoff track-
ing approach, we note that the minimum allowable
standoff distance, 
s , imposed by the maximum bank
angle φmax, is given by Equation 5.37 in [3] as follows:


s ≥ (v + s)2

αg tan(φmax)
, (14)

where v, s, and αg denote target speed, UAV airspeed,
and gravitational acceleration, respectively. With the
target traveling at the minimum allowable speed of 4.5
[m/s] and the remaining parameters given in Table 2,
we have


s ≥ (4.5 + 18)2

9.81 tan(30π/180)
≈ 89.4 [m].

In an ideal setting for standoff tracking, the target
is traveling at a constant velocity and the UAVs have
orthogonal viewing angles at the nominal standoff dis-
tance of 
s = 90 [m]. Hence, with the altitudes of
Table 3, trace(P) ≈ 46 [m2]. Recalling that both the
time-averaged cost and ensemble-averaged cost of the
optimal policy in steady state (over many target veloc-
ity realizations) were both approximately 35 [m2], one
can see that the optimally coordinated policy offers a
significant advantage in terms of average cost, even
in this slow target scenario. If the target were instead

Fig. 14 Histogram of the stage-cost mean ḡ(i) =
(1/301)

∑360
k=60 g(z

(i)
k ) for 10-minutes of steady-state behavior

with 50,000 Monte Carlo simulations. The outliers for the
uncoordinated policy are not all shown, as they extend out to
nearly 73 [m2]
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Fig. 15 Histogram of the
stage-cost (not averaged
over time) for 50,000,
10-minute Monte Carlo
simulations. The outlying
costs of the uncoordinated
policy are not all shown, as
they exceed 2,000 [m2]
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traveling at v = 9 [m/s], or half the UAV’s airspeed,
standoff tracking requires 
s ≥ 128.7 [m] according
to Eq. 14. Thus, with ρs = 129 [m], trace(P) ≈ 92.2
[m2], and we have that the average steady steady cost
of the optimal policy is nearly 2.5 times less than that
of ideal standoff tracking. Of course, constant speed
aircraft cannot hold a 90◦ separation angle at a fixed
nominal distance from a constant-velocity target, nor
does a target travel at a fixed velocity in a real-world
setting. Thus, the numbers presented here for standoff
tracking are optimistic.

Overall, the stochastic optimal control approach
presents substantial improvements in performance
over standoff tracking when the cost is the fused GEC.
Recall that the fused GEC is determined by three
degrees of freedom, namely the UAV distances ρj

and their separation angle γ . Accordingly, when one
proposes a standoff tracking approach, one loses two
of these three degrees of freedom, namely the UAV
distances, which are the dominant factors in the cost
function. Hence, the performance one can expect from
standoff tracking is inherently limited. Thus, while
certain applications might require a minimum stand-
off distance, the degradation in tracking performance
with vision sensors is substantial and perhaps warrants
the use of alternative sensors, e.g., radar, though such
equipment may require larger UAVs.

5.3 Nature of Optimal Solution

Since we have established the benefits of the opti-
mal policy, we now seek to understand its behavioral
qualities. We again use the uncoordinated strategy
to generate baseline statistics. We utilize the M =
50, 000 Monte Carlo simulations that were described

at the end of Section 5.2.1 to generate Figs. 14 and
15. Recall that each simulation comprises a ten-minute
trajectory in steady state.

To assess the level of viewing angle coordination,
we have generated the histogram of Fig. 16. From
this figure, one can see that the optimal control strat-
egy yields orthogonal viewing angles more often than
collinear viewing angles, which occur either when
γ = 0◦ or γ = 180◦. Even so, while orthogonal
viewing angles occur nearly twice as often as γ = 0◦
with the optimal coordinated control policy, they are
only 23% more frequent than γ = 180◦. Addition-
ally, the distribution is not nearly an impulse function
at γ = 90◦, as would be achieved in an ideal set-
ting with coordinated standoff tracking. In fact, the
mode of the distribution occurs near γ = 111◦. More-
over, we conclude that viewing angle coordination is
certainly facilitated by the optimal policy but is not
necessarily a dominant behavior.

0 30 60 90 120 150 180
0

5

10

15

20

25

Fig. 16 Histogram of the separation angle γ incurred by the
optimal policy during steady-state at each time step and for each
of the 50,000 ten-minute Monte Carlo simulations
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Fig. 17 Joint probability
density of UAV distances ρ1
and ρ2, as determined
through Gaussian kernel
smoothing. The heat maps
range from dark blue to
dark red, corresponding to
low and high density
regions, respectively. (For
interpretation of the
references to color in this
figure caption, the reader is
referred to the web version
of this article.)
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We now assess the level of distance coordination
achieved by the optimal policy in comparison with the
uncoordinated strategy. To do this, we have smoothed
the scatterplot data of the 15.05 million UAV distance
pairs to estimate the joint probability density func-
tion of planar UAV distances for each control strategy.
The results are provided in Fig. 17. The joint density
function corresponding to uncoordinated policies in
Fig. 17a is nearly circular around (ρ1, ρ2) = (80, 80),
which is not surprising since we expect the uncoordi-
nated policies to be equivalent to statistical uncorrela-
tion. However, the joint density function correspond-
ing to the optimal policy in Fig. 17b is significantly
elongated and shows strong anti-correlation, which
indicates that when one UAV is far from the target,
the other is most often fairly close to the target. These
plots also show that uncoordinated policies generally
keep each UAV’s distance below 115 meters while the
optimal coordinated policy keeps each UAV’s distance
below 140 meters, as indicated by the maximal val-
ues of ρ1 and ρ2 associated with the turquoise regions
of the probability density estimates. This demonstrates
the desired effect of the barrier function of Section 4.3,
which becomes active beyond a planar distance of 140
[m] in the computation of the optimal coordinated pol-
icy and thus deters individual UAVs from wandering
unnecessarily far from the target. Overall, while intu-
ition suggests that minimizing each UAV’s individual
worst-case distance from the target might be the best
strategy based on the fused covariance’s sensitivity to
distance, it is the coordination of distances that yields
optimal performance since Fig. 14 is effectively the
projection of the two dimensional plots in Figs. 17a
and 17b into one dimension based on the trace(P)

functional. Hence, from this test, we conclude that the

coordination of distances is the predominant behavior
of the optimal control policy.

6 Conclusion

We have presented and studied an effective solu-
tion to the problem of optimally coordinating two
fixed-wing UAVs to gather the best joint vision-
based measurements of a randomly moving ground
target. An analytic expression was utilized for the
fused geolocation error covariance (GEC) associated
with the vision-based measurements, and stochastic
fourth-order models were employed for all vehicles to
capture realistic system dynamics. While this degree
of realism is desirable from a practical point of
view, it also renders a 9-dimensional stochastic opti-
mal control problem for which grid-based solutions
are impractical. Hence, we presented a simulation-
based policy iteration technique known as regression
Monte Carlo and adapted it into a policy generation
algorithm to remove the need and influence of the
initial policy map. To promote fast, reliable regres-
sion, we used a partitioned robust regression scheme
that utilizes 1-regularized quadratic fits; as a result,
the technique achieves spatial adaptivity and robust-
ness to process noise while capturing nonlinearities
in the Q-value.

We conducted a thorough study of the performance
and nature of the optimal control policy. When com-
pared with uncoordinated policies, the optimal coor-
dinated policy was shown to achieve lower average
costs with a significant reduction in the variance of
these costs. Hence, the optimal control policy achieves
performance that is not only improved, but also much
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more predictable. When compared with ideal stand-
off tracking costs determined for a constant-velocity
target at various speeds, both the ensemble average
of the optimal policy’s costs in steady state and the
mean value of its time-averaged costs were shown to
be significantly lower. This can be explained by the
fact that standoff tracking does not take advantage
of the two most dominant of the three factors that
determine fused GEC, namely each UAV’s planar dis-
tance from the target. Moreover, while certain appli-
cations might require a minimum standoff distance,
the degradation in tracking performance with vision
sensors is substantial and perhaps warrants the use
of larger UAVs that can carry heavier, active sensors,
e.g., radar.

While the optimal policy was shown to facilitate
angle coordination to a slight degree, the stronger,
more pronounced behavior was shown to be the coor-
dination of distances to the target. The associated
optimal trajectories comprise a rich mixture of sinu-
soidal and orbital trajectories that occasionally pass
over or near the target. These behaviors differ both
from the standoff tracking approaches that aim to
achieve coordinated orbital trajectories centered at the
target and the heuristic approaches of [19] and [20]
that aim to achieve out-of-phase sinusoids passing
over the target. Furthermore, distance coordination is
achieved in the presence of stochastic target motion,
thereby offering a significant advantage. Nonethe-
less, should one design a heuristic controller for a
multi-UAV target tracking application wherein a min-
imum standoff distance is not necessary and the cost
is analogous to the fused GEC, one should focus
on distance coordination rather than viewing angle
coordination.

On a final note, we mention that in practice a
target’s motion may be deterministic over long time
intervals, e.g., constant velocity, or it may have a
fixed, deterministic control policy. So long as the tar-
get’s motion respects the dynamical constraints of
Section 2.3, such as maximum acceleration and maxi-
mum turn rate, it can be viewed as a realization of the
stochastic process, albeit with very low probability.
Moreover, the stochastic optimal controller is robust
to any motion that can be explained by the stochas-
tic model presented in Section 2.3. Of course, the
controller is no longer necessarily optimal, since, for
example, a constant-speed target that is turning at a
constant rate deviates from the zero-mean assumption

on the turn rate distribution. If one wished to play opti-
mally against a given target policy, then one would
have to either know and plan according to the policy a
priori or learn the target’s policy online. While the for-
mer option is rather impractical, the latter is certainly
possible, but it is nontrivial and hence the subject of
reinforcement learning [32]. Nonetheless, the present
work provides robustness to a wide range of target
motion encountered in practice.

One interesting topic for future work is that of
using more than two UAVs to track multiple targets.
Works that address multi-target tracking include [14]
and [33], which typically rely on heuristics to form
suboptimal, but computationally tractable, solutions.
Using cost function simplifications and computational
reductions from symmetry, the present approach could
almost certainly be extended to the problem of track-
ing with three UAVs, which would prove useful for
analyzing the return on investment for adding indi-
vidual agents. Since the computational demand of
the regression scheme presented here grows exponen-
tially in the state space dimension, one would likely
need to consider another form of regression. One
promising approach is an adaptive RMC approach
presented in [34] that adds samples to the stochas-
tic mesh in areas that yield the greatest expected
improvement to the quality of the fit until some thresh-
old is met. Moreover, the number and location of
points in the stochastic mesh is selected automatically
while Bayesian tree-based regression allows for the
fits to be updated recursively and the resulting qual-
ity assessed. To track multiple targets, a clustering
algorithm, such as that presented in [33] for tracking
groups of targets traveling in close proximity to one
another, could be used to track distinct groups of tar-
gets using teams of either one, two, or possibly even
three UAVs.

As practical models that have been proven in the
field were employed for the UAVs, a natural next
step involves testing the optimal control policy in the
field to validate its performance. One real-world con-
dition not addressed in this work is wind, yet light to
moderate steady winds can be merged with the target
velocity to form an apparent target velocity which can
then be used in the feedback policy. For more heavier,
stochastic winds, one can incorporate wind velocity
into the system dynamics, though this would increase
the dimensionality of the problem. Nonetheless, since
the problem is still tractable with RMC and because
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wind can play a significant role in the performance of
small UAVs, this also remains an open area for future
work. Lastly, since the aim of this work is to reduce the
error of the vision-based position measurements and
thereby facilitate more accurate reconstructions of the
full target state with a filter, future work involves test-
ing how the policy affects state estimates from filters
such as a particle filter or the robust filter of [35].
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Appendix Exploiting Symmetry
for Computational Savings

When performing modified RMC, one can exploit
key symmetries in the problem to reduce the com-
putational effort considerably. Firstly, the Q-value
is symmetric about the relative x-axis in the target-
centric state space Z . To describe this, we introduce
the reflection matrixR = diag(I 2×2 ⊗ R, 1) ∈ R

9×9,
where R = diag(1,−I 3×3) ∈ R

4×4. This matrix sim-
ply comprises 2 copies of the matrix R and unity in a
block diagonal fashion. By multiplying the state vec-
tor z ∈ Z by the reflection matrix, we reflect the
relative poses of both UAVs simultaneously about the
relative x-axis in the target-centric state space.

Taking note of dynamical symmetry, we have that
p(z′ | z, u) = p(Rz′ |Rz, −u). This simply states
that the dynamics of the UAV’s pose relative to the
target are symmetric about the relative x-axis. Further-
more, since simultaneously reflecting all UAV poses
preserves both the UAV-target distances as well as the
separation viewing angle γ , g(z) = g(Rz). Combin-
ing these two properties in Eq. 10 yields Q(z, u) =
Q(Rz, −u). Moreover, from Eq. 11, we have that

μ∗
k(z) = −μ∗

k(Rz),

which we henceforth refer to as the reflection property.

One can combine the reflection property with two-
UAV symmetry for substantial computational savings.
By two-UAV symmetry, we mean the property that
one can simply relabel the UAVs to account for all
possible state configurations when evaluating the cost-
to-go. Note that this practice is in reality an approxi-
mation since the UAVs operate at different altitudes,
although its effects are minor since the altitude differ-
ence is small in comparison to either of the altitudes.
As an example of the two-UAV symmetry, the set of
roll-angle pairs C can be defined as

C := {r ∈ C2 : r1 ≥ r2}.
Thus, with nc = |C| = 5 and Nc = |C|, the total
number of roll-angle pairs that needs to be consid-
ered has been reduced from Nc = n2c = 25 to Nc =
nc(nc + 1)/2 = 15, which is a significant reduction in
the computational requirements of Algorithm 3.

Also, as mentioned in Section 5, the partition-
ing of the relative position states for regression is
done approximately in quadrants. With two UAVs, we
enforce the position states to be partitioned as quad-
rants a priori and ensure that m Monte Carlo samples
from the initial condition set X exist in each quad-
rant, where m is the number of samples per regression
partition. With this setup, there are initially 42 = 16
possible combinations of quadrants (corresponding to
the position states) wherein one needs to perform
regression. However, by applying the reflection prop-
erty, one can eliminate performing regression in the
following pairs of quadrants: (3, 3), (4, 4), (4, 3),
(3, 4), (2, 4), and (4, 2). Hence, one can eliminate at
least 6L3L6L7Nrm = 2880m Monte Carlo simula-
tions, which is considerable since m is typically on the
order of 104.
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