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Abstract Collision avoidance is essential for safe
robot manipulation. Especially with humans around,
robots should work only when safety can be robustly
guaranteed. In this paper, we propose using virtual
impedance control for reactive, smooth, and consistent
collision avoidance that interferes minimally with the
original task. The virtual impedance control operates
in the risk space, a vector space describing the possi-
bilities of all forthcoming collisions, and is designed
to elude all risks in a consistent response in order to
create assuring human-robot interaction experiences.
The proposed scheme intrinsically handles kinematic
singularity and the activation of avoidance using a
boundary layer defined on the spectrum of Jacobian.
In cooperation with the original controller, the pro-
posed avoidance scheme provides a proof of con-
vergence if the original controller is stable with and
without projection. In simulations and experiments,
we verified the characteristics of the proposed con-
trol scheme and integrated the system with Microsoft
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Kinect to monitor the workspace for real-time colli-
sion detection and avoidance. The results show that
the proposed approach is suitable for robot operation
with humans nearby.
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1 Introduction

The safety issue is particularly stressed when robots
are working in close distance to humans in industrial
[1–6] and domestic applications [7–9]. However, in
most cases where robots’ are programmed to achieve
some predefined tasks, only performance indexes such
as tracking error are concerned. Therefore, an addi-
tional reactive collision avoidance control is necessary
for preventing potential injuries caused by physical
contacts unexpected in path planning stage. Classi-
cal path planning and obstacle avoiding schemes [10],
such as rapidly-exploring random tree, may be too
slow to react because of the necessary global sur-
rounding information. By contrast, reactive controls
[11–16] use only local information from proximity
sensors or computer vision to control the robot. On the
basis of potential field [17], most approaches [12, 14,
15, 18–24] guide the robot through the environment by
setting proper attractive and repulsive potentials. The
forces, defined as the sum of the negative gradients
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of the potentials, form a vector field and drive the
robot to achieve the task while preventing collisions.
As a consequence, these reactive control schemes can
respond to the environment rapidly and smoothly. In
[15, 20], the distances between the robot and the obsta-
cles were computed in the proposed depth space in
lieu of projecting the depth data into the configuration
space. The computed distances were then employed in
a potential field that allowed the robot to avoid colli-
sions with all obstacles including humans. In [12, 14,
19, 25], with a geometrical model consisting of spher-
ically extended convex hulls placed around the body
links, the potential colliding link pairs were identified
to generate repulsive forces that could maneuver the
robot away from the self-collision case.

However, such an avoidance approach may fail to
generalize to escape from multiple collisions, because
the degrees of freedom (DOF) of the robot are finite.
To address this dilemma, the literatures majorly fall
into two categories according to the use of projec-
tion matrix. Without projection matrix, the first group
sums the repulsive forces generated from different
obstacles. In [24], the repulsive forces on the risky
points were transmitted to some predefined control
points to handle multiple collisions. In [14, 19, 22,
26, 27], to unify both virtual and physical forces,
all repulsive forces were mapped by the correspond-
ing Jacobian matrices and summed in joint space.
Similarly, in [28], the contributions of potentials for
collision avoidance, joint limit avoidance, and manip-
ulation, were summed up to control the robot. The
approach of summation is intuitive and simple, yet
some underlying problems exist. Among them, the
most serious one is where the equilibrium point lies.
Although the system can be stabilized by introduc-
ing proper damping terms to regulate velocity, the
equilibrium point cannot always be guaranteed to be
collision-free.

On the contrary, null-space projection can be used
to isolate the original task from collision avoidance.
In [18], the original task was placed in the first pri-
ority and the collision avoidance only operated in the
null-space of the original task, which is appealing
for highly redundant robots. [29] designed a collision
avoidance scheme in the null space of the original task,
preventing the collision of the point closest with the
obstacle. However, these approaches do not confront
the question whether the null space of the original task
can always be large enough for successful avoidance.

To robustly enforce the priority of collision avoidance,
[16] operated the original task only in the null space of
self-collision avoidance control and defined a vector-
valued potential for multiple collision points. How-
ever, due to the asymptotical nature of the design, the
robot may be trapped in the potential fields.

In general, reactive control does not necessarily
guarantee safety. Potentially a multi-priority prob-
lem, the safety requirement means that the collision
avoidance should be placed in the top priority: the
potential field should compensate for the dynamics of
the point at risk, so that the chosen point can avoid the
obstacle regardless of the predefined trajectory or con-
trol scheme. To this end, the original control scheme
should operate in the null space of Jacobian related
to the collision avoidance. This avoidance-first con-
cept distinguishes itself from the task-first approach
that uses the null space of the original task (e.g. the
tracking of end-effector) for collision avoidance. In
[18, 29], the task-first approach was proposed on the
premise that the robot has sufficient redundancy in the
null space of the primary task. Though this assump-
tion might be true in some cases, it does not cover the
scenario where the frame of the primary task directly
confronts the obstacle. Alternatively, treating the col-
lision avoidance first can deal with general situations
and, similarly, does not affect the original task if any
admissible solution exists. The original task will be
interrupted only if there is no feasible configuration
without collision.

Once the physical safety is provided, another
important issue rising in human-robot interaction is
the perceptional safety. In collision avoidance, this
requires robots to respond in a predictable, therefore,
consistent manner. One solution is to design a consis-
tent collision dynamics on a single point and transfer
the repulsive forces of other collision points to that
point. In [17], when multiple potential collision points
were presented, the forces originally exerted on differ-
ent points were transferred to the end-effector, whose
dynamics followed a unit mass model. Therefore, the
collision dynamics in such transmission scheme is
consistent at least in terms of the end effector, though
the success of the avoidance of the whole body is
uncertain. Another solution is to continuously switch
between different collision points. Because only one
point is selected at a time, the collision dynamics can
be consistent at least in a short interval. But due to the
switching, chattering may occur if multiple collision
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points present with similar risks or other uncertainties,
such as the discretization of control and detection.

In this paper, we propose using virtual impedance
control in the risk space to design a collision avoid-
ance scheme that is both physically and perceptionally
safe. The risk space is a vector space that represents
the possibilities of potential collision points. When the
robot’s distance to any obstacle is below a predefined
threshold, the collision avoidance scheme activates
and the robot dynamics is partitioned into two parts:
the risk dynamics and the projected original dynamics.
In the risk space, the virtual impedance control regu-
lates the dynamics with the chosen damping ratio and
bandwidth and forces the system away from the obsta-
cles, while the original dynamics operates in the null
space of the risk functions’ Jacobian to accomplish the
assigned task.

The proposed scheme naturally generalizes to mul-
tiple collision points and uniformly solves the sin-
gularity, the trapping, and the switching problems.
We design a boundary layer defined on the spec-
trum of the Jacobian matrix to indicate the region
where the collision avoidance just activates or the
Jacobian of collision avoidance is close to singular.
As the system travels into the boundary layer, the
projection matrices continuously transit into weight-
ing matrices to balance the repulsive forces and the
original dynamics. Partitioning the joint space with
respect to the boundary layer, we prove that the pro-
posed virtual impedance control asymptotically con-
verges to the attraction region of the original dynam-
ics or to a bounded region in the boundary layer.

Therefore, the proposed scheme is appealing in the
sense that it exhibits only necessary distraction. In
addition, because the controller works in the accel-
eration domain, the velocity profile of the proposed
scheme is intrinsically continuous.

In the rest of this paper, we introduce the concept of
risk space in Section 2, and present the proposed law
in Section 3. Then we validate the proposed scheme
in simulations and experiments with the 6-DOF NTU
robot arm and Microsoft KinectTM in Section 4.
Finally, a short conclusion is drawn in Section 5.

2 Risk Space

To model the robot, we assume that its geometry can
be contained in the union of a set of fully-connected
convex bodies indexed by Denavit-Hartenberg nota-
tion, as depicted in Fig. 1, where link i is connected
by joint iand joint i+1 and frame i is assigned to joint
i+1, with link length ai , link twist αi , link offset di ,
and the joint angle θi . The indexes of the joints from
the base to the end-effector are arranged in ascending
order. For links i with non-zero link length ai or link
offset di , its body Li is modelled as the union of ni

elementary convex sets Li,k , which can be arbitrarily
chosen (e.g. spherically extended line segment, rectan-
gular, or cylinder) according to the application as long
as their union

Li = ni∪
k=1

Li,k (1)

Fig. 1 The geometric
model of the robotic
manipulator
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covers the geometry of link iand does not interfere
with that of any non-adjacent link. As for the envi-
ronment, similar models are used to approximate the
geometry. Though Li is not necessarily convex, it is
composed by a finite set of convex bodies. Therefore,
based on this description, the body-to-body collision
can be efficiently prevented by computing the shortest
distance between the two convex bodies.

The concept of risk space is to introduce the risk
function to govern the response to potential collisions,
so that different types of collisions can be avoided in a
unified framework. With each entry ranging from 0 to
1, a risk function is vector-valued function represent-
ing the possibility of forthcoming collisions. An entry
is 0 when a potential collision can be neglected and 1
when that collision occurs physically. In this paper, if
the risk function is non-zero, the collision avoidance
activates in attempt to confine the growth of the risk
function.

To describe the risk space, we first enumerate all
possible collisions. Suppose the number of convex
bodies used to model the robot and the environment is
finite. The possible collisions can be listed by a finite
set

C = {(i, j)|i, j ∈ NL} = CC ∪ CJ (2)

where CC is the set of collision pairs in Cartesian
space, CJ is the set of collision pairs due to joint limit,
L is the number of all the convex bodies used in mod-
eling, and NL := {1, ..., L}. Let q ∈ R

n be the joint
angle of an n-DOF robot. In this paper, we choose the
risk function r+ ∈ R

m in the form

r+ = φ(r(q)) (3)

where m is the number of activated risks defined
by r(q) in Eq. 5. The transformation function φ :
[0, 1]m → [0, 1]m is a monotonically increasing
second-order differentiable function defined for each
entry of r(q) satisfying

φ(0) = 0, φ(1) = 1, ∂φ, ∂2φ < ∞,

and sup
r+∈[0,δ]

∂φ < ε, (4)

and δ, ε > 0 are small numbers; the ith entry ri(q) of
r(q) : Rn → [0, 1]m is defined as follows: for the ith
potential collision Pi

ri(q) = d̄i − di(q)

d̄i

, if d̄i ≥ di(q) (5)

where d̄i is the size of the buffer zone, di(q) is the
shortest distance between the pair of links in the Carte-
sian space or the distance to the joint limit defined in
the joint space. The constant d̄i is chosen manually to
ensure the robustness of the collision while not limit-
ing too much workspace. In the case where the joint
limit is two-sided, the pair of links is duplicated in C
so that di(q) in Eq. 5 becomes well defined.

Given finite pairs of collisions, the risk space is
defined as the image of the risk function r+ in Rm.
In the risk space, r+ is second-order differentiable
with respect to q. Therefore, the velocity ṙ+ and the
acceleration r̈+ exist and can be computed as

ṙ+ = J q̇ (6)

r̈+ = J q̈ + J̇ q̇ (7)

where J = JφJr , Jφ = ∂φ/∂r and Jr = ∂r/∂q.
To control the second-order risk space dynamics,

J and J̇ need to be known. The Jacobian matrix J

defines the variation between the joint space and the
risk function and can be computed by the product
of Jφ and Jr . Because Jφ = ∂φ/∂r and is diago-
nal, Jφ can have an analytical form given that φ is
user-defined. For Jr , by Eq. 5, the ith row of Jr is

−d̄−1
i d̂T

i (j2 − j1) (8)

if Pi ∈ CC , where di = x2 − x1, d̂i = di/ ‖di‖,
x1, x2 ∈ R

3 are the two vertices of the line segment of
the shortest distance in Pi , and j1, j2 ∈ R

3×n are the
Jacobian matrices of the linear velocity of points x1

and x2, respectively. Otherwise, if Pi ∈ CJ , then the
ith row of Jr can be computed directly as

−d̄−1
i

∂di(q)

∂q
(9)

which concerns only the sign of the definition of
di(q). On the other hand, J̇ = J̇φJr + JφJ̇r . J̇φ is
diagonal and its ith diagonal element is given by

∂2φ

∂2ri
ṙi , (10)

which is available since ṙ = Jr q̇. The ith row of J̇r

can be computed as

−d̄−1
i

[
‖di‖−1 q̇T (j2 − j1)

T
(
I − d̂i d̂

T
i

)
(j2 − j1)

+d̂T
i

d

dt
(j2 − j1)

]
(11)
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if Pi ∈ CJ ; otherwise, it is a zero vector. Therefore,
using Eqs. 6–11, all the information of the risk space
dynamics up to second-order is available.

By defining the risk space, the conundrum of main-
taining consistency with multiple collision points can
be addressed in a unified framework. Because the risk
space includes all possible collisions, we can focus on
the dynamics in the risk space alone to determine the
success of the collision avoidance. For consistency,
we maintain the dynamics in the risk space instead of
the Cartesian space or the joint space, so the dynamic
behavior of the collision avoidance follows a consis-
tent manner regardless of the number of collisions and
the configuration of the robot. Additionally, because
the risk function is second-order differentiable, the
dynamic behavior in the risk space can be controlled
as impedance control, so that the overall system can
both be stable and achieve the desired response.

3 Virtual Impedance Control in the Risk Space

In the following, we consider the kinematic feedback
control problem. We assume that the robot is origi-
nally stabilized with a feedback control law q̈o(q, q̇),
which is realized as desired joint acceleration q̈d =
q̈o(q̇, q). In implementation, q̈d can be a stable path
generation law for a position-controlled robot, or used
in the torqued-controlled robot,

M(q)q̈ + F(q, q̇) = τ, (12)

for example with inverse dynamics feedback, as

τ = M(q)−1(q̈d + G(q̇d − q̇)) + F(q, q̇), (13)

where M(q) denotes the inertia matrix and F(q, q̇)

denotes the Coriolis/centrifugal and gravity forces, τ

is the motor torque, and G > 0 is the feedback gain.
In the following, we consider the redesign of q̈d to
avoid collision while attempting to follow the original
dynamics. Instead of using Eq. 13, a direct redesign
of τ can also be derived, which is similar to the fol-
lowing approach but using the dynamics-consistent
projection [30]. Therefore, we omit it here and focus
on the design of q̈d here for the space and clarity in
expressing the idea.

The overall control scheme is divided into two
parts: collision detection and collision avoidance. In
the first stage, the value of the risk function, which
represents the possibility of collisions, is continuously

updated based on the closest distance between two
convex bodies in the Cartesian space or the distance to
the joint limit. If the risk function is non-zero, then the
collision avoidance control activates. To prevent the
collision regardless of scenarios, the proposed control
scheme first cancels the portion of q̈0 which is related
to the upcoming collisions, and then adds another
compensating term into q̈d such that the forthcoming
collisions can be avoided smoothly.

The aims of the proposed control are that the col-
lision avoidance is placed in the highest priority so
that the original control law has no effect on the sub-
space that concerns the collision whenever the risk
function is non-zero, and that the avoiding motion is
smooth instead of stopping abruptly for better user-
interaction experience. Therefore, when the collision
avoidance is activated, on the subspace related to col-
lision the system’s behavior is controlled in the risk
space, so that the dynamics of the collision avoidance
is independent of the configuration and the types of
collisions; at the same time, q̈0 is maintained on the
complementary space to continue the assigned task.
In addition, to eliminate the inherent switching due
to projection, a transition region called the bound-
ary layer is designed, in which the influence of q̈o

is gradually decreased and replaced by the collision
avoidance control.

3.1 Virtual Impedance Control and the Boundary
Layer

The control law is formulated as

q̈d = P̄ q̈r + N̄ q̈o (14)

where q̈r is the acceleration to achieve the desired
risk space dynamics, and P̄ , N̄ are two positive semi-
definite matrices such that P̄ + N̄ = I , which are
similar to the concept of projection and will be defined
later. To control the risk dynamics, q̈r is designed with
the control-Lyapunov function:

VR(q, q̇) = kr

2
rT+r+ + 1

2
ṙT+ ṙ+ (15)

where kr > 0 is the scalar parameter controlling the
bandwidth of collision avoidance motion. Because Eq.
15 is positive definite in (r+, ṙ+), all the risks con-
verge to zero if Eq. 15 converges to zero. To attain the
objective, the virtual impedance control

r̈+ = −br ṙ+ − krr+ (16)
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is designed with damping br > 0 to ensure that the
time derivative of Eq. 15 is negative semi-definite, i.e.

V̇R = krr
T+ ṙ+ + ṙT+ r̈+ = −br ‖ṙ+‖2 , (17)

To realize Eq. 17, it is sufficient to find q̈ such that

J q̈ = −br ṙ+ − krr+ − J̇ q̇. (18)

If Eq. 18 is satisfied, the system will converge to a pos-
itively invariant set where ‖ṙ+‖ = 0 and ‖r+‖ = 0,
independent of the configuration of the robot. How-
ever, Eq. 18 does not hold in general due to the limited
DOF. Let k := rank(J ). In particular, k < m may
occur even if m < n, because the position and the
type of forthcoming obstacle is unknown beforehand.
In addition, for k = m, the smallest non-zero singular
value of J may be too small for Eq. 18 to realize.

To approximate the solution, we adopt the con-
troller in Eq. 14 and set

q̈r = −V 	−1UT (krr+ + J̇ q̇) − br q̇ (19)

and

P̄ = V 
V T , (20)

where J = U	V T is the singular value decompo-
sition (SVD) of the Jacobian matrix with the basis
U ∈ Rm×k , V ∈ Rn×k of the non-zero singular values
	 ∈ Rk×k . The matrix 
 ∈ Rk×k is a diagonal matrix
defined as


ii =
{

1 σthre ≤ σi

ψ(σi) 0 ≤ σi < σthre
, (21)

where ψ(σi) is a monotonically increasing continu-
ous function satisfying ψ(0) = 0 and ψ(σthre) =
1, and σthre > 0 is the threshold. Therefore, in
implementation, the overall control law gives

q̈d = P̄ q̈r + N̄ q̈o

= V 
V T (−V 	−1UT (krr+ + J̇ q̇) − br q̇)

+(I − V 
V T )q̈o

= q̈o − V [(
	−1)UT (krr+ + J̇ q̇)

+
V T (q̈o + br q̇)] (22)

In the region where σi ≥ σthre, this control is essen-
tially a multi-priority control where the secondary task
operates in the null space of the primary task, i.e.

q̈d = P q̈r + Nq̈o, (23)

where P̄ = P := V V T and N̄ = N := I − P . Nq̈0

projects the original dynamics into the null space of

the active Jacobian matrix J , so the original dynam-
ics will impose no effect on the risk dynamics once
the collision avoidance activates. The term P q̈r con-
trols the risk dynamics, so the risk space dynamics is
consistent in the controllable subspace (i.e. the col-
umn space of the active Jacobian matrix J ). Therefore,
regardless of the number of the active potential col-
lision points, the dynamics of the risk function r+
follows a projected second-order linear system,

UUT (r̈+ + br ṙ+ + krr+) = 0, (24)

which is characterized by the stiffness kr and the
damping br to realize specified bandwidth and damp-
ing ratio. Because Eq. 24 is linear, though nonlinear
in terms of r , the damping ratio in can prevent the
undesirable effects, such as the overshooting.

In the vicinity of singularity, 
ii acts a spectral
filter [31] such that
	−1 < ∞ and therefore P q̈r

is bounded. In this boundary layer{q ∈ R
n|∃σi <

σthre} the control law Eq. 14 uses 
 to continuously
weight q̈o and q̈r according to the size of σi . Because
J = JφJr is the product of the Jacobian of risk func-
tion and the Jacobian of kinematics, and sup

r+∈[0,δ]
∂φ <

ε is required in Eq. 5, the boundary layer contains
the region of the boundary of the collision avoidance
scheme (i.e.r+is close to zero) as well as the region
where Jr is nearly kinematically singular that physi-
cally unrealizable acceleration is needed to generate
certain motions. Therefore, by defining 
 on the spec-
tral of J and using Eq. 22, the problem of kinematic
singularity and activation of collision avoidance are
resolved; the collision avoidance in these two cases
does not require q̈o to be completely canceled.

On the boundary where certain elements of r+ is
close to zero, N̄ q̈o could act as a force to help the robot
escape from the potential field in finite time. Other-
wise, without the boundary layer, if br ≥ 2

√
kr (i.e.

damping ratio is larger than unity) is adopted, con-
verges to zero as t → ∞. Therefore, the robot will
be trapped in the potential for collision avoidance. On
the other hand, at the singularity of kinematics, though
‖r+‖ may be nonzero and q̈o may contribute that
ṙT+J q̈o > 0, the inclusion of q̈o through N̄ q̈o does not
pose serious threat, if σthre is small enough. Although∥∥N̄ q̈o

∥∥ increases as σi → 0,
∥∥J N̄q̈o

∥∥ converges to
zero because lim

σi→0
(1 − ψ(σi))σi = 0. Therefore, the

contribution from q̈o to the increase of ‖r+‖ is not
significant.
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The idea of P̄ is similar to the approaches using
damped-least square and spectral filter, which redefine
pseudo-inverse in the kinematic control near singular-
ity, but it is based on the concept of projection matrix.
In fact, using the damped pseudo-inverse J T (JJ T

+ς2I )−1 effectively yields 
 = (ς2I + 	2)−1	2

with σthre = ∞ and ς > 0; the spectral filter can also
be realized by choosing proper 
 and σthre, which
satisfy the definition in Eq. 21. On the other hand,
P̄ is aimed to eliminate the chattering effect due to
the discontinuity inherited from projection. In Eq. 14,
if P̄ = P , then 
 = sgn(	 > 0), which is dis-
continuous at 	 = 0 where the dimension of V V T

changes, introducing infinite fast switch near the sin-
gularity. Therefore, modifying the definition of 
 into
a continuous function can attenuate the switching.

3.2 Stability Analysis

Assume that the environment is stationary and that
the original dynamics is asymptotically stable without
projection and stable with projection. We first parti-
tion the joint space into four parts according to the
boundary layer and singularity:

SP := {q ∈ Rn|
 = I, k �= 0}
SBP

:= {q ∈ Rn|
 �= I, k �= 0}\SBO

SBO
:= {q ∈ Rn|
 < I, k �= 0}
SO := {q ∈ Rn|k = 0}

(25)

SP denotes the joint space in which the collision
avoidance activates and far from singularity and the
boundary;

SB := SBO
∪ SBP

(26)

denotes the boundary layer; SO denotes the joint
space in which the collision avoidance is inactive. By
definition,

SP ∩ SB = ∅, SB ∩ SO = ∅, and SP ∩ SO = ∅
SP ∪ SB ∪ SO = Rn

(27)

Further, assume φ is chosen such that sup
r+∈[0,δ]

∂φ is

small enough in respect with σthre. Then these sets
form a relationship, as illustrated in Fig. 2, satisfying

SP is only connected with SBP

SBP
is only connected with SP and SBO

SBO
is only connected with SBO

and SO

SO is only connected with SBO

(28)

Fig. 2 The illustration of the partitions in joint space

That is, these sets form a non-cyclic chain
SP -SBP

-SBO
-SO ; if the system starts from SP , it must

pass SBP
and then SBO

before entering SO , if any of
the sets is nonempty.

Based on this relationship, we show the virtual
impedance control in Eq. 14 is stable.

Theorem Assume that q̈o is asymptotically stable
when without projection and stable when with projec-
tion, and that ‖q̈o‖ = O(‖q̇‖c2). Let kr , br > 0 and
br = O(‖q̇‖c1) with c1 > max(1, c2 − 1). If the envi-
ronment is stationary and sup

r+∈[0,δ]
∂φ is small enough in

respect with σthre such that the relationship in Eq. 28
holds, the virtual impedance control (14) with P̄ and

 defined in Eqs. 20 and 21 converges to the set SBO

or SO in finite time. If it converges in SBO
, the system

is bounded; otherwise, the system is asymptotically
stable.

Proof We first consider the case where the system
starts from SO . If it does not pass SB before the
convergence, the system converges asymptotically in
SO ; otherwise, it enters SBO

. Next, we consider the
case where the system starts fromSP . Because V̇R =
−br ‖ṙ+‖2 in SP , the system is stable in SP and goes
toward the set {q, q̇ ∈ R

n|ṙ+, r+ = 0} which is in
SO . However, due to Eq. 28, it must pass SBP

, either
on the way or before entering SO . Starting from SBP

,
even with the option to go into SP , the system even-
tually goes into the set SBO

, because the dynamics in
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the dimensions where σi ≥ σthre follows the projec-
tion of Eq. 16. Therefore, to characterize the stability
of Eq. 14, it is sufficient to analyze the behavior of the
system starting from SBO

.
Suppose the system start from SBO

. For clarity, we
consider the scalar case where k = 1. Because the
basis vectors V,U in singular value decomposition are
orthonormal, this result can be generalized to the case
wherek > 1. If k = 1 and q ∈ SBO

, the risk space
dynamics follows

r̈+ = J̇ q̇+J q̈d =−ψ(br ṙ++krr+)+(1−ψ)(J̇ q̇+J q̈o).

(29)

The time-derivative of the Lyapunov candidate (15)
becomes

V̇R = −ψbr ‖ṙ+‖2 + (1 − ψ)ṙT+(J̇ q̇ + J q̈o + krr+),

(30)

Using Eq. 30, we can characterize the upper-bound of
VR and ‖ṙ+‖. Firstly, we show a finite bound exists
for the scenario where the system travel along a con-
stant ψ in SBO

. In this case, VR is upper-bounded
if there exists finite ‖ṙ+‖such that V̇R is negative.
Because the indefinite term grows no faster than
O(‖q̇‖max(3,c2+1)) and σi is non-zero, br = O(‖q̇‖c1)

with c1 > max(1, c2 − 1), resulting the negative def-
inite term in Eq. 30 as O(‖q̇‖2+c1), provides a bound
for VR: there is a constant ṙ+,max such that if ‖ṙ+‖ >

ṙ+,max, V̇R is negative. As a result, VR is bounded in
SBO

, and so is ‖ṙ+‖, which converges to

‖ṙ+‖2 ≤
(

1 − ψ

ψbr

)2∥∥J̇ q̇+J q̈o+krr+
∥∥2=: ṙ+,max(ψ).

(31)

and VR ≤ 2−1kr ‖r+‖2 + 2−1
∥∥ṙ+,max

∥∥2 =:
VR,max(ψ). Note that though q̇ appears in the right-
hand side of Eq. 31, ṙ+,max is finite for the argument
above. Because ψ is a function of q, by definition (15),
the upper-bound VR,max(ψ) of VR in SBO

is a function
of ψ .

Then, we interpolate this bound along ψ , as illus-
trated in Fig. 3, in which the bound ṙ+,max(ψ)

decreases as ψ → 1 due to the multiplier (1 − ψ)/ψ .
In particular, at the extremity, ṙ+,max(1) = 0 and
VR,max(1) = 2−1kr ‖r+‖2. Therefore, ṙ+,max(ψ) and
VR,max(ψ) characterize the invariant set of the system
if the system converges in SBO

.
Finally, we use VR,max(ψ) to show that the system

converge either in SBO
or SO . Because of Eq. 28, a

system starting from SBO
goes either into SO or SP (in

the scalar case SBP
is empty; for the vector case, this

phenomenon occurs independently in each dimension
determined by V ). Suppose it starts to go to SP with
VR(t0) at t0 and returns to SBO

with VR(t1) at t1. Then
VR(t1) < VR(t0). If it does not enter SO , eventually
the sequence VR(ti) converges under VR,max(ψ) and

Fig. 3 The upper bound of
the Lyapunov candidate VR
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the system stays in SBO
without entering SP again,

because VR,max(1) = 2−1kr ‖r+‖2 and ṙ+,max(1) = 0.
Otherwise, it leaves SBO

and enters SO . In this case,
the system either converges in SO if collision avoid-
ance does not further activate, or converges into SBO

due to the previous reasons. Thus, because ṙ+,max(ψ)

is bounded and the original dynamics is asymptoti-
cally stable SO , the rest of the theorem follows.

The bound in the analysis above is conservative,
as it does not use the information of q̈o. Actually, the
condition in the boundary layer can also be analyzed
in perspective of q̈o. If q̈o is passive, a tighter bound
can be obtained. Nevertheless, Theorem shows that if
br = O(‖q̇‖c1) is with c1 > max(1, c2 − 1), the
system achieves the desired behavior: it exhibits con-
sistent dynamics in SP , follows the original dynamics
q̈o if possible, and allows q̈o to interfere in SBO

so
q̈o can voluntarily deactivate the collision avoidance
without trapping.

The following corollary accompanying the proof
of Theorem shows that the discrete-time acceleration-
based inverse kinematic control could be intrinsically
unstable for large q̇ if the damping is constant.

Corollary Let �t be the sampling time and Jx =
∂x/∂q be the Jacobian matrix. The discrete-time
acceleration-based inverse kinematic control q̈(t) =
q̈x(s�t) for t ∈ [s�t, (s + 1)�t) with constant Bx is
unstable if ‖q̇‖ ≥ q̇max, in which

q̈x = J−1
x (ẍr − Kxx̃ − Bx

˙̃x − J̇ q̇), (32)

q̇max is a constant proportional to ‖∂Jx/∂q‖ , B−1
x ,

and �t−1, x̃ = x − xr , and xr is the reference
trajectory.

Proof The continuous-time control law (32) is
designed to realize the second-order dynamics ¨̃x +
Bx

˙̃x + Kxx̃ = 0, which is stable in respect to the
Lyapunov candidate VX = 2−1x̃T Kx̃ + 2−1 ˙̃xT ˙̃x. For
the discrete-time version, q̈(t) = q̈x(s�t) for t ∈
[s�t, (s + 1)�t) the time derivative of VX becomes
V̇X(t) = − ˙̃xT Bx

˙̃x+ ˙̃xT e, where e = q̈x(s�t)− q̈x(t).
Because e = O(‖q̇‖2), V̇X is a polynomial of ‖q̇‖
of degree three. Therefore, for constant Bx , there is

a constant q̇max which is proportional to ‖∂Jx/∂q‖,
B−1

x , and �t−1 such that if ‖q̇‖ > q̇max,V̇X is posi-
tive. Since VX can be viewed as norm of the system’s
states, the system is unstable.

Although Corollary is based on acceleration-based
control, the same result applies to torque-based
schemes (e.g. Cartesian-space impedance control), as
long as J̇ q̇ is used. On the other hand, if only the
first-order derivative is fed back as in velocity-based
control, such phenomenon does not happen. We note
this unstable phenomenon is independent of the sin-
gularity of Jx but due to the inexact cancelation of
J̇ q̇. A similar condition appears in proving the stabil-
ity of continuous-time control with damped pseudo-
inverse in acceleration level [32]. Though in [32].
the stability condition was shown, it only holds for
small ‖q̇‖. Therefore, we posit that the continuous-
time acceleration-based control with damped pseudo-
inverse is also unstable for large ‖q̇‖ if the damping
varies in different singular directions.

Assume c2 ≤ 2. In implementation, we define a
variable factor

bf =
{

(‖q̇‖ /q̇max)
2, if ‖q̇‖ ≥ q̇thre

1, else
(33)

such that br = bf br,desired , where br,desired is the
desired damping and q̇thre > 0 is the threshold. In
this paper, we choose q̇thre empirically by simulation.
Though bf br,desired with arbitrary q̇thre satisfies the
stability condition, if q̇thre > q̇max, in which q̇max is
defined with respect to br,desired , there will be an open
interval in‖q̇‖ such that the chosen derivative of the
Lyapunov candidate VR is indeterminate; once the sys-
tem enters the interval, despite stable, VR may remain
large, which is undesirable. Therefore, in practice, it
should be chosen that q̇thre < q̇max.

We neglect the discussion of dynamic environ-
ments, so the system can be viewed as an autonomous
system parameterized in the joint phase space. For
dynamic environment, the characterization of Eq. 25
would depend also on the environment. Due to the
requirement on bounded joint acceleration, we can
easily see that when the robot is nearly kinematic
singular with respect to the upcoming collision, the
success of avoidance is determined by the speed and
acceleration of the obstacle. On the other hand, when
environment’s variation is within the capability of the
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robot, the property of the proposed systems remains
if the information of the obstacle’s velocity and accel-
eration is included in ṙ+ and r̈+. Otherwise, since
the overall system is continuous, the system is at
least input-to-state stable with regard to the change of
environment.

In addition, the Jacobian J in Eq. 6 implicitly
assumes the closest point remains the same in respect
to the frame on the link. In fact, this point moves
during the avoidance. But because the model (1) is
continuous, we can expect that the system remains the
same stability condition of Theorem by selecting br

large enough and �t small enough. Finally, because
of time delay due to the discrete-time implementation,
the system could oscillate between SBO

and a small
portion in SBP

∪ SP , though we did not observe this
phenomenon in our simulations and experiments.

4 Simulations and Experiments

4.1 Setup

We demonstrate two simulations and two experiments
to exemplify the virtual impedance control with the 6-
DOF NTU Robot Arm (NTU Robotics Laboratory).
All simulations and experiments were conducted on
a PC with CPU Intel Core i5-2500 3.3GHz and 4GB
of RAM. The implementation ran on the four-core
CPU: one processor executed the proposed risk avoid-
ance control, and the others handled I/O tasks such
as motor trajectory transmission, GUI, and the pro-
cessing of KinectTM sensor. The geometry of both
robot and humans were modelled as collections of
spherically extended line segments. For the parame-
ters in the virtual impedance control, φ(r) = 3−1r3,

q̇thre = 10 (rad/s), and kr , br are chosen to realize
a critically damped system with bandwidth 100 Hz.
In this setting, with the environment updated by
KinectTM sensor (30 Hz), our control approach oper-
ated in a cycle of 0.05 ms (20 kHz) and sent posi-
tion command (derived by numerical integration) to
the position controller (MCDC 3006s, FAULHABER
Inc.) via RS-232 communication port every 5 ms
(200 Hz).

4.2 Simulations

In Simulation 1, we test the consistency of the dynam-
ics in the risk space regarding different configurations
and discuss the effect of the boundary layer. We ini-
tialized the robot with two different poses (zero initial
velocity) such that the initial value of the risk func-
tions were similar (0.0466559 and 0.0466565 respec-
tively, as shown in Fig. 4). The original controller was
a joint space impedance controller whose goal is to
maintain the robot to the initial condition. To better
illustrate the behavior, we demonstrated the scenario
where the activated risk function was one-dimension
to prevent the collision with a ball obstacle in Carte-
sian space. In this case, the proposed scheme was
equivalent to the Cartesian space impedance control
in the one-dimensional subspace along the shortest
distance to the obstacle. Firstly, we observe that the
risk dynamics of the two cases in Fig. 5 are the same
regardless of the pose of the robot in SP (i.e. ψ(σ) =
1), which is never the case if the collision avoidance
scheme is realized by the Jacobian transpose. Inside
the boundary layer ψ(σ) < 1, the original dynamics
and the collision avoidance balances; the two simula-
tions converge to slightly different conditions, because
the initial poses of the two tests were different. Next,

Fig. 4 The initial
conditions in Simulation 1
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Fig. 5 The consistent risk space dynamics with the boundary
layers of different sizes

we compare the responses with boundary layers of
different σthre. The size of the risk function at the
equilibrium point is related to the size of the bound-
ary. If the thickness of the boundary layer is large as
in the Fig. 5a, the risk function converges to a larger
value. Similarly, we can observe that the dynamics of
the risk space is consistent only outside the boundary
(ψ(σ) = 1) so overshoot may happen in the boundary
layer despite the critically damped risk dynamics. In
addition, we can observe the asymptotical behavior
of the risk dynamics inside the boundary layer also
depends on σthre. If the boundary layer is large enough
as with σthre = 10−1, we observe that once the
robot enters SBO

it never returns SP . On the con-
trary, for σthre = 10−3 and σthre = 10−5, the robot
travels between SBO

and SP multiple times before
finally converging in SBO

. However, the chattering
would occur if the thickness is below some thresh-
old as with σthre = 10−5. The robot oscillates in the
boundary as it is pushed in and out by the original
dynamics and by the repulsive force of the obstacle
avoidance.

In Simulation 2, we simulate the robot to operate
in the condition in the vicinity of singularity and show
the change of ‖r+‖. The robot’s original dynamics
was regulated by Cartesian space impedance control.
Figure 6a shows the results of the robot operating in
the region where Jr was nearly singular (the singu-
lar value in the blue line denotes that of the Jacobian
of kinematics Jr). In this simulation, an obstacle was
placed near the end-effector such that the robot started
with a configuration in which Jr is nearly singular yet
Jφ is stable (i.e. ‖r+‖ is large); the original dynamics
was to lead the end-effector to the obstacle in order
to maintain the initial configuration. As shown in the
left gray region, the system started in the boundary
layer SBO

because J = JφJr , and the original dynam-
ics presented to increase the risk level. However, due
to the small singular value of Jr , as seen in the blue
line, the increase of the risk function was negligible.
Once it passed SBO

and entered SP , it escaped the
singularity region of Jr and went toward SBO

, where
‖r+‖ is small. The rest followed Theorem: it oscil-
lated between SBO

and SP , but converged to SBO
in

finite time. On the other hand, Fig. 6b shows the sce-
nario where the robot operated near the boundary of
the collision avoidance scheme where r+ was close
to zero, and the original task was to put the robot
close to the obstacle (the singular value in the blue
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Fig. 6 The robot operates in the condition at the vicinity of sin-
gularity of Jr and J∅ respectively. The blue line denotes singular
value. The red line denotes ‖r+‖. The light gray area denotes
operating in the boundary layer. a The robot operates in the

region where Jr is close singular. b The robot operates in the
boundary of the collision avoidance scheme (i.e. r+ is close to
zero)

line denotes that of the Jacobian of risk function Jφ).
As previously, the system entered SBO

from SP , and
converged in finite time despite oscillation. Therefore,
the problem of kinematic singularity and activation
of collision avoidance are resolved in the boundary
layer.

In Simulation 3, the proposed virtual impedance
control is compared with two other conventional con-
trol methods: the transpose-Jacobian approach,

q̈T J = J T (−krr+ − br ṙ+) + (I − J+J )

×J T
x (−Kx(x − xr) − Bx(ẋ − ẋr )) (34)
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and the velocity-level approach [13],

q̇V L = λJ †υ0 + (I − λJ †J )

×J †
x (−Kx(x − xr)), (35)

where υ0 is a scalar representing the nominal avoiding
velocity (υ0 = 1), λ(‖dclosest‖) is defined as

λ(‖dclosest‖) =
{ (

dm‖dclosest‖
)n

, ‖dclosest‖ ≥ dm

1, ‖dclosest‖ < dm

(36)

Note that dclosest is the vector connecting the clos-
est points between the obstacle and the robot, dm is the
critical distance [13] to the obstacle (dm = 15 (cm)),
n is positive number (n = 7). In attempt to compare
different approaches, we chose d̄C,i = 34.67 (cm) in

our proposed approach such that λ(d̄i) = 0.15, which
we treated as the activation of Eq. 35; all approaches
were set with Kx = 10 and Bx = 6.3246 (critically
damped).

We consider the case where a single obstacle is
placed near the end-effector of the robot (similar to
Simulation 1). The three approaches were initialized
with the same initial condition. The primary task was
obstacle avoidance and the secondary task was posi-
tion tracking of the end-effector. Figure 7 shows the
comparison results in terms of the closest distance
between the robot and the obstacle, the change of
‖r+‖, and the tracking error ‖xr − x‖. As shown in
the top and the middle plots, the proposed approach
responds quickly and smoothly to keep the safe dis-
tance, with a lower risk of collision than Eqs. 34 and

Fig. 7 Comparison of
obstacle avoidance with the
transpose-Jacobian
controller (TJ) (34), the
velocity-level controller
(VL) (35), and the proposed
controller (VIC). The top
plot shows the result of the
closest distance between the
robot and the obstacle. The
middle plot shows the risk
value and the bottom plot
shows the tracking error of
the end-effector
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Fig. 8 The modeling of the
human and the robot

35. The bottom plot shows the end-effector’s track-
ing error. We can see that, when using Eq. 34, the
tracking error is more significant than Eq. 35 and the
proposed approach during avoiding the obstacle. This

means that the interference occurred between different
priorities. From this comparison between differ-
ent obstacle avoidance controllers, we observe that
the proposed controller presents smooth transitions

(a) 

(b) 

Fig. 9 The results of Experiment 1 a The snapshots of the
experiment b The changes of the position error and ‖r+‖ dur-
ing the task transition. The blue line denotes ‖r+‖. The red

line denotes position error. The light gray area denotes the
operations in the boundary layer
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Fig. 10 The snapshots of Experiment 2, in which the human attempted to touch the robot

between tasks of different priorities and performs
immediate evasive maneuvers.

4.3 Experiments

In the experiments, the original task of the robot was
to continuously follow a predefined movement. The
workspace of the robot was kept under surveillance by
the KinectTM sensor to detect human skeletons. With
the SDK of KinectTM, the skeleton of the human can
be identified in the depth image and then incorporated
into our proposed risk avoidance control scheme. In
Fig. 8, the light blue lines represent the direction to
the upcoming collisions and the other line segments
denote models of the robot and the human. The param-
eters of the proposed approach was selected as d̄C,i =
25 (cm), d̄J,i = 10 (degrees), kr = 100, br = 20, and
σthre = 0.01.

In Experiment 1, using position Cartesian space
impedance control, the robot was tracking a triangu-
lar position trajectory in Cartesian space (the space
of orientation was controlled by a pure damping con-
trol for numerical stability, which was turned off once
the collision avoidance activated). The snapshots are
shown in Fig. 9a (please refer to the accompany-
ing video exp1.avi); Fig. 9b shows the changes of
the position error and ‖r+‖ during task transition.
When the obstacle appeared near the motion trajec-
tory of the robot elbow at t =1.79s, the robot tried
to exploit its task redundancy to continue to execute
the desired end-effector trajectory while avoiding the
obstacle. We can see that the original Cartesian tra-
jectory tracking task operated in the subspace of the
active Jacobian matrix J when the collision avoidance
turned on. However, when the subspace was not large

enough (i.e. task redundancy was insufficient), the
robot motion was dominated by the collision avoid-
ance (from t =1.79–3.16 (s)). After the constraint
was released, the robot then regained sufficient redun-
dancy in the null space of the collision avoidance task
to continue the position tracking control of the end-
effector (from t =3.16 (s) to t =5.13 (s)). As shown,
the proposed collision avoidance control scheme
can exploit the remaining redundancy to complete
the original task, and can smoothly transit between
the activation and the deactivation of the collision
avoidance.

The scenario in Experiment 2 is related to the issue
of human-robot coexistence. In this experiment, the
human attempted to touch the robot while the robot
was performing an immediate evasive maneuver with
the proposed risk avoidance control scheme. Figure 10
shows the snapshots of the experiment (please refer to
the accompanying video exp2.avi). With the proposed
control scheme, the robot followed the direction of the
human and did not come any closer than the safe zone
indicated by d̄i . We can observe that the motion of the
robot was smooth due to the controlled impedance.
Consequently, regardless of the type of collision, the
robot presents satisfactory and consistent performance
that is both physically and perceptionally safe.

5 Conclusions

For safe human-robot interaction, we propose vir-
tual impedance control which regulates the dynam-
ics of collision avoidance as a second-order linear
response in an abstract vector space, the risk space. We
treat the safety problem as a multi-priority problem,
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ensuring avoidance-first concept and operating the
original dynamics in the null space. By the boundary
layer defined on the spectral of the Jacobian matrix,
we show that the proposed scheme can stably tran-
sit between normal operation and collision avoidance
with continuous acceleration, providing that the orig-
inal dynamics is stable with or without projection
matrix. As a consequence, the robot can avoid any
collision smoothly and consistently regardless of the
types of potential collisions. In the experiments, we
integrated the 6-DOF NTU Robot Arm with KinectTM

to detect dynamic environment to demonstrate our
approach for safe robot operation with human nearby.
In our future studies, we want to incorporate phys-
ical forces into the risk space. While the risk space
dynamics now consists of only an initial response, a
forcing term can be defined by a map to transfer the
physical contact force into the system. Handling phys-
ical interactions undetectable by computer vision, this
approach could improve the system’s performance and
is suitable for close collaborative scenarios, in which
the robot could contact with humans up to certain
safety measure.

Compliance with Ethical Standards The authors declare
that they have no conflict of interest.
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