
J Intell Robot Syst (2016) 82:513–536
DOI 10.1007/s10846-015-0245-8

Differential Evolution Markov Chain Filter for Global
Localization

Luis Moreno · Fernando Martı́n ·
Marı́a Luisa Muñoz · Santiago Garrido

Received: 21 May 2015 / Accepted: 28 May 2015 / Published online: 20 June 2015
© Springer Science+Business Media Dordrecht 2015

Abstract A key challenge for an autonomous mobile
robot is to estimate its location according to the avail-
able information. A particular aspect of this task is the
global localization problem. In our previous work, we
developed an algorithm based on the Differential Evo-
lution method that solves this problem in 2D and 3D
environments. The robot’s pose is represented by a set
of possible location estimates weighted by a fitness
function. The Markov Chain Monte Carlo algorithms
have been successfully applied to multiple fields such
as econometrics or computing science. It has been
demonstrated that they can be combined with the Dif-
ferential Evolution method to solve efficiently many
optimization problems. In this work, we have com-
bined both approaches to develop a global localization
filter. The algorithm performance has been tested in
simulated and real maps. The population requirements
have been reduced when compared to the previous
version.

Keywords Differential evolution · Markov chain
Monte Carlo · Optimization method · Global
localization · Mobile robots

L. Moreno · F. Martı́n (�) · S. Garrido
Carlos III University, Madrid, Spain
e-mail: fmmonar@ing.uc3m.es

M. L. Muñoz
Universidad Politécnica, Madrid, Spain

1 Introduction

One of the most important skills of an autonomous
mobile robot is the capability of estimating its own
location according to the available information. Two
different systems can be defined according to the
information source: positioning systems and self-
localization systems. The positioning systems receive
signals from external sources (for example, the well-
known GPS). The self-positioning systems rely on
sensors implemented onboard the robot. This work is
included in the second option because our robot works
in indoor environments and it is equipped with a laser
range finder.

Depending on the initial knowledge, it is possible
to distinguish between two different problems: re-
localization or tracking and Global Localization (GL).
In re-localization, the initial robot’s pose (position and
orientation) is known, or at least we have information
that simplifies the localization problem by reducing
the area to be explored. The localization module tries
to estimate the current pose as accurately as possi-
ble while the robot is moving around the environment.
The objective of this problem is to correct the esti-
mate based on proprioceptive sensors (for example,
odometry provided by the wheel encoders) by using
local information obtained by perceptive sensors [1]
(ultrasounds, laser scanners, vision, etc.). In the GL
problem (also called kidnapping problem), the initial
pose is unknown or highly uncertain and the search of
the robot’s true location is not limited to a local area (it

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10846-015-0245-8-x&domain=pdf
mailto:fmmonar@ing.uc3m.es

514 J Intell Robot Syst (2016) 82:513–536

is assumed that the global map is known). The robot’s
pose has to be estimated using local information pro-
vided by perceptive sensors and the odometry is not
available yet. GL is, from a theoretical point of view,
more difficult to solve than re-localization.

In our previous work, we developed an algorithm
based on the Differential Evolution (DE) method [2]
that solves the GL problem in 2D [3] and 3D [4]
environments. These methods are evolutionary opti-
mization techniques that rely on the representation of
the robot’s pose (position and orientation) by a set
of possible location estimates (population) weighted
by a fitness function. This function represents the
difference between the real observations and the esti-
mated observations from each possible candidate. The
observation vector is composed of the measurements
obtained by a laser scanner. The state is recursively
estimated using a set of results selected according to
the weight associated to each possible solution. The
set of solutions evolves in time to integrate the sen-
sor information and the robot motion information. A
new version that uses the Kullback-Leibler divergence
to deal with different types of occlusions was recently
published [5].

The basic idea of the Monte Carlo (MC) principle
is to represent a probability density function by a set
of samples. This is an old concept that was first formu-
lated by Stan Ulam in 1946. He was playing solitaire
when he was sick and he thought that, instead of try-
ing to calculate the probabilities of being success, it
was easier to play the game a significative number of
times (from a probabilistic point of view), and sum
the number of cases in which he won. He and Nick
Metropolis investigated about how to apply this prin-
ciple in computing and published the first document
about MC simulation in 1949 [6].

Many papers about MC simulation appeared in the
physics literature after that. One of the most inter-
esting versions was developed by Metropolis [7] and
later generalized by Hastings [8]. They created a large
class of sampling algorithms that are called Markov
Chain Monte Carlo (MCMC)[9]. These methods are
used to generate a number of samples by successive
jumps that depend on a transition probability. The set
of samples explore the state space following a Markov
chain mechanism. The sequence of samples is drawn
to imitate a target distribution.

The MCMC algorithms have been successfully
applied to multiple fields such as econometrics or

computing science [10]. In [11], Ter Braak has demon-
strated how to combine the MCMC sampling tech-
nique with the DE algorithm. His method has been
called DE-MC. This new version is able to obtain
the solution in multiple optimization problems. In this
work, we have applied these concepts to develop a
new version of the GL module based on the DE-MC
method. Several reasons encouraged us to implement
this method. First, the good behavior shown in [11].
Ter Braak reports advantages with respect to the clas-
sic MCMC regarding simplicity, speed of calculation
and convergence. Second, the possibility of improv-
ing our localization module. Third, to combine the
statistical robustness of the MCMC technique and the
exploration properties of the evolutionary filter.

The new algorithm has been tested in simulated
and real maps. The experimental results show that
this new method is an appropriate approach to solve
the GL problem. We have not found any drawback
when compared to the previous versions of the fil-
ter. The most important contribution that may be
inferred from the experiments is that there is a sig-
nificant improvement in the population requirements.
The optimum number of particles will be measured
by a parameter that we will define as the success rate.
The population requirements are much lower than the
demands of our previous version of the DE-based
GL filter.

The results presented here are focused on solving
the problem with a single laser scan, but our tech-
nique is not limited to this assumption. The method
also works with motion and multiple laser scans can be
used to filter the localization results (explained at the
end of Section 4). We present the results after a single
perception cycle (the robot does not know its loca-
tion, known map) because the evolutionary search of
the DE-MC algorithm uses a single observation vector.
Working with a single laser scan is a strong assump-
tion and the cases where the GL problem can be solved
with this information are limited by the environment.
However, the new information can be integrated in
order to solve the ambiguities when necessary. The
performance of the evolutionary method with multi-
ple scans from different locations and robot motion
has been discussed in our previous work [4, 5]. The
population set keeps the hypotheses and the new infor-
mation eliminates the ambiguities, converging to the
true pose after receiving more information from the
new locations.

J Intell Robot Syst (2016) 82:513–536 515

The rest of this paper is organized as follows. First,
Section 2 contains a brief review of related work.
The main concepts about the algorithms used here
(MC, MCMC, and DE) are reviewed in Section 3.
In Section 4, the new version of the GL localiza-
tion module is presented. The experimental results are
detailed in Section 5 and, finally, the most important
conclusions are summarized in Section 6.

2 Related Work

Different families of algorithms can be used to
solve the GL problem. In particular, we will distin-
guish between Bayesian-based, optimization-based,
and hybrid methods.

The Bayesian-based filters work in two steps.
Firstly, the available information (motion and percep-
tion) is integrated into the a posteriori density func-
tion. Secondly, the robot’s pose is estimated according
to a specific criterion such as the maximum density
point or the average value. The maximum a posteri-
ori (MAP) is an estimator that is frequently used in
localization to update the robot’s pose in this step.
The key of these methods is the generation of accu-
rate models for the density function to represent the
most feasible zones. All the distribution is concen-
trated in a small area after convergence. The particle
filters are a well-known class of methods that are
used to solve the integral expressions of the Bayesian
filter.

There is a wide group of researchers that work on
this group of techniques. Some examples are grid-
based probabilistic filters [12, 13] and MC localization
methods [14–16]. Fox et al. [17] have developed a
Markov localization module that is applied to dynamic
environments. The MC version presented by Thrun
et al. [14] solves the GL and the re-localization prob-
lems. Different variations were proposed after that
[18, 19].

Some interesting approaches take into account the
observations likelihood function to improve the refine-
ment of the hypotheses. The objective is to reduce
the particle requirements of the localization filters.
Biswas et al. [20] have introduced the Corrective Gra-
dient Refinement method. Their technique diminishes
the population requirements of the particle filter by
using gradients of the observation model. In [21], the
authors include the movement of the robot and the

most recent observation in the proposal distribution.
The current observation is also included in the pro-
posal distribution in [22]. Zhang et al. [23] have devel-
oped the Self-Adaptive MC localization method. They
have defined the concept of similar energy region to
distribute more efficiently the samples.

The optimization-based methods rely on a fitness
function that is minimized in each motion-perception
cycle. The information is integrated to generate a fit-
ness function that can be implemented in different
ways. This cost function is the key of this group
of techniques because the estimate will be the ele-
ment with the best fitness value. The most common
choice is the quadratic cost function. However, differ-
ent options have also been considered in our previous
work. The Kullback-Leibler divergence is an appro-
priate metric to deal with different types of occlusions
[5]. The Manhattan distance (L1-norm) is a more suit-
able approach in environments with dynamic obstacles
[24]. Donoso et al. [25] have used the Hausdorff dis-
tance. Fox et al. [26] have considered the entropy
of future belief distributions. Arras et al. [27] have
implemented a feature-based method that relies on the
Mahalanobis distance.

Two different approaches can be followed to solve
the optimization problem. The first option is to use the
derivative of the cost function to obtain the solution.
The main advantage of this approach is the com-
putational speed, but it is not possible to deal with
multi-hypotheses problems. The Kalman filters can be
included here. They are more frequently used in track-
ing problems (re-localization) because they only need
to manage one hypothesis. The second group executes
a stochastic search to find the best solution. Multiple
classes of algorithms can be included in this approach:
DE, Genetic Algorithms (GA), Particle Swarm Opti-
mization (PSO), Ant Colony Optimization (ACO),
etc. An exhaustive review can be found in [28, 29].
Vahdat et al. [30] have published a comparison
between two evolutionary methods (DE and PSO) and
MC. Lisowski [31, 32] has implemented the DE-based
MC. A GL filter based on the Harmony Search algo-
rithm [33] has been developed by Mirkhania et al.
[34]. Ronghua et al. [19] have proposed a genetic
algorithm optimizer in MC. They exploit the idea of
coevolution to avoid premature convergence. The DE
algorithm has been applied in our previous work [3,
4]. Kwok et al. [35] have utilized three evolutionary
techniques (GA, PSO, and ACO) to figure out the

516 J Intell Robot Syst (2016) 82:513–536

solution of the well-known Simultaneous Localization
and Mapping problem.

In the hybrid methods (multi-hypotheses Kalman
filters) [27, 36–39], the set of solutions is formed
by normal probability distributions. Nevertheless, the
creation or elimination of solutions is not purely
Bayesian. They keep a set of multi-hypotheses with an
associated Gaussian probability where each distribu-
tion is guided by a Kalman filter. Most of them rely on
a decision tree search mechanism based on geomet-
ric constraints together with probabilistic attributes
to manage the global data association problem. In
[40], the authors use a set of Gaussians to model the
likelihood function of the robot’s location given the
information provided by a laser range finder. In [41],
the authors combine Kalman and particle filters.

In this paper, the MCMC sampling approach is
combined with the DE evolutionary algorithm to
develop a GL module. The literature about this sam-
pling method is explored in the next section.

3 Fundaments of the Method

In this section, the methods that will be used to
develop the GL module are explained. For a more
detailed explanation, the reader can consult different
references that will be cited in this section.

First of all, it is necessary to describe the prob-
lem that will be solved here. The GL problem consists
of estimating the robot’s pose in a known map con-
sidering the available information which, in this case,
is a 2D laser reading obtained by a laser scanner. A
population-based algorithm in which each population
member is a possible solution (robot’s pose in a known
map) is applied to solve the cited problem.

Since the map is a priori known, it is possible to
obtain a simulated observation vector from each esti-
mate. This vector can be compared to the true obser-
vation from the real location to determine how good
the estimate is. This comparison is done by imple-
menting a fitness function. The cost value obtained
by this function can be considered as a probability,
and the main objective of the GL problem will be to
find the population member with a highest probability,
which is basically an optimization problem where the
objective is to determine the MAP estimate:

x̂MAP = arg max
xi :i=1.....NP

p(xi |z), (1)

where there are NP population members xi , and the
observation vector from the true location is z.

The GL module proposed here to solve the opti-
mization problem combines concepts of MCMC and
DE. The theory under these algorithms is explained
below.

3.1 Monte Carlo Sampling

Particle filters have been applied with remarkable suc-
cess to many different problems. In robotics, they
have been widely implemented to solve the localiza-
tion problem. The most common particle filters are
based in the MC principle, which consists of drawing
a “i.d.d. set of samples {xi}NP

i=1 from a target density
p(x) defined on a high-dimensional space X ”1 (e.g.
the space of possible locations in this case). This pop-
ulation set can be used to approximate empirically the
probability distribution:

pNP
(x) = 1

NP

NP∑
i=1

δxi
(x), (2)

where δxi
(x) represents the Dirac delta mass associ-

ated to the candidate xi . In this case, all population
members have the same probability mass 1/NP . Gen-
erally, pNP

(x) → p(x) when NP → ∞.
As can be observed, the NP samples can be uti-

lized to obtain the solution of the MAP problem.
However, in this basic version, the method will suc-
cess only if p(x) has a standard form (Gaussian).
Andrieu et al. [10] have stated that for more compli-
cated distributions it is necessary to implement more
sophisticated techniques such as Rejection Sampling
(RS), Importance Sampling (IS) and Sampling Impor-
tance Resampling (SIR). These options are described
in the next paragraphs. The probability distribution
of the problem addressed here depends on the sensor
measurements and the geometry of the environment.

The first alternative to the basic MC sampling
method is called RS. In this technique, the distribution
p(x) is sampled from another distribution q(x) that
is easier to sample and satisfies that p(x) � Mq(x)

with M < ∞. For example, the known distribution
q(x) could be a uniform distribution over the space of
possible solutions and the objective distribution p(x)

1A useful explanation about how to apply this method to
machine learning is given in [10].

J Intell Robot Syst (2016) 82:513–536 517

could be based on the cost value of each possible
solution.

An accept/reject procedure is implemented in two
steps. In the first step, two samples are generated:
xi ∼ q(x) and u ∼ U(0,1). In the second step, xi

is accepted if u < p(xi)/Mq(xi). According to this
procedure, the set of accepted samples follows the
distribution p(x) [42].

The RS variation presents some limitations. It is
not always possible to establish an adequate con-
stant M to restrict p(x)/q(x) over the whole space.
If M is too large, the probability of acceptance is too
small, which makes this method inefficient in high-
dimensional spaces. In particular, this is an important
drawback in the localization problem. In planar maps,
there are three dimensions (position and orientation)
and the definition of an adequate value for M is not an
easy task.

Most MC filters are based on the IS strategy
[43, 44]. The idea of the IS technique is to define “an
arbitrary importance proposal distribution q(x) such
that its support set includes the support set of p(x)”
[10]. It is possible to use q(x) to generate NP i.i.d.
samples {xi}NP

i=1 and measure the importance w(xi) of
each population member, which is

w(xi) = p(xi)

q(xi)
. (3)

The probability density p(x) is now approximated
by

p̂NP
(x) =

N∑
i=1

w(xi)δxi
(x). (4)

There are different difficulties when approximat-
ing a probability distribution by this method. First, if a
sample falls in an area with low probability its weight
is drastically reduced, which implies a great increase
in the weight of those samples closer to the maximum
values. This factor can cause a fast degeneration of
the method. The most classical way of dealing with
this problem is the SIR strategy [45]. Those particles
with higher weights are replaced by a set of parti-
cles of equal weights around the original position of
the higher weights particles, and those particles with
lower weights are removed from the set. After the
resampling step all particles have the same weight.

Second, areas without particles are not evaluated.
The classical solution to this problem is to increase

the number of particles, which can result in big sets of
particles and prohibitive computational costs.

Third, the method, in each iteration, includes the
new sensor information obtained to modify the proba-
bilistic weight of each particle in the set. This implies
that a new iteration is executed whenever there is new
information.

On the one hand, these characteristics make the
MC method based on IS or SIR to be very effective
in re-localization problems where the area to be sam-
pled is small and, and on the other hand, it can be
very inefficient in the GL problem because it requires
a very high number of samples to ensure a proper
initial density. Besides, it requires a high number
of observation-motion cycles until convergence. As
advantages, it should be noted that this method is very
robust statistically and it supports high levels of noise.

As it is stated in [10], even with SIR or other
variations that are not commented here, there are prob-
lems where it is almost impossible to obtain proposal
distributions that are easy to sample from and good
approximations of the state space at the same time.
For this reason, it is necessary to introduce other sam-
pling algorithms based on Markov chains. In the topic
studied in this paper, the initial information is the map
of the environment and the laser scan from the robot’s
location. If the state space is formed by all the possi-
ble poses that can be the solution to the problem, the
probability cannot be approximated by a known distri-
bution (except in very simple maps). This probability
is mainly influenced by the sensor measurements and
the geometry of the environment.

Besides, if MC-based sampling methods are
directly applied to the GL problem, the population
requirements will be huge to cover the whole space
in the initial stages. The jumping step of the DE-MC
technique will help the localization process in this
aspect (see Section 4).

3.2 Markov Chain Monte Carlo - Metropolis-Hastings
Method

An interesting variation of the RS idea has produced
the MCMC algorithms [9]. MCMC is a sampling
method where the space is explored using a Markov
chain mechanism. Each Markov chain is formed after
generating NP samples that explore the space by
successive jumps. These jumps are based on a state
transition probability in such a way that the generated

518 J Intell Robot Syst (2016) 82:513–536

sequence of states imitates samples drawn from the
target distribution p(x). This idea was proposed by
Metropolis [7] and later refined by Hastings [8].

The Metropolis-Hastings algorithm (MH) is the
most famous MCMC method. It relies on an
accept/reject approach. In the basic version of the MH
algorithm, a random value u ∼ U(0,1) and a trial sam-
ple xi∗ ∼ q(xi∗|xi) are generated. The trial sample is
accepted according to an acceptance probability:

u < A(xi , xi∗) = min

{
1,

p(xi∗)q(xi |xi∗)
p(xi)q(xi∗|xi)

}
. (5)

If the trial sample is accepted the next element of
the chain is xi+1 = xi∗; otherwise, the candidate is
rejected and xi+1 = xi .

To illustrate this method, the practical application
where this method will be applied is briefly described.
Instead of having a Markov chain represented by a
set of particles, the Markov chain will be defined in a
slightly different way. Each sample will be a possible
solution of the GL problem (robot’s pose). For each
population member, a trial sample will be generated
and the probability value is a variable dependent on
the cost function that will be calculated for both sam-
ples (π(xi), π(xi∗)). The notation of the acceptance
probability will be

u < A(xi , xi∗) = min

{
1,

π(xi∗)
π(xi)

}
. (6)

It can be noticed that the Markov chain will evolve
to the poses that maximize the cost function.

The MH algorithm is conceptually simple, but it
requires a careful choice of the proposal distribution
q(xi∗|xi). To guarantee that the algorithm converges,
it is necessary to ensure that there are no cycles (ape-
riodicity) and each state having positive probability
can be reached in a finite number of steps (irre-
ducibility). The efficiency of the algorithm depends on
the proposal distribution and suffers from two major
problems:

– The local-trap problem in systems whose land-
scape has multiple basins. The samples can be
trapped in a local minimum.

– The difficulty to sample from distributions with
difficult or even intractable integrals.

At the beginning, the MCMC methods were purely
sequential, with a single Markov chain. More recently,

many variants in which different Markov chains are
run in parallel have been devised. These methods,
which are called population-based MCMC, reduce
the local-trap problem of the original version. Each
Markov chain can follow different distributions. It
is possible to exchange information between chains,
learning from past samples and improving the conver-
gence speed. Different algorithms can be included in
this category: adaptive direction sampling [46], con-
jugate gradient Monte Carlo [47], parallel tempering
[48, 49], evolutionary Monte Carlo [50], equi-energy
sampler [51], etc.

The idea of combining evolutionary algorithms
with population-based MCMC approaches have been
explored by different researchers: Ter Braak [11],
Linage and Wong [50], Liang [52], Laskey and Myers
[53], etc. Ter Braak has combined MCMC and DE
to solve many different optimization problems. He
has concluded that the simplicity, speed of calculation
and convergence are improved when compared to the
MCMC method [11]. In this work, the MH version of
the population-based MCMC algorithm will be com-
bined with the DE evolutionary technique according
to the method proposed by Ter Braak to design a GL
module.

3.3 Differential Evolution Algorithm for GL

The DE algorithm [2] can be applied to multiple
optimization problems. The solution adopted in our
previous work to solve the GL problem is detailed in
this section. It has been widely explained in our previ-
ous papers [3, 4], reason why only a brief reminder is
given in this section. In order to do that, the reader can
see Algorithm 1.

There is a set of elements that corresponds to pos-
sible solutions and the fitness function represents the
error between real and estimated data. Three coordi-
nates that define a state space with three Degrees of
Freedom (DOF) in a 2D map must be estimated to
determine the robot’s location.

The exploration starts with a group of NP candi-
dates which are introduced in the localization module
and evolve with the time to the best solution. Each can-
didate xk

i is a possible solution to the GL problem (the
robot’s pose, with 3 DOF, at iteration k). The initial
population will be chosen randomly to cover the whole
map. The other input parameters are the laser scan

J Intell Robot Syst (2016) 82:513–536 519

Algorithm 1 DE-based GL

1: function

for 2:
3:

do

4:

end for5:
while (CONVERGENCE CONDITIONS) do6:

7:
8:
9:

10:
11:

12:

13:

14:
15:
16:
17:
18:
19: end function

end while

end for

for i do

return bestmem, error and
population

from the true location (real dist), the known map,
and the configuration parameters of the DE method.

The population size is a crucial factor in any
population-based optimization algorithm. An initial-
ization mechanism to estimate this parameter has been
developed in our previous work [54].

For each population member, its associated fitness
function is calculated (line 2 to 5 of Algorithm 1). The
true observation vector from the real pose is compared
to the estimated data from the candidate solution.

The main loop starts in line 6. If one of the conver-
gence conditions is satisfied, the localization process
ends successfully.

Another loop that contains the evolutionary search
starts in line 7. It consists of the generation of a new
population for the next generation. In a single iteration
the algorithm is executed to obtain the next candidates,
evolving to the correct pose.

The current population member is perturbed to gen-
erate a mutated vector xk

i∗ according to the following
expression:

xk
i∗ = xk

r0
+ F

(
xk
r1

− xk
r2

)
, (7)

where xk
r0

, xk
r1

, and xk
r2

are parameter vectors cho-
sen randomly from the population at iteration k and
are different from the running index. The scale fac-
tor F ∈ (0, 1) is a real and constant coefficient that
controls the amplification of the differential varia-
tions

(
xk
r1

− xk
r2

)
. It controls the population evolution

rate. It is usually defined in the interval [0.4, 0.9],
with an empirical upper limit equal to 1 [2]. Zaharie
[55] has restricted the lower limit of F . This param-
eter will be fixed to 0.7 in the experiments according
to the optimum values found in our previous work
[24].

There is an initial population member xk
i and the

perturbation is done with three random variables and
the constant factor F , generating the new parameter
vector xk

i∗.
In order to increase the diversity of the new gen-

eration, the crossover is introduced. Denoted by sk
i =(

sk
i,1, s

k
i,2, . . . , s

k
i,D

)T

, the new parameter vector is

sk
i,j =

{
xk
i∗,j if pk

i,j < δ

xk
i,j otherwise,

(8)

where pk
i,j is a randomly chosen value from the inter-

val [0, 1] for each parameter j of the population
member i at step k, and δ is the crossover probabil-
ity and constitutes the crossover control variable. xk

i∗,j

and xk
i,j are each one of the parameters of the mutated

and the current population vectors, respectively. D is
usually defined as the number of chromosomes, which
is three in this case. The random values pk

i,j are made
anew for each trial vector i.

The new population candidate sk
i is compared to xk

i

to choose the member of the next generation i + 1. If
the vector sk

i yields a better value for the fitness func-
tion than xk

i , then it is replaced by sk+1
i ; otherwise, the

old value xk
i is retained for the new generation. The

general ideas of the previous mechanism (mutation,
crossover, and selection) are well known and can be
found in literature [56].

520 J Intell Robot Syst (2016) 82:513–536

Finally, the algorithm returns the best population
member according to the fitness function, which is the
solution of the GL problem.

However, this is the basic version of the DE-based
GL module. This algorithm will be used here in a dif-
ferent way. The new version that combines MCMC
and DE will be introduced in the next section. The
idea is to exploit the utility of the RS concept of the
MH approach combined with the evolutionary-based
method.

4 Differential Evolution Markov Chain GL Filter

A GL filter based both on MCMC and DE has been
proposed in this paper. The main idea is to implement
the same concepts that applied Ter Braak [11] to con-
vert the NP particles of the DE algorithm into NP

Markov chains, exploiting the statistical robustness
of the MCMC sampling method and the exploration
properties of the evolutionary algorithm. He pro-
posed a simple modification to combine the MCMC
approach with the DE optimizer. This algorithm has
been applied here to solve the GL problem. It is
detailed in pseudocode in Algorithm 2.

Each population member evolves as a Markov
chain where new potential samples are generated in
each iteration. In the first iteration, the whole popula-
tion is generated to cover uniformly the free map (lines
2-4 of Algorithm 2).

The DE-MC method uses the mutation step of the
DE algorithm to generate the new potential samples.
The new candidates are accepted or rejected accord-
ing to a selection mechanism. This combined scheme
takes advantage of the exploratory efficiency of the
DE method to run the exploration jumps and the sta-
tistical efficiency of the MC RS strategy via the usual
Metropolis ratio, which defines the probability with
which a new proposal is accepted.

The use of the DE approach in the jumping step of
the MCMC sampling algorithm solves an important
difficulty in MCMC in real parameter spaces, which is
the selection of a suitable scale and orientation for the
jumping distribution. This problem is only solved in
orientation but not in scale when using other adaptive
direction sampling methods.

In the default option of the DE method
(Section 3.3), the new proposals are generated from
three random vectors according to Eq. 7. Once a new

Algorithm 2 DE-MC GL module

do

x
end for

do
x x x

x

x e

x

if

x x
else

x x
end if

end for

x x

end while
end function

1: function

2:

3:
4:
5:
6:
7:

8:

9:

10:
11:

12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

for i

for i

Initialization of
Markov chains

1j

j j

while (CONVERGENCE CONDITIONS) do
1

F

Mutation
r

r
u

log u then Selection, next
sample of each chain

1 Next iteration index
min

Return solution

set of proposals are obtained, a crossover mechanism
is used to mix the new candidates with the old ones.
The crossed and mutated vector (sk

i) is retained for
the next generation if its fitness value is better than
the fitness value of the current population member
π

(
xk
i

)
. In other words, the proposal is accepted if

r = π
(
sk
i

)
/π

(
xk
i

)
> 1, and the whole population

evolves to the best candidates optimizing the fitness
function. Although Ter Braak proposes a variant
with crossover that could be useful in some cases,
this option has not been included in our method to
keep the procedure closer to the basic concept of a
population-based MCMC algorithm.

To make a proper conversion from the DE mech-
anism to a population-based MCMC algorithm for
drawing samples from the target distribution, differ-
ent researchers have concluded that the generation of
new samples and their acceptance condition must be
chosen to satisfy the “balance condition” [42, 57, 58].
This basically means that if a sample xj

i is drawn from

J Intell Robot Syst (2016) 82:513–536 521

the target distribution, then the next sample xj+1
i must

be drawn from the same target distribution, possibly
dependent on xj

i . This condition cannot be met when
the strategy shown in Eq. 7 is followed.

There are multiple options that can be chosen to
generate new samples. According to the work of Ter
Braak, a more promising option has been chosen to
generate the new samples:

xj
i∗ = xj

i + F
(

xj
r1 − xj

r2

)
+ e, e ∼ N (0, b)d, (9)

where e is a symmetric normal distribution in a d-
dimensional space that is added to guarantee that the
whole parameter space is covered. b is small when
compared to the variance of the target. Note that we
use j instead of k to distinguish between the iterations
in the new method (Markov chains) and the iterations
in the old version. This strategy is adopted to generate
the NP new candidates (line 8).

Figure 1 shows the mutation options described in
Eqs. 7 and 9. A simple simulated indoor map with
sampled particles at random places is drawn. Each
subfigure represents one of the proposed techniques.

The key idea of the procedure proposed by Ter
Braak is to include a probabilistic acceptance rule
in the evolutionary method. Instead of using a fixed
ratio, the proposal generated in Eq. 9 is accepted with

probability min(1, r), where r = π
(

xj
i∗

)
/π

(
xj
i

)
.

This acceptance mechanism has to be defined in a
different way taking into account the properties of the
fitness function. According to the available informa-
tion, it is not possible to measure direct probabilities
in this type of method. Therefore, an important aspect
to explain is the cost function implemented in the opti-
mization filter. This is a crucial factor because the
evolutionary search of the Markov chains is guided

by this parameter. It has been widely studied in our
previous work [4, 5]. A common choice for this func-
tion when it is assumed that the sensor errors are
Gaussian-distributed is the sum of the squared errors.

If the observation vector from the true location is
z = (z1, . . . , zNS

)T (NS being the number of laser
beams or observations), the estimated observations
from the population member xi in the known map are
zi = (z1,i , . . . , zNS,i)

T , and the observation error vari-
ance is σ 2

e , the fitness function to be minimized could
be given by the following expression:

fitness(xi) =
NS∑
k=0

(zk − zk,i)
2

2σ 2
e

+1

2
(xi − x̂)P −1(xi − x̂)T , (10)

where x̂ represents the best estimate among all mem-
bers of the population. The second term of the previ-
ous expression is useful when the robot is moving [4].
Since the GL problem in a single perception cycle (no
motion) is considered here, the cost function can be
simplified:

fitness(xi) =
NS∑
k=0

(zk − zk,i)
2

2σ 2
e

. (11)

This is the final expression of the fitness function
implemented in the GL filter. It measures the differ-
ence between the simulated laser scan estimated from
a population member in the known map and the obser-
vations from from the true location. It can be observed
that, if the sensor noise is modeled as a Gaussian in
each laser beam, the cost function in the optimum case
will be a sum of Gaussians with zero mean, thus the
fitness value has to be minimized (the objective is to
maximize the probability in the DE-MCMC original
notation).

Fig. 1 Different mutation strategies in DE. Left: Mutation strategy of Eq. 7. Middle: Mutation strategy of Eq. 9 (F = 1). Right:
Mutation strategy of Eq. 9 (F = 0.7). Orientation of the particles and noise e of the mutated values not drawn for simplicity

522 J Intell Robot Syst (2016) 82:513–536

The acceptance mechanism has been modified here
by taking logarithms (lines 9 − 15). After making
experiments with different ratios (the simplest one was
using the inverse of the fitness value in the original
expression), an empirical method based on the differ-
ence between the fitness value of the proposal and the
current member is proposed:

rlog = fitness
(

xj
i∗

)
− fitness

(
xj
i

)
. (12)

The logarithm of the random number u ∼ U(0,1) is
used to define an acceptance criterion. The new mem-
ber is accepted if rlog < log u; otherwise, it is rejected.
log u is in the interval (−∞, 0) and rlog is negative
when the fitness value is improved. The new candidate
is accepted with a probability that depends on the ran-
dom number u if the fitness value is improved. This
idea has been taken from an example shown in [11],
where logarithms are used to modify the acceptance
probability. The probability of acceptance depending
on the improvement of the fitness value is tabulated
in Table 1. As can be noticed, if there is a signifi-
cant improvement, the new candidate is almost always
accepted.

Analyzing the selection mechanism, several dif-
ferences are found when compared with the original
method proposed by Ter Braak. His method always
accepts the proposal if the probability is improved. In
this filter, the new candidate is accepted with a prob-
ability that is increased with the difference between
fitness values. In other words, the new candidate is
only accepted if there is a significant improvement
and small improvements that can be caused by the
noise are filtered, which reduces the optimization in
the noise band. This interesting property was also
wanted in our previous work [4]. Ter Braak can accept
a new candidate even if it holds a lower probability.
In our method, it is not possible to accept the pro-
posal if the fitness function is not improved. Though
this mechanism has been empirically fixed, this

capabilities are more adequate for a GL filter accord-
ing to our experience in this problem, fact that will
be shown in the experimental results section. Dif-
ferent options could be defined to meet different
requirements.

This procedure of generating new candidates and
accepting them according to a probability ratio is
repeated for the whole population in each iteration.
The NP population members or Markov chains evolve
to the locations with the best fitness values. This loop
is repeated until the convergence conditions are sat-
isfied (line 19), returning the best member of the
population (line 18), which is also the solution of the
GL problem. As can be noticed, one of the advantages
of this filter is that it is even simpler to implement than
the basic version of the DE algorithm.

The practical situation in the GL problem is that
it is almost impossible to determine the target dis-
tribution. The distribution of the cost function from
the possible locations (position and orientation) in
the whole map does not follow any known distribu-
tion at all. However, it will be demonstrated that the
solution adopted in this paper works in an efficient
way.

The best estimate is saved as the robot location
after convergence. If the robot moves to another loca-
tion (although motion is not considered here, the
algorithm is not limited to this assumption), the pop-
ulation set is moved according to the robot motion
model xt+1 = f (xt , ut), where t represents the time
instant when the robot receives information from its
sensors (odometry information ut and laser readings
zt). The problem is now converted into the tracking
one. The algorithm is executed when the robot is sit-
uated in the new location, but instead of having a
random population at the beginning, the initial popu-
lation is formed by the results of the last execution of
the algorithm. In other words, the population that is
obtained after the execution of the localization filter
is moved according to the odometry, and this popu-
lation will be the initial population set for the new
location.

Table 1 Probability of acceptance depending on the fitness value improvement

Fitness improvement (rlog) 0.10 0.35 0.69 1.20 1.60 2.39 6.90

p(acceptance) (%) 10 30 50 70 80 90 99.99

J Intell Robot Syst (2016) 82:513–536 523

Fig. 2 GL in an
architectural plan (DLR).
All units in cells. Laser
readings in purple. Robot’s
location in blue. Points of
study marked with dots and
orientation with arrows

5 Experiments

Different experiments with simulated and real maps
obtained from the OpenSLAM repository2 have been
carried out to check de performance of the GL filter.

It is interesting to remark different aspects that will
be measured:

– GL ability without motion (perceptual differentia-
tion capacity, static). The robot is standing still at
a given location and the objective is to estimate its
position in a single perception cycle, i. e., using a
single laser scan from the true location.

– Ability to handle multiple hypotheses. In indoor
environments such as office buildings it is very
common to find similar places that are very diffi-
cult to differentiate because the perceptive infor-
mation from both of them is almost the same. The
ability to keep a sufficient number of hypothe-
ses until it is possible to eliminate the ambiguity
between them is an interesting property.

The algorithm performance has been studied in an
architectural plan (Section 5.1) and in a real map
(Section 5.2). After that, the results are analyzed in
Section 5.3, including a detailed comparison with
respect to the previous version of the DE-based GL
filter. The most important conclusions are deduced in
this section.

2www.openslam.org

DE configuration parameters: F = 0.7, δ = 0.5.

5.1 Architectural Plan

Figure 2 shows the map provided by the DLR3 that
will be used in this section. A cell size equal to 10 cm
will be assumed. It is a medium-large size map (about
650 × 800 = 520000 cells = 5200 m2) with a high
degree of repeatability, which means that it contains
many similar places (for example, offices with almost
the same appearance).

Three points of interest (locations in the environ-
ment, denoted by pai) have been chosen:

1. pa1 = (300, 50, 90). The robot is located in an
office, and there are many offices with similar
dimensions.

2. pa2 = (150, 105, 0). This place is a corridor.
3. pa3 = (550, 400, 0). This place is a hall.

According to the map of Fig. 2, the first coordinate
corresponds to the horizontal axis, the second one is
the vertical axis and the third one represents the orien-
tation (zero being pointing right, horizontal direction,
increasing clockwise). These locations have been cho-
sen because they represent characteristic places of the
environment (hall, corridor, and office). More results
from random places are given at the end of this
section.

3Thanks to Christoph Hertzberg for making available this data
set.

www.openslam.org

524 J Intell Robot Syst (2016) 82:513–536

The sensor noise has been modeled as a Gaussian
distribution over the laser distance where the stan-
dard deviation is the parameter that must be fixed to
specify the noise. This noise is added to the distances
observed from the true location. It has to be noticed
that the noise will be typically worse than the noise of
the commercial devices.

The “success rate” (Sr in the tables) is an inter-
esting variable that has been defined to measure the
algorithm robustness. For a specific location, two dif-
ferent results can be reached when estimating the
robot’s pose: the estimate matches the real pose (suc-
cess) or the estimate and the true pose do not coincide
(failure). Sr can be measured if the algorithm is run
multiple times for the same location. The success rate
is a statistical variable that is equal to the number of
runs in which the estimate matches the real pose (it
means that the correct pose is estimated in one per-
ception cycle) divided by the total number of trials.
The result of this division has to be multiplied by 100
because Sr is given in %. Since the true pose is known,
it is possible to define a distance threshold to measure
the success rate, which is 50 cm in these experiments.
For example, Sr = 100 means that if the algorithm is
run 50 times the correct pose is obtained in all cases.

The influence of the population size is measured in
Table 2 for the first location (pa1). The position errors
(ex , ey) are the distances between the estimated val-
ues and the real positions of the robot, in cartesian
coordinates. The orientation error (eθ) is the difference
between the estimated orientation and the real one.

NP has to be large enough to be successful in most
cases, but higher values have a negative effect on
the computational cost. The success rate reaches the
100 % when the population size is 180. Therefore, this
size will be adequate in this case.

The estimation of an adequate population size will
depend on several factors. The first one is the size of
the area perceived by the mobile robot. The required
size will be lower for larger areas. This conclusion
is completely logical because, in general, the basin
of attraction of the local minimum will be larger
for larger areas. Therefore, it will be easier to con-
verge to the optimum value. The map size is also a
key factor because the number of elements has to be
increased for larger maps. There are other factors such
as the number of symmetries, the sensors information,
and the occlusions that also have an influence on
this aspect. An interesting study about the population
requirements is included in our previous work [54].

The algorithm performance depending on the noise
level has been measured for the same point of inter-
est. The results are presented in Table 3. It can be
observed that the accuracy decreases when the sen-
sor noise increases. Although the error is increased,
the algorithm converges in almost all cases to the cor-
rect pose up to 7.5 % of noise. When the sensor noise
is 10 %, the algorithm does not converge to a single
pose, requiring additional motion and a new laser scan
to solve the GL problem.

The same tests have been conducted for the other
points of interest. The results for pa2 are detailed in

Table 2 Error and success rate depending on the population size

NP Sr ex (cells) ey (cells) eθ (degrees)

40 54 0.0181 ± 0.0191 0.0677 ± 0.0842 0.0655 ± 0.0609

60 70 0.0218 ± 0.0306 0.0530 ± 0.0398 0.0495 ± 0.0633

80 80 0.0249 ± 0.0326 0.0554 ± 0.0632 0.0647 ± 0.0765

100 92 0.0206 ± 0.0339 0.0586 ± 0.0729 0.0710 ± 0.0812

120 96 0.0169 ± 0.0320 0.0490 ± 0.0679 0.0640 ± 0.0593

140 98 0.0235 ± 0.0361 0.0474 ± 0.0613 0.0723 ± 0.0777

160 98 0.0147 ± 0.0268 0.0660 ± 0.0976 0.0598 ± 0.0612

180 100 0.0241 ± 0.0343 0.0433 ± 0.0729 0.0743 ± 0.0722

200 100 0.0213 ± 0.0346 0.0597 ± 0.0864 0.0650 ± 0.0704

220 100 0.0170 ± 0.0301 0.0700 ± 0.1093 0.0680 ± 0.0715

Simulated map. True location: (300, 50, 90). Sensor noise: standard deviation of 1%. Sr in %. Errors in mean ± standard deviation

J Intell Robot Syst (2016) 82:513–536 525

Table 3 Error and success rate depending on the sensor noise level

Sensor noise Sr ex (cells) ey (cells) eθ (degrees)

0.5 100 0.0074 ± 0.0128 0.0235 ± 0.0295 0.0332 ± 0.0333

1.0 100 0.0213 ± 0.0346 0.0597 ± 0.0864 0.0650 ± 0.0704

2.5 98 0.0925 ± 0.1038 0.1837 ± 0.1876 0.1992 ± 0.2070

5.0 98 0.2355 ± 0.2553 0.5007 ± 0.3931 0.3604 ± 0.3759

7.5 96 0.2797 ± 0.2824 0.8544 ± 0.7115 0.6011 ± 0.5831

10.0 74 0.5315 ± 0.3790 1.1011 ± 0.7711 1.0305 ± 0.7043

Simulated map. True location: (300, 50, 90). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation.
NP = 200

Tables 4 and 5. In this case, the success rate is opti-
mum when the population size is 50. The algorithm
converges in almost all cases to the correct pose up to
2.5 % of sensor noise. The deterioration of the results
is significant with a 10 % of noise.

Tables 6 and 7 show the results for pa3. An opti-
mum population size is 60 or more in this case. The
success rate is less influenced by the noise when the
robot is located at this place. The success rate is still
100 % even with a 7.5 % of sensor noise.

In order to obtain a more illustrative comparison
between points of interest, the influence of the sensor
noise and the population size on the position error can
be observed in Fig. 3. In the left part of the figure,
the position error is drawn depending on the sensor
noise. In the right part of the figure, the same error
is plotted against the population size. The reader has
to notice that this figure shows the same results pre-
sented in the previous tables (regarding the position
errors) in a graphic format. It can be easily deduced
that the position error grows linearly with the sensor
noise. Regarding the population size, the position error

does not depend on this variable. The error stays in the
same range when the population size is changed.

Because the sensor noise is proportional to the dis-
tances measured by the laser scanner, larger errors are
expected in larger areas where the closest obstacles are
far away from the robot. The worst errors are obtained
when the robot is in pa3. It can be seen that this point
corresponds to the largest area. In smaller zones, such
as pa1 and pa2, the localization error is smaller.

For a fixed noise (Tables 2, 4 and 6), the errors
are in the interval [2.57, 27.13] mm in position and
[0.03, 0.11] degrees in orientation. These errors are
slightly lower than those obtained in our previous
work [5, 24], and they are low enough to conclude that
the GL problem is efficiently solved.

More results from different random places are
given in Table 8. For simplicity, only the errors with
1 % noise and optimum population size (lowest NP

with maximum Sr) are given. As can be observed, the
method performance is similar for these new places.
The errors are within the same interval and the success
rates present optimum values.

Table 4 Error and success rate depending on the population size

NP Sr ex (cells) ey (cells) eθ (degrees)

20 56 0.0712 ± 0.1093 0.0126 ± 0.0126 0.0340 ± 0.0372

30 80 0.0626 ± 0.0901 0.0151 ± 0.0099 0.0414 ± 0.0319

40 94 0.0624 ± 0.0917 0.0115 ± 0.0131 0.0399 ± 0.0390

50 100 0.0601 ± 0.0512 0.0128 ± 0.0122 0.0338 ± 0.0311

60 100 0.0547 ± 0.0605 0.0140 ± 0.0155 0.0424 ± 0.0422

70 100 0.0403 ± 0.0364 0.0099 ± 0.0069 0.0290 ± 0.0281

80 100 0.0400 ± 0.0358 0.0099 ± 0.0079 0.0327 ± 0.0320

Simulated map. True location: (150, 105, 0). Sensor noise: standard deviation of 1 %. Sr in %. Errors in mean ± standard deviation

526 J Intell Robot Syst (2016) 82:513–536

Table 5 Error and success rate depending on the sensor noise level

Sensor noise Sr ex (cells) ey (cells) eθ (degrees)

0.5 100 0.0233 ± 0.0216 0.0067 ± 0.0037 0.0130 ± 0.0132

1.0 100 0.0400 ± 0.0358 0.0099 ± 0.0079 0.0327 ± 0.0320

2.5 98 0.1886 ± 0.2262 0.0312 ± 0.0259 0.1084 ± 0.0851

5.0 80 0.4573 ± 0.3482 0.0780 ± 0.0798 0.1850 ± 0.1595

7.5 80 0.6351 ± 0.3687 0.0922 ± 0.0853 0.1920 ± 0.2016

10.0 68 0.8161 ± 0.4292 0.1581 ± 0.1912 0.3522 ± 0.2479

Simulated map. True location: (150, 105, 0). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation.
NP = 80

Table 6 Error and success rate depending on the population size

NP Sr ex (cells) ey (cells) eθ (degrees)

20 80 0.2312 ± 0.1835 0.0800 ± 0.0519 0.1012 ± 0.0791

30 94 0.2586 ± 0.2533 0.0819 ± 0.0611 0.1200 ± 0.0815

40 98 0.2244 ± 0.2462 0.0731 ± 0.0496 0.1013 ± 0.0681

50 98 0.2400 ± 0.2632 0.0870 ± 0.0541 0.0993 ± 0.0666

60 100 0.2229 ± 0.2242 0.0743 ± 0.0519 0.0959 ± 0.0600

70 100 0.2551 ± 0.2547 0.0906 ± 0.0554 0.0896 ± 0.0715

80 100 0.2600 ± 0.2342 0.0993 ± 0.0683 0.1149 ± 0.1028

90 100 0.2244 ± 0.1514 0.0798 ± 0.0698 0.1163 ± 0.0859

100 100 0.2523 ± 0.2444 0.0855 ± 0.0718 0.0988 ± 0.0827

Simulated map. True location: (550, 400, 0). Sensor noise: standard deviation of 1%. Sr in %. Errors in mean ± standard deviation

Table 7 Error and success rate depending on the sensor noise level

Sensor noise Sr ex (cells) ey (cells) eθ (degrees)

0.5 100 0.0543 ± 0.0628 0.0439 ± 0.0387 0.0504 ± 0.0463

1.0 100 0.2244 ± 0.1514 0.0798 ± 0.0698 0.1163 ± 0.0859

2.5 100 0.5695 ± 0.3788 0.1521 ± 0.1216 0.2391 ± 0.1756

5.0 100 0.8449 ± 0.7479 0.3469 ± 0.2947 0.4425 ± 0.3888

7.5 100 1.4733 ± 0.9826 0.7037 ± 0.4973 0.7951 ± 0.6600

10.0 90 1.9609 ± 1.4879 0.8846 ± 0.6723 1.0414 ± 0.8635

Simulated map. True location: (550, 400, 0). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation.
NP = 90

J Intell Robot Syst (2016) 82:513–536 527

Fig. 3 Left: position error vs. sensor noise. Right: position error vs. population size. Simulated map. Sensor noise in standard deviation
(%). Robot’s poses between brackets

5.2 Learned Map

Similar experiments have been conducted in the real
map of Fig. 4 to test the algorithm performance in this
type of environments4. The area covered by this map
is 29 × 29 m2, thus it has been assumed that the cell
size is 5 cm. This is a medium-size map with highly
cluttered areas (Fig. 5). In general, this map is very
similar to the architectural plan in corridors and halls,
but it is completely different in offices because there
are many obstacles.

In this case, the points of interest will be:

1. pr1 = (100, 450, 45). This place is a hallway.
2. pr2 = (470, 425, 37). The robot is located in an

office. It is a cluttered area with many obstacles.
3. pr3 = (550, 400, 0). This place is an office and

there are many offices with similar dimensions
and furniture. Less cluttered than pr2.

The influence of the population size is measured in
Table 9 for the first location. This place corresponds
to a hallway. Since the area that can be measured by
the sensors is large and there are no similar places,
this place will be one of the easiest in this map. The
success rate reaches the 100 % when the population
size is 160. Therefore, this size will be adequate in this
case.

The effect of the noise level when the robot is sit-
uated in pr1 has been measured in Table 10. As in
the previous cases in the simulated map, the accuracy

4Thanks to Dieter Fox for making available this map.

decreases when the sensor noise increases. The algo-
rithm converges in all cases to the correct pose up to
2.5 % of noise. The success rate shows high values
even with a 10 % of noise.

Tables 11 and 12 show the results for pr2. The robot
is inside a cluttered room in this case (Fig. 5). The
basin of attraction of the local minimum is smaller,
which means that small changes in position or orien-
tation cause very different values in the cost function.
The success rate reaches the maximum value (96 %)
when the population size is 600. The GL method does
not succeed in some cases because it is a very chal-
lenging location. However, the success rate presents a
promising value, as will be demonstrated in the next
section when comparing to the previous version of the
filter. The algorithm converges in almost all cases to
the correct pose when the sensor noise is 1 %. The
deterioration of the results is significant with a 5 % of
noise.

Tables 13 and 14 display the results when the robot
is located at pr3. This place is an office and there are
many offices with similar dimensions and furniture,
but it is less cluttered than pr1. The size that is required
is 480 in this case. The success rate is less influenced
by the noise when compared to pr2. The success rate
is optimum even with a 5 % of sensor noise. As in
the previous location, the localization process fails in
some cases.

The comparison between all locations according to
the sensor noise and the population size can be seen
in Fig. 6. Like in the architectural plans, the position
error grows linearly with the sensor noise and it does
not depend on the population size.

528 J Intell Robot Syst (2016) 82:513–536

Table 8 Error and success rate for different random places

Location NP Sr ex (cells) ey (cells) eθ (degrees)

(802,123,23) 100 100 0.0516 ± 0.0622 0.0354 ± 0.0393 0.0434 ± 0.0502

(252,516,167) 120 98 0.1018 ± 0.0929 0.0333 ± 0.0470 0.0522 ± 0.0478

(688,470,271) 140 98 0.0359 ± 0.0232 0.0163 ± 0.0101 0.0458 ± 0.0374

(561,150,100) 80 100 0.0411 ± 0.0336 0.0687 ± 0.0492 0.1358 ± 0.1171

(551,498,43) 80 98 0.0773 ± 0.0661 0.0573 ± 0.0680 0.1022 ± 0.0698

(300,172,255) 100 100 0.0241 ± 0.0304 0.1511 ± 0.1063 0.0562 ± 0.0852

Simulated map. Sensor noise: standard deviation of 1%. Sr in %. NP is the lowest that optains the maximum Sr . Errors in mean ±
standard deviation

The worst errors are obtained for pr1 (larger sens-
ing area). For a fixed noise (Tables 9, 11 and 13), the
errors are in the interval [0.27, 3.17] mm in position
and [0.01, 0.05] degrees in orientation. These errors
are slightly lower than the errors in the simulated map.

The main reason is that the map resolution is higher in
this section.

In general, the population size should be larger and
the success rate is more influenced by the sensor noise
in learned maps.

Fig. 4 GL in an learned
map (Intel lab). All units in
cells. Laser readings in
purple. Robot’s location in
blue. Points of study
marked with dots and
orientation with arrows

J Intell Robot Syst (2016) 82:513–536 529

Fig. 5 Map details in a cluttered area. Zoom of the region of
interest in the learned map of Fig. 4. All units in cells. Laser
readings in purple. Robot’s location in blue

More results from different random places are
given in Table 15. For simplicity, only the errors
with 1 % noise and optimum population size (low-
est NP with maximum Sr) are given. The method
performance is similar for these new places.

5.3 Results analysis - Comparison with Previous
Version

The real benefits of the new method can be appreci-
ated if it is compared to the previous version of the GL
filter. To do that, we will use the results obtained in
the previous sections.

For the simulated map, the localization errors and
the success rates computed for the points of interest
with a 1 % noise and the optimum number of particles
(Tables 3, 5, and 7) are rewritten in the top rows of
Table 16 (DE-MC in the table). ed is the position error
and iter represents the average number of iterations
that are needed to converge. The same measurements
are calculated using the traditional version of the DE-
based GL algorithm detailed in Section 3.3 (DE in the
table). For each location, the number of particles is
increased until the maximum success rate is reached.

If the traditional version is run with the same popu-
lation size (first row for each location, NP equal to the
population size used for the new version), the success
rate is much lower in all cases. It means that the old
version is less robust and the population size must be
increased to obtain an optimum performance. There-
fore, the population size required by the new technique
is much lower than the population size that is needed
by the previous version. In particular, for pa1, pa2,
and pa3, the population size has to be multiplied by

Table 9 Error and success rate depending on the population size

NP Sr ex (cells) ey (cells) eθ (degrees)

40 72 0.0337 ± 0.0313 0.0389 ± 0.0409 0.0461 ± 0.0632

60 76 0.0312 ± 0.0347 0.0423 ± 0.0335 0.0426 ± 0.0445

80 88 0.0483 ± 0.0413 0.0411 ± 0.0391 0.0522 ± 0.0589

100 94 0.0496 ± 0.0554 0.0312 ± 0.0285 0.0409 ± 0.0422

120 94 0.0346 ± 0.0417 0.0357 ± 0.0262 0.0545 ± 0.0505

140 98 0.0329 ± 0.0411 0.0413 ± 0.0499 0.0506 ± 0.0659

160 100 0.0394 ± 0.0429 0.0324 ± 0.0328 0.0382 ± 0.0347

180 100 0.0423 ± 0.0544 0.0260 ± 0.0220 0.0306 ± 0.0271

Real map. True location: (100, 450, 45). Sensor noise: standard deviation of 1 %. Sr in percentage. Errors in mean ± standard deviation

530 J Intell Robot Syst (2016) 82:513–536

Table 10 Error and success rate depending on the sensor noise level

Sensor noise Sr ex (cells) ey (cells) eθ (degrees)

0.5 100 0.0173 ± 0.0132 0.0210 ± 0.0193 0.0270 ± 0.0332

1.0 100 0.0423 ± 0.0544 0.0260 ± 0.0220 0.0306 ± 0.0271

2.5 100 0.0922 ± 0.1195 0.0615 ± 0.0599 0.1012 ± 0.1001

5.0 92 0.2060 ± 0.2317 0.2182 ± 0.1857 0.2216 ± 0.1939

7.5 92 0.3094 ± 0.2248 0.2127 ± 0.2100 0.2801 ± 0.2320

10.0 90 0.4866 ± 0.3660 0.3752 ± 0.3556 0.3504 ± 0.2630

Real map. True location: (100, 450, 45). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. NP = 180

Table 11 Error and success rate depending on the population size

NP Sr ex (cells) ey (cells) eθ (degrees)

100 32 0.0084 ± 0.0056 0.0095 ± 0.0065 0.0152 ± 0.0116

200 62 0.0157 ± 0.0233 0.0140 ± 0.0193 0.0231 ± 0.0275

300 66 0.0085 ± 0.0061 0.0079 ± 0.0065 0.0140 ± 0.0102

400 82 0.0214 ± 0.0771 0.0145 ± 0.0147 0.0407 ± 0.0615

500 94 0.0266 ± 0.0206 0.0121 ± 0.0076 0.0039 ± 0.0027

600 96 0.0100 ± 0.0082 0.0053 ± 0.0046 0.0084 ± 0.0068

Real map. True location: (470, 425, 37). Sensor noise: standard deviation of 1%. Sr in percentage. Errors in mean ± standard deviation

Table 12 Error and success rate depending on the sensor noise level

Sensor noise Sr ex (cells) ey (cells) eθ (degrees)

0.5 100 0.0122 ± 0.0099 0.0059 ± 0.0049 0.0101 ± 0.0063

1.0 96 0.0100 ± 0.0082 0.0053 ± 0.0046 0.0084 ± 0.0068

2.5 76 0.0110 ± 0.0068 0.0121 ± 0.0069 0.0200 ± 0.0137

5.0 62 0.0166 ± 0.0136 0.0156 ± 0.0118 0.0236 ± 0.0148

7.5 56 0.0170 ± 0.0148 0.0303 ± 0.0320 0.0275 ± 0.0160

10.0 44 0.0528 ± 0.1022 0.0495 ± 0.0629 0.0505 ± 0.0745

Real map. True location: (470, 425, 37). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. NP = 600

Table 13 Error and success rate depending on the population size

NP Sr ex (cells) ey (cells) eθ (degrees)

80 36 0.0118 ± 0.0058 0.0048 ± 0.0028 0.0106 ± 0.0053

160 72 0.0110 ± 0.0065 0.0042 ± 0.0033 0.0078 ± 0.0064

240 78 0.0127 ± 0.0061 0.0047 ± 0.0058 0.0096 ± 0.0097

320 84 0.0141 ± 0.0112 0.0052 ± 0.0058 0.0093 ± 0.0078

400 92 0.0106 ± 0.0042 0.0047 ± 0.0033 0.0093 ± 0.0067

480 96 0.0095 ± 0.0061 0.0036 ± 0.0025 0.0074 ± 0.0060

560 96 0.0130 ± 0.0067 0.0056 ± 0.0064 0.0103 ± 0.0099

Real map. True location: (550, 400, 0). Sensor noise: standard deviation of 1%. Sr in percentage. Errors in mean ± standard deviation

J Intell Robot Syst (2016) 82:513–536 531

Table 14 Error and success rate depending on the sensor noise level

Sensor noise Sr ex (cells) ey (cells) eθ (degrees)

0.5 96 0.0107 ± 0.0037 0.0042 ± 0.0029 0.0076 ± 0.0053

1.0 96 0.0095 ± 0.0061 0.0036 ± 0.0025 0.0074 ± 0.0060

2.5 96 0.0222 ± 0.0163 0.0175 ± 0.0169 0.0241 ± 0.0217

5.0 82 0.0384 ± 0.0237 0.0259 ± 0.0199 0.0623 ± 0.0715

7.5 80 0.0676 ± 0.0773 0.0438 ± 0.0796 0.1068 ± 0.1323

10.0 80 0.0604 ± 0.0455 0.0638 ± 0.1231 0.1334 ± 0.1512

Real map. True location: (550, 400, 0). Sensor noise in standard deviation. Sr in %. Errors in mean ± standard deviation. NP = 480

Fig. 6 Left: position error vs. sensor noise. Right: position error vs. population size. Learned map. Sensor noise in standard deviation
(%). Robot’s poses between brackets

Table 15 Error and success rate for different random places

Location NP Sr ex (cells) ey (cells) eθ (degrees)

(320,460,10) 60 100 0.0464 ± 0.0362 0.0324 ± 0.0353 0.0390 ± 0.0291

(531,48,85) 120 98 0.0309 ± 0.0222 0.0349 ± 0.0355 0.0415 ± 0.0258

(440,322,21) 60 100 0.0502 ± 0.0460 0.1201 ± 0.1251 0.0598 ± 0.0551

(75,60,3) 240 96 0.0284 ± 0.0188 0.0118 ± 0.0117 0.0547 ± 0.0582

(210,401,167) 140 100 0.0169 ± 0.0196 0.0200 ± 0.0232 0.0417 ± 0.0403

(351,477,99) 80 98 0.0266 ± 0.0265 0.0330 ± 0.0245 0.0230 ± 0.0243

Real map. Sensor noise: standard deviation of 1%. Sr in %. NP is the lowest that optains the maximum Sr . Errors in mean ± standard
deviation

532 J Intell Robot Syst (2016) 82:513–536

Table 16 Comparison with traditional DE-based GL filter

DE-MC

Location NP Sr ed (mm) eθ (degrees) iter

(300,50,90) 200 100 6.3386 ± 9.3071 0.0650 ± 0.0704 2091

(150,105,0) 80 100 4.1207 ± 3.6661 0.0327 ± 0.0632 1002

(550,400,0) 90 100 23.8167 ± 16.6715 0.1163 ± 0.0859 600

DE

Location NP Sr ed (mm) eθ (degrees) iter

(300,50,90) 200 64 6.5947 ± 4.7508 0.0980 ± 0.0625 304

(300,50,90) 400 82 7.5427 ± 9.7576 0.1093 ± 0.0933 343

(300,50,90) 600 98 8.3072 ± 9.1914 0.1109 ± 0.0781 260

(300,50,90) 800 98 6.5076 ± 7.9818 0.0873 ± 0.0785 300

(150,105,0) 80 44 19.8139 ± 17.6466 0.0916 ± 0.0634 242

(150,105,0) 160 76 17.1486 ± 11.9873 0.0520 ± 0.0520 231

(150,105,0) 240 78 17.8856 ± 19.9534 0.0610 ± 0.0480 221

(150,105,0) 320 94 14.9048 ± 18.6853 0.0540 ± 0.0447 234

(150,105,0) 400 98 15.0640 ± 14.1963 0.0508 ± 0.0409 244

(150,105,0) 480 100 12.9933 ± 12.5968 0.0494 ± 0.0397 251

(550,400,0) 90 82 32.6667 ± 28.7437 0.0846 ± 0.0754 110

(550,400,0) 135 88 26.5698 ± 30.1158 0.1007 ± 0.0824 135

(550,400,0) 180 100 17.0854 ± 21.7391 0.0972 ± 0.0854 182

Simulated map. Sensor noise: standard deviation of 1 %. Sr in percentage. Errors in mean ± standard deviation

4, 6, and 2, respectively, to obtain the optimum per-
formance regarding the success rate. Moreover, it is
not possible to reach Sr = 100% when the robot is
situated in pa1.

The errors of the new technique are in the interval
[4.12, 23.82] mm in position and [0.03, 0.11] degrees
in orientation, which are slightly lower than the errors
of the classic version. It is possible to make a compar-
ison between these errors and those obtained by other
authors in 2D maps. The position error reported by
Donoso et al. [25] is in the interval [8 cm, 15 cm].
Se et al. [59] have published an average position error
equal to 7 cm and a rotation error of 1◦. To the best of
our knowledge, there are no research groups that have
obtained localization errors significantly lower than
our errors in planar maps. However, these compar-
isons have to be considered only as indicative figures.
It is not easy to make a fair comparison between
methods that rely on different concepts.

The results for the real map are introduced in
Table 17. Similar conclusions can be drawn.

The population when using the traditional tech-
nique must be increased to obtain the optimum success
rate. In particular, for pr1, pr2, and pr3, the population
size has to be multiplied by 6, 4, and 2.5, respectively.
Furthermore, when the robot is in pr2, the maximum
success rate that can be obtained with the old version
is equal to 50 % (much lower than the value obtained
with the new technique). These facts reinforce the
conclusion that the new method is more robust and
reliable.

The errors of the new version are in the interval
[0.51, 2.48] mm in position and [0.01, 0.03] degrees
in orientation, which in most cases are lower than the
errors of the traditional method.

The time complexity of both GL methods is

O(DE − MC) = O(DE) = iter × NP × n, (13)

where n represents the number of measurements of
the laser scan. The computational times can be com-
pared by analyzing the population size and the number
of iterations to converge (NP × iter), because n is

J Intell Robot Syst (2016) 82:513–536 533

Table 17 Comparison with traditional DE-based GL filter

DE-MC

Location NP Sr ed (mm) eθ (degrees) iter

(100,450,45) 180 100 2.4826 ± 2.9340 0.0306 ± 0.0271 1202

(470,425,37) 600 96 0.5659 ± 0.4701 0.0084 ± 0.0068 4304

(550,400,0) 480 96 0.5080 ± 0.3296 0.0074 ± 0.0060 1308

DE

Location NP Sr ed (mm) eθ (degrees) iter

(100,450,45) 180 54 1.1102 ± 0.3543 0.0187 ± 0.0227 245

(100,450,45) 360 76 3.1219 ± 2.9649 0.0446 ± 0.0411 291

(100,450,45) 540 76 2.6114 ± 2.5429 0.0486 ± 0.0495 300

(100,450,45) 720 80 3.7547 ± 4.1548 0.0651 ± 0.0705 322

(100,450,45) 900 94 3.1741 ± 3.8807 0.0534 ± 0.0699 306

(100,450,45) 1080 96 2.1037 ± 2.7321 0.0297 ± 0.0297 374

(470,425,37) 600 22 1.1102 ± 0.3543 0.0187 ± 0.0227 730

(470,425,37) 1200 24 1.2580 ± 2.0617 0.0183 ± 0.0192 752

(470,425,37) 1800 50 0.7738 ± 0.5423 0.0101 ± 0.0067 900

(470,425,37) 2400 50 0.6574 ± 0.4294 0.0135 ± 0.0082 948

(550,400,0) 480 52 2.0495 ± 1.2039 0.0930 ± 0.0220 452

(550,400,0) 720 72 1.6789 ± 0.8801 0.0262 ± 0.0181 422

(550,400,0) 960 78 1.6409 ± 0.9159 0.0193 ± 0.0143 358

(550,400,0) 1200 96 1.2801 ± 0.8180 0.0163 ± 0.0146 401

Real map. Sensor noise: standard deviation of 1%. Sr in percentage. Errors in mean ± standard deviation

the same for both methods. Observing the tables, the
reduction of the convergence speed is compensated by
the decrease of the population size.

6 Conclusions

A new method that combines the DE evolutionary
algorithm and the population-based MCMC technique
has been proposed in this paper to solve the GL prob-
lem. This new version maintains the advantages of
both approaches. It inherits the statistical robustness
of the MCMC technique and it keeps the exploration
properties of the evolutionary filter. Besides, the DE-
based mutation stage solves the scale and orientation
problem of the jumps of the MCMC algorithms.

The experimental results lead us to conclude that
this new method is an appropriate approach to solve
the GL problem in both simulated and real maps, and it
does not present any drawback when compared to the

previous version of the DE filter. In the experiments
carried out, we have measured the localization error
and the success rate depending on the sensor noise and
the population size.

An important conclusion that can be deduced from
the experiments is that there is a significant improve-
ment in the performance depending on the number
of particles, which is strongly related to the param-
eter that we have defined as the success rate. The
success rate has been computed when the robot is
located at different places and it is increased in all
experiments when compared to the traditional ver-
sion if the same population size is used, making this
new version a more suitable approach in challenging
environments where it is difficult to obtain the true
location.

The population requirements are much lower than
the demands of our previous version of the DE-based
GL filter. Although the population size of the MC
sampling algorithm is huge when compared to the

534 J Intell Robot Syst (2016) 82:513–536

DE method, this hybrid version needs less particles
to obtain satisfactory results. In general, the popula-
tion size should be larger and the success rate is more
influenced by the sensor noise in learned maps.

The accuracy is slightly improved in position and
orientation. If the sensor noise is increased, there is a
low degradation of the estimation results because the
error grows linearly with the sensor noise. The noise
level that still allows a maximum success rate is higher
than the noise of commercial devices.

The GL module developed here will be a useful
tool when a map of the environment provided by per-
ceptive sensors like laser range finders is available.
With a single laser scan (which is a strong assump-
tion), the mobile robot can obtain its own location.
Besides, additional laser scans could be used to update
the estimate. The accuracy shown in the experimen-
tal results is good enough to use the current method
in manipulation tasks. Although the method presents
a good performance regarding the sensor noise, high
uncertainties in the sensors or the map will decrease
the algorithm performance.

Since the sum of the squared errors is not the most
adequate metric for environments with occlusions or
dynamic obstacles because big errors strongly penal-
ize the cost value, the current method will not be the
most appropriate for these cases. In our previous work
[5], a GL technique that relies on different cost func-
tion assumptions has obtained a great performance in
this type of environments. An interesting work to carry
out is to implement this different fitness function in
the current method.

A detailed study about the convergence properties
is a challenging task that must be accomplished in the
future work because the computational cost is highly
dependent on this factor.

The evolutionary nature of this filter causes many
interesting features: it can deal with nonlinear state
space dynamics and noise distributions; it does not
require any assumptions on the shape of the posterior
density; the computational resources are focused on
the most relevant zones.

Acknowledgments The research leading to these results
has received funding from the RoboCity2030-III-CM project
(Robótica aplicada a la mejora de la calidad de vida de los ciu-
dadanos. fase III; S2013/MIT-2748), funded by Programas de
Actividades I+D en la Comunidad de Madrid and cofunded by
Structural Funds of the EU.

References

1. Leonard, J.J., Durrant-Whyte, H.: Mobile robot localization
by tracking geometric beacons. IEEE Trans. Robot. Autom.
7, 376–382 (1991)

2. Storn, R., Price, K.: Differential evolution – a simple and
efficient heuristic for global optimization over continuous
spaces. J. Glob. Optim. 11, 341–359 (1997)

3. Moreno, L., Garrido, S., Muñoz, M.L.: Evolutionary filter
for robust mobile robot localization. Robot. Auton. Syst.
54(7), 590–600 (2006)

4. Martı́n, F., Moreno, L., Garrido, S., Blanco, D.: High-
accuracy global localization filter for three-dimensional
environments. Robotica 30, 363–378 (2011)

5. Martı́n, F., Moreno, L., Blanco, D., Muñoz, M.L.:
Kullback–Leibler divergence-based global localization for
mobile robots. Robot. Auton. Syst. 62, 120–130 (2014)

6. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am.
Stat. Assoc. 44(247), 335–341 (1949)

7. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N.,
Teller, A.H., Teller, E.: Equations of state calculations by
fast computing machines. J. Chem. Phys. 21, 1087–1091
(1953)

8. Hastings, W.K.: Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57, 97–
109 (1970)

9. Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov
chain monte carlo in practice. Chapman & Hall, London
(1996)

10. Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.: An
introduction to MCMC for machine learning. Mach. Learn.
50, 5–43 (2003)

11. Braak, C.J.F.T.: A Markov chain Monte Carlo version of
the genetic algorithm differential evolution: easy Bayesian
computing for real parameter spaces. Stat. Comput. 16,
239–249 (2006)

12. Burgard, W., Fox, D., Henning, D., Schmidt, T.: Estimat-
ing the absolute position of a mobile robot using position
probability grids. In: Proceedings of the fourteenth national
conference on artificial intelligence (AAAI’96) (1996)

13. Fox, D., Hightower, J., Liao, L., Schulz, D., Borriello, G.:
Bayesian filters for location estimation. Pervasive Comput-
ing 2, 24–33 (2003)

14. Thrun, S., Burgard, W., Fox, D.: A real-time algorithm
for mobile robot mapping with applications to multi-robot
and 3D mapping. In: Proceedings of the IEEE international
conference on robotics and automation (ICRA’00) (2000)

15. Gamallo, C., Regueiro, C.V., Quintı́a, P., Mucientes, M.:
Omnivision-based KLD-Monte Carlo Localization. Robot.
Auton. Syst. 58, 295–305 (2010)

16. Zhang, L., Zapata, R., Lepinay, P.: Self-adaptive Monte-
Carlo localization for mobile robots using range sensors. In:
Proceedings of the lEEW/RSJ international conference on
intelligent robots and system (IROS’09) (2009)

17. Fox, D., Burgard, W., Thrun, S.: Markov localization for
mobile robots in dynamic environments. J. Artif. Intell. Res.
11(11), 391–427 (1999)

18. Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte
Carlo localization for mobile robots. Artif. Intell. 128, 99–
141 (2001)

J Intell Robot Syst (2016) 82:513–536 535

19. Ronghua, L., Bingrong, H.: Coevolution based adaptive
Monte Carlo localization (CEAMCL). Int. J. Adv. Robot.
Syst. 1(3), 183–190 (2004)

20. Biswas, J., Coltin, B., Veloso, M.: Corrective gradient
refinement for mobile robot localization. In: Proceedings of
the IEEE/RSJ international conference on intelligent robots
and systems (IROS’11) (2011)

21. Grisetti, G., Grzonka, S., Stachniss, C., Pfaff, P., Burgard,
W.: Efficient Estimation of Accurate Maximum Likelihood
Maps in 3D. In: Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems (IROS’07)
(2007)

22. Montemerlo, M., Thrun, S.: FastSLAM 2.0, FastSLAM:
A Scalable Method for the Simultaneous Localization and
Mapping Problem in Robotics (2007)

23. Zhang, L., Zapata, R., Lépinay, P.: Self-adaptive Monte
Carlo localization for mobile robots using range finders.
Robotica 30, 229–244 (2011)

24. Moreno, L., Blanco, D., Muñoz, M.L., Garrido, S.: L1–L2-
norm comparison in global localization of mobile robots.
Robot. Auton. Syst. 59, 597–610 (2011)

25. Donoso-Aguirre, F., Bustos-Salas, J.P., Torres-Torriti, M.,
Guesalaga, A.: Mobile robot localization using the Haus-
dorff distance. Robotica 26, 129–141 (2008)

26. Fox, D., Burgard, W.: Active Markov localization
for mobile robots. Robot. Auton. Syst. 25, 195–207
(1998)

27. Arras, K.O., Castellanos, J.A., Siegwart, R.: Feature-
based multi-hypothesis localization and tracking for mobile
robots using geeometric constraints. In: Proceedings of the
IEEE international conference on robotics and automa-
tion (ICRA’02), (Washington DC, USA), pp. 1371–1377
(2002)

28. Back, T., Fogel, D.B., Michalewicz, Z.: Evolutionary com-
putation I: basic algorithms and operators. IOP Publishing
Ltd (2000)

29. Back, T., Fogel, D.B., Michalewicz, Z.: Evolutionary com-
putation II: advanced algorithms and operators. IOP Pub-
lishing Ltd (2000)

30. Vahdat, A.R., Ashrafoddin, N.N., Ghidary, S.S.: Mobile
robot global localization using differential evolution
and particle swarm optimization. In: Proceedings of
the congress on evolutionary computation (CEC’07)
(2007)

31. Lisowski, M.: Differential evoution approach to the local-
ization problem for mobile robots. Master’s thesis, Techni-
cal University of Denmark (2009)

32. Lisowski, M., Fan, Z., Ravn, O.: Differential evolution to
enhance localization of mobile robots. In: Proceedings of
the 2011 IEEE international conference on fuzzy systems,
(Taipei, Taiwan), pp. 241–247 (June 2011)

33. Geem, Z., Kim, J., Loganathan, G.: A new heuristic opti-
mization algorithm: harmony search. Simulation 76(2), 60–
78 (2001)

34. Mirkhania, M., Forsatib, R., Shahric, M., Moayedikiad, A.:
A novel efficient algorithm for mobile robot localization,
Robotics and Autonomous Systems (2013)

35. Kwok, N.M., Liu, D.K., Dissanayake, G.: Evolutionary
computing based mobile robot localization. Artif. Intell. 19,
857–868 (2006)

36. Cox, I.J., Leonard, J.J.: Modeling a dynamic environment
using a Bayesian multi hypothesis approach. Artif. Intell.
66, 311–44 (1994)

37. Austin, D.J., Jensfelt, P.: Using multiple Gaussian hypothe-
ses to represent probability distributions for mobile robot
localization. In: Proceedings of the IEEE international
conference on robotics and automation (ICRA’00), (San
Francisco, USA), pp. 1036–1041 (2000)

38. Jensfelt, P., Kristensen, S.: Active global localization for
a mobile robot using multiple hypothesis tracking. IEEE
Trans. Robot. Autom. 17(5), 748–760 (2001)

39. He, T., Hirose, S.: A global localization approach based on
Line-segment relation matching technique. Robot. Auton.
Syst. 60, 95–112 (2012)

40. Pfaff, P., Plagemann, C., Burgard, W.: Gaussian mixture
models for probabilistic localization. In: Proceedings of
IEEE international conference on robotics and automation
(ICRA’08), (Pasadena, CA, USA) (2008)

41. Jochmann, G., Kerner, S., Tasse, S., Urbann, O.: Efficient
multi-hypotheses unscented kalman filtering for robust
localization, RoboCup 2011: Robot Soccer World Cup XV
(pp. 222-233) (2012)

42. Robert, C.P., Casella, G.: Monte Carlo statistical methods,
2nd edn. Springer, New York (2004)

43. Geweke, J.: Bayesian inference in econometric models
using Monte Carlo intergration. Econometrica 24, 1317–
1399 (1989)

44. Rubinstein, R.Y.: Simulation and the Monte Carlo method.
John Wiley & Sons (1981)

45. Rubin, D.B.: Using the SIR algorithm to simulate pos-
terior distributions. Bayesian Statistics 3(1), 395–402
(1988)

46. Gilks, W.R., Roberts, G.O., George, E.I.: Adaptive direc-
tion sampling. The Statistician 43, 179–189 (1994)

47. Liu, J.S., Liang, F., Wong, W.H.: The use of multipletry
method and local optimization in metropolis sampling. J.
Am. Stat. Assoc. 94, 121–134 (2000)

48. Geyer, C.J.: Markov chain Monte Carlo maximum likeli-
hood, in computing science and statistics. In: Keramigas,
E.M. (ed.) Proceedings of the 23rd symposium on the
interface, pp. 153–163 (1991)

49. Hukushima, K., Nemoto, K.: Exchange Monte Carlo
method and application to spin glass simulations. J. Phys.
Soc. Jpn. 65(6), 1604–1608 (1996)

50. Liang, F.M., Wong, W.H.: Real-parameter evolutionary
Monte Carlo with applications to Bayesian mixture models.
J. Am. Stat. Assoc. 96, 653–666 (2001)

51. Kou, S.C., Zhou, Q., Wong, W.H.: Equienergy sampler with
applications to statistical inference and statistical mechan-
ics. Ann. Stat. 32, 1581–1619 (2006)

52. Liang, F.M.: Dynamically weighted importance sampling
in Monte Carlo computation. J. Am. Stat. Assoc. 97, 807–
821 (2002)

53. Laskey, K.B., Myers, J.W.: Population Markov Chain
Monte Carlo. Mach. Learn. 50, 175–196 (2003)

54. Martı́n, F., Moreno, L., Muñoz, M.L., Blanco, D.: Initial
population size estimation for a Differential-Evolution-
based global localization filter. Int. J. Robot. Autom. 29(3),
245–258 (2014)

55. Zaharie, D.: Critical values for the control parameters of
differential evolution algorithms (2002)

536 J Intell Robot Syst (2016) 82:513–536

56. Goldberg, D.E.: Genetic algorithm in search, optimiza-
tion and machine learning. Addison Wesley Publishing
Company (1989)

57. Waagepetersen, R., Sorensen, D.: A tutorial on reversible
jump MCMC with a view toward applications in QTL-
mapping. Int. Stat. Rev. 69, 49–61 (2001)

58. Gelman, A., Carlin, J.B., Stern, H.S., D B, R.: Bayesian
data analysis, 2nd edn. Chapman & Hall, London
(2004)

59. Se, S., Lowe, D.G., Little, J.J.: Vision-based global local-
ization and mapping for mobile robots. IEEE Trans. Robot.
21, 3 (2005)

	Differential Evolution Markov Chain Filter for Global Localization
	Abstract
	Introduction
	Related Work
	Fundaments of the Method
	Monte Carlo Sampling
	Markov Chain Monte Carlo - Metropolis-Hastings Method
	Differential Evolution Algorithm for GL

	Differential Evolution Markov Chain GL Filter
	Experiments
	Architectural Plan
	Learned Map
	Results analysis - Comparison with Previous Version

	Conclusions
	Acknowledgments
	References

