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Abstract A practical approach for generating motion
paths with continuous steering for car-like mobile
robots is presented here. This paper addresses two
key issues in robot motion planning; path continuity
and maximum curvature constraint for nonholonomic
robots. The advantage of this new method is that it
allows robots to account for their constraints in an
efficient manner that facilitates real-time planning. B-
spline curves are leveraged for their robustness and
practical synthesis to model the vehicle’s path. Com-
parative navigational-based analyses are presented to
selected appropriate curve and nominate its param-
eters. Path continuity is achieved by utilizing a sin-
gle path, to represent the trajectory, with no limi-
tations on path, or orientation. The path parameters
are formulated with respect to the robot’s constraints.
Maximum curvature is satisfied locally, in every seg-
ment using a smoothing algorithm, if needed. It is

M. Elbanhawi (<) - M. Simic - R. N. Jazar

School of Aerospace, Mechanical, and Manufacturing
Engineering (SAMME), RMIT University.Bundoora East
Campus, Corner of Plenty Road, McKimmies Road,
Bundoora VIC 3083, Melbourne, Australia

e-mail: mohamed.elbenhawi@rmit.edu.au

M. Simic
e-mail: milan.simic @rmit.edu.au

R. N. Jazar
e-mail: reza.jazar @rmit.edu.au

demonstrated that any local modifications of sin-
gle sections have minimal effect on the entire path.
Rigorous simulations are presented, to highlight the
benefits of the proposed method, in comparison to
existing approaches with regards to continuity, cur-
vature control, path length and resulting acceleration.
Experimental results validate that our approach mim-
ics human steering with high accuracy. Accordingly,
efficiently formulated continuous paths ultimately
contribute towards passenger comfort improvement.
Using presented approach, autonomous vehicles gen-
erate and follow paths that humans are accustomed to,
with minimum disturbances.

Keywords Path planning - Path smoothing -
Nonholonomic robots - C? continuity - Maximum
curvature - Real time planning

1 Introduction

Path planning is an essential task in robotics. It is
development of a collision-free, continuous sequence
of feasible actions, or path segments, from the start
to the goal position. An autonomous robot must be
capable of sensing its surroundings to achieve obsta-
cle detection. It must perform localization in order
to be aware of its current position, and goal position
within a global map, as well as, sense obstacles on
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the projected trajectory. Adequate sensors, localiza-
tion, actuation, and environment knowledge is often
assumed in planning. However, robotic research is
also conducted in dynamic and stochastic environ-
ments. For planning purposes, the environment is
represented as a configuration space (c-space) or as
a discrete set of neighboring cells. Path planning
algorithms attempt to systematically generate an opti-
mal path with respect to a predefined metric and
avoid occupied cells, or occupied c-space regions.
Deterministic planning methods are computationally
exhaustive, even for simplified planning problems
[1]. Planning is followed by execution of the desired
actions. This process is generally achieved using low
level controls.

Planning algorithms have been actively researched
for applications in robotics, animation and compu-
tational biology [2]. They are often categorized into
roadmaps, cell-decompositions, potential fields, and
sampling-based planners [3]. Roadmap algorithms
and cell decompositions attempt to capture the con-
nectivity of the search space and employ a graph-
search algorithm [4, 5].

Consequently, heuristic search algorithms were
proposed to accelerate planning process, although
they may also have some weaknesses. Potential field
methods, in some situations, generate oscillating sub-
optimal paths [6—8]. Sampling-based planners rely on
stochastic sampling to effectively search c-space [9].
However, random sampling is sacrificing the optimal-
ity of the path. The attained paths are suboptimal and
contained redundant movements that require further
processing as proposed in [10].

Underactuated and nonholonomic motion planning
is commonly achieved by firstly ignoring the con-
straints, to generate a trajectory, and then modify-
ing the trajectory [11]. Simplified solutions generate
piecewise linear paths that ignore robots constraints.
Cheng [12] highlighted side effects caused by ignor-
ing the robots differential constraints in planning and
generating linear paths.

Trajectory tracking algorithms are needed to exe-
cute the planned paths. Consequently, a mathemati-
cal formulation of the path is required. In the sim-
plest forms, tracking is executed using separate PID
control loops, for heading and velocity [13]. Fuzzy
logic controllers were proposed for both car-like
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and differential drive robots [14, 15]. Algorithms,
proposed in [16, 17], require feasible and continu-
ous paths, to minimize high-speed dynamic tracking
error, by defining the steady state steering commands.
Cheein, Scaglia [18] proposed a trajectory tracking
algorithm which outputs velocity and steering com-
mands, for car-like robots, that minimize tracking
error and controller effort. Additionally, their pro-
posed tracking algorithm required the path to be
kinematically feasible.

Curvature discontinuities lead to overshooting, as
shown in [19, 20], control system instability [21],
and passenger discomfort [22]. In applications that
involve heavy machinery, curvature discontinuity has
been related to mechanical wear and failure [23, 24].
In agriculture, robots are required to closely follow
paths and prevent crop damage. Clothoids were pro-
posed to generate continuous maneuvers for a farming
vehicle [25]. Continuous curvature paths application
improve stability and control of industrial vehicles
[26].

Combined circular arc segments of minimum turn-
ing radius and straight lines were proposed to generate
feasible paths for car-like robots. Dubin’s paths were
commonly used for mobile robots with minimum turn-
ing radius path smoothing [27]. Similar approaches
have been proposed for Unmanned Aerial Vehicles
(UAV) in planar [28] and 3D scenarios [29]. Comput-
ing the appropriate Dubin’s set for two configurations
was shown to be intractable and challenging in real-
time scenarios .[30]. Approximate models, and coarse
discretization of the control space, were employed to
simplify the planning problem and perform it in a
timely manner [31, 32]. The discretization led to path
discontinuities and poor quality paths with respect to
the planning metric.

Fraichard, Scheuer [33] highlighted the shortcom-
ings of arcs and straight-lines use, resulting in dis-
continuous curvatures. Straight-lines have no cur-
vature and circular arcs have a constant curvature
value, which results in discontinuities when combin-
ing them. Following that, Clothoids were proposed for
smoothing. They are characterized with curvature that
increases with arc-length. Subsequently, they are often
employed in civil engineering applications, particu-
larly for road design, as continuous curvature is suit-
able for human steering and passenger comfort [34].
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Clothoids have no closed form and have to be approx-
imated by high-order polynomials and splines, which
limits their use for real-time robotic applications [35—
37]. Recent advances allow Clothoid synthesis with
limited length and orientation [38].

Bézier curves, B-splines and NURBS (Non-
Uniform Rational B-Splines) are curves commonly
used in Computer Aided Design (CAD) applications.
Their use in CAD applications has been surveyed in
depth [39—41]. Bézier curves were developed for car
design applications. Those curves with different num-
ber of control points were studied and used for path
planning [42]. A similar approach was used for path
planning and obstacle avoidance for multiple robot
agents [43]. Bézier curves have properties that hinder
their use in path planning. For example, their order
depends on the number of control points. These limi-
tations will be addressed later when they are assessed
for navigational purposes.

B-Splines were originally created by Schoen-
berg [44]. They have more properties that are par-
ticularly desirable for navigation, which will be dis-
cussed later. Their use in robotics, specifically for
wheeled robots, is still limited. Applications for indus-
trial manipulators have been studied for trajectory
generation and modification [45, 46].

NURBS have wide range of applications in various
fields, but a limited use in robotics. They are essen-
tially a weighed extension of Non-Uniform B-splines.
They offer a high level of flexibility and produce
natural smooth curves. NURBS are considered as a
standard in several CAD applications. Natural trajec-
tories generated by humans, as they are moving, were
modeled [47] and generated using NURBS [48]. As
a result of the highly desirable features of NURBS,
they have been used in applications were accuracy,
suppleness and computational efficiency are needed,
such as generating paths for tools, [49, 50] blood ves-
sel modeling [51], reverse engineering, [52, 53] and
finite element analysis (FEM) [54].

1.1 Related Work

Characteristics of parametric curves have motivated
their use in mobile robot applications. Related work
can be divided into smoothing, continuous smoothing
and maximum curvature smoothing.

Smoothing applications use parametric splines to
generate smooth paths and often attempt to mini-
mize curvature, but they do not address continuity, or
maximum curvature. B-splines are used for potential
field planning smoothing [19] and for assistive mobile
robots [22]. In [55] B-spline smoothing is combined
with a sampling-based planning algorithm for UAVs.
Bézier curves have been implemented for smoothing
applications in [21, 43, 56].

Some parametric spline algorithms consider max-
imum curvature. B-spline smoothing algorithms, for
offline optimization, with conditions for maximum
curvature, are presented in [23, 24]. Bézier smoothing
algorithms, in [57, 58], satisfy maximum curvature.
However, these algorithms suffer from path disconti-
nuity.

Continuous smoothing applications are generally
limited to geometric continuity. They do not guar-
antee velocity or acceleration continuity, which are
more relevant for robotic applications. The work
by Kwangjin, Sukkarieh [57] relies on the Bézier
curve planar for the second-order geometric conti-
nuity condition [59]. Similarly, the algorithm pre-
sented in [60] guarantees geometric continuity using
polynomial interpolation. A path primitive was intro-
duced to generate third-order geometrically contin-
uous paths [61]. Recently, a second-order, C2, con-
tinuous shortcutting algorithm was proposed, but it
could not ensure the condition satisfaction along the
entire path and did not satisfy maximum curvature
constraint [62]. B-spline continuous paths were gen-
erated using a genetic algorithm, however, limita-
tions were imposed on the number of control points
[63].

Several solutions were presented for bounding
velocity, acceleration and jerk, for robots navigating
predefined geometric paths. The work explained here
is a preceding step to those algorithms development.
It is needed to generate feasible paths, which could
then be combined with bounding algorithms prior
to tracking. Algorithms for longitudinal jerk mini-
mization [64], acceleration bounding [65] and time
optimization with acceleration bounds are given in
[66, 67]. Our earlier work dealt with bounding accel-
eration and velocity for a given continuous path [68].
It did not consider smoothing, or curvature bounding
process.
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In this paper we present a smoothing algorithm
that generates continuous paths with maximum curva-
ture constraints. No control point, length or orientation
limitations are imposed on the path. Smoothing is
proposed using a single B-spline curve.

1.2 Contribution

The novelty in the presented approach is in the combi-
nation of the following:

1) Guaranteed C? continuity, for a cubic curve,
through the entire path.

2) Paths generated for nonholonomic car-like robots
are with minimum turning radius.

3) Smoothing process is implemented in an effi-
cient real-time manner, with a response time in
the order of milliseconds. Human drivers, like
in the presented approach, instinctively follow
continuous paths [34], which improves passen-
ger comfort. Drivers react in real-time whilst
considering the vehicles constraints.

4)  We have experimentally shown that our approach
mimics human steering.

Since Clothoids still lack an efficient approxi-
mation method, we proposed an approach in here
that relies on parametric curves. Different parametric
splines were analyzed in order to select a curve with
appropriate parameters for real-time path synthesis.
Discontinuities arise from joining different path seg-
ments. An algorithm is proposed to allow robust and
accurate path representation, using a single path seg-
ment. This guarantees continuity throughout the entire
path. We define a path segment and formulate the cur-
vature with respect to the segment’s parameters. An
algorithm is presented to satisfy maximum curvature
at every segment.

The majority of the related works do not present
discussions on the time performances of their algo-
rithms, despite its significance for robotic applica-
tions. It is shown here that, our algorithm is capable
of running, and allowing a response, in the time frame
of milliseconds, using current commercially avail-
able hardware (defined in experimental section). In
cases where online replanning would be needed, it
is essential to employ an efficient smoothing pro-
cess and maintain the performances and safety of the
robot [69]. Finally our method, unlike all discussed
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approaches, is validated experimentally, on a robotic
platform, to show its close resemblance to human
steering.

2 Preliminaries

Parametric curves, investigated for path synthesis,
are presented in this section. Unique characteristics,
advantageous in navigation are highlighted.

2.1 Bézier Curves

An n-th degree Bézier curve, c(u), is defined by Eq. 1
where uis the normalized curve parameter and B,, ; (1)
is the Bézier blending function for the i-th control
point P;. Bézier blending functions are defined as
shown in Eq. 2.

c@u)=) Bui@P (1)

i=0

mul(l _ u)n—i (2)

Bn,i (M) =

Blending functions do not exert local control on
the generated curve. This can be limiting in situations
where path modification is required, for example,
when an obstacle is detected. The number of points,
in the control polyline, defines the degree of a Bézier
curve. As a result, the predefinition of the number
of control points prior to planning is often enforced
[42, 43, 70]. Otherwise, high-order curves will be
needed to generate paths, which are computationally
inefficient, for long paths. Multiple Bézier curves,
with limited number of control points, must be con-
nected for smoothing. Unfortunately, this is resulted in
discontinuities.

2.2 B-Spline Curves

A p-th degree B-spline curve, c(u), is defined by n
control points and a knot vector #.The number of
knots, m, is equal to n +p+ 1. The knot vector, i,
consists of m non-decreasing real numbers, and u is a
normalized curve length parameter, given as follows.

c(u) =Y Nip )P, 3)

i=0
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P; refers to i-th control point.N; ,(u) is the i-th
B-spline basis function of a p— degree curve, which
is defined using the Cox-de Boor algorithm [71]. For
nnumber of control points there are nbasis functions,
each of which exerts local control at that specific
point. Eqs. 4 and 5 define recursive algorithm, pro-
posed by de Boor, for calculating basis functions. First
order basis functions are evaluated based on their cor-
responding knot vectors, i, 111, as shown in Eq. 4.
By recursive substitution in Eq. 5, basis functions of
the higher orders, from 2 to p, are calculated. This
recursive approach can be represented as a triangle
structure of basis functions where the base is first
order till the p-th degree is reached.

lue [d;, uit1)
o 4
Nio {O else )
u — lf,‘
Ni,p () = m]\’i,p—l(u)
i+p i
u; 1—u
=P Nidt et ) o)

Uit p+1 — Uj4+1
Unlike Bézier curves, the order of a B-spline curve
is independent from the number of control points, n.
Basis functions have local control of the curve, which
allows modifications of any path segment, without
affecting the neighboring segments, or changing the
shape of the entire curve.

2.3 NURBS

NURBS are a form of B-splines that have weights
assigned to their control points. This allows the curve
to be shifted towards one, or more points, as desired.
They maintain the degree independence and local
modification properties that characterize B-splines.
Incorporation of control point weights improves flexi-
bility and enables NURBS to synthesize free form and
analytical curves, by changing control points, knots
and weights.

A p-th degree B-spline curve, c(u), defined by n
control points and m knots, is given by Eq. 6, where,
Np,i(u) is the B-spline basis function and w; is the
weight of a i-th control point P;.

i wiNn,i (u) Pi
cw) =" (6)
Z wj Pi
0

i=

Fig. 1 Piecewise linear path connecting six waypoints

2.4 Problem Description

A piecewise linear path, see Fig. 1 as an example, is
generated using a simple path planning algorithm. The
linear path consists of a set of consecutive waypoints,
P, = [Py, Py]Tshown as red circles and defined in
Egs. 1, 3 and 6, connected by straight lines. It is
required to provide an algorithm that modifies set of
waypoints to generate a feasible path for the robot.
Generated smooth path must obey constraints given by
Eqgs. 7-9.

A car-like vehicle, as shown in Fig. 2, is referred
to as a nonholonomic robot as it has a non-integrable

Fig. 2 Kinematic robot model
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Fig. 3 A clamped B-spline
curve (blue) and fifth order
Bézier (dashed red) used for
path smoothing

constraint expressed, where the velocity components
are constrained as given in Eq. 7. This simplified
kinematic model is widely accepted and known as
bicycle model. In Fig. 2 x and y are represent-
ing axes in a global Cartesian system, while x and
y are vehicle’s velocities with respect to its local
coordinate system axis. Path curvature is K, turn-
ing radius is p, while steering angle is labeled as
8. Angle 6 is heading direction relative to global x-
axis. The resulting vehicle velocity vector is v, while
L is the wheelbase. Two-wheel and four-wheel steer-
ing models have been extensively studied, as well
[3, 16].

Constraints are imposed on the turning maneuver
of the vehicle. The steering angle is limited to 8,4y,
which, in turn, limits the turning radius and path cur-
vature to p,i, and K4y, given by Eq. 8. The path of
the vehicle is constrained by the limited steering angle
however it is common to describe the path constraint
in terms of curvature. C*~! path continuity for i"-
degree neighboring curve segments, S(u) and R (u), is
defined in Eq. 9, given that the start of segment S(u)

Fig.4 NURBS curves of
different weights are used
for path smoothing

is connected to the end of segment R(u). As known,
G'~! continuity [72] requires only the parameterized
values of the derivatives to be continuous.

xsinf — ycosf =0 (7
tan § 1
Kmax = tan omax — 8)
L Pmin

d*S©)  d*R(1)
duk  — duF

NVe=1,2...G—1) 9)

3 Parametric Curve Evaluation

In this section a comparative analysis was conducted
between various parametric curves. This investiga-
tion justified the selection of B-spline curves in path
planning. The piecewise linear path in Fig. 1 was
considered for the analysis. We mainly focused on
the accuracy of B-spline in following the original
path and robustly maintaining the path topology. The
ability to quickly generate reliable feasible plans is

@ Springer
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Fig. 5 Clamped cubic B- T T
spline interpolation (dashed
red) and smoothing (blue)

essential for any cognitive robot. The advantages of
using B-spline curve, in local replanning scenarios,
were also considered. Finally, a discussion is provided
on the suitable parameters for the curve in robot path
planning scenarios.

Fig. 6 Original paths are
shown in blue and
replanned in red (dashed). a
Interpolation using B-spline
curve b Smoothing using
Bézier curve ¢ Smoothing
using B-spline curve

3.1 Precise Path Modeling

The smoothing curve must interpolate the start and
finish points of the piecewise linear path. It is required
to closely follow the original path whilst obeying the

@ Springer
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Fig.7 Path smoothing T
using all possible clamped
B-spline curve degrees

second degree
third degree .
fourth degree

fifth degree

curvature constraints. We compare a Bézier curve with
a clamped B-spline curve shown in Fig. 3. Clamped
B-splines are used to interpolate the start and end
points of the linear path. Fifth order Bézier curves
must be used as the path has six waypoints. It was pro-
posed to use multiple Bézier segments to maintain a
fixed order. However, it results in path discontinuity.
It can be noticed later, that B-splines follow the path
more robustly whilst maintaining continuity and curve
order.

It is possible to use a clamped NURBS curve of the
same order for path smoothing, as shown in Fig. 4.
Increasing a point’s relative weight, w; in Eq. 6, will
lead shifting the curve towards that point. On the other

Fig. 8 Maximum path 2
curvature for all possible
clamped B-spline curve
degrees

5

Curvature [m’]

0.5

hand, the curve will shift away from the other points,
as the point’s weights are relative. The path 6, incorpo-
rates a divisor that is sum of all weighted points. The
shift away from the other points may lead to obstacle
collision. It might be useful to investigate the exploita-
tion of weights for path planning, but in this paper
we focus on clamped B-splines (or NURBS curves of
equal weights).

Six NURBS curves of different weights are used
for path smoothing. The path shifts towards the control
point with the largest relative weights, as shown by the
red arrows. As previously mentioned, NURBS are a
weighted variant of B-spline curves. In other words, a
B-spline is a special case of NURBS where all points

@ Springer
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Fig. 9 Midpoint insertion forces the B-splines tangency following to all control polygons and improves path following

are equally weighed. The ability to locally control
path is essential, but, uncontrolled change, in case of
NURBS weights, may lead to collision, or generation
of unfeasible paths (exceeding the vehicle’s maximum
curvature). Adjusting NURBS weights may be bene-
ficial if the rest of the path can be controlled, with
a reasonable effort and processing time. However, it

Fig. 10 Midpoint insertion
example

does not appear to be advantageous to the path’s con-
tinuity, which can be achieved using B-splines, or
efficiency, as it has the same synthesis methods based
on de-Boor’s algorithm.

Some works suggested path interpolation as a
method of smoothing [60]. The difference between
B-spline smoothing and interpolation is illustrated in

@ Springer
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Fig. 11 Effect of midpoint 3
insertion on path curvature

Curvature [m']

Fig. 5. We can see that interpolated path, shown as a
red dashed line, is longer. It has sharper movements,
which increases the path curvature and so defeat the
purpose of path smoothing. Interpolated path does
not lie within the convex hull of the collision free
control polyline, increasing the likelihood of obstacle
collision.

3.2 Local Modification

Path segment replanning is common whilst executing
the path. Perception systems are constantly updating
robot’s model of the environment. Update rates are set
to be high enough, to ensure safe navigation, respon-
siveness and prevent collision [69]. As a result, the
replanning procedure should be capable of running
at a timely rate. B-splines are locally controllable,

Fig. 12 Subdiving the path
into repeaing segments of
five succesive points

@ Springer
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Normalized Path Length

i.e. changing a segment of the curve will not affect
the other segments, which makes them suitable for
replanning in dynamic environments.

The replanning ability of B-spline curves is high-
lighted in Fig. 6c, in comparison to a Bézier curve,
Fig. 6b, and B-spline interpolation, see Fig. 6a. The
B-spline curve is locally modified where the original
path is modified. In case of Bézier curves the order of
the curve must be changed when the number of control
points is changed and the entire path is changed.

3.3 Curve Parameters

Clamped cubic B-splines outperform other paramet-
ric curves and smoothing methods, in path following
and replanning. Consequently, they have been selected
for continuous path smoothing. . Clamping is achieved
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L —

Fig. 13 Segment parameters; Length (L) and angle (o)

by changing the initial and final knots’ multiplicity in
Eq. 5. In this section we attempt to select the appro-
priate curve order. A p'" degree clamped B-spline
curve can smooth a path of minimum, p-/, number
of control points. We compare the allowable B-spline
curve degrees (2" to 5™) for a six-point path. The
lower the path degree, the better it follows the origi-
nal linear path, as shown in Fig. 7. On the other hand,
lower order paths have an adverse effect on the cur-
vature along the path, illustrated in Fig. 8. A cubic
path is selected to balance accurate path representation
and smooth curvature. Maintaining a lower order also
required less iterations of the de-Boor algorithm, (5),

which is the bottleneck of the B-spline and NURBS
synthesis.

4 Continuous Smoothing

The novelty of this approach, as previously men-
tioned, is guaranteed path continuity, given by Eq. 9,
along the entire path whilst satisfying maximum cur-
vature, defined by Eq. 8. In this section a clamped
cubic B-spline curve is used to generate a path that
satisfies required constraints.

4.1 Path Continuity

Path discontinuities will arise when two segments are
arbitrary joined together. Continuous paths were gen-
erated using a single B-spline curve in [63]. That
algorithm relied on the fixed number of control points
used for smoothing. Whereas in here, we proposed
using a single B-spline curve, with unlimited number
of control points. Even though B-splines outperform
Bézier curves in path following, they can still cause
collision, see Fig. 9 (left) and Fig. 10 (left). B-splines
are tangent to control line, with three or more collinear

25 T

20—

Curvature

30 degrees \

BN

Normalized Path Length

Fig. 14 Effect of varying segment angle « on path curvature k
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Fig. 15 Combined effects R
of segment parameters o
variables, segment length L

and angle «, on the

curvature k of the 15—
corresponding clamped

1

cubic B-spline curve. The £ p
feasible parameter region is g 10—
highlighted in blue g
5]
£ s5-
£
]
= 0
0 5

control points [41]. The tangency property is utilized
to allow a single B-spline curve to accurately repre-
sent the path and maintain continuity. This is achieved
by inserting a point in between every two succes-
sive control points, referred to as midpoint insertion.
This effectively forces the B-spline curve to follow the
path more accurately using the tangency property. The
benefit of midpoint insertion, in improving path fol-
lowing, is illustrated in Figs. 9 and 10. Prior to path
planning the environment is expanded, with respect to
the robot size. Consequently it is possible to represent
the robot as a point in the environment (configuration
space), as shown in Figs. 9 and 10. In those examples,
when the path is close to obstacles, in reality the robot
is still further away. Benefit of midpoint insertion is

(a)

l kl"(’.\'
a: Segment 0

10 15 4 angle[rad]

L: Segment Length [m]

not simply the safe distance from obstacles, which has
been achieved by Voronoi diagram, Minkowski sum,
Delaunay triangulation [73] planning methods. It also
contributes to maintaining a resemblance to the origi-
nally planned linear path. The advantage of midpoint
insertion is made clear in Fig. 9 as the path ended
up in collision after smoothing without midpoint
insertion.

4.2 Maximum Curvature Condition

Midpoint insertion forces the path’s tangency to the
control lines and leads to increasing the curvature, as
shown in Fig. 11. Any path, as shown in Fig. 12, can
be subdivided into segments of five successive points

= (b) —

Fig. 16 a Segment whose angle exceeds amin and the resulting B-spline path curvature exceeds kmax b By adding a path segment
with parameters, omi, and Ly, curvature continuity is guaranteed and maximum curvature constraint is satisfied

@ Springer
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Fig. 17 Path length for 85— e ————— e —————————
different kmax values using
the proposed B-spline
smoothing algorithm 8ar 1
E 83+ 8
£
g 82r :
s
#
A81r |
801
79+
78 1 1 1 1
0 2 4 6 8 10

(three control points and two midpoints), as shown
in Fig. 13. In this section we take advantage of B-
splines local control property, to satisfy the maximum
curvature constraints in each segment. First, the cur-
vature of a segment was formulated with respect to its

Maximum Curvature [m'l]

parameters. Segment parameters were set based on the
robot’s maximum curvature, defined by Eq. 7. Finally,
we introduced a smoothing algorithm that modifies
segment parameters, to satisfy maximum curvature
constraint.

Fig. 18 Curvature profile

before (dashed) and after —:rooth
(solid line) adding a path L——=P |
segment with omin and Lyin

o

3

® L 1

5

&)

" i ) N
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Normalized Path Length
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Table 1 Benchmarking experiments summary

Algorithm  Curve Curvature limits ~ Continuity

[60] Polynomials No G? continuity
[56] Bézier No Not continuous
[58] Bézier Yes G? continuity
Proposed  B-spline Yes C? continuity

4.2.1 Segment Curvature Formulation

Segments consist of five points, which construct two
intersecting lines. Two parameters of any segment are
the segment length, L, and segment angle, «, as illus-
trated in Fig. 13. L is taken as the shorter segment
side length. Five control points P; = (Py;, Py;), for
i = 1-5, can be formulated in terms of the segment
parameters as given in Eqs. 10 and 11.

L L
P, = [L, 50, 7 cos o, L cos 0(:| (10)

L
Pyz[O, 0, O, Esinoc, Lsinoci| (11

In order to fully satisfy maximum curvature con-
straint, path curvature was derived as a function of
the segment parameters. The curve equation, corre-
sponding to the primitive segment, was computed by
substituting control points,Eqs. 10 and 11, in the B-
spline curve and basis functions (3), (4) and (5). The
curve has n =5 control points, p =3 (cubic curve)
and a knot vector, with m =9, and with quadru-
ple initial and final multiplicities [0,0,0,0,0.5,1,1,1,1].
The resulting path, c(u) = [x(u), y(u)]T, is given
by Eqs. 12 and 13. The derivation is detailed in
Appendix A.

Table 2 Section 5.1.1: Path length and curvature results

Algorithm Length Curvature Continuity
Linear 161 m ) None

[60] 256m  1.5m™! G?
Proposed 137 m 3.0m™! c?
Proposed (bounded) 148 m 1.1m™! c?

@ Springer
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Fig. 19 B-spline smoothing for waypoints in [60]

N3
x(u) = L|:(122u)+(3u33u2+;)

1 2u — 1)3
+ (—3143 +6u> —3u+ 5) cosa + (MZ)COSOI:|

y(u) = Lsina |:<—3u3+6u2 —3u+ %) + (214;1)3i| (12)

Path equation, c(u), its first and second order
derivatives, ¢’(#) and ¢”(u), were substituted in path
curvature, k, 13. The segment curvature was defined
as a function of the corresponding segment parameters
in Eq. 14.

_ Xy — yw)xw)”

k
(x(u)a + y(u)’2)3/2

(13)

k =
2(u sin o) (1 — u)

(14)
3LQ2u2(1 —cos o) (U2 —2u + 1) + Qu — 1)?)

32

Curvature [1/m]

4 : ; a
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Fig. 20 Corresponding B-spline curvature for waypoints
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Fig. 21 21. Path is C?

continuous since its first
and second order
derivatives are continuous

First Order

& Second Order )

4.2.2 Segment Parameters

Segment curvature analysis was performed to gain
insight on the effect of the parameters on the curva-
ture and define parameters that satisfy the maximum

(P S —

X

Fig. 22 Polynomial G? interpolation reproduced from [60]

0.2 0.4 0.6 0.8 1
Normalized Path Length

curvature condition. Based on this analysis we will
propose a smoothing algorithm to generate feasible
B-spline paths for car-like robots.

Increasing the segment angle reduce the curvature
of the path, as shown in Fig. 13. It can be noted that a

Fig. 23 B-spline smoothing with bounded curvature. Two path
smoothing maneuvers were needed

@ Springer
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continuous curvature profile is obtained for all cases.
In Fig. 14, the region in which the segment parameters
satisfies curvature constraints is highlighted in blue.
In this example the maximum curvature was 0.5 m~!
and the minimum segment parameters were taken as
90 degrees and 2 meters. The goal of the smoothing
algorithm is to select parameters, within that range, to
ensure that the segment curvature is less than the max-
imum vehicle curvature. We refer to it as the feasible
region.

In order to ensure that the curvature along the
path is less than the maximum curvature, the com-
bined effect of the segment parameters must be
understood. Feasible segment parameters must be
selected in order to ensure that the robot can exe-
cute the generated path. Segment feasibility could
be assessed by comparing the segment curvature,
(14), with the vehicle’s curvature constraint, given by
Eq. 8.

Analytically solving (14) for the required angle,
in each segment, to satisfy the maximum curvature
constraint is intractable, considering that it would be
evaluated multiple times in the smoothing process.
In cases of offline-planning (14) could be solved but
this is not sustainable for efficient online replanning
situations. Online planners were proposed to replan
linear paths [74, 75], which require rapid smooth-
ing. Defining a minimum segment angle, omin, and
computing a corresponding minimum segment length,
Lin, 1s proposed to circumvent this solution. If a
segment’s angle exceeds its thresholds it must be
modified.

For a given, apmip, it is required to find the minimum
segment length at which k = k4. From Fig. 14, or
by solving % = 0 for u, we can see that k = k4
at u =0.5. Lnin can be calculated by substituting in
Eq. 14 by u =0.5, k = kjyarand o = oy, as given in
Eq. 15.

-3
1 . 1— cos amin 2
Lin = E SINCmin-Pmin- T (15)

4.2.3 Smoothing Algorithm

A segment, whose angle, «, exceeds the threshold,
nmin, 18 considered infeasible and required curvature

@ Springer

bounding. An example is illustrated in Fig. 16a with
its corresponding path. As a result, the corresponding
B-spline path will exceed the maximum curvature. It is
required to modify the segment, to satisfy that curva-
ture constraint whilst maintaining path continuity, i.e.
without adding another curve.

Extending the segment angle to omin, and adding
another segment of length L,,;,, as shown in Fig. 15b,
ensures the curvature will be equivalent to k4. This
maneuver relies on the local control feature of B-
splines, so segments eecan be modified with minimal
effect to other segments and a single curve can be used
to maintain path continuity. The effect of smoothing
maneuver on the curvature is shown in Fig. 18. The
curvature continuity was maintained and maximum
curvature was converted into two curvature peaks rep-
resenting two segments with feasible parameters. The
smoothing procedure is outlined in Algorithm 1.

Algorithm 1: B-spline_Smoothing

1 input: Maximum curvature k., Waypoints
coordinates P=[P,, P,], angle threshold a,,,,

2 output: B-spline path coordinates, c(u) = [x(u), y(u)]

3 for every two successive waypoints do

4 Insert midpoint P,y between P; and P;,

5 Update waypoints P’,, P’,

6 end for

1 .
7 Lmin = g SIN Xpnin- Pmin- (
8 for every segment do
9 ifa>a,,do

1—-cos amin)_3/2
8

10 Construct segment with L,,;, and @,
11 Insert midpoint in new segment

12 Update waypoints P’,, P’,

13 endif

14 end for

15 N(u) = deBoor Algorithm(P’,, P’,, degree = 3,
clamped) '

16 x(u) = ?:ONn,i(u)-Pxi

17 y(w) = Xito Npi(w). Py

18 return x(u), y(u)

Algorithm 1, illustrated in Fig. 15, bounds the cur-
vature by adding a path segment with predetermined
bounding parameters, omin and Ly, (Algorithm 1
lines 10-12). The resulting B-spline path length is con-
sequently increased. This behavior is expected, as the
original linear path did not consider the constrained
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Fig. 24 Bounded B-spline 1.5

continuous curvature profile

o
W

Curvature [1/m]

-0.5

motion of the robot. In general, most planners attempt
to minimize the path length. For differentially con-
strained kinodynamic constraints cannot be simply
captured by the path distance metric. Selecting an
appropriate metric for a nonholonomic system, or an

0.2 0.4 0.6 0.8 1
Normalized Path Length

underactuated system, is challenging task, see chapter
5 [76]. By examining Eq. 1, as the minimum turn-
ing radius is smaller (more restricted vehicle’s capa-
bilities), expected maneuver segment length would
increase.

Fig. 25 Path is C? 60 : : . T
continuity is maintained :
after curvature bounding
g
A
5 :
= :
- o
) :
_ 1 1 1 1 1
0 0.2 04 0.6 0.8 1
g
= :
-
O E
E | .
8 _0. Ol b e ........................................................ <
0 .
w :
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Table 3 Section 5.1.2: Curvature and path length results

Algorithm Maximum Curvature Continuity
Hermite 0.5m™! None
Cubic Splines 0.27 m™! None

[56] 0.065 m™! None
Proposed 0.065 m~! C?
Proposed (bounded) 0.04 m~! C?
Algorithm Path Length

Linear 7 679m

Proposed 595 m

Proposed (bounded) 657 m

In Fig. 17, the effect of maximum curvature limits
on the total B-spline length is presented. As expected,
the path length increases as the vehicle is more con-
strained (lower curvature bound). The original path
is a segment with two straight lines separated by an
angle less than omin. The control points coordinates
are Py = [0, 30, 60] and P, = [0, 30, 30], and the
total path length is 84.8 m. It is interesting to note that
in all cases, the re-planned B-spline path length did
not exceed the originally planned straight lines length.
This property was further investigated in the numerical
experiments (see Sections 5.1.1 and 5.1.2).

5 Results and Discussion
The newly proposed method was tested in three sets of

experiments. We compared it with existing smoothing
algorithms, to highlight the novelty of our approach.

200 ! ! ! !
P (1)1 )| SRV NN

0 100 200 300 400 500

X

Fig. 26 B-spline smoothing with no curvature limits
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The first sets of experiments prove that the pro-
posed method improves smoothing, path following
and minimizes disturbances, when compared to recent
contributions in the available literature.

We followed by combining our smoothing
approach with a randomized path planning algorithm,
for a robot with maximum curvature constraint,
to illustrate the general algorithm behavior. Ran-
dom planning algorithms were nominated, as
they often result in suboptimal paths with redun-
dant turns. Therefore, we showed that our method
would be beneficial for sampling based planning
implementations.

Finally, we used a real remote-controlled robot
to highlight the resemblance between our algorithm
and human steering in four different situations with
varying complexity.

The smoothing algorithm used in this section was
implemented in Matlab® on a 2.8 GHz machine
with 8 GB of Memory running OS X® 10.9.2. The
mobile robot control and data acquisition programs
were written in C and executed on an onboard micro-
controller. The logged data was transferred serially
to a host computer and post processed using Matlab.
The manual operation control was implemented over
two separate 2.4 GHz radio channels for speed and
direction.

5.1 Benchmarking Experiments

We have shown that novel algorithm guarantees C>
continuity and bounds curvature limits along the entire
path. Related work was discussed in Section 1.1. In
this section we compare the most recent and relevant
smoothing algorithms, with our proposed methods.
Examples used in this section were implemented in the

=4
—
th

e
=

Curvature [1/m]

(=4
=3
i

02 04 0.6 08 1
Normalized Path Length

Fig. 27 Corresponding curvature is continious and has a maxi-
mum value of 0.07m ™!
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Fig. 28 Pathis C? 500 . , . ,
continuous; its first and : :
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respective papers to provide a common benchmark. A
summary of the results is given in Table 1.

5.1.1 Case 1:Huh, Chang [60]

The algorithm in [60] used polynomials to interpo-
late waypoints with G? continuous curves and did not

200 T T T !
150k o S SO A

>\100. e

S0k S S—

0 100 200 300 400 500
x

Fig. 29 B-spline smoothing with curvature limit

consider maximum curvature constraints. The experi-
ment presented in [60] is repeated twice using our pro-
posed algorithm with and without curvature bounds.
The path length and curvature results comparing the
two B-spline solutions with the polynomial results are

Curvature [1/m]
(=1

-0.01 :
-0.02
-0.03 : : : i
0 0.2 0.4 0.6 0.8 1
Normalized Path Length

Fig. 30 Corresponding curvature obeys the 0.04m ! curvature
limit
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Fig. 31 C? continiuty is 500 . . . ,
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the path to satisfy -g
maximum curvature ¥ 7y | - :
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listed in Table 2. They show that our method is capa-
ble of generating smoother, shorter and continuous
paths.

Fig. 32 B-spline smoothing for seven consecutive and oppos-
ing turns

@ Springer

04 0.6
Normalized Path Length

0.2 0.8 1

The resulting B-spline curve for the same way-
points, using our approach, is shown in Fig. 19 and
its corresponding curvature is given in Fig. 20 A C?

Fig. 33 Bezier G? smoothing for seven consecutive and oppos-
ing turns
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Fig. 34 Seven segment 30; = 40
turns resulting path (top), . 0l _; . _; .....
velocity (middle) and & 103 ---- = R - ——
acceleration (bottom) K
profiles with proposed % 02 04 06 08 1 % 02 04 06 08 1
algorithm (left) and with 05 05
[45] (right) 3 | 3
0% 02 04 06 08 1
0.1
z 3 ) :
s R T S BN I AR OV
‘5<; 02 08 1 01 02 08 1

04 0.6
Normalized Path Length

continuous path was obtained as opposed to a geo-
metric G> path that does not guarantee velocity, or
acceleration continuity. This is illustrated by the con-
tinuity of the path and its first and second order
derivatives as shown in Fig. 21. The results shown
in Fig. 21 are obtained from Eq. 3 and its deriva-
tives; they serve to show the continuity of the result-
ing trajectory with respect to the global coordinate
system.

The proposed path, in Fig. 19, lied within the con-
vex hull of the control polygon, which led to the
decrease in length in comparison to interpolation.
Interpolation using G? polynomials, in Fig. 20,
resulted in oscillating paths that strayed from the origi-
nal linear path and may have potentially led to obstacle

04 06
Normalized Path Length

collision. This deviation is apparent when examining
the path lengths in Table 2. In contrast, our approach
was strict in path following as a result of midpoint
insertion procedure. Subsequently it generated higher
curvature values when no maximum curvature limit
was set, see Fig 20.

Improved smoothing was achieved through bound-
ing the curvature of the B-spline path to a desired
value. In this case the curvature was bounded to 1.1
m~! which was significantly lower than the achieved
1.5 m~! in [60]. The resulting path is shown in Fig. 23
and the corresponding bounded continuous curvature
in Fig. 24. Two segments were needed to bounding
the curvature. Modified segments are highlighted as
dotted red lines in Fig. 23.

Fig. 35 Seven segment 0.1 r
turns resulting accel?ration —Proposed
from proposed algorithm —_—v ¢ al
(blue solid lines) and from 0.08 1 ang :e ~

[45] (red dashed)

Acceleration [m/ s 2]

o
[
<)

e
(=]
E

0.02 -

Normalized Path Length
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Fig. 36 Narrow passage smoothing using the proposed B-
spline

Figure 25 shows that the proposed method
was capable of maintaining C?> continuity when
bounding curvature. Despite the additional two seg-
ments for smoothing, it can be seen in Table 2 that
the bounded B-spline path length was still shorter than
both the polynomial and linear paths, which agrees
with the results presented in Fig. 17.

5.1.2 Case 2: Zhou et al. [56]

Bézier curves were used for path smoothing and
were shown to generate lower curvature values in

100 T

—

60 -

Vv

40 4

20/ T

0 1 L L
0 20 40 60 80 100

X

Fig. 37 Narrow passage smoothing using [45]
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comparison to cubic Hermite and cubic splines, as
defined in [56]. However, that approach did not con-
sider path continuity and curvature limits. The com-
parative experiments in [56] were repeated twice
using our proposed method with and without curva-
ture bounding. The results are summarized in Table 3.
First, we generated B-spline path as shown in Fig. 26
without setting limits on the curvature. In this case
when examining Fig. 27, the B-spline curvature
peaked at 0.065 m~!, which was equivalent to using
Bézier curves [56]. However the proposed path was
still C2 continuous, see Fig 28.

The experiment was repeated with B-spline path
smoothing and a 0.04 m~'curvature bound. It can
be seen in Fig. 29, that the final path segment was
modified to satisfy the curvature condition. Regard-
less of the added path segment, the B-spline path was
still shorter than the original planned linear path, see
Table 3. The desired maximum curvature, 0.04 m ~!,
was satisfied, as shown in Fig. 30. The path’s C?
continuity was maintained after bounding, as shown
Fig. 30. It is clear that new approach generated
smoother continuous paths.

5.1.3 Case 3: Kwangjin et al. [58]

Bézier curves geometric G> condition was used for
path smoothing by [57, 58]. It forced the vehicle to
reach maximum curvature limit in every corner and
could not guarantee velocity and acceleration continu-
ity. The G?> smoothing method was compared to our
proposed B-spline algorithm in two different scenar-
i0s. We also illustrated the significance of maintaining
velocity and acceleration continuity.

The first example involves seven consecutive turns
of opposing orientation (clockwise and counter-
clockwise). This was chosen, as it is a challenging
task for a smoothing algorithm to generate a feasi-
ble path whilst minimizing the abrupt changes acting
on the robot. The resulting B-spline and Bezier paths
are given in Fig. 32 and Fig. 33. It is clear that
both methods generate similar paths topology with
continuous curvatures. This is more evident when
examining the path profile for both methods in Fig. 34
(top). Further analysis of the velocity and accelera-
tion profiles validates that the proposed method is C?
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Fig. 38 Narrow passage 100, 100
smoothing resulting path . . —; e
(top), velocity (middle) and E & M —
acceleration (bottom) P
profiles for proposed % 02 04 06 08 1
algorithm (left) and [45] 04 4
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continuous where the Bezier method exhibited sudden
local changes when Beziers and straight lines were
coalesced. The benefit of generating a C2 continu-
ous path is highlighted when comparing the resulting
accelerations for both paths in Fig. 35. The sud-
den discontinuities resulting from joining Beziers and
straight lines led to acceleration peaks in contrast
to the proposed method, which resulted in minimal
disturbances.

04 0.6
Normalized Path Length

04 0.6
Normalized Path Length

The second experiment was a narrow passage
manoeuver. Such scenarios are particularly challeng-
ing for path smoothing algorithms. If discontinu-
ous paths, oscillating poorly interpolated paths, or
non-realizable paths are generated they might lead
to overshooting and ultimately passage collision. The
linear paths in Figs. 36 and Fig. 37 were generated
using a Visibility graph variant proposed in [24]. The
paths were smoothed using the proposed methand

Fig. 39 Narrow passage 3 T T T :
resulting acceleration from : : —~ Yang et al.
. [}
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Fig. 40 RRT (1): 120 T T
Environment and piecewise
linear path
100+ E
801 ﬁ
60 -
40 - .
20+ 4
0 1 L
0 20 40 60 80 100

in [57, 58]. The results validated the significance of
C? continuity. Both paths had similar curvatures, see
Fig. 38 (top), whereas our method has maintained
C? continuity and minimal disturbances, as shown
in Fig. 39.

120 , f . :
100} : 1
| ;..,_,M.,.M AN S
> 60} e - . |
4Ok e R4

20f ‘ .

Fig. 41 RRT (1): B-spline path required three smoothing
maneuvers. The original sharp turn segments are shown as
dashed red lines
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5.2 Path Planning Experiments

In this section, B-spline smoothing is implemented
with rapidly-exploring random tree (RRT) path plan-
ner [77], in two different environments. RRTs were
selected as a result of their increasing popularity in
robot planning [9]. Despite the randomized algorithms

Curvature [1/m]

0.2 0.4 0.6 0.8 1
Normalized Path Length

Fig. 42 RRT (1): Continuous curvature obeying the maximum
constraint of 0.3 m™~!
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Fig. 43 RRT (1): B-spline
path is C? continuous

Fig. 44 RRT (2):
Piecewise linear and
B-spline path in an obstacle
cluttered environment
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Fig. 45 RRT (2): Continuous curvature obeying the maximum
curvature constraint of 0.3m !

efficiency in solving planning problems, their solu-
tions are widely regarded as suboptimal and include
redundant motions. This can be attributed to stochas-
tic sampling schemes used for configuration space
exploration [10, 78].

Suboptimal paths generated by the RRT planners
presented a challenge to post processing 2algorithms,

Fig. 47 Experimental scaled car-like robot

especially in narrow passages and cluttered environ-
ments [10, 62, 78]. Therefore we selected a sim-
ilar narrow passage and cluttered environment, as
examples, to highlight the advantages of the pro-
posed method. We refer to two scenarios as RRT
(1) and (2).

The first example was selected to combine redun-
dant RRT turns, with the difficulty of smoothing,

Fig. 46 RRT (2): B-spline 100 . . .
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Table 4 Experimental robot parameters

Parameter Value
Maximum steering angle (§) 30°
Minimum turning radius (o) 0.33m
Maximum curvature (k) 3m™!
Wheel base (w) 0.19m

within a narrow passage. The resulting path contained
subsequent sharp turns in the vicinity of obstacles,
which required smoothing and curvature bounding
maneuvers. The second example showed the advan-
tage of closely following the original linear path using
midpoint insertion. The randomly allocated obsta-
cles pose a challenge to the smoothing algorithm,
as any large deviation from the path could lead to
collision.

In both cases curvature limits were set to 0.3 m~!.
RRT paths are shown as a black solid line and obsta-
cles are grey colored boxes, see Figs. 40 and 44
for illustration. Resulting B-spline paths are shown
in Figs. 41 and 44. The resulting curvature, in both
cases, satisfied the maximum constraint as illustrated
in Figs. 42 and 45. In the narrow passage RRT (1)

w I.5m H

I.5m

(1) Cornering

-

(3) Obstacle avoidance

scenario, three additional segments were needed as a
result of the sharp RRT path. On the other hand, RRT
(2) required no additional segments and the resulting
curvature is well below its bounds. This highlights an
important feature of the proposed method. It did not
force the vehicle to reach the curvature limit and led to
improved smoothing. In Figs. 43 and 46 the resulting
B-spline paths were also shown to be C? continuous.
The average algorithm runtime was 80 milliseconds
for both examples. Due to its recursive nature, Cox-De
Boor algorithm was the bottleneck of the path syn-
thesis procedure. All experiments were implemented
in Matlab® on an i7 2.8GHz machine with 8GB of
memory running OSX®.

5.3 Human Steering Experiment

In this experiment we used a human operated, scaled
car-like robot, to highlight the resemblance between
our approach and natural human steering. The robot,
pictured in Fig. 47, was used in the presented exper-
iments. Vehicle’s parameters are given in Table 4.
It was remote-controlled by a human operator, who
was required to steer the robot through four different
maneuvers as illustrated in Fig. 48. Steering com-
mands sent to the robot were logged by an on-board

L

I'm
0.5m
=)
(2) Lane change
(4) Clutter manoeuvring ‘
22m ]

" @

L

Fig. 48 Setup used for different scenarios. In each case the circular objects are cones with 0.5 m base diameter and the rectangles are

waypoints specified for the operator to reach
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microcontroller and then serially transferred to a host
computer to be post processed and compared to the
corresponding paths generating using the proposed
method.

The first experiment (cornering) was a simple right
angle turn. This segment resembled the repeating
path segment, illustrated in Fig. 13, which was used
in Algorithm 1 for path smoothing. It was essential
to show that, our method was capable of mimick-
ing human operation, in that simple segment, as it
is repeating frequently through any path. We fol-
lowed this situation with three examples of increasing
difficulty and obstacle numbers.

The second example was a lane change maneuver.
The width of the lane change was 3m, with a sin-
gle obstacle placed at a distance of 1 m in front the
vehicle, at the start. The path required the operator to
generate two successive turns with alternating turning
directions.

The third example (obstacle avoidance) involved
a similar setup, with an additional obstacle, and a
more challenging scenario of avoiding the obsta-
cles and then returning to the same lane. The third
path required three consecutive and alternating turns.
The first turn was particularly challenging as the
width of the obstacles was increasing, by adding
a second cone, that needed a sharper turn, followed
by a subsequent sharp turn to return to the origi-
nal, lateral position. Finally, an unstructured exam-
ple was included, referred to as cluttered maneu-
vering. It was required to navigate through obsta-
cles and reach the waypoint placed between two of
them.

The resulting curvatures, from the proposed algo-
rithm and human operator commands, are compared
in Fig. 49. The raw signals from the human operator
are shown as solid blue lines and the best-fit curve is
shown as a dotted red line. It is shown that the pro-
posed method is capable of mimicking human steering
in different experimental setups. The simulated B-
spline paths and resulting C> continuous trajectories
are shown in Fig. 50.

6 Conclusions and Future Work

This paper presents, analytical formulation and algo-
rithm for robotic path smoothing using continuous

@ Springer

B-splines. The method was validated using a wide
range of benchmarks, numerical and real examples.
We proposed an algorithm that guaranteed C? conti-
nuity and maximum curvature bounding through the
entire path. Investigation was based on the use of
a single clamped cubic B-spline curve, which was
shown to be more suited for planning than other curves
implementation.

Numerical experiments showed that our approach
outperforms recently developed robotic path smooth-
ing algorithms presented in available reviewed lit-
erature. Comparing to [56, 60], we were capa-
ble of generating shorter paths, with smoother and
controlled curvature. Even when an additional seg-
ment was required, for curvature bounding, the path
length was shorter than the originally planned linear
path.

The advantage of C? continuity was evident when
comparing with geometrically continuous paths using
[57, 58]. Continuous trajectory eliminated any abrupt
changes that resulted from the process of differ-
ent curves combination. It also led to minimization
of the resulting accelerations. Smoothing algorithm
was presented as a solution for randomized plan-
ning algorithms such as RRT, for car-like robots,
in both narrow and cluttered environments. Experi-
mental results showed that, B-spline curvature mimic
continuous human steering, with smoother curva-
ture values, in different environments, with increasing
complexity.

The promising findings, presented here, provide
a basis for further investigations. An alternative to
using a pre-designed maneuver for maximum curva-
ture condition is in providing an analytical solution.
At this stage, planning and smoothing are decou-
pled and in many cases replanning may be required
to generate a feasible trajectory [55]. An efficient
approach is planning with B-spline curvature feasibil-
ity considerations. We plan to integrate our smoothing
algorithm within a sampling-based planning algorithm
to present efficient kinodynamic planners. Further lab-
oratory experiments are needed to gain understanding
of human steering and effects of C? continuity in
combination with different tracking algorithms on the
robot performance. We will conduct full scale steer-
ing experiments for different vehicles on a variety
of paths. This will uncover the effects of the oper-
ator’s perception of the path, human response and
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the vehicle constraint’s on the resulting curvature.
Additional experiments to highlight the effects of C2
continuity on localization errors, passenger comfort,
mechanical wear and overactuation will be conducted
on different robotic platforms.
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Appendix: A

L — —

Fig. 51 Segment parameters; Length (L) and angle ()

The curve has n =5 control points. It is a cubic
curve; p =3

Therefore a knot vector, with m = 9 knots, and
quadruple initial and final multiplicities are needed:

#=1[0,0,0,0,0.5,1,1,1, 1] (A1)

We implement the Cox-deBoor algorithm by sub-
stituting in Eq. 4 and then recursively updating (5).
We get the following 3™ degree basis function: (A2.1—
A25)

(1 -20)3
No3 = (A2.1)
2
Ni3 =6u’ —6u’ +1 (A2.2)
Ny 3 = 6u’ — 6u — 1 (A2.3)
N33 = 6u’ + 12u6u + 1 (A2.4)

~Qu—1)
N 2

The x and y coordinates for the control points are
given by Eqs. A3.1 and A3.2.

Nyj3 (A2.5)

P, = |:L, L (A3.1)

L
,0, —cos , L cos
2 2

L
Py = |:O, 0,0, 7 sin o L sin 0(:| (A3.2)
The summation of the product (A2) by Eq. A3.1 as
defined in Eq. A4.1 results in Eq. A4.2.

x(u) = Z NipP; (Ad.1)
=0

(1 —2u)?

x(u) 5

L
*L+(6u3—6u2+1)*5

L cos(@)

+(—6u> +12u® —6u+1) * (A4.2)

3
n Qu—1)
2
The first and second order derivatives with respect
to u (segment parameters L and o are constants for a
specific segment) are given in Egs. AS and A6

* L cos(a)

x'(u) = 3LW?(cos(a) — 1) +2u + 1) (A5)

x'(u) = 6L(u(cos(ar) — 1)+) (A6)

Similarly for y(u), by substituting (A3.2) in Eq.
A7.1 we get (A7.2) and the derivatives (A8) and (A9)

Y@ =) NipP, (AT.1)
i=0
yu) = (—6u> +12u® — 6u + 1) * L sin(x)
Qu—1)3 .
+T * L sin(or) (A7.2)
y'(u) = 3L sin(a)u? a8
y/(u) = 6L sin(a)u (A9)
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The curvature k() can be defined as a function of

segment parameters by substituting Eqgs. AS, A6, A8
and A9 in the curvature (A11.1) to obtain (A11.2)

Xy ) — x" W)y (u)

k = All.1
W= = w1y @ (ATLD
k() = 2(u sin(a)) (1 — u)
T 3022 (1 = cos(@) 2 — 2u+ 1) + Qu — 1)2)32
(A11.2)
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