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Abstract Although learning of control policies from
demonstrations has been thoroughly investigated in
the literature, generalization of policies to new
contexts still remains a challenge given that existing
approaches exhibit limited performance when gener-
alizing to new tasks. In this article, we propose two
policy generalization approaches employed for gener-
alizing motion-based force control policies with the
view of performing constrained motions in presence
of motion-dependent external forces. The key concept
of the proposed methods is using, apart from policy
values, also policy derivatives or differences which
express how the policy varies with respect to varia-
tions in its input and combine these two kinds of infor-
mation to generalize the policy at new inputs. The first
proposed approach learns policy and policy deriva-
tive values by linear regression and combines these

data into a first-order Taylor-like polynomial to esti-
mate the policy at new inputs. The second approach
learns policy and policy difference data by locally
weighted regression and combines them in a super-
position fashion to estimate the policy at new inputs.
The policy differences in this approach represent vari-
ations of the policy in the direction of minimizing
the distance between the new incoming and average-
demonstrated inputs. The proposed approaches are
evaluated in real-world robot constrained motion tasks
by using a linear-actuated, two degrees-of-freedom
haptic device.

Keywords Learning by demonstration · Force
control policies · Policy learning · Policy derivative ·
Policy generalization

1 Introduction

Robots need to exhibit skillful force regulation skills
while manipulating objects of the environment in
order to efficiently achieve the desired goal of a task.
Given that humans exhibit exceptional skills in manip-
ulating their environment by regulating arm force and
impedance [1–3], learning from human demonstra-
tions is a promising route to transferring advanced
force tuning skills to robots. The prominent chal-
lenge in learning from demonstration lies in the ability
to generalize learned skills to similar tasks in the
future. Let us here illustrate a generalization paradigm
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which is treated in the scenario of this article. Let us
consider a robot end-effector which has learned how
to perform certain movements inside a deformable and
homogeneous environment while experiencing certain
state-dependent forces from the environment. Given
that the environment is homogeneous, the external
forces only depend on the task’s motion states. To
illustrate this, consider that following a motion path in
short depth from an object’s surface is a different task
than following the same path deeper inside the object
where the manipulating mass increases significantly
and imposes different constraints on the end-effector,
see Fig. 1a. In case that a new movement, different
than those demonstrated, has to be realized in the same
environment, new visited states give rise to new state-
dependent counteraction forces and adjustment of
applied force is required in order for the end-effector
to follow the new path. The problem of computing the
force which is required such that a desired motion is
realized is widely known as inverse dynamics [4]. If
the inverse dynamics model of a plant can be acquired
or learned, this model can serve as a feedforward con-
trol policy for the plant [3], see Fig. 1b. In case that
the dynamics of a task cannot be exactly modelled
and serve as an ideal feedforward controller, a wise
alternative is to learn these dynamics from demon-
strated task data. In [4], robot’s inverse dynamics
are learned by Locally Weighted Projection Regres-
sion (LWPR), support vector regression and Gaussian
process regression and the learning performance of

these methods is compared. LWPR is also employed
in [5] for inverse dynamics’ learning where a priori
knowledge about robot’s rigid body dynamics is
incorporated in learning with the view of efficient
generalization. Use of robot’s rigid body dynamics
in learning inverse dynamics is also performed in [6]
where a Gaussian-process semiparametric regression
approach is employed. In our present work, we focus
on generalization strategies of robot’s feedforward
force control policies from motion-task demonstra-
tions, with the view of successfully generalizing
to new motions which impose different motion-
dependent disturbances.

Learning of force skills for robotic manipulation
tasks has recently received large attention. Learning of
force and torque data is performed in [7] by Gaussian
Mixture Regression (GMR) for a container-emptying
task and in [8] by Hidden Markov Models (HMM) for
a ball-in-ball and a pouring task. In [9], positional and
force skills are separately demonstrated and learned in
the form of mixtures of dynamical systems. However,
in dynamic interaction tasks, position and force cannot
be viewed independently and, instead, the dynamics
of the task has to be learned. In [10], the end-effector
is represented by a spring-damper system whose posi-
tion, velocity, acceleration and applied force on the
environment are demonstrated and used as input data
to learn the reference position of the spring-damper
system by Gaussian Mixture Modeling (GMM) for
cooperative transportation tasks. Gams et al. [11]

(a)

(b)

Fig. 1 a Illustrating an engraving task at different depths inside
a sufficiently homogeneous plasticine object. Different envi-
ronmental disturbance {f(x), f(y)} is experienced in each case
due to the changing manipulating mass. Engraving in a (a1)
low depth, (a2) high depth. b An inverse dynamics model can

be viewed as a feedforward control policy which outputs a
force estimate for a desired motion to be executed. If the exe-
cuted motion is identical to the desired motion, the inverse
dynamics model is considered ideal or, alternatively, the policy
generalization problem has an ideal solution
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proposes the modulation of dynamic movement prim-
itives [12] by coupling terms enclosing sensory feed-
back, in order to assign to the robot a desired dynamic
behavior for manipulation tasks where the coupling
terms are learned from demonstrated data by itera-
tive learning control. Furthermore, in [13], interac-
tion force patterns, represented by dynamical systems,
are learned by regression from single demonstrations
while their ability to generalize is limited to changing
the final goal of the force pattern. Given that, in real-
world scenarios, both motion and force information
matters, a manipulation framework is presented in [14]
where motion and force primitives are combined with
force control and optimization for grasping. For the
purpose of learning and generalizing grasping skills,
demonstrated motion and force data are employed
in [15] to estimate the desired positions and interac-
tion forces of grasping fingertips by using GMM and
HMM.

Apart from force, impedance-based behaviors
are also investigated. PI2 reinforcement learning is
employed in [16] to learn variable impedance control
and in [17] to learn desired end-effector impedance
to execute tasks in presence of stochastic force fields.
In addition, in [18, 19], motion primitives are learned
and kinesthetically modulated by controlling the robot
joints’ stiffness for physical interaction tasks while
in [23] motion learning is combined with optimal
feedback control for haptic assistance. Motion and
interaction primitives are also learned and combined
with impedance control for human-humanoid physical
contact tasks in [22]. In [21], impedance behaviors are
encoded in terms of task force and visual information.
In [20], a neuroscience-based controller which adjusts
impedance, feedforward force and position to perform
various contact tooling tasks such as cutting, drilling
and surface exploration is proposed and evaluated in
simulations.

In this work, we learn generalization of force con-
trol policies for constrained motion tasks inside homo-
geneous and deformable environments. Although
learning of control policies from data has been widely
treated in the literature, policy generalization still
remains a challenge and necessitates further method-
ical investigation. A review on learning control poli-
cies is presented in [24]. Learning of force control
policies has been treated in [25, 26] by using Rein-
forcement Learning (RL). As an advancement to
the state-of-the-art RL methods, a highly efficient

probabilistic inference algorithm is proposed in [27]
for fast policy search from scratch. However, RL and
other policy search algorithms require multiple execu-
tion trials for success and are not suitable for manip-
ulation of deformable objects where successful task
generalization is desired within a single execution to
avoid non-desired object deformation caused by many
trials. From the viewpoint of regression, techniques
such as Linear Regression (LR) [28] and Locally
Weighted Regression (LWR) [29] as well as incre-
mental techniques such as Receptive Field Weighted
Regression (RFWR) [29] and Locally Weighted Pro-
jection Regression (LWPR) [30] can be employed
for learning and generalization of control policies.
RFWR and LWPR are advanced techniques which
allow for policy generalization by incrementally mod-
ifying their learning structure based on new incoming
data.

Despite the powerful capabilities of the previous
approaches in policy learning, the problem of pol-
icy generalization from data still remains a challenge.
Although existing approaches achieve to efficiently
generalize to regions very close to the demonstrated
data, this generalization ability degrades as the dis-
tance from the demonstrated data increases. In this
article, we wish to learn force generalization skills
with the view of performing motion tasks under vary-
ing motion-dependent disturbances. At this point, let
us define a policy as the mapping from a set of
inputs to a set of outputs and a policy derivative as
the mapping from a set of differences between inputs
to a set of differences between outputs. In addition,
let us define a policy difference as a variation of
a policy’s output in response to a variation of its
input. The keypoint to our approach is learning, apart
from policy values, also policy derivatives or policy
differences and combining these two kinds of infor-
mation for approximating a policy in new regions of
the input space. Use of policy derivatives has been
previously proposed for identification of unknown
systems by Gaussian processes [31, 32]. In [31],
policy and policy derivative values are employed in
modelling of nonlinear dynamic systems using Gaus-
sian processes and in [32], Gaussian process models
are built for predictive control based on derivative
observations.

When using derivative/difference information for
policy identification, two general issues arise. The
first issue consists of how to extract the policy
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derivative/difference information from given data,
given that policy derivatives and differences cannot
be measured. The second issue consists of how to
exploit this derivative/difference information for pol-
icy approximation. In this article, we propose two
approaches for generalizing force control policies.
The first approach combines policy and policy deriva-
tive information learned by Linear Regression (LR)
for generalization. Preliminary results of this approach
are presented in [33]. The second approach combines
policy and policy difference information learned by
Locally Weighted Regression (LWR) for policy gen-
eralization. We evaluate the proposed approaches in
real-world constrained robot motion tasks and com-
pare their performance with the performance of LWR
and LWPR.

This article is structured as follows. First, in
Section 2, we define our problem. In Section 3, we
present LR and LWR which are employed for learning
and, in Section 4, we present two methods for policy
generalization based on LR and LWR. In Section 5, we
evaluate the approaches in experiments and, finally, in
Section 6, we make a discussion.

2 Problem Formulation

Our goal consists of developing a method for general-
izing force control policies given a set of task demon-
strations, with the view of executing constrained
movements inside deformable and homogeneous envi-
ronments where only state-dependent external forces
exist. We consider policies whose output is force and
input is motion data. As we explain in the introduc-
tion, this is, in essence, an inverse dynamics problem
and consists of estimating the force which is respon-
sible for a certain motion to be realized, see Fig. 1b.
A constrained movement can, in general, be realized
by applying different control policies which may con-
sist, for example, of high-, fixed-gain position control,
adaptive control or a human-inspired force control
policy. Different policies, though, generate different
forces to accomplish the same movement by impos-
ing, in this way, different stress on the end-effector and
the environment. Control-engineering schemes such
as high-gain position and adaptive control may lead to
the generation of high forces or overshoots which may
be harmful to the environment or the end-effector or
cause a non-desired effect in terms of the task goal.

For this, in this article, we propose to learn force
control policies from expert demonstrations, which
express how humans control applied force during
tasks. By doing this, a robot can be endowed with
high-standard motor control skills which are important
in delicate manipulation tasks whereby the environ-
ment needs to be cautiously treated and high forces are
not desired or are even prohibited.

During motion inside a deformable environment,
motion dynamics between different directions are
physically coupled and this coupling imposes inter-
connection between force control policies of different
directions. Based on this, we define a task-space force
control policy in the i-th direction as

fd(i)
= π

(
sd(i)

)
(1)

where fd(i)
is a demonstrated force and sd(i)

a vec-
tor of demonstrated motion variables which is defined
as sd(i)

= [
xd(i)

ẋd(i)
ẍd(i)

c(i)

]
. The xd(i)

, ẋd(i)
, ẍd(i)

represent position, velocity and acceleration respec-
tively in the i-th direction and c(i) is a vector-valued
function which represents the coupling between the
i-th and the other j �= i directions. The coupling
function is c(i) = c(i)

(
xd(j)

, ẋd(j)

)
, ∀j �= i and

establishes a dependence of the force fd(i)
on the posi-

tion and velocity states of the remaining directions
j �= i.
Notation: In the remainder of this article, we denote
the time index by lower case numbers (·)i , index of
motion direction by lower case numbers inside paren-
theses (·)(i) and demonstration index by upper case
numbers inside parentheses (·)(i).

In the remainder of this section, for reasons of
simplicity and without loss of generality, we restrict
our analysis to a single direction of movement and
we omit the directional index (·)(i). Based on this,
the problem we wish to solve can be defined as
follows.

Problem: Given data {sd , fd} where {sd} ={
sd(k)

}
, {fd} = {

fd(k)
}
, k = 1, . . . , K is the demon-

stration index, K ∈ N, K ≥ 2 where K is the number
of demonstrations,

– learn the control policy π : {sd} π−→ {fd},
– given s′ = [x′ ẋ′ẍ′ c′] /∈ {sd}, estimate the value

of the policy π(s′) at the new input s′.

Let us consider K demonstrations of a task
with N datapoints per demonstration. To learn
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the force control policy in either direction, data
pairs from all demonstrations are concatenated as
({sd1 , fd1}, . . . , {sdK×N

, fdK×N
}) where the motion

vector of demonstration k at time i is s(k)
di

= sdi+N(k−1)

and the corresponding force element is f
(k)
di

=
fdi+N(k−1) .

Figure 2 illustrates our system during demon-
stration of a task in a single direction of move-
ment. The system consists of the human, end-effector,
manipulation tool and environment. The end-effector
behaves as an admittance and is position-controlled.
The demonstrated signals which are measured are the
end-effector force fd , end-effector position xd and
velocity ẋd . Tx and Tf are some unknown transfor-
mation matrices of position and force respectively.
The force which is measured by the sensor at the
end-effector, while the tool interacts with the envi-
ronment, is fd = fh + fc − fe where fh is the
human force input, fe some force sensed from the
environment and fc a force due to the presence of the
position controller. The tool tip position xs is not mea-
sured. In addition, the forces fe, fh and fc are not
measurable.

3 Background Theory

In this section, we analyze two non-incremental
regression techniques, LR [28] and LWR [29],
which are employed by the proposed generalization
approaches.

3.1 Linear Regression

In Linear Regression, a control policy is represented
by π = wT φ(sd) where w ∈ R

D+1 is a parameter
vector and φ(sd) = [sd 1]T is a basis-function model

where sd ∈ R
1×D is a state vector. The policy π is

learned by minimizing the cost [34]

R =
K×N∑

i=1

‖fdi
− π(sdi

)‖2 (2)

which becomes

R =
K×N∑

i=1

(
fdi

− wT φ(sdi
)
)2

. (3)

By minimizing (3) with respect to w, we receive

K×N∑

i=1

fdi
φT (sdi

) = wT
K×N∑

i=1

φ(sdi
)φT (sdi

)

and, thus, the estimated parameter vectorw is given by

w = wT
1 H−1 (4)

where w1 = ∑K×N
i=1 fdi

φ(sdi
) and H = ∑K×N

i=1 φ(sdi
)

φT (sdi
).

The least-square risk function (2) can be modi-
fied by assigning different weights w∗

i to different
observations as

R∗ =
K×N∑

i=1

w∗
i ‖fdi

− π(sdi
)‖2. (5)

The w∗
i determines how much the i-th observation

influences the final parameter estimates. The parame-
ters estimated by minimizing (5) are called Weighted
Least-Square (WLS) estimates. A common applica-
tion of WLS is in the case where the observations fdi

have different variances σi where the weights should
be optimally set as w∗

i = 1
σ 2

i

so that the smallest stan-

dard error of the estimation is achieved. In general,
the weights w∗

i can be determined upon the special
characteristics of the estimation setting.

Fig. 2 The robot
end-effector interacting
with the environment, in a
single direction of
movement, during the task
demonstration phase
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3.2 Locally Weighted Regression

In LWR, the policy is represented as the normal-
ized weighted sum of a set of linear models. The
linear models represent receptive fields with centers
cm, m = 1, . . . , M where M is the number of fields
[29]. The policy is defined as

π(s) =
∑M

m=1wmπm(s)
∑M

m=1wm

, πm(s) = s̃T bm (6)

where s̃ = [(s−cm) 1]T and cm ∈ R
1×D . The weights

wm are defined by Gaussian functions as

wm = exp

(
− 1

2σ 2
||s − cm||2

)
.

The regression parameters bm are estimated by

bm =
∑KN

i=1 wimfdi
s̃di∑KN

i=1 wims̃Tdi
s̃di

where

wim = exp

(
− 1

2σ 2
||sdi

− cm||2
)

, i = 1, . . . , KN.

4 Policy Generalization Techniques Based on LR
and LWR

In the previous section, we present two non-
incremental regression techniques, namely LR and
LWR, for learning control policies. Apart from non-
incremental techniques, incremental techniques are
also developed [29, 30] aiming at generalization.
Despite this progress, generalization problems and
primarily extrapolation still remain a challenge and the
question of whether further approaches can be devel-
oped to exploit and do the best with the data available
for learning toward the goal of efficient generalization
in specific contexts, still awaits an answer. Here, we
propose two policy generalization techniques based on
LR and LWR.

4.1 Policy generalization by Weight Differential
Learning (GWDL) based on LR

This approach is inspired by differential calculus and
approximates a function at a point by a first-order
polynomial expansion which resembles the Taylor
polynomial. However, in contrast to Taylor polyno-
mials whose weighting coefficients are represented

by the derivative of the function at a known point,
in GWDL the weight of the first-order term of the
expansion expresses the mapping from a set of dif-
ferences between demonstrated inputs to a set of
differences between demonstrated outputs as it is ana-
lyzed later, and this mapping is learned by LR from
demonstrated data. This coefficient is called weight
differential, is symbolized by Δw and expresses the
rate of change of the policy with respect to its
input. Let us define the rate of change of the policy
π as

Δsd
Δπ
Δsd−−→ Δfd,

Δπ

Δsd
� Δw (7)

where Δ symbolizes a finite difference, fd is the
demonstrated force and Δπ

Δsd
denotes the derivative of

the policy π with respect to the state sd . We observe
that the derivative of the policy is a new policy with
input data Δsd and output data Δfd . LR is employed
to learn this new policy and the weight vector which
is learned by LR is considered the differential of
the weighting vector w, see Eq. 4. More specifically,
to learn the Δw, a new observation dataset D is
generated, which consists of the differences between
datapoints of every two demonstrations. Let us assume
the dataset

Dk1,k2 =
{ (

s(k1)d − s(k2)d

)
,

(
f

(k1)
d − f

(k2)
d

) }

which consists of the input and output differences of
all datapoints between every two demonstrations k1
and k2. Finally, all datasets Dk1,k2 are concatenated
into a single dataset D as

D =
{
Dk1,k2, k1, k2 = 1, . . . , K

}
. (8)

By applying LR on the dataset D, the parameter
vector Δw is estimated. Following learning of the
Δw, the force control policy is approximated as
follows:

(i) The observed motion vectors from all K

demonstrations are concatenated as
{
s(1)d , . . . ,

s(K)
d

}
and the average over demonstrations

motion s(av) is computed as

s(av) =
K∑

k=1

s(k)
d /K.

and has time length equal to N .
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(ii) Given a new motion input s′j , the point of the

average motion pattern s(av) which lies closest
to the query point s′j is computed as:

smin = arg min

s(av)
i

‖s′j −s(av)
i ‖, i = 1, . . . , N (9)

where ‖ · ‖ denotes the Euclidean distance.
(iii) The policy at the new input is approximated by

the first-order expansion

f ′
j = π

(
s′j

)
= wTs̃min + ΔwT

(
s̃′j − s̃min

)

(10)

where s̃min = [smin 1]T, s̃′j = [s′j 1]T and w is
learned by LR on the dataset {sd , fd}. In Eq. 10,
we observe that the average input data act as
known points and the policy varies with respect
to the average demonstrated behavior in order
to generalize to new inputs.

The proposed algorithm has a strong intuitive mean-
ing in that, to predict future actions, we need to know
the difference of the new task goal from previous
goals and how this difference is mapped onto the
action space represented, here, by the force. Instead
of estimating the Δw once from the whole set D of
demonstrated data, one could alternatively estimate
the Δw locally in a region around the smin for every
new smin. However, by trying this, we notice that the
estimated force f ′ becomes noisy due to the differ-
ent value of Δw for each new s′j . For this, the Δw
is estimated only once globally from the whole set of
demonstrated data.

An important point of the present algorithm is that
it takes into account the average over demonstrations
motion trajectory and compares each new input with
this average trajectory in order to find the smin. There
are several reasons why the average motion trajectory
can serve here as good reference for generalization.
In our scenario, demonstrated motions lie fairly close
to each other and, thus, their average is considered
to be representative of the visited motion domain and
enclose the important constraints of the task. How-
ever, if demonstrated motions lie far from each other
and span a large region of the input space, simple
averaging would fail to enclose all the important fea-
tures of the task because the motion average would
derive from largely different data. Furthermore, in our
scenario, we do not aim at reaching some goal posi-
tions but rather following a certain motion pattern and,

given this, the average can serve as a representative
of the motion route of the task. Even in cases where
goal positions have to be reached, by making all the
demonstrated motions pass from these goal points,
the corresponding average would also preserve this
goal information. An alternative to comparing with the
average trajectory would be to compare with all the
demonstrated input points. By doing this, we do not
notice any considerable improvement in the general-
ization ability of the algorithm but mostly an increased
computational cost of the approach. The reason for
this is because demonstrated motions in our setting lie
close to each other and comparing with each demon-
strated motion point instead of the average did not
offer further noticeable information about the task.
In addition, comparison with each demonstrated input
point increases the search space and requires mem-
orization of the whole set of demonstrated inputs.
Another alternative to motion averaging is to encode
the motion data in time space by a probabilistic model
such as GMR and use the motion estimate of the
model as reference which to compare the new incom-
ing motion inputs with. Such a probabilistic approach
estimates the relevance of the input motions [35] and
may prove more successful in extracting the main fea-
tures of a task in case that demonstrated motions span
a large domain. However, we should notice that even
probabilistic approaches learn from the whole set of
demonstrated data and their estimates represent some
kind of system’s average behavior [35].

4.2 Policy Generalization Through Estimation
of Policy Differences by LWR (DLWR)

A plausible question which emerges is whether the
use of nonlinear models for learning the relationship
between inputs and outputs and differences of inputs
and differences of outputs, instead of a global linear
model as in LR, can allow for better policy approx-
imation accuracy. Based on this notion, we develop
here an alternative approach based on LWR for pol-
icy approximation. The derivation of this approach is
as follows. It is evident that the force policy at a new
input s′j can be written as f ′

j (s
′
j ) = f ′

j (smin + (s′j −
smin)). By representing this policy by LWR, we write

f ′
j

(
smin +

(
s′j − smin

))
=

∑M
m=1 wmπm

(
smin +

(
s′j − smin

))

∑M
m=1 wm

.

(11)
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Based on Eq. 6, it is

πm

(
smin+

(
s′j −smin

))
= (

s̃min

)T bm +
(
s̃′j − s̃min

)T

bm

= πm(smin) + πm

(
s′j − smin

)
,

and, thus, Eq. 11 becomes

f ′
j

(
smin+

(
s′j −smin

))
=π

(
s′j

)
=

∑M
m=1 wmπm(smin)

∑M
m=1 wm︸ ︷︷ ︸

πj

+
∑M

m=1 wmπm

(
s′j − smin

)

∑M
m=1 wm︸ ︷︷ ︸
Δπj

(12)

which is also written as

f ′
j

(
s′j

)
= πj (smin) + Δπj

(
s′j − smin

)
. (13)

In LWR, the policy π(s′j ) is once learned from the
input-output dataset {sd , fd}. However, in our current
approach, the policy π(s′j ) is decomposed into two
different policies πj and Δπj and it is proposed that
these policies are separately learned from different
datasets. More specifically, the πj is learned by LWR
from the dataset {sd , fd} as described in Section 3.2
while Δπj is learned from the dataset D defined in
Eq. 8. In addition, the wm of πj and Δπj are sepa-
rately defined based on the different training datasets.
The concept of learning separately the πj and Δπj is
straightforward in that the Δπj receives as arguments
differences of inputs and has to be learned from differ-
ences of inputs as well. TheΔπj determines the policy
increment with respect to the known policy value πj in
the direction of minimizing the distance between the
new input s′j and smin, see Eq. 9.

The performance of the two estimation laws,
namely (10) of GWDL and (13) of DLWR, cannot
be analytically compared because the two generaliza-
tion laws are based on different concepts and there
is not an explicit analytic correspondence between
them. Although DLWR is based on LWR which can
represent higher-complexity input-to-output mappings
compared to LR, the DLWR generalization law is not
any more a pure LWR representation but combines,
in a superposition fashion, representations which are
learned by LWR. In the same way, the GWDL gen-
eralization law combines information learned by LR
in a 2-term Taylor polynomial and is not any more a
linear as LR but a nonlinear law. On one hand, the

algebra of LR provides a strong intuition for learning
the policy and policy derivative values from a known
dataset since the input-to-output mapping is repre-
sented by a single vector which plays the role of the
rate of change of the policy, see Eq. 7. In turn, the fact
that the policy derivative Δw is available motivates
for applying Taylor expansion for policy approxima-
tion at new inputs. On the other hand, the DLWR
generalization law resembles the concept of gradient-
based policy update, as prescribed by Eq. 13, where
for each new input, the policy is updated in the direc-
tion of minimizing the distance between the new input
s′j and the closest point smin of the average demon-
strated trajectory. The difference between gradient-
based policy search and estimation law (13) is that
both terms in Eq. 13 are updated based on the new
input and no information from previous time points is
employed. Comparison between GWDL and DLWR
is performed in an experimental level as presented in
Section 5.

5 Experimental Evaluation

In this section, we evaluate GWDL and DLWR and
compare them with LWR and LWPR in real-world
robot constrained motion tasks.

5.1 Setup

Force control policies are learned from demonstra-
tions with the goal of executing constrained motions
by using a 2-degrees-of-freedom linear-actuated hap-
tic device (ThrustTube), see Fig. 3. The motions

Fig. 3 Experimental setup. The two directions of movement,
normal and parallel, are visualized by a red-and a green-color
axis respectively



J Intell Robot Syst (2015) 80 (Suppl 1):S133–S148 S141

are executed on a plasticine object which is suffi-
ciently homogeneous in practice. The end-effector of
the device moves in two directions, one normal and
one parallel to the object’s initially planar surface. A
sculpting tool is firmly attached on the end-effector
for engraving the plasticine object and the system
end-effector-tool behaves as a rigid body which only
realizes translational motion. Prior to demonstration,
the end-effector is placed such that the tool tip just
touches the object’s surface. During demonstration,
the user moves the handle of the end-effector in
the two directions while the tool moves inside the
plasticine material. Three demonstrations are exe-
cuted by first moving the end-effector in the direc-
tion normal to the object’s surface up to a certain
depth and then moving it in the direction parallel
to the object’s surface up to a certain length. The
demonstrated motion depths and lengths slightly dif-
fer across demonstrations. During demonstration, a
force/torque sensor (JR3) measures the end-effector
force fd while the device’s encoders measure end-
effector position xd and velocity ẋd in both directions,
see Fig. 2. During task demonstration and general-
ization, the haptic device behaves as an admittance
and is position-controlled. The parameters of the
admittance are stiffness 10 N/m, damping 30 Ns/m

and mass 40 Kg and the sampling rate is equal to
1 KHz.

The experimental scenario of learning force con-
trol skills for constrained motions inside deformable
materials is exciting and, at the same time, demanding
because when a complex-shaped end-effector dynam-
ically interacts with the environment: (i) physical cou-
pling of task dynamics between different directions
exists which makes generalization challenging, (ii) the
task dynamics are highly nonlinear due to the complex
physics at the place of interaction, and (iii) the applied
force rigorously depends on the motion states and,
thus, the motion-to-force mapping policy is highly
sensitive to motion variations. This policy’s sensitiv-
ity helps to reveal the generalization precision of the
proposed approaches. Thus, the considered experi-
mental scenario is able to reveal the efficiency and
accuracy of the proposed algorithms in learning com-
plex nonlinear mappings which are sensitive to input
variations.

As explained in Section 2, the learned force is
the end-effector force fd which is measured by
a force sensor during demonstration. The noise of

the force sensor is negligible, which ensures that
measured force is the same for exactly the same task;
same motion, environment, end-effector, demonstra-
tor and demonstrator’s motor policy. The demonstrator
motor policy refers to the way the demonstrator exe-
cutes the task, who may, for instance, apply high
forces and move aggressively or move in a compli-
ant manner by applying low forces instead. Although
the demonstrator motor policy may present slight vari-
ations according to the difficulty of the task (harder
environment may motivate for more aggressive motor
policy), these variations can also be learned from data.
Here, we consider that the demonstrator employs the
same motor policy across demonstrations. In addition,
all demonstrations are executed by the same end-
effector, demonstrator and in the same homogeneous
environment. Based on this, the only factor which
can result in inconsistency of force demonstrations
is the intrinsic motor output variability of the human
motor control system [2]. However, in our scenario,
the force variations due to human motor output vari-
ability are negligible compared to task-related forces
and are neglected. Given that during motion inside
a deformable and homogeneous environment, applied
forces meaningfully depend on the motion states, even
similar motion states may lead to different measured
forces. In order to properly infer the force control
policy of a task and successfully generalize to new
movements, we demonstrate motions which lie rather
close to each other (motions of similar normal depths
and tangential lengths) and explore small regions of
the input space. From the proximity of the demon-
strated motions, we ensure that the average motion
trajectory employed for generalization by GWDL and
DLWR is characteristic of the visited motion domain
and encodes the important features of the task, see
Section 4.1.

5.2 Representation of Force Control Policies
and Task Performance Criterion

5.2.1 Force Control Policies

Following learning of a force control policy from a
set of demonstrated movements, our goal consists of
generalizing this policy to new movements which are
executed in the same environment with that of demon-
strations but impose new motion-varying forces on the
end-effector. First, an engraving task is demonstrated
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three times as it is described in Section 5.1. The force
control policy in the two directions of movement is
represented by

π = [
π(n)

(
sd(n)

)
π(p)

(
sd(p)

)]T
,

sd(n)
= [

xd(n)
ẋd(n)

ẍd(n)
xd(p)

ẋd(p)

]
,

sd(p)
= [

xd(p)
ẋd(p)

ẍd(p)
xd(n)

ẋd(n)

]
(14)

where the indices ’n’ and ’p’ stand for the ’nor-
mal’ and ’parallel’ direction respectively, π(n)(sd(n)

) =
fd(n)

and π(p)(sd(p)
) = fd(p)

. Note that the normal
and parallel control policies are interconnected to each
other. Multidimensional Dynamic Time Warping is
applied to align the force and motion data of different
demonstrations before learning [36].

The proposed generalization approaches do not aim
at dealing with irrelevant input data. In our scenario,
relevancy of the input to the output is assumed such
that a task-realistic policy is estimated, which can effi-
ciently generalize to new inputs in the future. Given
that physical coupling between motion dynamics of
different directions is obvious to exist in our scenario,
we set as inputs of the control policy in each direction
the set which contains, apart from the motion states
of this direction, the coupling position and velocity
states of the other directions as well, see Eq. 14. When
the task-relevant inputs cannot be inferred, Mutual
Information Analysis (MIA) can be employed to esti-
mate the dependence of the output on the input data
and extract the relevant inputs. Application of MIA
for a task learning scenario is presented in [7]. Here,
we analyze the relevancy of our inputs by comput-
ing the Pearson’s correlation coefficient which is one
of the simplest metrics in MIA and describes the lin-
ear dependence between two datasets. Let us assume
two variables X1 and X2. The Pearson’s correlation
coefficient is given by

P = E[X1X2] − E[X1]E[X2]
σX1σX2

(15)

where E(·) denotes the expected value and σ the stan-
dard deviation. We compute the Pearson coefficient
between: (i) parallel position X1 = xd(p)

and nor-
mal force X2 = fd(n)

; P = 0.4113, (ii) parallel
velocity X1 = ẋd(p)

and normal force X2 = fd(n)
;

P = −0.1322, (iii) normal position X1 = xd(n)

and parallel force X2 = fd(p)
; P = −0.3931, and

(iv) normal velocity X1 = ẋd(n)
and parallel force

X2 = fd(p)
; P = −0.6310. We observe that a non-

negligible dependence does exist between the normal
force and parallel motion states and the parallel force
and normal motion states and, thus, the correspond-
ing inputs are considered relevant to the task’s control
policy.

5.2.2 Task Performance Criterion

We distinguish two main cases of generalization
where: i) the new motions lie inside the range of
experienced motions and we call it policy interpola-
tion and ii) the new motions lie outside the range of
experienced motions and we call it policy extrapola-
tion. In the generalization phase, the generalized force
f ′ is applied and the corresponding realized posi-
tion xm is measured, see Fig. 1b. The generalization
performance criterion is represented by the track-
ing error between the desired and measured position
trajectory as

E(n)=
L∑

i=1

(
x(n),i −xm(n),i

)2
, E(p)=

∑L

i=1

(
x(p),i − xm(p),i

)2

(16)

where x(n) and x(p) represent the desired positions and
xm(n)

and xm(p)
the measured positions after execution

by any generalization method while i is the timepoint
index and L the number of datapoints of the desired
trajectory.

5.3 Experiments

We demonstrate the generalization performance of
GWDL and DLWR and compare it with performance
of LWR and LWPR. First, we show policy general-
ization in certain interpolation and extrapolation cases
and then we further evaluate GWDL within a larger
range of motions.

5.3.1 Test Case 1: Interpolation to New Normal
Motion

We test policy interpolation to a new movement which
lies inside the range of the demonstrated movements.
The desired trajectories are

x(p) = x
(3)
(p), x(n) = 0.8 × x

(3)
(n)
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Fig. 4 Test case 1. Top
row: (blue dashed)
demonstrated force,
(magenta) generalized force
by GWDL. Bottom row:
position (blue dashed)
demonstrated, (turquoise)
generalized by LWR,
(orange) generalized by
DLWR, (red) generalized
by LWPR, (magenta)
generalized by GWDL.
Desired position trajectories
x(n) and x(p) are shown by a
black-color line. ’Demo’
stands for the demonstrated
trajectory

where x
(3)
(p) and x

(3)
(n) are position trajectories of the

third demonstration while ẋ(n) and ẍ(n) are computed
from x(n). Generalization is realized by LWR, LWPR,
DLWR and GWDL and the results are shown in
Fig. 4. The figure depicts demonstrated and gener-
alized forces as well as measured positions for all
the four methods. The generalized force profiles of
LWR, LWPR and DLWR are overlapped by the force
profile of GWDL in the figure due to the small
differences between their values. From Fig. 4, we
observe that GWDL achieves accurate execution of
the desired normal trajectory x(n) while LWR, DLWR
and LWPR exhibit lower performance and do not
efficiently approximate x(n). On the other hand, we
observe that all the methods exhibit almost the same
performance in the parallel direction of movement
where the tracking error is observed to be higher
than that of the normal direction. Table 1 shows
the values of the tracking errors (16) for all the
methods. In this task, although the desired parallel
movement x(p) belongs to demonstrations, generaliza-
tion performance in the parallel direction exhibits rel-
atively high error which is probably due to the normal
position and velocity components of the motion vec-
tor sd(p)

, which do not belong to demonstrations, see
Eq. (14).

5.3.2 Test Case 2: Extrapolation to New Normal
Motion

Here, we test extrapolation to a new normal positional
trajectory which lies outside the experienced position
range. The desired trajectories are

x(p) = x
(3)
(p), x(n) = 1.3 × x

(3)
(n)

where ẋ(n) and ẍ(n) are computed from x(n). Figure 5
visualizes the demonstrated and generalized forces by
LWR, LWPR, DLWR and GWDL as well as the cor-
responding measured position for each method. The

Table 1 Tracking errors of LWR, LWPR, DLWR and GWDL
for test cases 1, 2 and 3

Test case Error LWR DLWR LWPR GWDL

Case 1 E(n) 0.0027 0.0027 0.0014 0.0004

Case 1 E(p) 0.1244 0.1310 0.1283 0.1398

Case 2 E(n) 0.0066 0.0059 0.0172 0.0033

Case 2 E(p) 0.1035 0.0602 0.1193 0.029

Case 3 E(n) 0.004 0.0025 0.0016 0.000648

Case 3 E(p) 0.0332 0.0356 0.0361 0.0374

Errors are expressed in [m].
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Fig. 5 Test case 2. Top
row: (blue dashed)
demonstrated force,
(magenta) generalized force
by GWDL. Bottom row:
position (blue dashed)
demonstrated, (turquoise)
generalized by LWR,
(orange) generalized by
DLWR, (red) generalized
by LWPR, (magenta)
generalized by GWDL.
Desired position trajectories
x(n) and x(p) are shown by a
black-color line. ’Demo’
stands for the demonstrated
trajectory

force profiles of LWR, LWPR and DLWR are over-
lapped by the force profile of GWDL in the figure due
to the small difference between their values. Table 1
shows the values of the tracking errors (16) for the
four methods. We observe that DLWR and GWDL
have similar performance in the normal direction
and outperform LWR and LWPR. LWPR and LWR
exhibit lower performance in both directions of move-
ment. Note that the generalized position by LWPR
closely approximates the demonstrated trajectory x

(3)
(n) .

Although DLWR and GWDL outperform the two
other methods, they still exhibit limitation in following
the desired position trajectories. This is expected given
that extrapolation is harder than interpolation [37].

5.3.3 Test Case 3: Generalization to New Normal
and Parallel Motion

In this task, we perform interpolation to a new normal
trajectory same as in test case 1 and extrapolation to a
new parallel trajectory. The desired positions are

x(p) = 1.2 × x
(3)
(p), x(n) = 0.8 × x

(3)
(n)

while corresponding velocity and acceleration values
of both directions are computed from the positions
x(n) and x(p). Figure 6 shows the results of general-
ization by LWR, LWPR, DLWR and GWDL while
Table 1 shows the values of the corresponding tracking

errors (16) for each method. We observe that GWDL
outperforms the other methods in the normal direc-
tion of movement and achieves to approximate the
desired trajectory with low error. On the other hand,
LWR exhibits the lowest performance in the nor-
mal direction. In the parallel direction, we observe
that all the methods exhibit almost the same per-
formance and they successfully follow x(p). Note
that all the methods exhibit higher normal track-
ing error compared to the error of the test case 1.
Given that the normal motion vector sd(n)

also depends
on the parallel motion states which now lie out-
side the experienced data range, it is expected to
notice some higher normal error here compared to
case 1.

5.3.4 Comparison of Test Cases 1, 2 and 3

By considering all the previous test cases, we notice
some compromise in performance of GWDL between
the normal and parallel direction of movement. This
derives from the fact that the motion vectors sd(n)

and
sd(p)

are coupled through position and velocity and,
thus, generalization in one direction depends on the
motion states of the other direction as well. Some-
one would think of decoupling sd(n)

and sd(p)
but,

in that case, the input motion space would not cor-
respond to the true physics of the task. Given all
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Fig. 6 Test case 3. Top
row: (blue dashed)
demonstrated force,
(magenta) generalized force
by GWDL. Bottom row:
position (blue dashed)
demonstrated, (turquoise)
generalized by LWR,
(orange) generalized by
DLWR, (red) generalized
by LWPR, (magenta)
generalized by GWDL.
Desired positional
trajectories x(n) and x(p) are
shown by a black-color line

the test cases, we observe that the GWDL approach
performs in overall most successfully among all the
tested approaches within the range of examined tasks
and proves a promising technique for approximating
unknown motor control policies from data. DLWR
exhibits in overall lower performance than GWDL.
The low performance of DLWR could motivate for
future modifications of the algorithm in the following
ways: (i) apart from learning only the bm parameters
in Eq. 12, the weigths wm should also be learned,
and (ii) the increment-based law (13) may have to
be modified in a certain way for better performance.
Given that humans follow a computationally complex
strategy of endpoint force regulation while perform-
ing constrained movements under varying motion-
dependent disturbances, expressing this strategy from
few data and also by employing relatively simple
estimation techniques is a big challenge.

5.3.5 Further Evaluation of GWDL

In many real-world scenarios, robots are expected to
execute constrained motion tasks such as writing or
engraving on an object [38], sculpting [39] or cutting
of human tissue in robotic surgery [40]. In all previ-
ous cases, execution of accurate motions in multiple
directions of movement simultaneously is required by

ideally taking into account the properties of the envi-
ronment and the end-effector. One route to solving
such constrained motion problems is the application of
feedback control such as stiff position or adaptive con-
trol [41] or, for instance, a force-controlled velocity
planning approach [42]. A different route to execut-
ing a motion task is learning of the task dynamics by
imitation first and then employing the learned skills
to successfully reproduce the task in future trials.
One of the main advantages of learning by imitation
is that it allows to learn a human-like force tuning
policy and treat the environment as an expert task
demonstrator would do in contrast to control schemes
which may apply higher than desired forces on the
object and violate the physical constraints of the sys-
tem. It is obvious that, in constrained motion tasks
such as robotic surgery for hip replacement where
high-standard safety and absolute guarantee of perfor-
mance are required, the ideal policy would consist of
combining feedforward control skills learned by imi-
tation with feedback control to efficiently deal with
perturbations. In the present article, we limit our inves-
tigation to learning feedforward control policies by
demonstration.

Here, we further evaluate the efficiency of GWDL
by showing generalization to constrained motions exe-
cuted onto a plasticine object whose surface is planar
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Fig. 7 a Generalizing to
new motions by GWDL. b
Black line: desired
trajectory, red line:
generalized trajectory

(a)

(b)

prior to the task. Following learning from the three
demonstrations as in the previous test cases, learned
force control policies are generalized by GWDL to the
following motions:

– Movement 1 (M1): x(n) = 0.8×x
(3)
(n), x(p) = x

(3)
(p).

– Movement 2 (M2): x(n) = 0.9×x
(3)
(n), x(p) = x

(3)
(p).

– Movement 3 (M3): x(n) = 1.1×x
(3)
(n), x(p) = x

(3)
(p).

– Movement 4 (M4): x(n) = 1.4×x
(3)
(n), x(p) = x

(3)
(p).

Figure 7b shows the desired movements M1, M2, M3
and M4 and corresponding generalized movements
while Fig. 7a visualizes the effect of the generalized
movements on the plasticine material. From Fig. 7b,
we observe that GWDL efficiently generalizes to new
normal movements while its generalization in the par-
allel direction exhibits lower efficiency. This may be

due to increased task complexity in the parallel direc-
tion because of the larger interaction surface of the
tool with the environment in this direction, which
makes the tool encounter larger perturbations in that
direction. We also observe that interpolation exceeds
extrapolation performance.

6 Discussion

In this work, we are interested in learning force
generalization skills from task demonstrations with
the goal of executing constrained movements inside
deformable materials. In our scenario, we assume
that the environment is sufficiently homogeneous and
external forces only depend on the motion states of
the task. Given that forces are only state-dependent,
by estimating the mapping between applied forces
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and visited motion states, the force control policy of
the task can be estimated and generalized to similar
motions within the same environment in the future.
Humans build force-motion mappings, known as
internal inverse dynamics models, for feedforward
motion control and trajectory planning [3]. In this
work, we learn force-motion mapping policies from
a finite set of demonstrated data in order to endow
robots with certain human-like adroitness.

To reveal the motion-to-force mapping policy from
data, we investigate the role that the policy’s deriva-
tives and differences can play in representing this
mapping. A policy’s derivative expresses how fast the
policy varies with respect to variations in its input.
The policy’s derivatives are learned by LR from data
and combined with learned policy data in a differen-
tial calculus-inspired fashion to give an estimate of
the policy at new inputs. In addition, policy’s dif-
ferences express how much the policy varies from a
baseline behavior given a variation of its input from
the demonstrated data. Policy’s differences are repre-
sented and learned by LWR and combined with policy
values, also learned by LWR, to estimate the policy
at new inputs. LR and LWR are static in the sense
that they represent how a policy varies with respect
to some fixed input in contrast to incremental tech-
niques which update their learning structure given a
new input. However, if we can make LR and LWR
capable of expressing how a policy varies with respect
to variations in its input, then the learned static and
dynamic characteristics of the policy can be appro-
priately integrated in order to give an estimate of the
policy at new inputs. This notion constitutes the key
concept of our proposed approach.

From the experimental results, we observe that
GWDL in overall outperforms DLWR, LWR and
LWPR both in interpolation and extrapolation cases.
Interpolation is observed to be an easier task than
extrapolation for all the tested methods [37]. Although
GWDL outperforms LWR, LWPR and DLWR, it still
exhibits limitations in its generalization performance
in extrapolation cases. We deduce that representing
and generalizing motor control policies from certain
human data is a challenging issue which can be fur-
ther investigated in the future and in the context of
regression theory in order to elucidate the motion-
force associations that humans employ in specific
scenarios which are of great practical importance for
autonomous systems. In conclusion, GWDL proves

the most successful technique for force policy gen-
eralization among all the examined methods in our
scenario and can serve as a well-aimed and competent
feedforward force controller in similar applications
where input to output mappings are able to be learned
from demonstrated data.
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