J Intell Robot Syst (2015) 80 (Suppl 1):S149-S163
DOI 10.1007/s10846-015-0219-x

Gesture-Based Extraction of Robot Skill Parameters

for Intuitive Robot Programming

Mikkel Rath Pedersen - Volker Kriiger

Received: 30 May 2014 / Accepted: 11 February 2015 / Published online: 24 February 2015

© Springer Science+Business Media Dordrecht 2015

Abstract Despite a lot of research in the field, only
very little experience exists with Teaching by Demon-
stration (TbD) in actual industrial use cases. In the
factory of the future, it is necessary to rapidly repro-
gram flexible mobile manipulators to perform new
tasks, when the need arises, for which a working sys-
tem capable of TbD would be ideal. Contrary to cur-
rent TbD approaches, that generally aim to recognize
both action and where it is applied, we propose a divi-
sion of labor, where the operator manually specifies
the action the robot should perform, while gestures
are used for specifying the relevant action parameter
(e.g. on which object to apply the action). Using this
two-step method has the advantages that there is no
uncertainty of which action the robot will perform,
it takes into account that the environment changes,
so objects do not need to be at predefined locations,
and the parameter specification is possible even for
inexperienced users. Experiments with 24 people in
3 different environments verify that it is indeed intu-
itive, even for a robotics novice, to program a mobile
manipulator using this method.

M. R. Pedersen (P<) - V. Kriiger

Robotics, Vision and Machine Intelligence (RVMI) Lab,
Department of Mechanical and Manufacturing
Engineering, Aalborg University Copenhagen,

AC Meyers Vaenge 15, 2450 Copenhagen, Denmark
e-mail: mrp@rvmi.aau.dk

V. Kriiger
e-mail: vok@rvmi.aau.dk

Keywords Industrial robots - Gesture recognition -
Teaching by demonstration - Robot skills

1 Introduction

Traditionally, industrial robots are only economically
feasible when factories produce large quantities of
parts with low variation. However, customers are
demanding more and more configuration options for
products. In order to maintain production volumes,
while addressing this need from the customers, a shift
from traditional mass production to mass customiza-
tion and lotsize-1 production, which deals with effi-
cient production of very small batch sizes, is needed.
This industrial demand is the starting point of several
projects funded by the European Commission (EC)
[1-3].

In order for manufacturing companies to offer mass
customization and lotsize-1 production, transformable
production systems are needed [17-19]. This means
production systems that are able to adapt to new short-
term and long-term tasks. Currently, industrial robots
are lacking the transformability to be a part of these
production systems [17—19]. In the robotics context,
transformability means that the robot should be able to
complete previously unknown tasks, within the con-
straints of the manufacturing environment. This is a
generalization of the term flexibility, where the robot
should be able to handle a previously defined varia-
tion within a limited set of tasks. Robots with some

@ Springer

mailto:mrp@rvmi.aau.dk
mailto:vok@rvmi.aau.dk

S150

J Intell Robot Syst (2015) 80 (Suppl 1):5149-S163

degree of flexibility are already present in the industry
today. However, transformable robots can be expected
to appear in the factories of the future. Transformable
robots are typically characterized as robots that are
capable of solving a large variety of tasks, by incor-
porating a certain level of cognitive capabilities. In
many cases, but not all, this entails mobile manipulator
systems.

Mobile manipulators are already present in indus-
trial scenarios today [22]. However, for mobile manip-
ulators to be truly transformable in factories, a key
issue is that it must be possible to program them
to perform new tasks on the fly. This means that it
should be both fast and intuitive to program a trans-
formable robot. Furthermore, the factory should not
need to employ a large group of robot specialists
to program the robots, when it is needed. Instead,
it must be possible for shop-floor workers to pro-
gram and interact with the robot, so the robot fleet
essentially becomes a tool at the workers disposal.
Here, intuitiveness is key — it must be so intuitive
to program a flexible robot, that a short introduc-
tion, or very little training, is sufficient. One approach
to intuitive robot programming is Teaching by
Demonstration.

Teaching by Demonstration (TbD) generally aims
to program robots by recognizing a complex human
action, or task, and emulate this task on a robot
[31]. Both the type of action and parameters of the
action, i.e. where or on what the action is applied,
needs to be extracted. In many approaches, the focus
is to divide the continuous action into fundamen-
tal motions of a human, and map these to similar
fundamental motions supplied to the robot a priori,
where most research focus is on modeling the robot
motion. These fundamental motions are often called
motion primitives, motor primitives, action primitives
or similar [31], and are usually modeled on a low
level, such as kinematic states of joints or limbs of a
robot.

In order to instead communicate explicitly to the
robot which actions it should perform, it is useful
to look at human language. Like action, it is con-
structed from smaller components, such as phonemes
at the lowest level, and words as higher level seman-
tic blocks [8, 9, 32]. A similar higher level block in
the robot action context can be called a robot skill [5],

@ Springer

which is not merely e.g. joint movements, but instead
contains both sensing and action. For identifying a
meaningful set of robot skills, it makes sense to relate
the human language to robot action, and associate
verbs such as “place” or “drive” with robot skills. This
enables humans to instruct a robot in the exact same
way as they would instruct another human, and should
assure a high level of intuitiveness. By implementing
skills in this manner on a robot, we can define robot
programs, or tasks, simply as parameterized robot
skills, where the parameter is e.g. where to place or
drive to.

For the robot skills to be intuitive, they must also
be sufficiently general, e.g. there should only be one
pick up skill, that is able to handle every object the
robot will encounter in the factory. The skills must
also have some cognitive capabilities contained within
them, i.e. both sensing capabilities, world knowledge,
and context modeling, again in order to handle as
many cases as possible with the same skill. When a
robot is equipped with even a small number of these
skills, they can be concatenated to solve complex tasks
in the factory.

One way to use skills to construct full tasks is
to divide the programming into two steps: Sequenc-
ing and Teaching. In the sequencing step, the oper-
ator specifies the sequence of robot skills, in the
right order, that would solve the desired task. This
step eliminates the uncertainty in recognizing human
action, as the exact skill is manually defined by
the operator. It can be done in a very short time,
and should assure that the robot is not perform-
ing any unexpected actions. When the sequence has
been specified, the parameters for each skill need
to be supplied. This is the teaching step, and in
this paper we propose to specify the parameters
using human gestures, e.g. pointing at the object
or location to specify which object to pick up and
where to place it. In this way, we reduce the gen-
eral TbD problem to be only recognition of action
parameters.

In this paper we present the intuitive programming
of a robot system for logistic tasks, leveraging the
approach outlined in the previous paragraphs. As an
example task we choose an industrial use case, where
boxes are regularly filled with parts from an assem-
bly machine. These boxes need to be replaced with

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

S151

empty ones, whenever they are full. In this case, the
involved general skills would be e.g. drive to and place
on, and the parameters simply the assembly station or
the warehouse, where full boxes are placed. This use
case is a good example of the kind of tasks that are
performed by human operators in the industry today
— simply because they are too difficult to automate.
We restrict the skills to handle this scenario to ensure
robust skills, and keep focus on the proposed task
programming method.

This paper builds upon our previous work,
described in [37], where we in this paper have
increased the number of experiments, and included
qualitative feedback from all participants. Since it is
not feasible to explicitly program reoccurring skill
sequences for each box (the robot can only carry one
box, and the number of boxes at the station may vary),
we also investigate a method for including loops in the
presented programming approach.

The contribution of this work is the following:

1. We demonstrate gesture-based teaching of task
parameters, where the task is a previously defined
sequence of general robot skills. By specifying
the skill sequence manually, it is only neces-
sary to recognize the parameter of the action at
programming time, and not the action itself.

2. We present a detailed and cohesive description of
the suggested approach, and its implementation
on a robot system.

3. We have verified the approach with 24 test sub-
jects in 3 different environments, including one
industrial environment, and with varying com-
plexity of the available skills.

4. We discuss how this approach extends to other
scenarios than the use case programmed in the
experiments.

In the following section we will describe the prior
work related to this approach. In Section 3 we will
supply the reader with an overview of the robot
skills that form the basis of the programming system.
Section 4 describes the implementation of the system,
comprised of a set of skills, a touchpad-based GUI
and gesture recognition. The approach is verified in
Section 5, where the experiment setup and results are
described, and we provide a thorough discussion of
the proposed method in Section 6.

2 Related Work

As mentioned already in the introduction, in this work,
we are not recognizing action, and replicating it on a
robot. We rather supply the robot with basic actions,
or skills, and recognize a pointing gesture, which
specifies where to apply the skill.

The idea of robot skills is not a new one [4, 7,
27, 31], but the use of robot skills for intuitive pro-
gramming in the industrial context is not gaining
much attention from the research community. When it
comes to programming of industrial robots, research
focus seems to be on offline programming by using
CAD models [11, 35, 36] or online programming
using augmented reality [6, 14, 24]. Both of these
approaches, however, do not address the issue of trans-
formable robots, but rather methods for creating robot
programs that perform repetitive motions with limited
sensing. Another focus is task planning, often using
motion primitives as the planning domain [12, 15,
16]. However, the planning domain is usually some
model of motion (or sensing) primitives, where the
system tries to plan a complete task from the primi-
tives. In this approach, we supply the robot with a skill
abstraction in between the tasks and the primitives.

A use of motion primitives, that somewhat resem-
ble our notion of general robot skills, is the Manipula-
tion Primitives (MPs) described in [28, 29]. This work
expands on the Task Frame Formalism (TFF) [10], by
enabling the use of any sensor and controller in the
same task frame (e.g. visual servoing combined with
force control), as well as operating in a dynamic task
frame. These MPs have also been combined in Manip-
ulation Primitive Nets [13], with simple sensor-level
decisions based on the outcome of each single MP in
the net. This makes it possible to program and execute
a task such as inserting a battery in a cellphone, based
on realtime feedback from force/torque sensors. How-
ever, these nets are still too complex to use for robot
novices, as they require detailed parameterization in
the form of e.g. force/torque limits.

A layered structure of skills and tasks similar to
ours is also proposed in [21], where skills are concate-
nated to form tasks. However, the focus is planning on
the task level, but by utilizing somewhat general skills
and skill primitives. The implementation of said skills
is however at its current state rather simplistic.

@ Springer

S152

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

The notion of skills described in this paper mostly
resemble the Action Recipes of RoboEarth [40, 41].
However, in RoboExarth, the skills (or Action Recipes)
keep sensing and action separate. With its focus
on knowledge sharing between robots, the Recipes
(tasks) in RoboEarth rather require some capabilities
of the robot, such as object recognition and envi-
ronment models, and the Recipes are only action
based.

Programming by Demonstration has been an active
research topics for a number of years, and much
research has been carried out in the field on recog-
nizing human action [23, 25, 26, 30, 33, 39, 42].
This work focuses instead on what we believe is an
equally valid approach to recognize human action, i.e.
implementing similar actions, or skills, on the robot.

In this work we show a skill-equipped robot, that
along with gesture recognition capabilities can be used
for intuitive Human-Robot Interaction (HRI). The
skills only require simple parameters as input, so both
the outcome of the skill and the required parameters
are intuitive, even for robotics novices.

3 Robot Skills

The core idea of robot skills is that they are funda-
mental software building blocks, that can be used to
form more complex tasks. The skills should be appli-
cable in all relevant scenarios the robot encounters.
This implies that the skills need to be very general,
and the motion and sensing functionalities contained
within them need to be equally general. This makes
the skill implementation more complex, but only inter-
nally, inside the skill — the end-users of the skills, i.e.
the shop floor workers, need not worry about this.

A key issue is to find the right set of skills, which
can solve most tasks in the transformable production.
We have previously analyzed more than 500 human
operator instructions at Grundfos, a Danish manufac-
turer of domestic water pumps [5]. The instructions
were written in the form of Standard Operating Pro-
cedures (SOPs). The SOPs specify in writing and
images how the human worker should perform various
tasks around the factory, such as operating assem-
bly equipment. The analysis revealed no more than
13 reoccurring general actions, such as “pick up this
object” or “insert part P into machine M.” Thus,
a robot equipped with only these 13 general skills

@ Springer

would be able to solve all the analyzed tasks, that are
currently performed by human workers.

By implementing skills that resemble the steps in
the SOPs, the outcome of each skill is immediately
intuitive for the factory workers. Skills such as “pick
up” or “drive to” require no further explanation for
a robotics novice, as it is exactly how actions are
instructed to another human. Since the skills are easy
to understand, it is also intuitive for the shop floor
workers to use the skills for task programming. By
manually specifying the action, or skill, the operator
only needs to specify where to apply the skill, e.g.
objects to pick up or locations to drive to.

In the next section we will introduce our model of
a robot skill, that is sufficiently general and robust for
industrial scenarios.

3.1 Skill Model

Our model of a complete robot skill is shown in
Fig. 1. The full model includes several aspects, but
here we will only focus on the core aspects of exe-
cution, parameterization, and pre- and postconditions.
The prediction of the outcome of a robot skill is
mainly useful for task planning, which is not relevant
for this work. For a more detailed description of the
skill model, we refer to our previous work [5].

The execution block of the skill is not unlike a tra-
ditional robot program. However, the execution needs
to be sufficiently general to be applicable for all use
cases. For instance, the execution for the “pick up”
skill needs to be able to handle every variety of objects
in the factory, which the robot should manipulate.
The execution is composed of skill primitives, that
serve a single purpose related to the robot system. At
its core, the purpose of this is hardware abstraction
and ease of skill implementation. Consider two differ-
ent robots which each have skill primitives that e.g.,
actuates a gripper, detects objects, or performs robot

Robot skill

Parameter

World state

Current Execution change

world state

Precondition
check
Verification

Prediction

Preconditions |

Fig. 1 Model of a robot skill

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

S153

arm motions. Then, skills that rely on these primi-
tives can be executed on both robots, which we have
previously shown in [38].

The parameters for the skill are two-fold. As skills
are object-centered, only simple and intuitive param-
eters are needed for input, e.g. a location to place an
object or an object to pick up. These are the param-
eters that are supplied at task programming time.
Everything else is handled within the skill. Upon
skill execution, the necessary calculations are made
in order to successfully execute the skill, based on
the supplied parameters. These calculations are made
based on lower-level intrinsic parameters, that the end
user does not have to worry about, but is instead up
to the skill programmer. There are two types of intrin-
sic parameters, where one is related to skill variation,
and one is related to the hardware, accessed through
the skill primitives. For a “pick up” skill, the first
type could include the grasp type and orientation, and
the second robot speeds, contact forces, etc. Should
it be necessary for the end user to explicitly define
the intrinsic parameters, such as contact forces, this
should also be possible, but will not be included in this
work.

In this work, a single parameter for the skills is
sufficient, as we will describe later. However, the
skill model is easily scalable, given a set of ade-
quate primitives. For instance, more advanced skills
such as “insert object A in machine B”, still only
require simple and intuitive parameters — if and
only if the required primitives are available, that
can align the object correctly with the machine,
e.g. given prior knowledge, and insert the object
correctly.

Since the skills need to be robust, they include
pre- and postconditions. By implementing a checking
procedure for these conditions, the skills themselves
verify their applicability and outcome. This enables
the skill-equipped robot to alert an operator if a skill
cannot be executed (for precondition failures) or did
not execute correctly (for postcondition failures). For
instance, the “place object” skill would first have to
verify, among other things, if the location to place the
object is reachable. After presumably correct execu-
tion, it is verified that the object is in fact placed at the
desired location. A formal definition of pre- and post-
conditions is not only useful for robustness, but also
task planning. It is easy to imagine a robot that would
re-plan a task, if a precondition was not satisfied. This

is not the scope of this particular work, but of great
interest in our future work.

As the skills need to access prior knowledge of
objects and locations in the factory, the robot needs to
have a notion of the current state of the world. This
can be implemented in multiple ways, mostly depend-
ing on the types of tasks the robot must perform, and is
still an open question, and not the focus of this paper.
However, our previous experiments show that for the
skill approach, the world model need only contain
information about the valid parameters for the skills
running on the robot system, e.g. objects or locations
[37, 38].

4 Implementation

In this section we will describe how the approach
is implemented on our experimental platform, the
mobile manipulator “Little Helper,” which is pre-
sented first. The approach relies on the combination
of skills, gesture recognition for parameter specifica-
tion, and a user interface for skill sequencing. We will
describe these components individually, and go on to
describe how these are combined for intuitive pro-
gramming in the central task programming controller.

4.1 Little Helper

Unlike service robots for domestic applications, which
are developed at many universities, the focus of
the Little Helper is industrial applications, and for
addressing the needs for transformable production.
The Little Helper is built from standard industrial
components, and is shown in Fig. 2. The robot system
consists mainly of three hardware components.

For manipulation we use a 7 DOF KUKA Light-
Weight Robot (LWR) arm, for these experiments
equipped with a passive gripper for grasping the
boxes, which improves the robustness of the skills,
since we can abstract away grasp detection. The robot
arm is mounted on a chassis which also contains the
robot controller and a computer controlling the entire
system. The computer is a dual Xeon processor setup
with an Nvidia GTX 580 CUDA-capable graphics
card. On the chassis is also mounted two Primesense
RGB-D sensors, specifically a Microsoft Kinect and
an Asus Xtion Pro LIVE. The Kinect is used for object
detection, and is mounted close to the base of the

@ Springer

S154

J Intell Robot Syst (2015) 80 (Suppl 1):5149-S163

Fig. 2 A user performing a pointing gesture in front of the
Little Helper robot

LWR, facing forward on the robot. The Xtion cam-
era is used for human tracking, and is mounted on a
vertical pole, to provide a full view of the instructor.
The chassis is mounted on top of a Neobotix MP-655
differential drive mobile platform.

4.2 Skill Implementation

In order for skills to be successfully deployed in an
industrial setting, they need to be sufficiently general.
This means that the manipulation skills, such as “pick
up” or “place on” needs to be able to deal with all
relevant objects and locations the robot should manip-
ulate. This mainly comes down to how general the
skill primitives are, which the skill is composed of.

We have already implemented a number of skills
[38], that allows us to test the proposed HRI method
for the logistic use case. Since we only focus on these
use cases in this paper, we only use the logistic skills.
Therefore, we only need skills that are able to detect
and manipulate boxes. This allows us to use a sub-
set of simpler, more stable skills for this work on task
programming.

For the use case of transporting boxes, the skills
only need basic methods for grasping, object recogni-
tion and world knowledge. Since we are only manipu-
lating one kind of object, we have equipped the robot
with a passive gripper. The passive gripper enables
the robot to carry boxes with heavier loads, as it does

@ Springer

not rely on keeping a gripper closed. This also means
that we only have one valid grasp point for the boxes,
abstracting away advanced primitives such as grasp
detection, which is not the focus of this paper. For test-
ing this approach, boxes and locations are marked by
QR codes, where the data contained in the code speci-
fies the unique object or location. The 3D poses of the
QR codes are detected using the Kinect camera on the
robot — for details we refer to [37].

For these experiments we have implemented the
world model as a database-like program, containing
locations of previously detected QR codes and their
labels. This enables us to uniquely identify a spe-
cific box or location, as well as an easy method for
adding new detections, removing old entries or updat-
ing information of a specific entry, e.g. when moving
a box. Since the width is also included for the loca-
tions, the robot can easily query the world model for
free space at a certain location. This world model fol-
lows the same structure as in our previous work [38],
and can thus be used for more advanced object repre-
sentations, as long as they are valid parameters for the
skills.

The skills themselves are implemented as classes,
and each skill inherits from a parent skill class, in
order to conform to the same class layout. The parent
class contains placeholder methods for parameter-
based execution, as well as evaluating all pre and
postconditions in the skill. When implementing a skill,
the execution method is overridden with a method
that executes the exact skill, based on the parameters.
The execution must, as previously stated, include both
sensing and action. Methods for checking pre- or post-
conditions are also added to the specific skill. All skill
primitives are implemented in a single robot-specific
class, since we are conducting these experiments on a
single robot. This class is instantiated in the skill when
robot motion or sensing is needed. Besides functions
for e.g. moving the robot arm and detecting objects
it also includes methods for navigating to a certain
location that is previously saved in the world state.

4.3 Human Tracking and Gesture Recognition

As the fundamental engine for 3D body tracking we
have used NiTE 2.2. It makes use of the OpenNI 2.2
SDK for accessing 3D sensor hardware, in our exper-
iments the Asus Xtion sensor mounted on a pole on
the robot. We choose this combination, since it has

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

S155

previously proven useful for prototyping robotic appli-
cations concerning person tracking, and is directly
available without the need for the end user to imple-
ment sophisticated tracking algorithms. We have pre-
viously evaluated the performance of the tracking, and
found it sufficiently accurate for these purposes [20].

Since the NiTE tracker by default is tracking all
detected persons in the camera view, we need to dis-
able the tracking of persons that are not currently
instructing the robot to avoid false positives in the
gesture recognition process. Therefore, we first recog-
nize a specific attention gesture (Fig. 3a) that specifies
which person is currently the instructor. Only the ges-
tures performed by the instructor are published to the
teaching controller, and other people are ignored until
they perform the attention gesture.

In total, we consider the following 5 gestures for
programming, shown in Fig. 3: attention, pointing, fol-
low, stop, and abort. The exact meaning of each ges-
ture depends on the current state in the programming
process, and will be elaborated in Section 4.5.

The gestures are recognized based on thresholding
features of the instructors body pose. The instructor
needs to maintain the pose for a certain period of time,
in order to avoid false positives. The thresholding is
performed for all poses at the same time. However,
in the case of two pose thresholds being satisfied at
the same time, only one of the poses are registered, as
explained below. All gestures are simple events, apart
from the pointing gesture, where a pointing direction
should also be recognized. For these experiments we
use the direction of the forearm as the pointing direc-
tion. For additional details of the gesture recognition
we refer to our previous work [37].

4.4 Visual Feedback and User Interfaces

For both visual feedback and teaching through point-
ing, we have implemented two graphical user inter-
faces. One is related to the feedback from the tracker
and gesture recognition, and is visible on a monitor
attached to the robot chassis. The other is the main

Fig. 3 The gestures
available for programming:
a attention, b pointing, ¢
follow, d stop and e abort

GUI, which is used for specifying and teaching tasks,
and is shown on the touchpad.

The purpose of the tracker GUI is to show which
person currently has the focus, and to show the
progress of gesture recognition. This interface is par-
ticularly useful during programming, as well as in
learning how to perform the 5 different gestures, as the
user can see what is currently being recognized.

The main interaction with the robot during pro-
gramming is done in the GUI on the touchpad. The
GUI features a tab-based layout, where the two promi-
nent tabs are for task sequencing and teaching, and is
shown in Fig. 4. The third tab is for direct robot con-
trol, and is usually not meant to be available to the end
user.

In the sequencing tab, the instructor can construct
a task by concatenating the, at this point unparame-
terized, skills from the available skills on the robot.
The user can drag and drop the skills from the skill
library to the task specification, and reorder them if
necessary. Both the skill library and the current task
specification is visualized as lists, where the task spec-
ification is ordered and the skill library unordered.
Using this GUI, it is therefore only possible to con-
struct tasks that are sequences of skills, i.e. sequential
robot programs. Therefore, it is presently not possi-
ble for the end user to specify conditional or loop
constructs. However, in many cases the sequential pro-
gram is sufficient, and we will later present a method
for including skill combinations, that loop through
certain parameters.

The user can proceed to the teaching phase in two
ways; either the parameter for a single skill can be
specified immediately when adding the skill, or the
parameters for the entire sequence can be specified
after the full sequence has been specified. In both
cases, the parameter specification takes place in the
teaching tab.

The teaching tab (see Fig. 4) both serves to ini-
tialize the teaching operation, but also to provide
feedback on the current status of the teaching. On
the left hand side, the skill sequence is listed, with

M A

(d) (e)

@ Springer

S156 J Intell Robot Syst (2015) 80 (Suppl 1):S149-S163
[sXsXs) Task Commander
| Sequence skills Control robot |

' . \ Offine ISS i e '
I Current skill sequence II I Available gestures |
1 I I

| |
| Pick box from: >LOCATION< s ® : ! 1 |
| |' I I
' ! I |
I | 1] Attention Pointing |
| Place box at: >LOCATION< 3 O h I |
I :: 1 |
: I, Teaching state feedback 1| I
| Pick up box: >BOX< a 1y : | :
| I.E::::::::::::: Follow Stop |
1 :| | Execute while teaching | | I
| Place box at: >LOCATION< = o\ (M Enable navigation h I
[< i '
I || Teach Execute I |
1 I| One skill One skill | | : I
__________________ ll | Abort i

| Sequence Sequence | IL ——————————
Clear [Reset | | I
I e N | Teaching control

Fig. 4 The user interface for task teaching. In the image the teaching feedback tab is shown, and functional areas in the GUI are

highlighted in red

drop-down boxes for the parameters. It is possible
to specify the parameters directly using these boxes.
However, in a real industrial scenario the objects and
locations would most likely have unique names or IDs
that are not meaningful to an operator, which is why
these boxes are not used for our experiments. In the
bottom middle part of the tab, the user can initialize
the teaching of a single skill, or the whole sequence,
as well as executing a previously parameterized skill
or sequence. It is also possible to instruct the robot to
execute each skill immediately after teaching, in order
to verify correct execution immediately.

In the upper middle part of the teaching tab, the
user is given written feedback on the teaching opera-
tion, supplied by the teaching controller described in
Section 4.5. This could be e.g. that a pointing gesture
is expected, or that the robot is currently following the
operator. The teaching controller also specifies which
gestures are currently valid, which is shown on the
right hand side of the tab, where the valid gestures are
highlighted.

@ Springer

4.5 Teaching Controller

The central teaching controller handles execution
and teaching of tasks. In teaching, the program
is supplied the sequence of skill types with miss-
ing parameters from the touchpad GUI The pro-
gram then establishes connection to the tracker,
and enters a finite state machine, where the rec-
ognized gesture and current state determines how
the system should react, and when to save the user
input. The feedback in the touchpad GUI is sup-
plied based on the current state. Upon task execution,
the complete sequence of skills, including parame-
ters, is supplied to the controller, which then exe-
cutes the skills accordingly, one by one. A State
Transition Table of the teaching phase is shown
in Table 1.

If the instructor performs the follow gesture, the
robot will follow him until told to stop, i.e. while in
the Following state. This functionality has been imple-
mented as a PD controller, which outputs translational

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

S157

Table 1 State transition table for the teaching controller

Waiting Watching Following
Attention Watching - -
Pointing - Waiting! -
Follow Following - -
Stop Watching? Waiting Waiting
Abort end - -

The system starts in the Waiting state. The entries in the table
specify the next state, given the current state (top row) and ges-
ture input (left hand column). Notes Tand 2 are explained in the
text

and rotational velocity commands to the mobile plat-
form, based on the location of the instructor in the
frame of the tracking camera.

The parameter for a skill is computed as soon as
the robot recognizes a pointing gesture, while in the
Watching state (note !'in Table 1). The transition to the
Waiting state only occurs after the parameter is com-
puted. When a pointing gesture is recognized, the cur-
rent scene is scanned for objects or locations (marked
by QR codes), and the distance to the pointing
vector is calculated for all detections. The distance
D between a QR code’s 3D position g and the nor-
malized pointing vector of the forearm d is given
by

D=|(p,—q)—(p,—q)-d)-d ey

where p is the position of the hand. The exact chosen
parameter is given by the QR code closest to the point-
ing vector. Should the user wish to cancel a chosen
parameter, and redo the pointing for one skill, he/she
can use the stop gesture to cancel the input and redo
the pointing (note 2 in Table 1). The stop gesture is
only available for canceling the input in the Waiting
state immediately after a parameter has been detected.

Upon teaching the last skill in the sequence, the
teaching phase is terminated by the abort gesture, and
the interface returns to the teaching tab, where the pro-
grammed parameters for each skill are shown in the
task specification. The user can now perform a test run
of the skill, either by executing the whole task or one
skill at a time.

5 Experiments

Preliminary experiments in the production facility at
Grundfos proved that the approach had merit, i.e. that
it was easy to use for factory workers and only a brief
introduction was necessary [34]. For a more system-
atic evaluation we have verified our approach through
two sets of experiments, with a total of 24 people. In
both cases, the participants were asked to program a
specific task, i.e. the use case of replacing boxes at
an assembly station. This is a sample use case, chosen
since it represents the kind of tasks that are diffi-
cult and not cost efficient to automate in the factories
today, and thus serves to verify the approach. Other,
unrelated task could be programmed in the same man-
ner, given a set of skills that are appropriate for the
task at hand.
All participants went through the same steps of

1. receiving a 10 min introduction to the system,
programming the sequence of skills once,

3. using the gestures to parameterize the skills 3
times, and

4. answered a survey on the intuitiveness and func-
tionality of the approach.

The first experiment has been conducted in
two different lab environments, and the second
in the industrial environment at KUKA Roboter
in Augsburg, Germany. The exact scenario and
set of available skills differ slightly between the
two experiments. In this paper we present addi-
tional results compared to our previous work
[37], as well as qualitative feedback from all
participants.

5.1 Experiment scenarios

In the laboratory experiment, the users were asked
to replace a single, full box at the assembly sta-
tion with an empty one. Thus, the robot should
be instructed to pick up a box from the sta-
tion, place it in a warehouse, pick up an empty
box from the warehouse and place it back at
the assembly station. The teaching thus includes
not only pointing at objects or locations, but also
maneuvering the robot to the two distinct locations
using the follow-functionality. For this experiment,
the robot was equipped with the skills Pick up
<object>, Place at <locations, and Pick

@ Springer

S158

J Intell Robot Syst (2015) 80 (Suppl 1):5149-S163

from <locations. The first two skills relate to
picking up a specific object or placing a currently
grasped object at a specific location. The third skill is
an abstraction of the Pick up <object> skill, as
it instead relates to picking up an object at a specific
location, regardless of which object it is. All skills
include navigating the mobile platform near the goal
object or location (as acquired from the world model),
since this is relevant in nearly all logistic tasks, where
transportation is usually required. Furthermore, the
skills include detecting objects and locations in the
scene, and manipulating the environment based on
the current location of the desired object or location.
Assuming the empty box is known to be empty, and
it is this exact box that should be placed back at the
assembly station, the correct task description for this
experiment is:

Pick from <AssemblyStations>
Place on <Shelf>

Pick up <EmptyBox>

Place on <AssemblyStations>

il

In the industrial scenario, we assume that several
full boxes can be located at the assembly station,
to investigate how users perceive more advanced
skills that include several parameters. The goal is
to replace all full boxes with empty ones. The full
and empty boxes are stored at two different loca-
tions. For this experiment the robot is equipped with
one additional skill compared to the lab experiment:
Pick all from <location> and place
at <locations>. This skill is a composite skill,
combining the Pick from <location> and
Place at <locations> skills, and thus requires
two parameters, which are the locations to pick from
and place on. The composite skill act as a loop, and
thus performs these two skills as long as there are
objects on the picking location and free space for
an object at the placing location. Since the scenario
requires all the full boxes to be replaced, regardless of
the number of boxes, the composite skill is the right
choice for both moving full boxes to one warehouse
and moving empty ones to the assembly station. Thus,
the correct task description becomes:

1. Pick all from <AssemblyStations>
and place at <FullBoxWarehouse>

2. Pick all from <EmptyBoxWarehouse>
and place at <AssemblyStations>

@ Springer

The lab experiment was conducted with 17 peo-
ple, in two different environments. The participants
were dispersed with respect to age, gender, height and
previous experience with robot systems. Two environ-
ments were used to determine the effect of external
disturbances on the tracker. The industrial experiment
was carried out with 7 people, in a single environ-
ment. These participants were mainly male and had
some experience with robot systems. The purpose of
the lab experiment was to systematically assess the
effects of age, gender, height and robot experience,
while excluding potential influences from a factory
environment. The second experiment was carried out
at KUKA, in an industrial environment resembling the
final use case, and additionally examined the use of
more advanced skills.

5.2 Results

Participants generally found the sequencing step intu-
itive, and programmed the correct sequence fast. The
times used for sequencing in both experiments are
shown in Fig. 5, and also reveal that sequencing the
skills was quite intuitive. However, the exact choice of
skills to use was quite different across the participants.
Even though the outcome of the two distinct skills
that pick up an object is quite different (Pick up
<object> vs Pick from <Locations), there

All participants All participants

90} n 220 T
| |
8ol | 200 N
| 180
. 701 1 —
) @ 160
£ 60} £
£ £ 140
[@)] [@)]
[C
S 50 S 120 -
C C
g] g
8‘ 40 8’ 100
wn (%]
80
30} L]
| 60
20t |
1 40 1

1 1

(a) Lab scenario (b) Industrial scenario

Fig. 5 Box charts showing sequencing time for the two
scenarios

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

S159

was no general tendency to use one skill instead of
the other. When asked directly to program a different
scenario of picking specific boxes from a shelf and
placing them at various locations, there was still an
even distribution in the choice of skills. From this it is
clear that there is some confusion regarding the choice
of exactly which skill to use in a certain situation.

For the industrial scenario, 5 participants used the
correct skills for the sequence (the composite skill),
and the remaining 2 participants used single skills for
picking and placing. As this would result in unwanted
behavior of the robot, and in order to compare results
for teaching, the correct sequence was used for the
teaching experiment. Even though only two skills had
to be specified for the industrial scenario, it generally
took much longer time than for the lab experiment
(see Fig. 5b). For both experiments the times the par-
ticipants needed for sequencing are somewhat divided
into two blocks, and are thus not evenly distributed.
This is mostly true for the industrial experiment,
where 4 participant specified the sequence within
Imin, while none of the remaining 3 participants did
it in less than 3min. This is most likely due to the fact
that some participants asked for minor assistance dur-
ing the sequencing step, which suggests this step is not
perfectly clear to everyone.

For the feaching part of the experiment, we have
previously investigated the impact of age, environ-
ment, gender, height and previous experience with
robot systems in the lab [37], suggesting no major
difference in teaching times concerning these factors.
The teaching times for all participants in the lab exper-
iment are shown in Fig. 6a. We observe a general
improvement in teaching time, both with respect to

Fig. 6 Box charts showing

All participants

the mean time and the variance. This suggests that
the approach is in fact quite intuitive, as participants
generally learned how to use the gestures effectively
within the 3 attempts, and even on the first attempt
specified the task parameters within minutes.

Although the lab and industrial experiment differ,
the participants still had to teach 4 parameters using
gestures. Furthermore, the environment mostly resem-
bles the open environment in the lab experiment, and
none of the participants were taller than 1.8m. This
suggests the results from the industrial experiment
generally should be similar, or even slightly faster,
than for the lab experiment. However, for the indus-
trial scenario, the participants had to maneuver the
robot to 3 different locations, one more than for the lab
experiment. As it was apparent during the experiment,
maneuvering the robot is the operation that takes the
longest during teaching, and this seems a contribut-
ing factor when comparing the teaching times across
experiments in Fig. 6. Even though the variance is
low for all attempts in the industrial environment, the
mean is higher than for the lab experiment. For the 2"
and 3" attempt, the teaching is at least 1min slower
than the lab experiment. Interestingly, the participants
performed better and more consistent on the 2"¢
attempt. However, given the limited number of par-
ticipants in this particular experiment, it is hard to
determine the cause of this.

Across all participants, there was one participant
whom the system could not track. Even when try-
ing to restart the gesture recognition software and
tracker, the tracker could not get an accurate track-
ing of the participant, as it continuously detected that
the participant was turning around, even though she

All participants

teaching times for all 450 "
participants in the two ; 450
scenarios, for 3 attempts. 400 —
The black curve shows the : 400
mean teaching time > 350 | _ 2
£ w ! £ 350
= 300 | | =
£ | [£
£ |
300
§ 250 | £
[=2} [=2}
o o
a 200 a 250
|
150 | 200
1 -
100 -
1 3 1 2 3

(a) Lab scenario

2
Test number Test number

(b) Industrial scenario

@ Springer

S160

J Intell Robot Syst (2015) 80 (Suppl 1):5149-S163

was standing still. The cause of this error is still
unknown, and has not been observed before or since
the experiment.

For a final qualitative analysis of our approach,
we asked all participant to assess the intuitiveness
and functionality, i.e. how well the system performed.
Each participant rated the intuitiveness of the sequenc-
ing and teaching steps, and the overall approach, as
well as the functionality of the touchpad GUI, the
tracking and gesture recognition and the overall sys-
tem. Each factor was rated on a scale from 1 to 5,
where 1 was the lowest score, i.e. not intuitive or
non-functioning, and 5 the highest, i.e. completely
intuitive or functioning flawless. The scores are shown
in Table 2.

Generally, participants found the sequencing very
intuitive, and to some extent also the unified approach
of skills and gesture recognition. However, the teach-
ing step was not perceived as just as intuitive as the
sequencing step. Comments from the participants gen-
erally concerned the clearness of the visual feedback
and the choice of gestures. Some participants noted
that it was hard to keep an eye on the feedback on
both the monitor on the robot and on the touchpad, and
the feedback from the gesture recognition could be
more clear. It was also difficult for some participants
to distinguish between the stop and attention gesture,
as they are somewhat similar.

The participants had no comments on the function-
ality of the touchpad interface, and generally gave
it good scores. However, the tracking and gesture
recognition received mediocre scores, with the tracker
receiving the lowest scores. In fact, we observed that
most problems during teaching can be related to poor
tracking of the instructor, resulting in poor gesture

Table 2 User feedback on the presented approach

recognition, which suggest that this should be the
main focus point for deploying a system like this.
All comments regarding the gesture recognition were
related to the follow gesture, as this was very hard to
recognize for some participants. This is also related
to the tracker, since the tracking of the arm would
in some cases be lost, when the arm was moved in
front of the torso, as required by the follow gesture.
However, the participants gave good scores to the
functionality of the combined system.

6 Discussion

The experiments show that the approach described in
this paper is in fact intuitive, as all participants pro-
grammed the tasks within minutes, even on the first
attempt, and even without any previous experience
with robots. Furthermore, both the variance and mean
of the teaching time is significantly reduced after 3
attempts of programming the robot. The fastest teach-
ing time was 1 min 41 s for the lab experiment, and
2 min 48 s for the industrial experiment. There were
some issues related to the tracking of the instructor,
due to the orientation of the camera and noisy tracking
in small environments.

Overall, the approach of skills was intuitive for all
users, as the outcome of the skill is easily understand-
able. General feedback from the participants was also
positive, especially with regard to the approach. How-
ever, feedback on the performance of the tracker, and
when to use certain gestures was not so positive. The
gestures were generally easy to use, but some attention
will have to be paid to making the use of gestures more
intuitive, and especially the tracking more robust.

Intuitiveness of

Functionality of

Sequencing Teaching Approach GUI Tracker Gesture rec. System
1 — - — — - — -
2 - - - - 17.4 % 8.7 % -
3 42 % 333 % 12.5 % 17.4 % 47.8 % 43.5 % 13.0 %
4 66.7 % 54.2 % 66.7 % 34.8 % 26.1 % 39.1 % 78.3 %
5 29.2 % 12.5 % 20.8 % 47.8 % 8.7 % 8.7 % 8.7 %

Each parameter was rated on a scale from 1 to 5, where 1 is the lowest score, and 5 the highest. Entries indicate the percentage of
participants who rated each parameter with a given score, and the highest percentages are highlighted in italics

@ Springer

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

S161

Although these experiments have shown a sim-
ple skill implementation including world knowledge,
the approach is easily scalable to new scenarios. The
scalability is dependent on the types of objects the
skills and robot system can handle. If truly general
skills, that can manipulate all objects in the factory,
are implemented, the same approach can be used to
program logistic tasks involving these objects. And as
long as the system can recognize the parameters for
the skills (which is a requirement for the skills to func-
tion in the first place), the pointing gestures are still
valid for parameter specification, even when several
parameters are needed for each skill.

Compared to traditional industrial robot program-
ming, this approach seems both faster and more
general. Even if all objects and locations were
known with absolute certainty, programming the task
using traditional programming methods would still
be significantly slower, and require expert knowl-
edge. Initially, it was our goal to compare the pro-
gramming time using the method outlined above
to traditional robot programming. However, given
a) the fast programming of the task by the par-
ticipants using our approach, b) the complexity of
the robot system, and c¢) the expert knowledge
required to program tasks like this using e.g. pro-
prietary teach pendants, this comparison would have
little merit.

Using visual tracking of the instructor during teach-
ing is not the only method for supplying parameters
to the skill sequence. If the objects to manipulate
are previously detected, the parameters could sim-
ply be specified directly in the GUI, as explained in
Section 4.4. However, due to the size and dynamic
nature of factory layouts, it would not be feasible to
have the robot update this information autonomously
on a regular basis. In our method, only the objects
relevant for the particular task being programmed are
saved during programming time, and updated during
execution time. In this way, the robot can be pro-
grammed to e.g. place objects at locations that are not
known a priori, where the world model is populated
during teaching.

It should be noted that if the system is deployed in
a real industrial setting, the training of factory workers
to use the system would be much more elaborate than
just a 10 min introduction. As experiments already
show significant improvement for just 3 attempts at
programming the robot, given this short introduction,

the workers would in a short time be very proficient at
programming the robot.

7 Conclusion and Future Work

In this paper we have presented a simplified Teach-
ing by Demonstration approach for industrial mobile
manipulators. Instead of recognizing human action,
we supply the robot with a set of skills a priori,
which the instructor uses to manually specify a skill
sequence, or task. The robot then only recognizes the
parameter for each skill in the task, through gesture
recognition, where the exact parameter is what the
instructor points at.

The advantages of this approach is that it is
highly practical, as it allows the robot to deal with
objects that are not at predefined locations. The
system is also intuitive for most people, regard-
less of previous experience with robotics. While
most current research in Teaching by Demonstration
still lacks proper end user integration, the proposed
method is comparably straight forward to implement
and use.

The approach has been extensively verified through
experiments in three different environments, includ-
ing an industrial environment, with a total of 24
participants. The participants were dispersed with
respect to age, gender, height and previous exposure to
robot systems. All participants programmed a task by
specifying the sequence and parameters within min-
utes, even on the first attempt, and only given a 10
min introduction to the system and approach. Gen-
erally, participants found the approach intuitive, but
there is still room for improvement, especially regard-
ing the functionality of the tracking and choice of
gestures.

The reader may argue that the programming is
so intuitive because the tasks and skills considered
here are simple. However, there are many handling
tasks in the industry, similar to the tasks discussed
in this paper, which are not automized. The reason is
exactly that even state of the art programming tech-
niques do not allow to program these tasks on the
fly. Since the skills unify sensing and action, they can
deal with objects in a dynamic environment, which
human-populated factory halls inherently are, and
this is where usual industrial robot programming
approaches fail.

@ Springer

5162

J Intell Robot Syst (2015) 80 (Suppl 1):5149-S163

Our next steps are mainly to expand the function-
ality of the skills, and make them more general. If
the skills can handle a higher variety of objects, the
tasks can also become more advanced, and a bigger
variety — and thus higher number — of tasks can be
programmed using this approach. We will also con-
tinue to improve the HRI aspect of the approach, by
incorporating new methods for both sequencing and
parameter specification, as well as improving the ones
presented in this paper.

Acknowledgments The authors would like to thank Grundfos
and KUKA for the possibility of doing experiments in the facto-
ries. We would also like to thank the volunteers for experiments.
This work has partly been supported by the European Commis-
sion under grant agreement number FP7-260026-TAPAS.

References

1. Factory-in-a-Day project (2014). http://www.factory-in-a-
day.eu/

2. STAMINA project (2014). http://stamina-robot.eu

3. TAPAS project (2014). http://tapas-project.eu

4. Archibald, C.C.: A computational model for skills-oriented
robot programming. PhD thesis, University of Ottawa,
Ottawa (1995)

5. Bggh, S., Nielsen, O.S., Pedersen, M.R., Kriiger, V.,
Madsen, O.: Does your robot have skills? In: Proceedings
of the 43rd International Symposium on Robotics (ISR),
Taipei (2012)

6. Bischoff, R., Kazi, A.: Perspectives on augmented reality
based human-robot interaction with industrial robots. In:
Intelligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on, vol.
4, pp. 3226-3231 (2004)

7. Bjorkelund, A., Edstrom, L., Haage, M., Malec, J., Nilsson,
K., Nugues, P., Robertz, S., Storkle, D., Blomdell, A.,
Johansson, R., Linderoth, M., Nilsson, A., Robertsson, A.,
Stolt, A., Bruyninckx, H.: On the integration of skilled
robot motions for productivity in manufacturing. In: 2011
IEEE International Symposium on Assembly and Manufac-
turing (ISAM). doi:10.1109/ISAM.2011.5942366 (2011)

8. Bobick, A.: On human action. In: Moeslund, T.B., Hilton,
A., Kriiger, V., Sigal, L. (eds.) Visual analysis of humans,
pp. 279-288. Springer, London (2011)

9. Bobick, A.F.: Movement, activity and action: the role of
knowledge in the perception of motion. Phil. Trans. R. Soc.
B Biol. Sci. 352(1358), 1257-1265 (1997). PMID: 9304692
PMCID: 1692010

10. Bruyninckx, H., De Schutter, J.: Specification of force-
controlled actions in the “task frame formalism”-a synthe-
sis. IEEE Trans. Robot. Autom. 12(4), 581-589 (1996).
doi:10.1109/70.508440

11. Chen, H., Sheng, W.: Transformative CAD based industrial
robot program generation. Robot. Comput. Integr. Manuf.
27(5), 942-948 (2011). doi:10.1016/j.rcim.2011.03.006

@ Springer

12.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Ekvall, S., Kragic, D.: Robot learning from demonstration:
a task-level planning approach. Int. J. Adv. Robot. Syst.
5(3), 223-234 (2008)

. Finkemeyer, B., Kroger, T., Wahl, EM.: Executing assem-

bly tasks specified by manipulation primitive nets. Adv.
Robot. 19(5), 591-611 (2005)

. Gadensgaard, D., Bourne, D.: Human/Robot multiinitia-

tive setups for assembly cells. In: ICAS 2011, The Seventh
International Conference on Autonomic and Autonomous
Systems, pp. 1-6 (2011)

Galindo, C., Fernandez-Madrigal, J.A., Gonzilez, J.,
Saffiotti, A.: Robot task planning using semantic
maps. Robot. Auton. Syst. 56(11), 955-966 (2008).
doi:10.1016/j.robot.2008.08.007

Gottschlich, S., Ramos, C., Lyons, D.: Assembly and task
planning: a taxonomy. IEEE Robot. Autom. Mag. 1(3), 4—
12 (1994)

Hartmann, M.: DYNAPRO: Erfolgreich produzieren in tur-
bulentenMirkten. Logis Verlag (1996)

Hartmann, M.: DYNAPRO II: erfolgreich produzieren in
turbulenten Markten. Logis Verlag (1997)

. Hartmann, M.: DYNAPRO III: Erfolgreich produzieren in

turbulenten Mirkten. Logis Verlag (1998)

Hgilund, C., Kriiger, V., Moeslund, T.: Evaluation of human
body tracking system for gesture-based programming of
industrial robots. In: Proceedings of the 2012 7th IEEE
Conference on Industrial Electronics and Applications
(ICIEA), pp. 477-480. IEEE (2012)

Huckaby, J., Vassos, S., Christensen, H.I.: Planning with
a task modeling framework in manufacturing robotics.
In: 2013 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pp. 5787-5794
(2013)

Hvilshgj, M., Bggh, S., Nielsen, O.S., Madsen, O.:
Autonomous industrial mobile manipulation (AIMM): past,
present and future. Ind. Robot. Int. J. 39(2), 120-135
(2012). doi:10.1108/01439911211201582

Inamura, T., Toshima, 1., Tanie, H.: Embodied symbol
emergence based on mimesis theory, vol. 23, pp. 4—
5 (2004). http://citeseer.ist.psu.edu/viewdoc/summary?
doi=10.1.1.100.7250

Jen, Y.H., Taha, Z., Vui, L.J.: VR-Based robot programming
and simulation system for an industrial robot. Int. J. Ind.
Eng. Theory Appl. Pract. 15(3), 314-322 (2008)

Kang, S.B., Ikeuchi, K.: Toward automatic robot instruc-
tion from perception-temporal segmentation of tasks from
human hand motion. IEEE Trans. Robot. Autom. 11(5),
670-681 (1995). doi:10.1109/70.466599

Kang, S.B., Ikeuchi, K.: Toward automatic robot instruc-
tion from perception-mapping human grasps to manipulator
grasps. IEEE Trans. Robot. Autom. 13(1), 81-95 (1997).
doi:10.1109/70.554349

Kriiger, N., Piater, J., Worgoétter, F., Geib, C., Petrick, R.,
Steedman, M., Ude, A., Asfour, T., Kraft, D., Omrcen, D.,
et al.: A formal definition of object-action complexes and
examples at different levels of the processing hierarchy
(2009). Technical report. http://www.paco-plus.org
Kroger, T., Finkemeyer, B., Wahl, F.: Manipulation primi-
tives — a universal interface between sensor-based motion
control and robot programming. In: Schiitz, D., Wahl,
F. (eds.) Robotic systems for handling and assembly,

http://www.factory-in-a-day.eu/
http://www.factory-in-a-day.eu/
http://stamina-robot.eu
http://tapas-project.eu
http://dx.doi.org/10.1109/ISAM.2011.5942366
http://dx.doi.org/10.1109/70.508440
http://dx.doi.org/10.1016/j.rcim.2011.03.006
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1108/01439911211201582
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.72 50
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.100.72 50
http://dx.doi.org/10.1109/70.466599
http://dx.doi.org/10.1109/70.554349
http://www.paco-plus.org

J Intell Robot Syst (2015) 80 (Suppl 1):5S149-S163

S163

29.

30.

31.

32.

33.

34.

35.

Springer Tracts in Advanced Robotics, vol. 67, pp. 293—
313. Springer, Berlin (2011)

Kroger, T., Finkemeyer, B., Winkelbach, S., Eble,
L.O., Molkenstruck, S., Wahl, F.: A manipulator plays
jenga. IEEE Robot. Autom. Mag. 15(3), 79-84 (2008).
doi:10.1109/MRA.2008.921547

Kriiger, V., Herzog, D., Baby, S., Ude, A., Kragic, D.:
Learning actions from observations. IEEE Robot. Autom.
Mag. 17(2), 3043 (2010). doi:10.1109/MRA.2010.936961
Kriiger, V., Kragic, D., Ude, A., Geib, C.: The meaning of
action: a review on action recognition and mapping. Adv.
Robot. 21(13), 1473-1501 (2007)

Kulic, D., Kragic, D.: Learning action primitives. In:
Moeslund, T.B., Hilton, A., Kriiger V., Sigal, L. (eds.)
Visual analysis of humans, pp. 333-354. Springer, London
(2011)

Lopes, M., Santos-Victor, J.: A developmental roadmap
for learning by imitation in robots. IEEE Trans. Syst.
Man Cybern. B (Cybernetics) 37, 308-321 (2007).
doi:10.1109/TSMCB.2006.886949

Madsen, O., Bggh, S., Schou, C., Andersen, R., Damgaard,
J., Pedersen, M.R., Kriiger, V.. Integration of two
autonomous mobile manipulators in a real-world indus-
trial setting. In: IROS Workshop on Robotic Assis-
tance Technologies in Industrial Settings (RATIS). Tokyo
(2013)

Mitsi, S., Bouzakis, K.D., Mansour, G., Sagris, D.,
Maliaris, G.: Off-line programming of an industrial robot
for manufacturing. Int. J. Adv. Manuf. Technol. 26(3), 262—
267 (2005). doi:10.1007/s00170-003-1728-5

36.

37.

38.

39.

40.

41.

42.

Neto, P., Mendes, N.: Direct off-line robot programming via
a common CAD package. Robot. Auton. Syst. 61(8), 896—
910 (2013). doi:10.1016/j.robot.2013.02.005

Pedersen, M.R., Herzog, D., Kriiger, V.: Intuitive skil-
llevel programming of industrial handling tasks on a mobile
manipulator. 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (2014)

Pedersen, M.R., Nalpantidis, L., Bobick, A., Kriiger, V.: On
the integration of hardware-abstracted robot skills for use in
industrial scenarios. In: 2nd International IROS workshop
on cognitive robotics systems: replicating human actions
and activities. Tokyo (2013). http://renaud-detry.net/events/
crs2013/papers/Pedersen.pdf

Takashi, I.A.: Towards an assembly plan from observa-
tion: task recognition with polyhedral objects. IEEE Trans.
Robot. Autom. 10(3), 368-385 (1994). http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.12.8697

Tenorth, M., Perzylo, A., Lafrenz, R., Beetz, M.: Rep-
resentation and exchange of knowledge about actions,
objects, and environments in the RoboEarth framework.
IEEE Trans. Autom. Sci. Eng. 10(3), 643-651 (2013).
doi:10.1109/TASE.2013.2244883

Waibel, M., Beetz, M., Civera, J., D’ Andrea, R., Elfring, J.,
Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel,
J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle,
0., van de Molengraft, R.: RoboEarth. IEEE Robot. Autom.
Mag. 18(2), 69-82 (2011). doi:10.1109/MRA.2011.941632
Yeasin, M., Chaudhuri, S.: Toward automatic robot pro-
gramming: learning human skill from visual data. IEEE
Trans. Syst. Man Cybern. B Cybern. 30(1), 180-185 (2000)

@ Springer

http://dx.doi.org/10.1109/MRA.2008.921547
http://dx.doi.org/10.1109/MRA.2010.936961
http://dx.doi.org/10.1109/TSMCB.2006.886949
http://dx.doi.org/10.1007/s00170-003-1728-5
http://dx.doi.org/10.1016/j.robot.2013.02.005
http://renaud-detry.net/events/crs2013/papers/Pedersen.pdf
http://renaud-detry.net/events/crs2013/papers/Pedersen.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.86 97
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.86 97
http://dx.doi.org/10.1109/TASE.2013.2244883
http://dx.doi.org/10.1109/MRA.2011.941632

	Gesture-Based Extraction of Robot Skill Parameters for Intuitive Robot Programming
	Abstract
	Introduction
	Related Work
	Robot Skills
	Skill Model

	Implementation
	Little Helper
	Skill Implementation
	Human Tracking and Gesture Recognition
	Visual Feedback and User Interfaces
	Teaching Controller

	Experiments
	Experiment scenarios
	Results

	Discussion
	Conclusion and Future Work
	Acknowledgments
	References

