
J Intell Robot Syst (2015) 80:609–623
DOI 10.1007/s10846-015-0194-2

A Methodology for Creating an Adapted Command
Language for Driving an Intelligent Wheelchair

Brı́gida Mónica Faria · Luı́s Paulo Reis ·
Nuno Lau

Received: 13 July 2014 / Accepted: 9 January 2015 / Published online: 3 February 2015
© Springer Science+Business Media Dordrecht 2015

Abstract Intelligent wheelchairs (IW) are technolo-
gies that can increase the autonomy and inde-
pendence of elderly people and patients suffering
from some kind of disability. Nowadays the intel-
ligent wheelchairs and the human-machine studies
are very active research areas. This paper presents a
methodology and a Data Analysis System (DAS) that

B. M. Faria (�)
Escola Superior Tecnologia de Saúde do Porto / Instituto
Politécnico do Porto (ESTSP/IPP), Vila Nova de Gaia,
Portugal
e-mail: btf@estsp.ipp.pt

B. M. Faria · L. P. Reis
Laboratório de Inteligência Artificial e Ciência
de Computadores (LIACC), Porto, Portugal

L. P. Reis
e-mail: lpreis@dsi.uminho.pt

B. M. Faria · N. Lau
Instituto de Engenharia, Electrónica e Telemática de Aveiro
(IEETA), Aveiro, Portugal

N. Lau
e-mail: nunolau@ua.pt

L. P. Reis
Departamento de Sistemas de Informação, Escola de
Engenharia da Universidade do Minho (DSI/EEUM),
Guimarães, Portugal

N. Lau
Departamento de Electrónica, Telecomunicações e
Informática da Universidade de Aveiro (DETI/UA), Aveiro,
Portugal

provides an adapted command language to an user
of the IW. This command language is a set of input
sequences that can be created using inputs from an
input device or a combination of the inputs available
in a multimodal interface. The results show that there
are statistical evidences to affirm that the mean of the
evaluation of the DAS generated command language
is higher than the mean of the evaluation of the com-
mand language recommended by the health specialist
(p value = 0.002) with a sample of 11 cerebral palsy
users. This work demonstrates that it is possible to
adapt an intelligent wheelchair interface to the user
even when the users present heterogeneous and severe
physical constraints.

Keywords Intelligent Wheelchair · Command
Language · User Modeling · Data Analysis System

1 Introduction

The analysis of the tasks for a human to perform,
the information and technological requirements, the
machine ergonomics and design are among the most
interesting topics of study in the field of Human-
Machine interaction.

Systems that make the bridge between users and
the processes to be controlled are another key point
in this area. The challenges are even greater when
studying the adaptation of technology used by indi-
viduals with disabilities in order to perform tasks

mailto:btf@estsp.ipp.pt
mailto:lpreis@dsi.uminho.pt
mailto:nunolau@ua.pt

610 J Intell Robot Syst (2015) 80:609–623

that might otherwise be difficult or even impossible
for them.

Scientific research allowed the evolution and devel-
opment of many technologies that are nowadays used
in everyday life. In particular, innovations in the field
of assistive technologies enabled increased auton-
omy and independence for human beings that, for
some reason, have some kind of disability. Intelli-
gent wheelchairs are an obvious application of the
scientific work developed in the last decades on this
area [1]. Moreover, these assistive technologies still
are object of research and the interaction between
them and the user remains an open research problem.
The interaction between the Human and the IW is an
important component to take into consideration.

The methods implemented in this work allowed
answering several questions on the adaptation of an
intelligent wheelchair that can be commanded via a
multimodal interface. Another issue is related with
the creation of users’ profiles in order to automat-
ically adjust the best way of driving the intelligent
wheelchair. Users’ classification demands data of dis-
tinct sources such as voice, physical movements like
head or facial expressions or data taken from using the
usual joystick that is common in electric wheelchairs.
However, gathering and analyzing this type of data is
still an open research problem. In order to face this
problem, new multimodal data gathering and analy-
sis methodologies were developed enabling to build a
complete data gathering and data analysis system to
generated an adapted command language for driving
an intelligent wheelchair.

The paper is organized as follows: Section 2 briefly
describes our project, the system architecture and
the context of the multimodal data gathering system.
Section 3 presents the Data Analysis System (DAS)
and the purposed solution to give an adapted com-
mand language allowing an user to drive an intelligent
wheelchair. The used algorithms are also presented.
The experiments and results compose Section 4 and
in Section 5 the conclusions and future work are
presented.

2 Intellwheels Project

The main objective of the IntellWheels Project is to
develop an intelligent wheelchair platform that may
be easily adapted to any commercial wheelchair and

aid any person with special mobility needs [2, 3]. Sev-
eral different modules have been developed in order to
allow different ways of carrying inputs (Ii) for driv-
ing the IW. These include several input devices, such
as, joystick control with USB, microphone for voice
inputs, wiimote control for head movements, and a
brain computer interface for facial expressions and
thoughts recognition [4].

Within this work new ways of interaction between
the wheelchair and the user have been integrated,
creating a system of multiple entries based on a multi-
modal interface.

2.1 System Architecture

The IntellWheels system architecture that also enabled
to conduct the experiments of user profiling and the
DAS is presented in Fig. 1. The system is com-
posed by eight main modules and enables a ther-
apist to have full control of all the IW adaptation
process.

The core of the system is the new IntellWheels
multimodal interface that enables the patient to fully
control real and simulated Intelligent Wheelchairs,
using multimodal inputs, including pre-defined input
sequences that may be freely associated with any of
the available outputs (wheelchair actions). The input
devices may be freely connected to this multimodal
interface. The multimodal interface is connected to a
control module that is able to receive high-level or
medium level commands from the multimodal inter-
face and control a real or simulated wheelchair making
it perform the actions corresponding to those com-
mands (such as “go front”, “turn right”, “follow right
wall”, “stop”, among others).

In order to be able to develop and conduct mean-
ingful experiments, a serious game for intelligent
wheelchair teaching and testing was built. The game
permits the definition of circuits and the placement
of markers that must be collected by the user in
order to gain points. It also enables gathering other
performance measures such as the time and the pre-
cision of the trajectory of the users performing the
circuit [4].

In order to be able to extract user profiles and adapt
the user interface to the users’ profiles several other
applications were developed. One of these applica-
tions consists on a complete data gathering system that
is able to gather the data available on: the multimodal

J Intell Robot Syst (2015) 80:609–623 611

Fig. 1 IntellWheels system architecture

interface; control module; simulated wheelchair; real
wheelchair and serious game, and then synchronize all
this data and freely select the values to record in appro-
priate files in order to be further analyzed by the data
analysis applications. A user profiling application was
also created in this context in order to be able to con-
duct controlled experiments with each user in order to
analyze their capabilities of performing each type of
possible input in each of the available input devices
[5–7].

Based on the user profiling and associated data
gathering system, a DAS was developed enabling the
analysis of users’ capabilities when performing each
type of input and when driving the IW with different
input combinations. Beyond data analysis, this module
is able to advise, in a simple manner, the best con-
trol mode for each user and to specify a command
language adequate for each user.

A manager module was also developed in order
to be able to perform a large set of experiments
using the developed user profile extraction method-
ology and the set of implemented applications. This
manager allows to launch all the applications, per-
form user profiling tests, define the scenario to
be used, the circuit to be performed, the control
modes to be tested and the data to be gathered and
analyzed.

2.2 Multimodal Data Gathering and User Profiling

In order to be able to extract patient models and
also environment models, a complete multimodal
data gathering system was implemented. Based on
the IntellWheels prototype and using the real and
simulated environments, the work was focused on
planning appropriate data gathering and DAS that
enable the creation of an adapted interface and
command language adjusted to the patient and
where information about the environment is also
considered.

A user profiling module was designed and imple-
mented. This module, along with the IntellWheels
DAS, helps in the process of giving the more adequate
input device for driving the wheelchair. Initially a set
of tasks and actions was defined to be executed by the
user. A wizard, or more specifically the profiling com-
ponent of the multimodal interface (Fig. 2), includes
simple tasks that can be performed with input devices
and that permit an evaluation of the user ability to use
that device [8].

The performance of each task was collected and
the specialists (occupational therapists) were inte-
grated in the process to confirm the correct classi-
fication. The data analysis system advises the user
about the best suited input(s) device(s) and command

612 J Intell Robot Syst (2015) 80:609–623

Fig. 2 Starting user’s
profile module

language. The system also records the information
about each user and if the user wants to update the
information.

3 Data Analysis System Implementation

The IntellWheels DAS is the component that advises
the user on the best input device for driving the intel-
ligent wheelchair. Moreover, the DAS, using informa-
tion from the pre-processing module of multimodal
data fusion, is capable of extracting the most relevant
information from the patient data gathering system
application (profile module) which enables fast gener-
ation and configuration of the interfaces. The system
advises the best options for driving the intelligent
wheelchair including the best set of input sequences
and their association with the available commands.
The best choice for the command language is going
to consider the best recognition combination, the best
efficiency and the best intuitiveness combination. The
objective is to have the best association of inputs
and commands, considering the user characteristics, to
drive the intelligent wheelchair. This means that it is
necessary to first define a set of commands. For exam-
ple using five commands, as in Table 1, associated to
an input sequence set:

Next the DAS requirements, in order to provide
the best interface for a specific user, are going to be
presented.

3.1 Requirements

The IntellWheels Data Analysis System has several
requirements that should be fulfilled:

• Enable multiple input devices – the command
language should be able to include inputs from
different input devices so that it has a higher range
of facilities for driving the IW;

• Maximize user performance in driving the IW –
the objective is to present a solution where the
performance, usability and safety is maximized;

• Be adapted to multiple users with distinct disabil-
ities – the IW should be available and adapted to
different users and to different disabilities;

• Fast response to user commands – the time
between starting an input sequence and execut-
ing the corresponding command should be mini-
mized;

Table 1 Input sequences associated with commands

Inputs sequences Commands

Press button 1 “Go Forward”

Press button 1 – Press button 3 “Go Back”

Press button 1 – Tilt the head to “Turning Right”

the right side

Say “Go” – Say “Left” “Turning Left”

Smile “Stop”

J Intell Robot Syst (2015) 80:609–623 613

• Associate several distinct input sequences with
similar performance to the same command – the
fulfilment of this option allows a user which
degrades for example one of his abilities, to be
able to drive the IW with another set of options;

• Intuitiveness between the associations of the input
sequences and the commands – the user should
use input sequences that are user friendly, for
example saying “Forward” should mean that the
wheelchair should go forward or “Blink the right
eye” should mean that the wheelchair should turn
right instead of going left.

In order to explain the proposed solutions the defi-
nition and formalizations of confusion matrix for each
input device are presented in the next subsection.

3.2 Inputs’ Confusion Matrix and Measures

The data acquisition system in the Profile Module also
provides the information about what was asked and
what was recognized by the system. For that reason it
is possible to obtain a confusion matrix for each input
and for each input device.

The confusion matrix of each input device can be
designated as in Eq. 1:

CMID = (nij) i = 1, ..., N
j = 1, ..., N

(1)

where i designates the lines, j the columns of the
matrix, nij is the number of times that Ij is recognized
as Ii and ID is the input device.

For example Table 2 represents the confusion
matrix with the inputs that can be expressed saying
“Go”, “Left”, “Right”, “Back” and “Stop”.

For each input device confusion matrix it is possi-
ble to calculate the recall and precision of each input.

The recall of each input is defined as the probability
of a true input being correctly classified and can be
calculated as in Eq. 2:

reci = nii

N∑

m=1
nmi

(2)

where nmi is the number of times that Ii is recognized
as Im and N the number of inputs. The precision of
each input is defined as the probability of a predicted
input represents that true input and can be calculated
as in Eq. 3:

preci = nii

N∑

m=1
nim

(3)

where nim is the number of times that Im is recognized
as Ii and N the number of in-puts. It is important to
refer that in the concrete problem of giving an adapted
command language, an extra case representing when
other distinct input was predicted, was added in the
predicted categories.

It is possible to combine the recall and precision
of each input using, for example, the arithmetic mean
or a more adequate measure that uses the harmonic
mean called the F-measure [9]. This measure gives
high values only when both precision and recall have
high values. Equation 4 presents the general definition
of the Fβi-measure of each input:

Fβi = (β2 + 1) × preci × reci

β2preci + reci

(4)

where 0 ≤ β < +∞ is a parameter that controls the
balance between the recall and the precision. In the
experiments recall and precision are evenly weighted
therefore it was used the value 1 for β.

Table 2 Confusion matrix
defined for the microphone CMMicrophone True

I1 (“Go”) I2 (“Left”) I3 (“Right”) I4 (“Back”) I5 (“Stop”)

Predicted

I1 (“Go”) n11 n12 n13 n14 n15

I2 (“Left”) n21 n22 n23 n24 n25

I3 (“Right”) n31 n32 n33 n34 n35

I4 (“Back”) n41 n42 n43 n44 n45

I5 (“Stop”) n51 n52 n53 n54 n55

614 J Intell Robot Syst (2015) 80:609–623

3.3 Command Language

In order to generate a command language adapted
to a given user several points should be taken into
account: the time efficiency, the recognition proba-
bility of an input sequence and the intuitiveness of
an input sequence to be associated to a command.
Figure 3 shows the quantifiable criteria used for the
command language definition.

Next, these three points are going to be presented in
more detail using the formalization of the measurable
criteria.

3.3.1 Time and Time Efficiency

Assuming that a sequence of inputs Si can be formal-
ized as I (i,1)I (i,2)I (i,3) I(i,Ni), where each I (i,Ni) ∈
{I1, I2, ..., Ik} and a single command can be associ-
ated to a final sequence that produces an action, the
time to generate a command is composed by a compo-
nent of time to select the inputs and by the time taken
by the command to generate a visible action or time
of output (ttimeout (i)). The total time for a particular
command to be used has the Eq. 5:

tSi
=

Ni∑

k=1

t ID

I(i,k)
+ ttimeout (i) (5)

where k is the number of each of the inputs used in
the sequence, Si the identification of the sequence i

and Ni the total number of the inputs of sequence i.
Therefore it is possible to determine the total time for

Fig. 3 Criteria used for the command language

all the commands necessary to drive the intelligent
wheelchair as in Eq. 6:

TC =
Cj∑

j=1

tSj
(6)

where Cj is the number of commands in the command
language.

The time efficiency can be defined as a function of
time, if more time is necessary for a command to be
used then that command is less efficient. It is possible
to formalize this function as in Eq. 7:

eff : [0, +∞[→ [0, 1]
tSi

�→ 1
tSi

+1
(7)

The total time efficiency (Eq. 8) is the sum of all the
efficiency values of the commands that compose a
command language:

TCeff
=

Cj∑

j=1

eff (tSj
) (8)

3.3.2 Sequence Recognition

It is also possible to define and calculate the sequence
Si recognition value. Assuming the independence of
recognition of the different inputs in a sequence, the
sequence Si recognition value is the product of the F-
measure values as in Eq. 9.

regSi =
Ni∏

k=1

FID
I(i,k) (9)

where FID
I(i,k) is the F-measure value in the position of

the principal diagonal of the input I (i,k) be in use in
the sequence and for a specific input device (ID). The
total recognition value of a set of commands can be
determined by Eq. 10:

Treg =
Cj∑

j=1

regSj (10)

where Cj is the number of commands in the command
language.

3.3.3 Intuitiveness

Another concept that should be analyzed is the intu-
itiveness of a sequence of in-puts. In order to have
values similar to the efficiency and recognition, it was

J Intell Robot Syst (2015) 80:609–623 615

Table 3 Intuitiveness for
the voice inputs I1 Go I2 Left I3 Right I4 Back I5 Stop I6 Front I7 Forward

Commands

Forward 1 0 0 0 0 1 1

Left 0 1 0 0 0 0 0

Right 0 0 1 0 0 0 0

Back 0 0 0 1 0 0 0

Stop 0 0 0 0 1 0 0

defined that an input sequence, associated to a given
action, can have a value of intuitiveness between 0 and
1. The value of 1 means that the input is very typical
for performing that command and a value of 0 means
that the input typically is associated with an opposite
command. For example, if a sequence is composed of
a single input such as saying “front” and the action
of the wheelchair associated is go forward then the
intuitiveness value may be 1. If the same input is asso-
ciated with the command that makes the IW going
back then the intuitiveness will be 0. Table 3 presents
an example of the intuitiveness of several voice inputs.

The intuitiveness of a sequence composed by two
or more inputs can also be obtained by the product
of the intuitiveness of each input. In fact, an exam-
ple is a sequence composed of two inputs such as say
“front” “front” then the intuitiveness in this case it is
also 1 when the objective is to drive the wheelchair
forward. In particular, the intuitively is chosen by the
user and for example the users of the system (Table 3)
intuitively associated “Go” with the meaning “Go
forward”.

3.3.4 Command Language Implementation

In order to obtain the best performance, the command
set that maximizes the se-quence recognition, the
intuitiveness and time efficiency should be obtained.

Basically, a command language adapted to the user
should be found, that maximizes the function com-
posed by the total time efficiency, total recognition
and intuitiveness:

arg max
Teff ,Treg,Tint

(αTeff + βTreg + γ Tint) (11)

where α, β and γ are parameters that could be
adjusted. The optimization may be performed by
any type of optimization algorithm with emphasis on

iterative meta-heuristics such as basic hill-climbing
[10], simulated annealing [11], tabu search [12] or
genetic algorithms [13]. For the implementation, in
order to show the concept, a modified hill-climbing
algorithm was implemented, mainly due to its sim-
plicity. The pseudo-code and the details of the imple-
mentation are subsequently explained. First the user
abilities on using several inputs are captured with the
profile module and the recognition values are obtained
for all the available inputs. The time taken to exe-
cute each input sequence is also captured and the
efficiency of performing the inputs is calculated. The
degree of intuitiveness was indicated initially by the
user or by a specialist. Figure 4 details the algorithm
implementation.

The system starts by reading the selected user
recognition and efficiency data and the intuitiveness
data for the set of available inputs and commands.
After selecting and configuring the optimization algo-
rithm, the system solves the optimization problem, as
previously defined, using a given meta-heuristic and
subsequently recording the solution so that it can be
used on the context of the multimodal interface. Hill-
climbing was selected for performing the experiments
on this work. However, it is easy to extend the sys-
tem for using other optimization algorithms such as
simulated annealing or genetic algorithms.

The pseudo-code for the optimization process is
next detailed. For this implementation only voice, joy-
stick and wiimote inputs were used. However, the
system may be easily extended with further input
devices using them exactly as the three included in this
version.

The algorithm receives the user name, number of
input devices (three on this version: voice, joystick
and wiimote inputs), number of available commands
and the maximum size for the input sequences.
It also receives the algorithm id that enables to
consult the algorithm type and parameters. The

616 J Intell Robot Syst (2015) 80:609–623

Algorithm 1 Command Language Advisor(userName, NID, NM, NC, NS, algId), solution, best

1. inputs:
2. userName – User name (that enables to consult user characteristics and data)
3. NID – Number of input devices. 3 Input devices were used (joystick, voice and wii)
4. NM – Maximum number of inputs per input device. It includes (NV, NJ, NW)
5. as the maximum number of Voice Inputs, Joystick Inputs and WIImote Inputs
6. (NC, NS) – Number of available commands and maximum of Inputs in a sequence
7. algId- Algorithm identification enabling to get all algorithm parameters
8. outputs:
9. solution – Solution containing one input sequence for each command
10. best - Best solution evaluation
11. begin
12. id ← getID usersFile(userName)
13. weights = (w rec, w time, w intu) ← readfile user weights(id)
14. rec = (rec voi[NV], rec joy[NJ], rec wii[NW] ← readfile recognition(id)
15. time = (time voi[NV], time joy[NJ], time wii[NW]) ← readfile efficiency(id)
16. intu = (intu voi[NC][NV], intu joy[NC][NJ], intu wii[NC][NW]) ← readfile intuit(id)
17. alg = (algType, param, maxIter, maxNoImp, neighbourF) ← Readfile alg(algId)
18. solution ← random solution(alg, (NC, NS), (rec, time, intu))
19. best ← evaluate solution(solution, weights, rec, time, intu)
20. currBest ← best
21. currSolution ← solution
22. it ← 0
23. noimp ← 0;
24. while it<maxIter ∧ noImp<maxNoImp do
25. solNew ← neighbour solution(neighbourF, currSolution, (NC, NS, NID))
26. if repeated(solNew) then
27. val ← −∞
28. else
29. val ← evaluate solution(solNew, weights, rec, time, intu)
30. endif
31. if solution change criteria(alg, val, best) thenx
32. currSolution ← solNew
33. currBest ← val
34. noImp ← 0
35. endif
36. if currBest >best then
37. best ← currBest
38. solution ← currSolution
39. else
40. noImp ← noImp + 1
41. endif
42. alg ← update alg parameters(alg, it, currSolution)
43. it ← it + 1
44. endwhile
45. return (solution, best)
46. end

J Intell Robot Syst (2015) 80:609–623 617

Fig. 4 Command language advisor implementation

algorithm outputs a solution that associates to each
command an input sequence trying to maximize
the evaluation function considered. It also outputs
the evaluation value achieved for the best solution
found. The solution structure is depicted in Table 4.
The solution is basically a matrix of number of
available commands (NC) (for example: “Front”,
“Left”, “Right”, “Back” and “Stop”) and NS inputs
forming the corresponding input sequence used to
trigger that command. Each cell of the solution
matrix may be NULL (in case the sequence used is
shorter than the maximum number of inputs for a
sequence NS) or composed by an input device and an
input.

The Command Language Advisor, starts by read-
ing all the input files containing the problem data.
This includes consulting the user id, the weights to
be used for the recognition, efficiency and intuitive-
ness (to be used on the evaluation of a given solution).
The algorithm also reads the input files containing all
the available data concerning the user. This includes
the recognition and efficiency vectors for all possible
inputs (voice, joystick and wii on this implementation)
and the intuitiveness matrix that relates the intuitive-
ness of using each of the inputs available on the
three input types for performing each of the avail-able
commands. Finally, the algorithm parameters are read
from the algorithm database.

Table 4 Command
Language Advisor Solution
Structure

Number of Commands (NC=5)

1 2 3 4 5

Number of maximum inputs in a sequence (NS=4)

1 wii 2 voice 1 wii 2 voice 1 voice 1

2 NULL joy 1 wii 3 joy 3 joy 3

3 NULL NULL wii 1 NULL joy 3

4 NULL NULL NULL NULL NULL

Ex: Front Ex: Left Ex: Right Ex: Back Ex: Stop

618 J Intell Robot Syst (2015) 80:609–623

Table 5 Experience using
the wheelchair, autonomy,
independence and
constraints of the cerebral
palsy users

Experience using the Wheelchair, Autonomy, Independence and Constraints

Variables N Variables n

Use manual wheelchair Cognitive constraints

no 10 no 8

yes 1 yes 3

Use electric wheelchair Motor constraints

no 1 no 0

yes 10 yes 11

Autonomy using wheelchair Visual constraints

no 1 no 3

yes 10 yes 8

Independence using wheelchair Auditive constraints

no 1 no 11

yes 10 yes 0

The solving process starts by generating an initial
random solution for the problem, composed by a valid
input sequence (composed by 1 to NS inputs) for each
of the possible (NC) commands. It then evaluates the
solution and saves the solution and evaluation as the
best ones of those already tested. The main algorithm
cycle is composed by maxiter iterations (or maxnoimp
iterations without improvement). In each iteration, a
new solution is calculated, that is neighbour (using
the defined neighbouring function) from the present
solution. Algorithm 2 displays the simple neighbour
algorithm that was used in most of the experiments.

Algorithm 2 considers two types of neighbours:
(i) changing/adding/removing an input sequence asso-
ciated to a command; (ii) exchanging the input
sequences used for two distinct commands. The algo-
rithm starts by copying the current solution to the new
neighbour solution. It then decides which of the neigh-
bour functions will be used (i) or (ii) with a probability
of 50 % each in the current simple implementation.

For applying neighbourhood (i) a command and an
input sequence step are randomly selected until the
step to change is a valid step (1 or a step without any
valid steps executed after it). If the step to change is
the last step and it is not step number 1 (that obviously
may not be cleared), a probability of 50 % is used
to decide on clearing it. If the step is cleared both its
input device and input are set to NULL. Otherwise a
new valid value is randomly selected for the step input
device and input. Neighbourhood (ii) is applied by
randomly selecting two distinct commands and then
swapping the commands input sequences, step by

step. Finally the algorithm returns the new neighbour
solution.

The solution is evaluated using the evaluation func-
tion considered and if it is better than the best solution
found (given the solution change criteria used for the
algorithm in use) then it will become the new current
solution and the current best will be this solution eval-
uation. If the solution is better than the best solution
already found the best solution (and its corresponding
evaluation) will be changed for the best solution.

The command language evaluator algorithm
(Algorithm 3) uses the pre-defined weights and the
recognition, efficiency and intuitiveness user infor-
mation to evaluate the current command language.
It starts by initializing the evaluation to 0. Then, for
each command in the solution it evaluates the input
sequence used for that command given its recognition,
efficiency and intuitiveness and the corresponding
weights considered.

Each input sequence is evaluated until its end (and
thus if a NULL value is encountered meaning the end
of the input sequence its evaluation will be finished).
For the recognition and intuitiveness, products of the
corresponding values of the inputs on the sequence
are used. For the efficiency, first the total time of
the sequence is calculated and then Eq. 8 is applied.
On this algorithm version only commands without the
need for timeout are considered and thus timeouts are
not added.

The solving algorithm (Algorithm 1) final step con-
sists on returning the solution found and its evaluation.
The solution may then be used by the multimodal

J Intell Robot Syst (2015) 80:609–623 619

Algorithm 2 neighbour solution(neighbourF, solution, (NC,NS,NID)), newSolution

1. inputs:
2. neighbourF – Neighbourhood function number (not used on this simple version)
3. solution – Solution containing input sequence for each command
4. NC, NS – Number of commands and maximum inputs in sequence
5. NID–Number of Input Devices (nInputs(i) gives the number of inputs of an Input Device
6. outputs:
7. newSolution – Neighbour solution considering the neighbourhood function. The solution
8. size is NCxNS. Each solution element is composed by two parts an input device
9. (between 1 and NID and an input between 1 and the number of inputs of that
10. input device)
11. begin
12. do
13. newSolution ← solution
14. neighbourType ← random(1, 2)
15. if neighbourType=1 then
16. ncom ← random(1, NC)
17. do
18. nseq ← random(1, NS)
19. while (nseq 	= 1 ∧ inputDevice(newSolution[ncom][nseq-1]) = NULL)
20. clear← random(0, 1)
21. if clear=1 ∧ (nseq 	= NS ∧ inputDevice(newSolution[ncom][nseq+1]) = NULL ∨
22. nseq=NS) ∧ nseq 	= 1 then
23. inputDevice(newSolution[ncom][nseq]) ← NULL
24. input(newSolution[ncom][nseq]) ← NULL
25. else
26. nInpDev ← random(1, NID)
27. inputDevice(newSolution[ncom][nseq]) ← nInpDev
28. input(newSolution[ncom][nseq]) ← random(1, nInputs(nInpDev))
29. endif
30. else
31. ncom1 ← random(1, NC)
32. do
33. ncom2 ← random(1, NC)
34. while (ncom1 = ncom2)
35. for nseq=1 to NS do
36. swap(inputDevice(newSolution[ncom1][nseq]),
37. inputDevice(newSolution [ncom2][nseq]))
38. swap(input(newSolution[ncom1][nseq]),
39. input(newSolution[ncom2][nseq]))
40. endfor
41. endif
42. while (newSolution = solution ? repeated sequence(newSolution))
43. return newSolution
44. end

620 J Intell Robot Syst (2015) 80:609–623

Algorithm 3 CL Evaluator – evaluate solution(solution, weights, rec, time, intu), evaluation

1. inputs:
2. solution – Solution containing the input device and inputs used for each input
3. sequence for each command
4. weights – Weights for recognition, efficiency and intuitiveness
5. rec[3][NM] – Recognition matrix containing for each input device and input the
6. recognition probabilities for a given user
7. time[3][NM] – Time matrix containing for each input device and input the t
8. times enabling to calculate efficiency information for a given user
9. intu[NC][3][NM] – Intuitiveness matrixes relating each input from each input device
10. to a given command for a given user
11. outputs:
12. evaluation – Solution evaluation considering the evaluation function
13. begin
14. (w rec, w time, w intu) = weights
15. evaluation ← 0
16. for ncom = 1 to NC do
17. recVal ← 1
18. timeVal ← 0
19. intuVal ← 1
20. for nseq = 1 to NS do
21. inpDev ← inputDevice(solution[ncom][nseq])
22. inp ← input(newSolution[ncom][nseq])
23. if inpDev = NULL then break
24. else
25. recVal ← recVal * rec[inpDev][inp]
26. timeVal ← timeVal + time[inpDev][inp]
27. intuVal ← intuVal * intu[ncom][inpDev][inp]
28. endif
29. endfor
30. evalComm ← w rec* recVal + w time*1/(timeVal+1) + w intu*intuVal
31. evaluation ← evaluation + evalComm
32. endfor
33. return evaluation
34. end

interface for enabling the user to drive the Intelligent
Wheelchair.

4 Experiments and Results

The experiments were performed by a sample com-
posed of 11 patients with cerebral palsy with the level
IV (27.3 %) and V (72.7 %) of the Gross Motor
Function Measure [14]. The mean of age was 27
years old with 64 % males and 36 % females. In
terms of school level, 1 is illiterate, 1 has completed

elementary school, 4 have completed middle school,
3 have completed high school and 2 have a BSc. The
dominant hand was divided as: 82 % for left, 18 %
for right hand. The frequency of use of information
and communication technologies was also charac-
terized: 7 answered rarely; 2 sometimes; 1 lot of
times and 1 always. The aspects related to experi-
ence of using manual and electric wheelchair were
also questioned. Table 5 shows the distribution of
answers about autonomy and independency using
the wheelchair and constraints presented by these
individuals.

J Intell Robot Syst (2015) 80:609–623 621

Fig. 5 Joystick and head movements positions

Table 6 Command Language Advisor Results

Command Language for Patients

Patient Ev Forward Left Right Back Stop

P1

Specialist 4.53 wiimote joystick joystick joystick joystick

DAS 4.57 joystick joystick joystick joystick joystick

P2

Specialist 4.18 joystick joystick joystick joystick voice “stop”

DAS 4.85 joystick joystick joystick joystick voice “go”

P3

Specialist 3.33 voice “forward” wiimote wiimote joystick voice “stop”

DAS 4.51 wiimote wiimote wiimote wiimote voice “go”

P4

Specialist 4.50 voice “forward” joystick joystick joystick voice “stop”

DAS 4.60 joystick joystick joystick joystick voice “stop”

P5

Specialist 4.14 voice “front” wiimote wiimote joystick voice “stop”

DAS 4.40 wiimote wiimote voice “turn” joystick voice “stop”

P6

Specialist 4.13 wiimote joystick joystick joystick joystick

DAS 4.38 wiimote wiimote wiimote wiimote wiimote

P7

Specialist 4.49 voice “front” joystick joystick joystick voice “stop”

DAS 4.60 joystick joystick joystick voice “back” voice “stop”

P8

Specialist 3.51 wiimote joystick joystick joystick joystick

DAS 4.20 wiimote wiimote wiimote wiimote wiimote

P9

Specialist 3.70 voice “forward” wiimote wiimote joystick voice “stop”

DAS 4.75 joystick joystick joystick joystick joystick

P10

Specialist 4.11 voice “forward” voice “left” voice “right” voice “turn” voice “stop”

DAS 4.80 joystick joystick voice “turn” joystick voice “go”

P11

Specialist 4.29 joystick wiimote wiimote joystick joystick

DAS 4.30 wiimote wiimote wiimote wiimote wiimote

622 J Intell Robot Syst (2015) 80:609–623

The voice inputs were organized in order to give
several choices for the command language. The input
options in this case were: “Go”, “Front”, “Forward”,
“Back”, “Right”, “Left”, “Turn”, “Spin” and “Stop”.
The five positions of the Joystick and Head Move-
ments were set accordingly to the usual necessary
positions for driving a wheelchair “East”, “North”,
“South”, “West” and “South-west” (Fig. 5).

An extension of the profiling was also created in
order to record all the information available, such as
facial expressions, thoughts and buttons pressed at the
joystick. The command language evaluation given by
the system solution was compared with the command
language given by the occupational therapists. Table 6
shows the command language advised by the occupa-
tional therapists and by the DAS. In Table 6, all the
directions given by wiimote and joystick refer to the
most intuitive and natural directions. In order to com-
pare the results obtained by the specialist and by DAS,
the paired sample t test was applied to the mean of the
solution evaluation after verifying the normality using
the Kolmogorov-Smirnov test (p value = 0.114).

The results show that there are statistical evidences
to affirm that the mean of the evaluation of the DAS
is higher than the mean of the evaluation of the com-
mand language recommend by the specialist (p value
= 0.002). In particular, from the total of 55 com-
mands, from all the 11 patients, the data analysis
system had exactly the same recommendation as the
specialists in 44 % of the commands and 53 % of the
advised commands by the DAS use the same input
device to produce the command as the ones advised
by the specialists.

5 Conclusions and Future Work

Many IW prototypes are being developed in sev-
eral research projects, around the world, however the
adaptation of their user interface to the patient is a
neglected research topic. This research work aimed
at tackling this problem developing a methodology
enabling to dynamically adapt the IW user interface
to the user’s characteristics. The DAS generates a
command language adapted to the user. With this com-
mand language a more high level way of driving the
intelligent wheelchair is possible the may even help
users with the most severe cases of deficiency to be
able to drive a wheelchair. It was also possible to

conclude that the system results are very similar to
the ones recommended by the occupational therapist.
Also, the automatic generated command language had
even better evaluation, combining intuitiveness, recog-
nition and efficiency, than the command language
recommended by the specialists. The data gathering
process enables creating a data repository of user-
wheelchair interaction that may be a used for several
types of future studies. The data analysis system defi-
nition and development brings a new methodology for
starting to use an intelligent wheelchair. Nowadays,
this methodology is already used by a health institu-
tion for recognition of patients’ capabilities, and to test
and train the users.

Acknowledgments The authors would like to acknowl-
edge APPC – Portuguese Association for Cerebral Palsy
for all the help on the experiments. This work was par-
tially supported by project QoLis - Quality of Life Plat-
form, N◦ 2013/34034 QREN SI I&DT, (NUP, NORTE-07-
0202-FEDER-034Ú34) and project Cloud Thinking (CENTRO-
07-ST24-FEDER-002031), co-funded by QREN, “Mais Cen-
tro” program. The authors would like also to acknowledge
to FCT – Portuguese Science and Technology Foundation
for the previous funding for the INTELLWHEELS project
(RIPD/ADA/109636/2009) and previous funding for the PhD
Scholarship FCT/SFRH/BD/44541/2008 and also for the fund-
ing for LIACC – Laboratório de Inteligência Artificial e de
Ciência de Computadores (PEst-OE/EEI/UI0027/2014), IEETA
– Instituto de Engenharia Eletrónica e Telemática de Aveiro
(PEst-OE/EEI/UI0127/2014) and ESTSP/IPP – Escola Superior
de Tecnologia da Saúde Porto – IPP.

References

1. Faria, B.M., Reis, L.P., Lau, N.: A Survey On Intelligent
Wheelchair Prototypes And Simulators, WorldCist 2014,
AISC 275, Vol. 1 Springer. Madeira, 545–557 (2014)

2. Braga, R., Petry, M., Moreira, A.P., Reis, L.P.: Concept and
design of the intellWheels platform for developing intelli-
gent wheelchairs. Informatics in Control, Automation and
Robotics, 191–203 (2009)

3. Braga, R., Petry, M., Reis, P., Moreira, A.P.: A modular
development platform for intelligent wheelchair. J. Reinf.
Plast. Compos. 48(9), 1061–1076 (2011)

4. Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: Evalua-
tion of Distinct Input Methods of an Intelligent Wheelchair
in Simulated and Real Environments: A Performance and
Usability Study, Assist. Technol. J., RESNA, Taylor and
Francis 25(2), 88–98 (2013)

5. Faria, B.M., Reis, L.P., Lau, N., Soares, J.C., Vasconcelos,
S.: Patient Classification and Automatic Configuration of
an Intelligent Wheelchair, Communications in Computer

J Intell Robot Syst (2015) 80:609–623 623

and Information Science 358, pp. 268–282. Springer-Verlag
(2013)

6. Faria, B.M., Reis, L.P., Lau, N.: Adapted Control Meth-
ods for Cerebral Palsy Users of an Intelligent Wheelchair
Manual, Special Issue on Autonomous Robot Systems,
Journal of Intelligent and Robotic Systems, Springer, ISSN,
pp. 1573–0409 (2014)

7. Faria, B.M., Reis, L.P., Lau, N.: Cerebral Palsy EEG
signals Classification: Facial Expressions and Thoughts
for Driving an Intelligent Wheelchair, IEEE International
Conference Data Mining 2012, Biological D.M. Applied
Healthcare Works, Bruxelas, page 33–40 (2012)

8. Faria, B.M., Vasconcelos, S., Reis, L.P., Lau, N.: A method-
ology for creating intelligent wheelchair users’ profiles. Int.
Conf. Agents Artif. Intell. 6(8), 171–179 (2012)

9. Sasaki, Y., Fellow, R.: The truth of the F-measure, Manch-
ester: MIB-School of Computer Science. University of
Manchester (2007)

10. Coppin, B.: Artificial Intelligence Illuminated. Jones &
Bartlett Learning, Canada (2004)

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by
simulated annealing. Science 220(4598), 671–680 (1983)

12. Glover, F.: Tabu search (Part I). ORSA J. Comput. 1, 190–
206 (1989)

13. Holland, J.H.: Adaptation in natural and artificial systems.
University Michigan Press (1975)

14. Palisano, R.J., Rosenbaum, P., Bartlett, D., Livingston,
M.H.: Content validity of the expanded and revised Gross
Motor Function Classification System, D. Med. Child Neu-
rol. 50(10), 744–750 (2008)

	A Methodology for Creating an Adapted Command Language for Driving an Intelligent Wheelchair
	Abstract
	Introduction
	Intellwheels Project
	System Architecture
	Multimodal Data Gathering and User Profiling

	Data Analysis System Implementation
	Requirements
	Inputs' Confusion Matrix and Measures
	Command Language
	Time and Time Efficiency
	Sequence Recognition
	Intuitiveness
	Command Language Implementation

	Experiments and Results
	Conclusions and Future Work
	Acknowledgments
	References

