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Abstract This paper deals with autonomous navi-
gation of unmanned ground vehicles (UGV). The
UGV has to reach its assigned final configuration
in a structured environments (e.g. a warehouse or
an urban environment), and to avoid colliding nei-
ther with the route boundaries nor any obstructing
obstacles. In this paper, vehicle planning/set-points
definition is addressed. A new efficient and flexi-
ble methodology for vehicle navigation throughout
optimal and discrete selected waypoints is proposed.
Combining multi-criteria optimization and expanding
tree allows safe, smooth and fast vehicle overall nav-
igation. This navigation through way-points permits
to avoid any path/trajectory planning which could be
time consuming and complex, mainly in cluttered and
dynamic environment. To evaluate the flexibility and
the efficiency of the proposed methodology based on
expanding tree (taking into account the vehicle model
and uncertainties), an important part of this paper is
dedicated to give an accurate comparison with another
proposed optimization based on the commonly used
grid map. A set of simulations, comparison with other
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methods and experiments, using an urban electric
vehicle, are presented and demonstrate the reliability
of our proposals.
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1 Introduction

Fully autonomous vehicle navigation is a complex
problem of major interest for the research community.
Systems capable of performing efficient and robust
autonomous navigation are unquestionably useful in
many robotic applications such as manufacturing tech-
nologies [27], urban transportation [19], assistance to
disabled or elderly people [25] and surveillance [30].
Even if a lot of progress has been made, some specific
technologies have to be improved for real applica-
tions. This paper addresses specifically the problem of
planning/set-points definition for autonomous naviga-
tion of vehicle in an urban environment (cf. Fig. 1).

1.1 Overview of Navigation Strategies

Different strategies for autonomous navigation have
been proposed in the literature [2, 10, 22]. The most
popular approaches are based on the tracking of a
pre-defined reference trajectory [24]. The reference
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Fig. 1 Autonomous navigation of UGVs in a dedicated struc-
tured environment (Clermont-Ferrand, France)

trajectory can be obtained using a combination of path
planning and trajectory generation techniques [21].
The computation of a time-parameterized path while
taking into account different vehicle constraints and
environment characteristics is time-consuming [18]
and [7]. Different algorithms for computation of a
safe path (without temporal reference) require less
computational time [21]. Typically, to obtain the ref-
erence path to be followed by the vehicle, arc-lines,
B-splines or polynomial equations are used to interpo-
late points/waypoints [8, 11, 19] and [22]. A method
to obtain these points was proposed in [28]. In [28],
the authors use agent’s observation and the geomet-
ric characteristics of the environment to select the
waypoints. These waypoints can be used to reduce
the planning time of existing planners. However, the
method is based only on the position, the orientation
and vehicle model are not taken into account. In [10],
a feasible path is obtained using a polynomial cur-
vature spiral. In [6], the trajectory generation method
generates a smooth path considering the kinodynamic
constraints of the vehicle. In [19], trajectories are
built using user assigned points and interpolation func-
tions such as cubic splines, trigonometric splines and
clothoids. Moreover, velocity profiles along the trajec-
tory are specified to improve the passengers comfort
which is related to the acceleration. Nevertheless, tra-
jectory generation presents some drawbacks such as
the necessity of a specific planning method, a guar-
antee of continuity between different segments of the
trajectory and more flexibility for dynamic replanning.

Otherwise, contrary to follow/track a trajectory to
lead the robot toward its objective, few works in the
literature propose to use only specific way-points in
the environment to lead the robot toward its final

objective. In [3], the authors propose a navigation
via assigned static points for a unicycle robot. Never-
theless, the definition of the mission is less accurate
because this strategy does not consider: the kine-
matic constraints of the robot (maximum velocity and
steering), the orientation error and the velocity pro-
file of the robot when it reaches the assigned point.
In this paper, we present a navigation strategy which
avoids the generation of a specific reference trajectory.
Vehicle movements are generated using the control
law that we have recently proposed in [33]. We will
demonstrate in this paper that only few waypoints
will be sufficient to guarantee safe and flexible vehi-
cle navigation. We propose two methods to obtain
these optimal waypoints in a known environment.
These methods can take into account vehicle kine-
matic and perception/vehicle model uncertainties. The
main advantage of this navigation strategy is its flex-
ibility. The vehicle can perform different movements
between waypoints without the necessity of replan-
ning any reference trajectory, and it can also add
or change the location of the successive waypoints
according to the environment configuration or the task
to achieve. This strategy allows thus flexible naviga-
tion while taking into account appropriate waypoints
suitably placed in the environment.

1.2 Related Works

Different algorithms can be used to obtain waypoints
configuration such as A∗, D∗ [7], Rapidly Random
Tree (RRT) [18], Sparse A∗ Search (SAS) [31]. At
this aim, Configuration space (C-space), space of
all possible configuration of the robot [29], enables
the identification of the safe area where the vehicle
can navigate without a collision risk (free space C-
spacef ree). C-space is used to compute the minimum
distance to C-spaceobst (obstacle or road boundaries
space). Figure 2 shows the C-space and its Voronoı̈
diagram [20] in gray scale w.r.t. the distance to the
closest C-spaceobst (the whitest area represents the
safest area).

Typically, algorithms based on grid map (e.g., A∗
or D∗) produce the shortest path by optimization of
a criterion such as the distance to the goal, distance
to the risk area, etc. [7]. The algorithm begins gener-
ally at the final cell (final position) and traverses the
cell’s neighbors until to reach the initial position. The
cost of traveling through the neighbor is added to the
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Fig. 2 a Road scheme and b its C-space with its Voronoı̈
diagram

total cost, the neighbor with the lowest total cost is
selected, and so on. The process terminates once the
initial position is reached. The path is given through
the cell positions of the grid map while backtracking
the cells which have the lower path cost, sometimes
a polynomial interpolation is used to obtain a smooth
path [8]. In [34], the authors present an A∗ algorithm
using clothoid trajectories assuming constant velocity
along them. Therefore, appropriate waypoints can be
selected from this shortest path while only consider-
ing the cells where an orientation change occurs (w.r.t.
its predecessor). Nonetheless, this algorithm does not
consider neither former/initial vehicle orientation nor
its kinematic constraints.

Instead of using grid map, it is possible also to
obtain safe, feasible and smooth path using expand-
ing tree algorithms (e.g., RRT, RRT* or SAS [15,
18, 21] and [31]). This could be done by provid-
ing to the vehicle-model the commands to reach the
successive selected nodes until the goal [18, 21] and
[31]. The basic process of RRT consists in select-
ing, at each sample time, a random node qrandom in
the C-spacef ree. This selection considers generally
only position qrandom = (xrandom, yrandom) without
any a priori vehicle orientation [21]. Then, the com-
mands (discrete values) are applied to vehicle (from
its current position and orientation) during a constant
time texp. The vehicle model and constant commands

allow to predict the final vehicle position at the end of
texp. The commands that produce the closest position
qchosen (a node which optimizes a dedicated task crite-
rion [32]) to current random node qrandom are selected
and stored with qchoose. A new expansion starts until
to reach qrandom or to select a new random node
qnew
random. Therefore, the waypoints can be selected,

as in the case of grid map, while only considering
the nodes where an orientation change occurs (w.r.t.
its predecessor node). Algorithms based on RRT are
very useful for motion planning because they can pro-
vide the commands (based on the kinematic/dynamic
model of the vehicle) to reach the desired final config-
uration [18] and [32]. Moreover, it avoids the use of
grid maps that can increase the computation time for
large environment. In [31], the authors use the expand-
ing tree for trajectory planning introducing different
constraints such as maximum turning angle and route
distance. Nevertheless, this method does not consider
neither the vehicle movements along the trajectory
nor localization uncertainties. In [14], sequential com-
position of controllers (e.g., go to the landmark and
wall following controller) are used to generate valid
vehicle states qchoose to the navigation function. This
approach avoids to find a single globally attractive
control law and allows to use some additional sensing
capability of the robot when the landmark is unreach-
able (e.g. GPS-denied area). However, the obtained
navigation function has a complex computational pro-
cessing. The most important drawbacks of expanding
tree algorithms are the slow convergence to cover all
space until to reach the goal and that in most cases it
does not provide the shortest path since the nodes are
randomly selected [1]. Furthermore, it is important to
underline that in the RRT the control commands are
maintained during a certain time, whereas in this paper
the vehicle movement takes into account the defini-
tion of the used control law in addition to the vehicle
model (cf. Section 3.2). A comparison with RRT and
Voronoı̈ approaches is shown in Section 4.1.2.

In this paper, we propose a method based on
expanding tree to obtain the optimal waypoint con-
figuration in a structured environment (cf. Fig. 4).
It allows to consider constraints such as the kine-
matic model and the used control law. Criteria to
optimize are related to the kinematic constraints of
the vehicle (non-holonomy, maximum velocity and
steering angle) and localization uncertainties. To high-
light the advantages and flexibility of our proposal, a
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comparison with another proposed method, based
on the commonly used grid map, is presented (cf.
Section 3). The method based on grid map algorithm
considers the vehicle as one cell without constraints
and it can move only through the cells of the grid map.
The trajectory of the vehicle depends on the choice
of the waypoint configuration (cf. Section 4). We will
show that the method based on grid map is less flexible
and less efficient with regards to the methods based on
expanding tree (cf. Section 4).

The rest of the paper is organized as follows:
the next section presents the navigation framework,
the waypoint assignment strategy for navigation, the
vehicle model and its control law. The selection of
waypoint configurations in the environment using a
multi-criteria optimization techniques is described in
Section 3. Simulation and experiments are given in
Section 4. Finally, Section 5 provides a conclusion and
prospects for future studies.

2 Overall Autonomous Navigation Framework

An important condition in the field of autonomous
vehicle is to ensure safe and flexible vehicle naviga-
tion (cf. Fig. 4). In this work, safe navigation consists
in not colliding with the road limits and other obstacles
while respecting the physical constraints of the vehi-
cle. Flexible navigation consists in allowing different
possible movements to achieve the task, while guaran-
teeing a smooth trajectory of the vehicle. Certainly, the
main idea of the proposed work is to guarantee both
criteria simultaneously.

This paper focuses on the method to obtain the
optimal set of waypoints appropriately located in the
environment to perform a safe, flexible and fast vehi-
cle navigation (cf. Section 3). Nevertheless, before
detailing this multi-criteria optimization problem, let
us first present in Section 2.1 the details of the
autonomous navigation strategy based on finite and
sequential waypoints assignment described in [33].

2.1 Navigation from Sequential Waypoint
Assignment

A waypoint corresponds to a specific key configu-
rations (xqi

, yqi
, θqi

, vqi
) (where (xqi

, yqi
)T , θqi

and
vqi

denote to respectively the position, the orien-
tation and the velocity of the waypoint qi) in the

environment as given in Fig. 3 (cf. Section 3). A
vehicle navigation using only waypoints allows to
avoid any path/trajectory planning which could be
time-consuming and complex, mainly in cluttered and
dynamic environment. Moreover, this kind of naviga-
tion does not require the pose of the closest point to
any trajectory (w.r.t. the robot configuration) and/or
the value of the curvature at this point [10]. Con-
sequently, the navigation problem is simplified to a
waypoint reaching problem, i.e, the UGV is guided by
waypoints (cf. Fig. 3) instead of following a specific
fixed path. Moreover, it is important to notice that if
the successive waypoints are closer to each other then
the vehicle tends to perform a path following naviga-
tion. To simplify the computation of the waypoints,
they could be selected from a pre-defined path if it
is available [33]. Indeed, a safe reference path can be
obtained by different algorithms such as a Voronoı̈
diagram [20] or potential fields [17]. Nevertheless,
adding this step of path planning (with all its possi-
ble drawbacks (cf. Section 4)) before obtaining the set
of waypoints, restricts considerably the C-spacef ree

to only a curvilinear line. Thus, the optimality of
the obtained set of Waypoints is not guaranteed (cf.
Section 3).

The strategy proposed in [33] uses a sequence of
waypoints suitably positioned in the environment. To
navigate between successive waypoints (e.g. qj and
qj+1), the distance of the vehicle to the target d and
the error eθ between the orientation of the vehicle and
the target are used. Their maximum values (Edis and
E∠ respectively (cf. Fig. 3)) are imposed to the current
waypoint qj to be reached. These values are notably
related to the inaccuracies of the vehicle localization
and/or the performance of the used control law. The
maximum authorized values allow to keep a reliable
vehicle control towards the target Tj (cf. Fig. 3) while
guaranteeing the appropriate vehicle configuration to
reach the next target Tj+1.

Figure 3 shows a set of successive waypoints. Dj

is the Euclidean distance between the waypoints qj−1

and qj . For simplicity, the orientation of the way-
point θqj

is represented as the orientation of the line
that joins qj and qj+1. The strategy to assign at each
sample time the appropriate waypoint is shown in
Algorithm 1. The parameters of the control law enable
the vehicle to reach the next waypoint (cf. Section 2.3)
while ensuring that the vehicle trajectory is always
within the road boundaries (cf. Section 4). The error
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Fig. 3 Description of
waypoints assignment
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conditions, Edis and E∠, are used to switch to the
next waypoint when the vehicle position enters a circle
with a radius equal to Edis and center (xqj

, yqj
). The

current waypoint is updated with the following way-
point and the vehicle starts the movement to reach this
new waypoint. If the vehicle does not satisfy the dis-
tance and orientation error conditions w.r.t. the current
waypoint qj then the perpendicular line Lj (Yqj

axis)
to the road at the current waypoint is used to switch
to the next waypoint when the vehicle crosses Lj (cf.
Fig. 3).

Before presenting briefly the control law to reach
sequentially each single waypoint (cf. Subsection 2.3),
let us present the navigation scenario and the model of
the vehicle used for the control law definition.

2.2 Navigation Scenario and Vehicle Modeling

The following scenario is considered (cf. Figs. 2
and 4):

– The environment of navigation is known through-
out a map, containing the position of all static
obstacles.

– The kinematic/dynamic model of the vehicle is
known (with potentials uncertainties).

– The vehicle starts at the initial pose Pi and it has to
reach the final position Pf (in certain cases, Pi =
Pf ).

The UGV evolves in asphalt road and in cluttered
urban environment with relatively low speed (less than

vehicle

Initial
position

Final
position

Road
width

waypoint

Obstacles

Fig. 4 Nominal scenario related to the effective platform (cf.
Fig. 23) with the road map and the vehicle navigation
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vmax = 3 m/s). Hence, the use of kinematic model
of the UGV is sufficient (which relies on pure rolling
without slipping). The kinematic model of the UGV
is based on the tricycle model [23]. The two front
wheels are replaced by a single virtual wheel located
at the center between the front wheels (cf. Fig. 5).
In [13], different tricycle designs are described giv-
ing the relation between the vehicle wheels velocities
and the global vehicle kinematic model (linear and
angular velocities). This relation is important to take
into account for dynamic modeling of the vehicle
[13]. Nevertheless, as mentioned above, the kinematic
model is enough for our application. The kinematic
model is given by (cf. Fig. 5):
⎧
⎨

⎩

ẋ = v cos(θ)

ẏ = v sin(θ)

θ̇ = v tan(γ )/ lb

(1)

where (x, y, θ) is the vehicle pose in the global refer-
ence frame XGYG.v and γ are respectively the linear
velocity and orientation of the vehicle front wheel. lb
is the wheelbase of the vehicle.

2.3 Target Reaching Controller

The target set-point modeling corresponds to a sin-
gle waypoint configuration (xT , yT , θT , vT ), where
(xT , yT , θT ) and vT are respectively the pose and
velocity of the target. For static target reaching, vT �=
0 is considered as a desired velocity value for the
vehicle when it reaches the desired target pose.

The target reaching controller guides the vehicle
sequentially towards the current assigned static target
(cf. Section 2.1). Before briefly describing the used
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Fig. 5 UGV and target configuration variables in Cartesian
references frames (local and global)

control law [33], let us define the following notation
(cf. Fig. 5):

– OG and Om are respectively the origin of global
and local reference frames of the vehicle.

– Icc is the instantaneous center of curvature of the
vehicle trajectory, rc = lb/ tan(γ ) is the radius of
curvature and cc = 1/rc is the curvature.

–
(
ex, ey, eθ

)
are the errors w.r.t local frame

(XmYm) between the vehicle and the target poses.
– θRT and d are respectively the angle and distance

between the target and vehicle positions.
– eRT is the error related to the vehicle position

(x, y) w.r.t the target orientation.
– dl is the distance from the vehicle to the target

orientation line.

This controller is based on the pose control of the
UGV w.r.t. the target. Let us first introduce the error
variables (ex, ey, eθ ) (cf. Fig. 5) defined in the local
reference frame XmYm:
⎧
⎨

⎩

ex = cos(θ)(xT − x) + sin(θ)(yT − y)

ey = − sin(θ)(xT − x) + cos(θ)(yT − y)

eθ = θT − θ

(2)

The error function eRT is added to the canonical
error system (2). The parameters d and θRT can be
written as (cf. Fig. 5):

d = √
(xT − x)2 + (yT − y)2 (3)

{
θRT = arctan ((yT − y)/(xT − x)) if d > ξ

θRT = θT if d ≤ ξ
(4)

where ξ is a small positive value (ξ ≈ 0). The error
eRT is defined as (cf. Fig. 5):

eRT = θT − θRT (5)

It can be written as a function of ex, ey and eθ as:

tan(eRT ) = tan(eθ − (θRT − θ))

= ex tan(eθ )−ey

ex+tan(eθ )ey
(6)

where tan(θRT − θ) = ey/ex (cf. Fig. 5).
Finally the pose errors and velocities

(ex, ey, eθ , vT ) are the input of the control law. The
control law is obtained from Lyapunov stability anal-
ysis (cf. Appendix). It guarantees that the static or
dynamic target will be reached [33]. The desired vehi-
cle linear velocity v and its front wheel orientation γ ,
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that make the errors (ex, ey, eθ ) converge to zero, can
be chosen as:

v = vT cos(eθ ) + vb (7)

γ = arctan(lbcc) (8)

where vb and cc are given by:

vb = Kx (Kdex + Kld sin(eRT ) sin(eθ ) + Ko sin(eθ )cc) (9)

cc = 1
rcT cos(eθ )

+ d2Kl sin(eRT ) cos(eRT )
rcT Ko sin(eθ ) cos(eθ )

+ Kθ tan(eθ )

+Kdey−Kld sin(eRT ) cos(eθ )

Ko cos(eθ )
+ KRT sin2(eRT )

sin(eθ ) cos(eθ )
(10)

K = (Kd, Kl, Ko, Kx, KRT , Kθ ) is a vector of posi-
tive constants defined by the designer. Kd, Kl and Ko

are respectively related to the desired convergence of
the distance and lateral and angular errors w.r.t. the
assigned target. Kx, KRT and Kθ are related to the
maximum linear and angular vehicle velocities (more
details are given in [33]).

3 Optimal Multi-criteria Waypoint Selection
(OMWS)

This section is dedicated to the selection of the discrete
waypoints in structured environment (cf. Fig. 4) in
order to perform safe and flexible vehicle navigation.
The waypoints are obtained from an efficient and flex-
ible methodology based on multi-criteria optimization
using either grid map (cf. Section 3.1) or expanding
tree (cf. Section 3.2).

In the both proposed OMWS (i.e., based on Grid
Map (GM) and Expanding Tree (ET)), waypoints
are selected considering safe position on the road,
feasibility of trajectories (smooth changes between
the successive points and vehicle constraints) and
uncertainties.

The waypoints assignment strategies (cf.
Sections 3.1 and 3.2) are formulated as an optimiza-
tion problem and solved using dynamic programming
[4] (cf. Formulation 1).

Formulation 1 (Optimization problem) For each dis-
crete state xk ∈ X where X is a nonempty and finite
state space. The objective is to obtain the sequence of

states to reach the final state xK while minimizing the
following cost function:

C(xK) =
K∑

k=1

g(P redxk
→ xk) + h(xK) (11)

where Predxk
is the predecessor state of xk . g is the

immediate traveling cost function to go from Predxk

to xk . h is the future traveling cost function (heuristic)
to go from the current state to the final state xK . When
the current state is the final state xK then h(xK) is
equal to zero. This function h contributes to improve
the convergence of the suboptimal solutions towards
the global optimal one [5].

3.1 Optimal Multi-criteria Waypoint Selection Based
on Grid Map (OMWS-GM)

Before describing the proposed algorithm and the
criterion to optimize, let us provide some useful def-
initions. A grid map corresponds to a limited envi-
ronment area decomposed generally on square cells
[7] (cf. Figs. 6 and 7). Each cell of the grid map can
be an obstacle or a free space (cf. Subsection 1.2 for
the definition of C-spaceobst and C-spacef ree). The
exterior limits of the C-spacef ree area are defined by
the user, even for open environment (cf. Fig. 4). For
simplification, the dimension of the cells in the grid

(i, j+1)

(i+1, j)

Pred = []

S = Init

(i, j-1)

(a, b)

Pred = []

S = Init

(i+1, j+1)(i-1, j+1)

Pred = []

S = Init

Pred = []

S = Init

Pred = []

S = Init

(m, n)(i-1, j-1)

Pred = []
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Pred = []

S = Init

Pred = []

S = Close

Pred = [m,n]

S = Open

(i, j)

45°

0°

-90°-135°

135° 90°

Fig. 6 A group of cells of the global grid map, the current cell
ij (red), its predecessor cell (blue) and its probable successive
cell (green). S is the cell state and Pred is the predecessor of
the cell
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Fig. 7 Representation in gray scale w.r.t the distance to the
closest C-spaceobst (the whitest area represents the safest area)

map is chosen according to the vehicle dimension.
Therefore, the vehicle is contained, at each sample
time, in only one cell [7]. We consider the center of
the cell (i, j) as its position. Each cell (i, j) is defined
by the following parameters:

– w̄ij ∈ [0, 1] is related to the normalized dis-
tance dij T o Obst to the closest C-spaceobst , and it
is given by:

w̄ij = 1 − dij T o Obst

dmax T o Obst

(12)

where dmax T o Obst is the maximum value
among all dcell T o Obst of all cells in the C-
spacef ree. As an example, Fig. 7 shows dif-
ferent distances of cells localized at (a, b),
(i, j) and (m, n) to the C-spaceobst . dmax T o Obst

is equal, in this example, to the maximum
distance dmn T o Obst .

– S is the cell state, which has three possible val-
ues, Init (Initialization), Open (when it is in the
expansion queue) and Close (when it has already
been expanded).

– A set of neighbors defined by:

SN(cellij )={(i±�iN , j ± �jN)|(�iN ,�jN) �= (0, 0)}
(13)

where �iN, �jN = 1 . . . , Nh. Nh is the neigh-
borhood value (cf. Fig. 8). Figure 8a shows the
case where Nh = 1 (which implies 8 neighbor

cells). Figure 8b shows a larger neighbor cells
when Nh = 2 (24 neighbors).

– Predij is the neighbor cell of ij which minimizes
the total cost C(ij) (cf. Fig. 6).

– g(P redij → ij) is the traveling cost
from the predecessor cell until the current
cell ij .

– h(ij) is the heuristic traveling cost from the
current cell ij to the final cell. As conven-
tional, this cost depends on the euclidean
distance from the cell ij to the final
cell.

The traveling cost function g(P redij → ij) =
g(mn → ij), from mn to ij , is normalized (g ∈
[0, 1]). It is also designed to take into account the vari-
ation of cell orientation (cf. Fig. 6). It allows to obtain
an optimal path consisting of minimum number of
straight lines. Therefore, a lowest possible number of
waypoints in the safe area can be extracted from this
optimal path. The cost function g(mn → ij) is given
by:

g(mn → ij) = kgw̄ij + (1 − kg)

∣
∣αij − αmn

∣
∣

2π
(14)

where the first term of Eq. 14 is related to the safety of
the obtained solution, and the real constant kg ∈ [0, 1]
is used to increase or to decrease the significance of
this term. The second term of Eq. 14 is related to the
smoothness of the obtained solution, i.e, the path has
a limited and minimum orientation change. The cell
orientations αmn, αij ∈] − π, π ] are computed using
the position of the current cell (i, j), its predecessor
(m, n) and its probable successor (a, b) (cf. Fig. 6).
They are computed as:

αij = arctan ([a − i]/[b − j ]) (15)

αmn = arctan ([i − m]/j − n]) (16)

The heuristic traveling cost h(ij) ∈ [0, 1] (refers to
Eq. 11) is designed in function of the euclidean dis-
tance dij from the cell ij to the final cell. It is also used
for the OMWS-ET (cf. Section 3.2). The cost function
h(ij) is given by:

h(ij) = kh

(
1 − e−dij /ke

)
(17)

where kh ∈ [0, 1] allows to tune the significance of
h(ij) in the total cost function (11). The exponential
function was chosen because it gives values between 0
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and 1 for positive values of dij . The constant ke ∈ R
+

is used to scale the value of dij according to the dimen-
sions of the environment. The value of h(ij) Eq. 17
decreases while the next selected cell goes closer to
the final cell.

Algorithm 2 shows in pseudocode, the first pro-
posed method to obtain the set of waypoints in a

structured and cluttered environment. It starts from
the final vehicle position (initial cell). The algorithm
selects the cells that have the lower total cost C(ij)

(11) until to reach the final cell. The set of way-
points is finally obtained, while tracking the prede-
cessor cell of each selected cell which minimizes the
total cost.
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The obtained path is defined by straight lines con-
necting each two consecutive waypoints which belong
to the set of obtained waypoints (cf. Algorithm 2). The
smoothness of the path depends on the number of pos-
sible neighbors of the expanded cell defined by Nh

(cf. Fig. 9). The drawback of using a large number
of neighbors is obviously the increasing of processing
time. When Nh > 1, it is mandatory to check if the
current neighbor is blocked by some other forbidden
neighbor (cf. Fig. 8). For an off-line planning, Nh > 1
can always be used to obtain a coherent and optimal
solution regardless of time consumption.

3.2 Optimal Multi-criteria Waypoint Selection Based
on Expanding Tree (OMWS-ET)

This subsection presents in details the main contri-
bution of this paper for the optimal planning of the
vehicle path, using an appropriate expanding tree.
The formulation of this expanding tree integrates the
kinematic model of the vehicle as well as the used
control law definition and the vehicle localization
uncertainties.

Before describing the proposed method and the cri-
terion to be optimized, let us present the definition
of expanding tree. The expanding tree is co mposed

by nodes and edges which have the following
properties:

– Each node qj is defined by its pose (xqj
, yqj

,
θqj

)T, one predecessor node qi (except for the ini-
tial node) and a traveling cost values g(qj ) and
h(qj ) (cf. (11)).

– Each edge ξij corresponds to the link between qi

to qj nodes.
– g(qi → qj ) = g(ξij ) is the traveling cost from qi

to qj .
– h(qj ) is the heuristic traveling cost from the cur-

rent node qj to the final node (final vehicle pose).
It is defined by Eq. 17 (cf. Section 3.1).

The traveling cost g(ξij ) ∈ [0, 1] is designed to
obtain an appropriate balance among safe, smooth,
feasible and fast trajectory of the vehicle. It is defined
as:

g(ξij ) = k1w̄j + k2�v̄ij + k3�γ̄ij + k4�ēlij (18)

where k1, k2, k3 and k4 ∈ R
+ are constants which

are defined by the designer to give the right balance
(according to context of navigation, e.g., focus more
on the safety with regard to the smoothness) of each
term of the criterion (18). To normalize the traveling
cost, ki |i = 1, . . . , 4 must satisfy:

k1 + k2 + k3 + k4 = 1 (19)

The normalization of the individual criterion given
in Eq. 18 allows to simplify the choice of ki to select
the priority of a term w.r.t. the others according to the
navigation context. In Section 4, different set of val-
ues k1, k2, k3 and k4 will be considered for different
scenarios.

The first term of the cost function (18) is related
to the safety of the navigation (12). The second and
third terms are respectively related to the speed (20)
and smoothness (23) of the trajectory. The fourth term
is related to feasibility of the vehicle trajectory while
considering localization uncertainties, i.e., the risk to
collide with an obstacle while considering inaccura-
cies in the vehicle position and orientation (a detailed
explanation of this term is given later in this subsec-
tion). This last term allows to consider the kinematic
model of the vehicle and the control law. The details
of each term is given in the following:
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Fig. 9 Different sets of
waypoints for different
number of possible
neighbor cells

– The term w̄j ∈ [0, 1] is related to the distance
from the node qj to the closest C-spaceobst . It is
given by Eq. 12 (cf. Section 3.1).

– The term �v̄ij ∈ [0, 1] is related to the velocity
from qi to qj , vij . It is given by:

�v̄ij = 1 − vij

vmax

(20)

where vmax is the maximum velocity of the vehi-
cle. We estimate vij as a function of the curvature
of the trajectory. The maximum velocity occurs
when the curvature is zero (straight line) and the
minimum velocity vmin �= 0 occurs when the cur-
vature is bigger than the value corresponding to
γmax (cf. Fig. 5). This consideration allows the
vehicle maneuvers without risk of collisions while
enhancing the passenger comfort [19] (indeed,

this permits to limit the centripetal forces). The
minimum and maximum values of velocity and
steering angle are defined by the designer accord-
ing to the vehicle characteristics. The curvature is
estimated using the orientation of the current node
and its predecessor. Therefore, vij is computed as:

vij = vmax − �θ̄ij (vmax − vmin) (21)

where �θ̄ij ∈ [0, 1] is the normalized estimated
curvature related to the variation of orientation
between the current node qj and its predecessor
qi . It is defined as:

�θ̄ij = |θj − θi |
�θmax

(22)

where �θmax is the maximum variation between
a probable orientation of the current node w.r.t
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Fig. 10 Vehicle’s trajectories which starts from extreme configurations (±εl
dmax

, ±εt
dmax

and ±εθmax ) in the localization uncertainties
ellipse Eloc.�el is the maximum lateral deviation of all vehicle trajectories
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the orientation of its predecessor. This value is
defined according to the steering capability of the
vehicle. θj and θi are computed using the node
positions and Eqs. 15 and 16 (cf. Section 3.1).

– The term �γ̄ij ∈ [0, 1] is related to the varia-
tion of steering angle along the vehicle trajectory
from qi to qj (for instance, Fig. 10 shows a vehi-
cle trajectory between two nodes). It is given by:

�γ̄ij =
∑qj

qi
|�γij |

nqij
γmax

(23)

where nqij
is the considered point number of the

vehicle trajectory between qi and qj , and γmax

is the maximum steering angle of the vehicle.
This term �γ̄ij (23) computes the sum of the
�γij to obtain the total variation of the steering
angle along the vehicle trajectory. �γ̄ij uses the
kinematic model and the control law to estimate
the vehicle trajectory and commands or control
set-points.

– The term �ēlij ∈ [0, 1] is the normalized max-
imum deviation of vehicle trajectory w.r.t. the
straight line that joins the positions (xq, yq) of qi

and qj (cf. Fig. 10). It is computed as:

�ēlij = |�elij |
max{�el} (24)

where max{�el} is the maximum deviation of all
trajectories from the node qi to the node qj while
considering the position and orientation uncer-
tainties (εd and εθ respectively given in Fig. 10).
This term �ēlij allows to estimate the collision
risk using the vehicle trajectory that takes into
account the kinematic model, the control law and
localization uncertainties (position and orienta-
tion). Figure 10 shows an illustration where the
vehicle has an ellipse of localization uncertainties
with axes εl

d and εt
d . The vehicle trajectories start

at ±εl
d in lateral distance (longitudinal distance is

set to 0), and ±εt
d in longitudinal distance (lateral

distance is set to 0) from the vehicle position with
a ±εθ from the vehicle presumed orientation, i.e.,
we consider all extreme configurations to obtain,
according to these maximum error configurations,
the maximum lateral deviation (�el). The tra-
jectories are obtained using the kinematic model
and the used control law in an offline simulated
procedure.

Algorithm 3 shows in pseudocode, the proposed
method which uses expanding tree to obtain the opti-
mal waypoints configurations w.r.t. the optimized
multi-criteria function (18). Figure 11 shows the first
steps of the algorithm where, for instance, the branch
numbers of each node is nt = 3 and each branch
orientation w.r.t. the vehicle orientation is given by:

α = ±i�α, i =
{

0, 1, . . . , (nt − 1)/2; if nt is odd
1, 2, . . . , nt/2; if nt is even

(25)

where �α is a constant angle defined according to the
vehicle characteristics.

The edge distance ξ is the Euclidean distance
between two successive nodes and it depends on the
environment dimensions, e.g., if the environment has a
narrow passage then ξ must cope with this dimension.
We consider that the edge orientation is the vehicle
orientation at the current node position (cf. Fig. 11).
Thus, at beginning the first expansion of q0 is given
with α = 0 because the vehicle starts at initial fixed
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Fig. 11 Expanding tree method to obtain the appropriate set of
waypoints

pose (cf. line 3 − 5 of Algorithm 3). This initial
expansion is made to respect the kinematic constraints
where the rotation of the vehicle requires a displace-
ment (linear velocity �= 0) of the vehicle. Therefore,
the successive node q1 has different possible orien-
tation and so on (cf. Fig. 11). The algorithm selects
the node which has the lower total cost C(qj ) (11).
When two or more nodes have the same cost, the algo-
rithm selects the last saved node. Figure 11 shows the
successive steps, the node q2 was selected from the
expansion of q1 {q2, q3, q4}, which has the lower total
cost value. The set of waypoints is obtained while
tracking the predecessor nodes of the nodes with lower
total cost. The selection of the node with lower total
cost (cf. Algorithm 3, line 16−17) allows to avoid the
deadlock areas because the successive branches from
the nodes in this deadlock area will be in C-spaceobst

(cf. Fig. 12a).
The smoothness of the vehicle trajectory depends

on number of branches of each tree nt , maximum
branch orientation αmax = nt�α/2 and edge dis-
tance ξ (cf. Section 4). The drawback of using a
large number of nt is the increasing of the processing
time required to obtain the set of waypoints. The ver-
tex distance ξ is set to detect obstacles between the
successive nodes.

This method uses deterministic selection of
expanding tree to obtain the optimal solution with low-
est total cost. Nevertheless, a feasible solution can be
obtained using a probabilistic selection of expanding
tree to decrease the processing time (cf. Section 4),
i.e., the branch orientation α and edge distance ξ

are randomly selected in a fixed interval [21]. In
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Fig. 12 Set of waypoints for different parameters values ki of
the traveling cost

simulation, we will show in Section 4.1 the case where
these parameters are randomly chosen.

As described above, the traveling cost (18) depends
on four parameters (ki |i = 1, . . . , 4, which satisfy
(19)) related respectively to the safety, velocity, less
steering and taking into account uncertainties. The
values of these parameters are fixed according to
the desired navigation and environment conditions. A
pragmatical procedure to set these parameters consists
in first identifying the main desired vehicle behav-
ior and setting its parameter ki with a value greater
than 0.5 (cf. Fig. 12). The other parameters will be
tuned according to the designers secondary priorities.
Figure 12 shows the set of waypoints when only the
term with highest priority is considered in the traveling
cost function. For instance, in Fig. 12a and b the prior-
ity is given respectively to the safest and the shortest
paths. More examples of different tuned parameters
will be shown in Section 4.1.
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3.3 Minimum Set of Waypoints

Algorithm 2 and 3 were applied to obtain a set of
waypoints Sp characterized by (xqj

, yqj
, θqj

, vqj
) on a

specific environment. The proposed Algorithm 5 will
allow to reduce the number of waypoints. Basically,
this algorithm keeps only the waypoints (its pose,
velocity and predecessor are stored) which have an
orientation changes w.r.t. its predecessors.

4 Validation

This section presents a set of experiments to demon-
strate the efficiency of our methods for autonomous
navigation in a structured environment. Section 4.1
provides different scenarios to show the validity of our

proposals. Section 4.2 discusses experimental results
applied to an urban electric vehicle.

4.1 Simulations Results

This section shows optimal sets of waypoints,
obtained according to the environment characteristics
and/or the task to achieve. In what follows, it
will be shown: a comparison between grid map
and expanding tree algorithms (cf. Section 4.1.1);
a comparison between the proposed OMWS-ET
and a variation of RRT (cf. Section 4.1.2); differ-
ent specific scenarios such as trajectory generation
(cf. Section 4.1.3); a comparison between deter-
ministic and probabilistic waypoints selection (cf.
Section 4.1.4); an application of the proposed method-
ology of waypoints selection for multi-robot forma-
tion (cf. Section 4.1.5) and finally, Section 4.1.6
shows the flexibility of our proposal for local replan-
ning of the waypoints configurations when unex-
pected obstacles are detected. For these simulations,
the physical parameters of the UGV are based on
the urban vehicle VIPALAB (cf. Fig. 22) which is
modeled as a tricycle (1). Its dimensions are 1.27 m

(width), 1.96 m (length) and 2.11 m (height). The
UGV constraints are minimum movement velocity
vmin = 0.1 m/s, maximum velocity 1.5 m/s, max-
imum steering angle γmax = ±30◦ and maximum
linear acceleration 1.0 m/s2. The controller param-
eters are set to K = (1, 2.2, 8, 0.1, 0.01, 0.6) (cf.
Section 2.3). These parameters were chosen to obtain
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Fig. 13 a) Set of obtained waypoints using Algorithm 2 based on grid map and b) Minimum set of waypoints obtained by Algorithm 5
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Fig. 14 a) Set of obtained waypoints using Algorithm 3 based on expanding tree and b) Minimum set of waypoints obtained by
Algorithm 5

a good balance between: accurate and fast response
and smooth trajectory while taking into account the
limits of the vehicle structural capacities. We con-
sider that the sample time is 0.01 s and a maximum
number of iteration is nI = 5000 to stop both algo-
rithms, OMWS-GM (Algorithm 2) and OMWS-ET
(Algorithm 3), when none solution can be obtained.

4.1.1 Grid Map versus Expanding Tree

These simulations show two set of waypoints obtained
by the two proposed methods based on grid map and
expanding tree (cf. Algorithms 2 and 3 respectively).
Figures 13a and 14a show the set of obtained way-
points according to Algorithm 2 and 3. The minimum
set of waypoints, obtained according to Algorithm 5,
are given afterward in Figs. 13b and 14b.

For the grid map case, the cell has the vehicle
dimension (2 m) and its neighborhood is Nh = 1. The
constant value of kg is 0.6 (14) and kh is 0.1 (17).
The minimum set of obtained waypoints has nw = 27
elements. An additional constraint is considered for
OMWS-GM (before line 11 of the Algorithm 2), the
angle variation (second term of Eq. 14 must be less
than a threshold θth). This constraint enables the pro-
cessing time of the algorithm to be reduced since it
considers only the cells with an orientation change,
w.r.t the last cell orientation, less than θth (cf. Fig. 6).

For Expanding Tree case, the branch number nt

is 5, the edge distance ξ is 2.5 m and �α is 15◦.
We consider the safety gain k1 (cf. (18)) as the high-
est priority in this simulation. The constant values of
ki |i = 1, . . . , 4 (18) are k1 = 0.6, k2 = 0.2, k3 = 0.1,

k4 = 0.1 and kh = 0.1 (17). The minimum set
of obtained waypoints has nw = 19 elements. The
minimum set of waypoint obtained by OMWS-ET is
smaller than the method OMWS-GM which does not
consider the orientation neither the vehicle’s model.
To avoid a large growing of the tree branch of OMWS-
ET, a position and orientation comparison between
nodes can be added at line 13 of the Algorithm 3. If
two nodes from different branches have the same posi-
tion and orientation then the node with lowest total
cost function value (cf. (11)) is stored and the other
node is removed.

Table 1 shows different performance criteria to
compare the set of waypoints where: nw is the number
of waypoints, length is the sum of distance between
two successive waypoints, dborder is the sum of min-
imum distance to the road boundaries. Therefore, the
method based on OMWS-ET is more safe, accurate
and efficient than the one based on OMWS-GM,
mainly when the criterion to optimize is related to the
vehicle’s model (velocity and steering angle).

4.1.2 OMWS-ET versus RRT*

To highlight the advantages and the flexibility of the
proposed OMWS-ET, a comparison with the popular

Table 1 Comparison between the OMWS-GM and ET

nw length[m] dborder [m]

OMWS-GM 27 77.22 52.1268

OMWS-ET 19 77.50 56.7217
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RRT* algorithm [15] is presented in this subsection.
The RRT* is based on the RRT (Rapidly-exploring
Random Tree) already described in Section 1.2 with
an addition of the rewiring function which allows to
reconnect the nodes to ensure that the edges have
the path with minimum total cost. RRT* provides
thus an optimal solution with minimal computational
and memory requirements [15]. Moreover, RRT* is
a sampling-based algorithm and the optimal solution
depends on the number of iterations of the RRT* algo-
rithm, i.e., more is the number of iterations (more sam-
ples in the C-spacef ree) closer is the obtained solution
to the effective optimal global solution. Therefore,
to compare the solutions obtained by the OMWS-ET
with those obtained by the RRT* some little modi-
fications in Algorithm 3 were made. The line 6 of
Algorithm 3 was changed by a for loop from 0 to the
maximum iteration number and the selection of the
final pose at each iteration is obtained by the sampling
in C-spacef ree (qrandom) as the RRT* Algorithm [15].
It is to be noted that qrandom corresponds to a random
sample (position) from a uniform distribution in the
C-spacef ree.

To compare the two algorithms (OMWS-ET and
RRT*), the safest obtained solution (wich maximizes
the distance to the border) is used as criterion. There-
fore, the parameters of the cost function of OMWS-ET
(18) are fixed to: k1 = 1.0, k2 = k3 = k4 =
0.0 and kh = 0.1. In addition, the other parameters
are fixed as: the branch number nt = 5; the edge
distance ξ = 2.5 m and �α = 15◦. The RRT* algo-
rithm described in [15] was also modified to obtain a
cost function according to the safety w̄i (distance to
the border) instead of an Euclidean distance between
nodes. The kinematic model (5) with constant linear
velocity and steering angles (v = 1.0 m/s and γ =
−15, −7.5, 0, 7.5, 15◦) respectively, during texp =

Table 2 Comparison between Voronoı̈, RRT* and OMWS-ET

length[m] dborder [m]

Voronoı̈ 86.00 69.2931

RRT* 83.42 62.1736

OMWS-ET 82.50 65.5926

2.5 s was used to produce the new nodes of the RRT*
(cf. Section 1.2). The maximum number of iteration
for both algorithm is fixed to nI = 5000.

Figure 15 shows the obtained path solutions
according to RRT*, OMWS-ET and also to Voronoı̈
[20] algorithms. The Voronoı̈ obtained path (cf.
Fig. 15c) is given only because it is the best reference
w.r.t. the adopted comparison criterion (safety crite-
rion). Indeed, Voronoı̈ path permits always to obtain
the safest possible path [20] It can be noted that
the two obtained path using RRT* and OMWS-ET
are generally enough close and far from the way bor-
der (cf. Fig. 15a and b). Important differences are
nevertheless observed in the obtained final results (cf.
Fig. 15c). In fact, the obtained set of waypoint using
RRT* are closer to the border which is due to the
fact that RRT* expands its branches while adopt-
ing constant commands (v, γ , texp). These constant
commands generate the next nodes with only a sin-
gle possible orientation (for each node). Contrary to
that, in the proposed OMWS-ET, each new obtained
node qj has different possible orientations and veloc-
ities, thus, for the same position, much more possible
vehicle’s states (different orientations and velocity set-
points) are taking into account in the optimization
process.

Table 2 shows, as in the last subsection, different
performance criteria to compare the obtained path. It
is shown that the obtained path based on OMWS-ET
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Fig. 15 Three obtained path according to Voronoı̈, RRT* and OMWS-ET
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Fig. 16 Different scenario
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is closer than the RRT* to the optimal obtained solu-
tion using Voronoı̈ methodology. It validates that the
proposed OMWS-ET is more efficient than the RRT*,
in the sens that it explores much more possibilities in
the vehicle/environment/task state space.

It is important to mention also, that the proposed
OMWS-ET methodology is related to the adopted
navigation strategy (cf. Section 2), which uses set-
points based on suitable static/dynamic waypoints
instead of trajectory tracking methods. OMWS-ET
method takes into account the vehicle’s kinematics
constraints and uncertainites as well as the used con-
trol law (cf. Section 3.2). RRT* method is more
suitable for navigation strategies based on trajectory
following [15].

4.1.3 Specific Scenario Cases

We show in what follows other minimum set of
obtained waypoints for different scenarios using the
method based on expanding tree (Algorithm 3).
Figure 16a shows the set of waypoints while consid-
ering the edge distance ξ = 10 m with an objective
to obtain the fastest trajectory from the initial to the
final positions, while not colliding with the road lim-
its. The constant values are k1 = 0.1, k2 = 0.7,
k3 = 0.1, k4 = 0.1 and kh = 0.1. The minimum
set of waypoints allows the vehicle to generate a min-
imum time trajectory as in [26]. This trajectory has

a segment close to the route boundaries (tangent to
the borders) which allows to navigate applying the
maximum velocity.

Figure 16b shows the use of the proposed OMWS-
ET for the specific case where a reference path already
exists for the navigation of the vehicle. In this case,
the set of waypoints will be chosen as close as pos-
sible to the considered path (depends on the chosen
values of ξ and �α in Algorithm 3). The set of way-
points obtained using OMWS-ET allows thus more
flexible and safe navigation of the vehicle between
the waypoints (cf. the criterion to optimize in Eq. 18).
The edge distance ξ is set to 1 m. The minimum set
of waypoints are obtained while considering the term
w̄j (18) as the normalized minimum distance of the
node qj to the reference path. The constant values are
set to k1 = 0.6, k2 = 0.2, k3 = 0.1, k4 = 0.1
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Fig. 17 Set of waypoints using probabilistic expanding tree
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and kh = 0.1. The values of ξ and �α can produce
some waypoints outside the reference trajectory, e.g.,
if we decrease the values of ξ and �α and increase
the number of branches nt then the waypoints will
be on the reference trajectory. In [33], the waypoints
are selected while considering only the points in the
reference trajectory. It consists on analyzing the orien-
tation variation of each points on the trajectory. In our
case, the waypoints are selected in the environment to
be close to the reference trajectory which allows to
obtain less number of waypoints than the method used
in [33].

4.1.4 Deterministic versus Probabilistic

This simulation shows the comparison between a
deterministic and probabilistic expanding tree (i.e.,
where the values of ξ and α are probabilistically
taken from an interval, instead of, to be fixed by the
designer). Figure 17 shows the minimum set of way-
points obtained using probabilistic expanding tree,

Initial
position

Final
positionWaypoint

orientation

Leader

Follower

Fig. 19 Minimum set of waypoints for multi-robot formation
obtained by Algorithm 3 based on expanding tree

where ξ ∈ [0, 2.5] and α ∈ [−30◦, 30◦]. The constant
values are k1 = 0.6, k2 = 0.2, k3 = 0.1, k4 = 0.1
and kh = 0.1. The processing time of the method with
probabilistic expanding tree is less than the method
with deterministic expanding tree. Nevertheless, the
set of waypoints are not the optimal solution. The
advantages of probabilistic selection of ξ and α is to
reduce the convergence time and to obtain an online
implementation [18, 32]. In future works, the choice
of the variation of ξ and α will be oriented to improve
the efficiency of the algorithm.

4.1.5 Extension to Multi-robot Formation

Our method based on expanding tree (Algorithm 3)
was extended to multi-robot formation where the
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Fig. 20 Schema of the local replanning
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Fig. 21 Local replanning for unexpected obstacle

formation is defined only according to the leader con-
figuration [9] (cf. Fig. 18). As mentioned before, the
OMWS-ET algorithm takes into account the vehicle
model. To cope with this multi-robot task, it is suffi-
cient to adapt the term �ēlij (24) in order to consider
all trajectories of the group of UGVs. Figure 19 shows
the minimum set of waypoints for a line formation
(di = 6 m and φi = 180◦) with two vehicles. The con-
stant values are the same as the last simulation. The set
of waypoints for the leader UGV are close to the curve
road boundaries because the formation needs enough
space to turn while keeping the rigid formation shape.
The follower (blue square) is always inside of the road
boundaries.

4.1.6 Local Replanning for Unexpected Obstacles

The proposed method OMWS-ET is adapted to local
replanning when an unexpected static obstacle is
detected in the environment. Figure 20 shows the used

architecture to activate the replanning of the vehi-
cle’s movements based on an initial set of waypoints
already obtained using OMWS-ET. The vehicle starts
the navigation through the successive waypoints (cf.
Section 2.1) from the initial set of waypoints. They
were already computed using the OMWS-ET in the
known environment (cf. Section 3.2). The vehicle
uses a range sensor to detect any unforeseen obsta-
cle (cf. Fig. 21a). A local replanning is activated
when any new obstacle is detected. This replanning
takes into account the current environment state, the
current vehicle pose and the current waypoint to
obtain a new local set of waypoints (cf. Fig. 21b).
If the current waypoint is unreachable (due to the
presence of the obstacle) then the final position is
replaced by the next waypoint in the list and so on.
If no solution is found then the vehicle will stop
in its current pose. Figure 21b shows an example
of the local replanning using the set of waypoints
given in Section 4.1.1 (as initial set of waypoints)

Fig. 22 VIPALAB electric urban vehicle
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Fig. 23 PAVIN experimental platform (Clermont-Ferrand,
France)

(cf. Fig. 14b). Finally, the vehicle moves through
the new set of waypoints while guaranteeing a safe
navigation (cf. Fig. 21c).

4.2 Experimental Results

The navigation strategy and the proposed method
based on expanding tree was also experimented with
the actual VIPALAB vehicle (cf. Fig. 22) in an exper-
imental environment named PAVIN (Plate-forme
d’Auvergne pour Véhicules INtelligents) (cf. Fig. 23).
These experiments can be found online.1 This vehicle
carry different embedded proprioceptive and extero-
ceptive sensors such as odometers, gyrometer, steer-
ing angle sensor and an RTK-GPS. Each vehicle
uses a combination of RTK-GPS and gyrometer
to estimate its current position and orientation at a
sample time of Ts = 0.01 s.

A metric map of the environment PAVIN [12] is
used by the proposed method (Algorithm 3). This
map allows to implement the navigation through suc-
cessive waypoints in a real vehicle (cf. Section 2.1).
The proposed method based on expanding tree com-
putes the set of geo-referenced waypoints with optimal
configuration. Certain areas are restricted to guide
the Algorithm 3 through PAVIN platform which has
intersections and roundabout (cf. Fig. 24). In our
case, these restricted areas were selected by the user,
nevertheless the selection can be made by consid-
ering the topological map of the environment. We

1http://maccs.univ-bpclermont.fr/uploads/Profiles/VilcaJM/
OMWS.mp4

experiment the proposed OMWS-ET to make a com-
parison between two cases: the first, corresponds to
give more priority for the safety criteria in Eq. 18 and
the second gives more priority for the minimum angle
steering rate. The analysis of the obtained solutions
will be given in what follows. Moreover, the actual
vehicle’s trajectories are compared for these different
set of waypoints.

Figures 24 and 25 show respectively the mini-
mum obtained set of waypoints and the corresponding
vehicle’s trajectories (in simulation and actual exper-
iment). Figure 24a shows the set of waypoints of the
first experiment where the constant values of the cost
function (18) are k1 = 0.6, k2 = 0.2, k3 = 0.1,
k4 = 0.1 and kh = 0.4. The safety (k1) has the highest
priority in this experiment. Therefore, these waypoints
guide the vehicle to be close to the middle of the route
(cf. Fig. 25a). Figure 24b shows the set of waypoints
of the second experiment where the constant values
are k1 = 0.3, k2 = 0.2, k3 = 0.4, k4 = 0.1 and kh =
0.4. The minimal steering angle rate k3 has the highest
priority in this experiment. The obtained result shows
that the obtained waypoints are localized very close
to the border of the road (cf. Fig. 25b). Figure 25a
and b show the simulated and the actual vehicle tra-
jectories. It can be observed that they are very close
(maximal error between them is less than 0.15 m). We
can conclude thus that the proposed optimal multi-
criteria waypoint selection based on Expanding Tree
(OMWS-ET, performed off-line (cf. Section 3.2)) per-
mits to cope accurately with actual environment and
experiments.

Figures 24c and 25c show the comparison between
the set of waypoints and the real trajectories of both
experiments. The velocities and steering angle of the
vehicle while tracking each waypoint are shown in
Fig. 26. This figure shows the values with noise due to
the encoder inaccuracies.

Table 3 shows different performance criteria to
compare the set of waypoints where: nw is the num-
ber of waypoints, T is the navigation time, lUGV

is the traveled distance, dborder is the sum of mini-
mum distance to the road boundaries and �γ is the
root mean square (rms) of the steering angle rate.
We note that the first experiment has nw greater than
the second experiment. It is due to the fact that the
first experiment has the safety as a priority. The pro-
posed Algorithm 3 selects thus more waypoints to
allows the vehicle to navigate as farther as possible

http://maccs.univ-bpclermont.fr/uploads/Profiles/VilcaJM/OMWS.mp4
http://maccs.univ-bpclermont.fr/uploads/Profiles/VilcaJM/OMWS.mp4
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Fig. 24 Different set of obtained waypoints

Fig. 25 Actual vehicle’s trajectories for different obtained set of waypoints

Fig. 26 Vehicle velocities and steering angles progress for each
set of obtained waypoints

Table 3 Comparison among the set of waypoints

nw T [s] lUGV [m] dborder [m] �γ [◦]

1rst Sim. 41 200 132.81 67.35 0.3123

exp. Real 41 203 132.68 67.25 0.2945

2nd Sim. 39 199 133.00 66.54 0.3089

exp. Real 39 198 132.79 66.64 0.2922
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from the road borders. It can be noticed by dborder

where its value is bigger in the first experiment than
the second. Furthermore, the values of �γ is less in
the second experiment because the highest priority
was for the steering angle rate. Therefore, the vehicle
can navigate with higher velocity along the trajec-
tory and the navigation time is smaller than the first
experiment.

5 Conclusion

This paper has presented two planning methods to
obtain the optimal waypoints configuration (Optimal
Multi-criteria Waypoints Selection based on Expand-
ing Tree (OMWS-ET) and Grid Map (OMWS-GM))
which guarantees safe, smooth and feasible vehicle
navigation in a structured environment. The flexible
navigation strategy throughout optimal and discrete
selected waypoints was also presented. It allows to
avoid any trajectory planning which could be time
consuming. The proposed OMWS-GM is based on the
A∗ algorithm with an additional term to consider the
orientation change between successive cells. OMWS-
ET uses a multi-criteria function which takes into
account the vehicle model and uncertainties to obtain
the optimal set of waypoints configurations (posi-
tion, orientation and velocity). Moreover, it has been
shown that the proposed OMWS-ET is much more
accurate and flexible than OMWS-GM. A multitude
of simulations and experimental results demonstrate
the efficiency and reliability of the proposed OMWS-
ET in different cases (trajectory specification, deter-
ministic versus probabilistic, comparison with RRT*,
multi-robot task, local replanning according to the
multi-criteria optimization).

In future works, an extension using the dynamic
model of the vehicle and 3D position will be devel-
oped (notably for unmanned aerial vehicle). The
enhancement of the proposed methods for hard real
time application will be developed. Genetic algo-
rithm will be notably investigated. In addition, we will
extend the proposed strategies for robust navigation in
formation of a group of robots.

Acknowledgments Supported by the French National
Agency (ANR) through the SafePlatoon project and LABEX
IMobS3 (ANR-7107-LABX-716701).

Appendix

This section described briefly the stability analysis
based on Lyapunov method used to demonstrate the
convergence of the vehicle to the target posture, i.e.,
for a finite time, the error system (ex, ey, eθ ) con-
verges to zero [16]. Let us first define the Lyapunov
function V by Eq. 26. It is a function of three param-
eters which depend on: the distance d between the
target and vehicle positions, the distance dl from the
vehicle to the target line (line that pass through the
target position with orientation equal to the target ori-
entation), this term is related to the Line of Sight
and Flight of the target, and the orientation error eθ

between the vehicle and the target (cf. Fig. 5). It is
represented by:

V = 1

2
Kdd2 + 1

2
Kld

2
l + Ko[1 − cos(eθ )]

= 1

2
Kdd2 + 1

2
Kld

2 sin2(eRT )

+Ko[1 − cos(eθ )] (26)

where the initial values of eRT and eθ satisfy:

eRT ∈ ]−π/2, π/2[ and eθ ∈ ]−π/2, π/2[ (27)

These conditions (27) guarantee that the target is
ahead to the vehicle w.r.t. its orientation. Moreover,
Eq. 27 has open interval that allows to avoid local
minimum. Therefore, V is a positive-definite function
[16].

The Lyapunov function (26) can be written accord-
ing to ex , ey as follows:

V = 1

2

(
e2
x + e2

y

)
[Kd + Kl sin2(eRT )] + Ko[1 − cos(eθ )] (28)

To guarantee the system stability, V̇ has to be
negative-definite [16]. By taking the derivative of
Eqs. 2, 4 and 28 and using Eqs. 7 and 8, V̇ can be
written:

V̇ = (ex ėx + ey ėy)
[
Kd + Kl sin2(eRT )

]

+Kld
2 sin(eRT ) cos(eRT )ėRT + Ko sin(eθ )ėθ

= [−exvb + vT ey sin(eθ )][Kd + Kl sin2(eRT )]
+Klsin(eRT ) cos(eRT )

[
d2vT

rcT

− vT ex sin(eθ )

−eyvb

]

(29)

+Ko sin(eθ )

(
vT

rcT

− vT cos(eθ )cc − vbcc

)

(30)
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Using Eq. 6 in the first two terms of Eq. 30 and
factorizing the common terms, it holds that:

V̇ = vT sin(eθ )[Kdey − Kld sin(eRT ) cos(eθ )]
+ vT

rcT

[d2Kl sin(eRT ) cos(eRT ) + Ko sin(eθ )]
−vb

[
Kdex + Kld sin(eRT ) sin(eθ )

+Ko sin(eθ )cc

]
(31)

−vT Ko sin(eθ ) cos(eθ )cc (32)

Finally, using Eqs. 9 and 10 in Eq. 32, we obtain:

V̇ = −Kx

[
Kdex + Kld sin(eRT ) sin(eθ )

+Ko sin(eθ )cc

]2 − vT KoKθ sin2(eθ ) (33)

−vT KoKRT sin2(eRT ) ≤ 0 (34)

Equation 34 shows that the system is stable while
the initial conditions (27) are satisfied. To ensure the
asymptotic stability of the error system, V̇ has to be
a negative-definite function. Let us exhibit the case
where V̇ = 0 with vT > 0 and vT = 0. Firstly, when
vT > 0 and using the initial assumption K > 0, it is
straightforward to show that ex, eθ , eRT are equal to
zero to satisfy Eq. 34, then according to Eqs. 4, 5 and
27 d is equal to zero (ey = 0). Hence, V̇ is equal to
zero when vT > 0, only if (ex, ey, eθ ) = (0, 0, 0).

Secondly, let us consider the case where vT = 0.
The initial assumption is identical. Hence, the second
and third terms of Eq. 34 are equal to zero when vT =
0. Additionally, when vT = 0, we consider that rcT

→
∞, consequently the first term of V̇ is equal to zero
when:

Kdex +Kld sin(eRT ) sin(eθ )+Ko sin(eθ )cc = 0 (35)

Replacing Eq. 10 with rcT
→ ∞ in Eq. 35, the

following expression is obtained:

0 = Kdex + Kld sin(eRT ) sin(eθ )

+ tan(eθ )[Kdey − Kld sin(eRT ) cos(eθ )]

+Ko sin(eθ )

[

Kθ tan(eθ ) + KRT sin2(eRT )

sin(eθ ) cos(eθ )

]

= Kd [ex + ey tan(eθ )] + KoKθ

sin2(eθ )

cos(eθ )

+KoKRT

sin2(eRT )

cos(eθ )
(36)

Using Eq. 6 in Eq. 36, we obtain:

Kdd
cos(eRT )

cos(eθ )
+KoKθ

sin2(eθ )

cos(eθ )
+KoKRT

sin2(eRT )

cos(eθ )
= 0 (37)

Equation 37 exhibits quadratic terms. Conse-
quently, considering the initial conditions (27),
cos(eRT ) and cos(eθ ) are greater than zero. There-
fore, all the terms of Eq. 37 are positive and they must
be equal to zero, i.e., d = eθ = eRT = 0, and if
d = 0 then ex, ey = 0. Hence, from Eq. 37, V̇ is
equal to zero when vT = 0 and rcT

→ ∞, only if
(ex, ey, eθ ) = (0, 0, 0).

Conclusively, if vT > 0 and vT = 0, V is always
strictly positive and V̇ is always strictly negative while
(ex, ey, eθ ) �= (0, 0, 0). Therefore, the errors sys-
tem is asymptotically stable while the initial vehicle
conditions (27) are satisfied.
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6. Bonfè, M., Secchi, C., Scioni, E.: Online trajectory gener-
ation for mobile robots with kinodynamic constraints and
embedded control systems. In: Proceedings of the 10th
International IFAC Symposium on Robot Control. Croatia
(2012)

7. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.,
Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot
Motion: Theory, Algorithms, and Implementation. MIT
Press (2005)

8. Connors, J., Elkaim, G.H.: Manipulating b-spline based
paths for obstacle avoidance in autonomous ground vehi-
cles. In: Proceedings of the ION National Technical Meet-
ing, ION NTM 2007 San Diego (2007)

9. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.:
Leader-follower formation control of nonholonomic mobile
robots with input constraints. Automatica 44(5), 1343–
1349 (2008)

10. Gu, T., Dolan, J.M.: On-road motion planning for autono-
mous vehicles. In: Su, C.Y., Rakheja, S., Liu, H. (eds.)
Intelligent Robotics and Applications, vol. 7508. Springer
Berlin Heidelberg (2012)

11. Horst, J., Barbera, A.: Trajectory generation for an on-road
autonomous vehicle. Proceedings of the SPIE, Unmanned
Systems Technology VIII (2006)



324 J Intell Robot Syst (2016) 82:301–324

12. The Institut Pascal Data Sets. http://ipds.univ-bpclermont.
fr (2013)

13. Jazar, R.N.: Vehicle Dynamics: Theory and Application,
Chapter 7. Springer-Verlag (2014)

14. Kallem, V., Komoroski, A., Kumar, V.: Sequential com-
position for navigating a nonholonomic cart in the pres-
ence of obstacles. IEEE Trans. Robot. 27(6), 1152–1159
(2011)

15. Karaman, S., Frazzoli, E.: Sampling-based Algorithms for
Optimal Motion Planning. Int. J. Robot. Res. 30(7), 846–
894 (2011)

16. Khalil, H.K.: Nonlinear Systems. Prentice Hall (2002).
(1986)

17. Khatib, O.: Real-time obstacle avoidance for manipulators
and mobile robots. Int. J. Robot. Res. 5, 90–99 (1986)

18. Kuwata, Y., Fiore, G.A., Teo, J., Frazzoli, E., How, J.P.:
Motion planning for urban driving using rrt. In: Interna-
tional Conference on Intelligent Robots and Systems, pp.
1681–1686 (2008)

19. Labakhua, L., Nunes, U., Rodrigues, R., Leite, F.: Smooth
trajectory planning for fully automated passengers vehi-
cles: Spline and clothoid based methods and its simulation.
In: Cetto, J., Ferrier, J.L., Costa dias Pereira, J.M., Filipe,
J. (eds.) Informatics in Control Automation and Robotics,
Lecture Notes Electrical Engineering, vol. 15, pp. 169–182.
Springer Berlin Heidelberg (2008)

20. Latombe, J.C.: Robot Motion Planning. Kluwer Academic
Publishers, Boston (1991)

21. LaValle, S.M.: Planning Algorithms. Cambridge University
Press (2006)

22. Lee, J.W., Litkouhi, B.: A unified framework of the auto-
mated lane centering/changing control for motion smooth-
ness adaptation. In: Proceedings of the 15th International
IEEE Conference on Intelligent Transportation Systems
(ITSC), pp. 282–287 (2012)

23. Luca, A.D., Oriolo, G., Samson, C.: Feedback control of a
nonholonomic car-like robot. In: Laumond, J.P. (ed.) Pro-
ceedings of the Robot Motion Planning and Control, pp.
171–253. Springer-Verlag, Berlin (1998)

24. Maalouf, E., Saad, M., Saliah, H.: A higher level path track-
ing controller for a four-wheel differentially steered mobile
robot. Robot. Auton. Syst. 54, 23–33 (2006)

25. Martins, M.M., Santos, C.P., Frizera-Neto, A., Ceres, R.:
Assistive mobility devices focusing on smart walkers:
Classification and review. Robot. Auton. Syst. 60(4), 548–
562 (2012)

26. Rucco, A., Notarstefano, G., Hauser, J.: Computing mini-
mum lap-time trajectories for a single-track car with load
transfer. In: Decision and Control (CDC), 2012 IEEE 51st
Annual Conference on, pp. 6321–6326 (2012)

27. Sezen, B.: Modeling automated guided vehicle systems in
material handling. Otomatiklestirilmi Rehberli Arac Sis-
temlerinin Transport Tekniginde Modellemesi. Dou Uni-
versitesi Dergisi 4(2), 207–216 (2011)

28. Sharma, S., Taylor, M.E.: Autonomous waypoint selection
for navigation and path planning: A navigation framework
for multiple planning algorithms. Tech. Rep. (2012)

29. Siciliano, B., Khatib, O.: (eds.): Springer Handbook of
Robotics, Part E-34. Springer (2008)

30. Stoeter, S.A., Rybski, P.E., Stubbs, K.N., McMillen, C.P.,
Gini, M., Hougen, D.F., Papanikolopoulos, N.: A robot

team for surveillance tasks: Design and architecture. Robot.
Auton. Syst. 40(2-3), 173–183 (2002)

31. Szczerba, R., Galkowski, P., Glicktein, I., Ternullo, N.:
Robust algorithm for real-time route planning. IEEE Trans.
Aerosp. Electron. Syst. 36(3), 869–878 (2000)

32. Vaz, D.A., Inoue, R.S., Grassi Jr. V.: Kinodynamic motion
planning of a skid-steering mobile robot using rrts. In: Pro-
ceedings of the 2010 Latin American Robotics Symposium
and Intelligent Robotics Meeting, LARS ’10, pp. 73–78.
IEEE Computer Society (2010)

33. Vilca, J., Adouane, L., Mezouar, Y., Lébraly, P.: An overall
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