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Abstract An accurate navigation system is an essen-
tial and important part for the mobile robot. The recent
appearance of low cost RGBD cameras has made
3D point clouds together with RGB information easy
accessible, and they have been widely applied in many
applications. Relative poses of a mobile robot can be
estimated from consecutive visual information. How-
ever, such incremental registration methods still suffer
from accumulated errors which makes the estimated
trajectory as weird as by only using wheel mounted
encoders. In contrast, we introduce a novel and inex-
pensive sensor fusion based approach to solve the
robot localization problem. The key idea is to use
depth visual gyroscope as a complementary source for
robot heading estimation. Aided with constraints, the
unscented Kalman filter is used for robot pose estima-
tion. A field experiment has been carried out in order
to verify the introduced method. Accordingly, the 3D
map of the environment is also presented based on the
estimated robot trajectory.
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1 Introduction

The advent of RGB-D sensors such as Microsoft
Kinect has resulted in great progress in dense map-
ping and many researches have been focused on using
RGBD images for camera pose estimation. One appli-
cation of using a RGBD camera is to track its posi-
tion according to its consecutive measurements. Such
methods play an important role in the field of mobile
robot localization. Especially for a robot moving in
indoor environment, the lack of absolute position-
ing system such as global positioning system (GPS)
results in difficulties in robot pose determination. Var-
ious approaches have been introduced to solve such
problem such as gyrodometry [1] and stochastic state
estimation based approaches [2]. A fruitful discussion
of different simultaneous localization and mapping
(SLAM) based approaches can be found in [3]. If
a robot is equipped with a 3D sensor, the iterative
closest point (ICP) [4] is normally used to register sub-
sequential sensor measurements. By using a Kinect
sensor, a stand-alone camera position tracking is also
possible since it simultaneously provides RGB and
depth images with a high frame rate. RGBD odom-
etry is introduced recently for camera tracking [6].
By using ICP algorithm, Kinect fusion (KinFu) [7]
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has demonstrated great results for indoor environment
reconstruction. However, they both requires dense
images as input and the camera should be moved
slowly and steady. Thus, given a condition that the
depth measurements can only be processed with low
sampling rate and large area of depth image have miss-
ing values (Fig. 1b), such RGBD sensors show their
limitations.

In order to address such a problem, a novel sen-
sor fusion based navigation system is introduced in
this paper. The key part of the system is the depth
visual gyroscope (DVG). Visual gyroscope (VG) is
introduced in [9] and [10], providing camera atti-
tude estimation by using vanishing points (VP). For
the indoor environments, corridors are one of the
most common features which exists in nearly every
building. Such kind of scenarios make Kinect depth
measurement incomplete but ensures the vanishing
point long time available and consistent. In a vivid
metaphor, the vanishing point plays a role as a vir-
tual beacon which is similar to lighthouse guiding a
maritime pilot. Since VG directly estimates the cam-
era heading angles from current image, the attitude
estimation error does not suffer from previous mea-
surement. However, in the absence of VP detection,
visual gyroscope fails. The introduced system inte-
grate VG with IMU to track the robot heading seam-
lessly. Moreover, further updated with ICP algorithm,
the robot trajectory estimated by our system shows
promising result. Figure 6 shows the environment 3D
mapping result with KURT2 mobile robot and Kinect
(Fig. 1a). With total traveling distance of around 61
meters, the point clouds shown in the figure have very
good match with the environment, while, they are reg-
istered to the global frame by only using the estimated
trajectory.

2 Relative Work

Scenes observed in urban and indoor environments
consist mainly of straight lines in three orthogonal
directions [11]. The intersection parts of those orthog-
onal structures formed up straight lines in real world.
From the camera perspective, parallel lines projected
in the captured image seem to intersect and the cor-
responding intersection points are called vanishing
points (VP). The coordinates of the vanishing points in
the image depend only on the direction of the parallel
objects. Therefore, as long as the objects are paral-
lel to each other, they all intersect at the same point
after projective transformation. The coordinates of the
vanishing points in the image plane are determined
by the relative orientation between the camera and the
observed scene. Given V as the location matrix of the
vanishing points [Vx Vy Vz], K as the 3 × 3 cam-
era matrix containing intrinsic parameters andR as the
3× 3 rotational matrix, the relation between locations
of VP and camera orientation can be defined as Eq. 1:

V = KR (1)

To be more specifically, Vx Vy and Vz are the
3 location vectors which represent horizontal, verti-
cal and central vanishing point respectively. Camera
matrix K consists of camera focal length, principal
point and skew. If skew is ignored, K can be presented
as Eq. 2:

K =
⎡
⎣

fx 0 cx

0 fy cy

0 0 1

⎤
⎦ (2)

The intrinsic camera matrix can be calibrated if the
vanishing points are known [12]. On the other hand, R

Fig. 1 Kurt2 mobile robot
moving through the corridor
and the depth image it
sensed
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can be estimated if K is known. Using Euler angles,
the attitude of the camera regarding to the observed
scene can be represented with roll, pitch and yaw. For
a camera fix mounted on a robot which works under
indoor scenario, it is safe to approximate the camera
attitude with pitch and yaw by omitting the roll angle.
Where pitch should also be a fixed value depend-
ing on the mechanical alignment between camera and
the robot and yaw represented camera heading direc-
tion. The corresponding rotational matrix R can be
therefore written as Eq. 3:

R =
⎡
⎣

cos γ 0 sin γ

sinβ sin γ cosβ − sinβ cos γ

− cosβ sin γ sinβ cosβ cos γ

⎤
⎦ (3)

where β and γ are the pitch and yaw (heading) angle
of the camera. By knowing the third column of KR is
equal to Vz and substituting Eqs. 2 and 3 into Eq. 1,
camera pitch and yaw can be estimated if central
vanishing point is known:

γ = arcsin

(
Vzx − cx

fx

)
β = arcsin

(
Vzy − cy

−fy cos γ

)

(4)

Based on aforementioned method, visual gyro-
scope (VP) algorithm is finalized and its integration
with inertial navigation system have shown promis-
ing results in attitude estimation [14, 15]. VG relies
on using RGB image as input and the foremost task is
to localize the vanishing points. One of the methods
to locate the vanishing points with a RGB image is
using a vote scheme of the detected lines [13]. Edges
are firstly needed to extracted [16], Hough Lines algo-
rithm [17] is used afterwards to separate straight lines
from the edges. The intersections of those straight
lines are then voted and the most voted points are
chosen as the vanishing points.

3 Introduced Method

It is common that human made indoor environ-
ments are well constructed and organized: corridors
and walls are the most common features. The scene
observed by a mobile robot is dominated by such
orthogonal structures. Given a depth image obtained
with a RGBD camera, such as Kinect, the correspond-
ing point cloud is therefore geometrically constrained

to such property. Parallel lines in real world are possi-
ble to be detected from the measured 3D point cloud
and the location of the corresponding VPs can be
calculated in its corresponding depth image. Based
on this fact, depth visual gyroscope (DVG) is intro-
duced in this paper. Similar to VG, DVG only uses
current depth image. Comparing with IMU head-
ing estimation, camera heading estimated with DVG
does not suffer from accumulated errors. However,
as constrained by the observed scene, DVG can eas-
ily fail if no parallel structures exist in the scene. In
our introduced method, a IMU is used as an addi-
tional source to estimate robot heading continuously.
The moved distance can be predicted with wheel
mounted encoders, by using the current robot head-
ing angle, its position in global coordinate can be
further calculated. However, due to the wheel slip-
page, the true distance that the robot has moved is
hard to be estimated. Therefore, ICP is used here to
update robot position accordingly. In the following
parts of this section, we will first present DVG and
immediately after, the introduced navigation system is
presented.

3.1 Depth Visual Gyroscope

Having a Kinect looking forward into the corridor,
although much of the depth information is missing
due to limited measurement range, it still captures
the information of the orthogonal structures from the
scene. The orthogonal structures form up parallel lines
in real world which explicitly matches the definition
of the vanishing point. Since lines are preserved in
perspective transform, the coordinates of the vanish-
ing points can be calculated by using the intersections
of the projected lines on the image plane. For a wheel
mounted mobile robot, the camera is normally fixed,
thus the roll rotation of the camera can be safely
ignored. Thus, according to previous introduction,
once the central vanishing point is known, camera
pitch and yaw angles can be estimated.

In order to find central vanishing point, paral-
lel lines within ground plane (plane from the world
coordinate) have to be found (Fig. 2). In indoor envi-
ronments, the floor is generally by default defined as
the ground plane which naturally provides the basis
for parallel lines detection. The next step is to iden-
tify which parallel plane models fit the rest of the
scene and orthogonal to the floor. If such planes exist,
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Fig. 2 World coordinate and robot local coordinate

the parallel lines can be found. Consequently, central
vanishing point can be calculated.

A line function in 3D space can be defined as the
combination of two 3D plane equations. In order to
find these plane equations, we apply orthogonal multi
plane extraction algorithm from the point cloud using
Kinect depth image. Before generating points from
depth images, the bilateral filter [18] is applied for
smoothing the surface while preserving the geometri-
cal edges. The voxel filter is used afterwards over the
points generated from filtered depth image to reduce
the total amount of points. From our experiments, the
number of points for each frame is reduced to around
2 % from its original size.

Orthogonal multi plane extraction algorithm is
based on MSAC [19]. Since ground plane is already
known (the points belongs to the ground floor are clus-
tered by setting a threshold with premeasured height
of the camera andMSAC is used to estimate its mathe-
matical model), we only need to extract planes orthog-
onal to the ground from the rest points. Unlike multi
plane extraction algorithm based on multi-stage ran-
dom sample consensus (RANSAC) [20, 22], MSAC
based algorithm is used here since it takes Gaus-
sian noise model into account which reduces incorrect
rejection of the inliers in a great amount. Since the
only the orthogonal plane models are interested, an
orthogonal error function is added in addition to the
cost function (5) from MSAC (details about C2 can be
found in [19]):

Cα = cos (Θo) (5)

where Θo is the angle between the plane model
defined by randomly selected points and the ground
plane. As Θo is more close to 90◦, Cα is more close
to zero. Therefore, planes which are more orthogonal
to the ground will have higher score with respect to
Cα . Meanwhile, the minimum percentage of inliers is

carefully chosen in order to avoid false plane detec-
tion. The overview of the algorithm works as follows
(Algorithm 1):

In order to extract multi planes, the above algo-
rithm is repeated with multi stages. For each stage of
plane extraction, threshold for selecting inliers should
be carefully set. According to the Kinect depth image
accuracy analysis ([21]), we select the average value
of 5 cm as the threshold since depth information in
the range from 50 cm and 500 cm is used in our sys-
tem. The extracted planes are grouped according to
their parallelism, and Θp = π/80 is set as the
angular threshold as the maximum angular difference
of two plane normals. By the explicit definition of
central vanishing point, parallel structures which are
more along the principal axis of the camera is inter-
ested. Therefore, according to the field of view of the
camera, unnecessary parallel planes can be discarded.
Together with ground plane function, the parallel lines
in real world can be found and the corresponding VP
location in the depth image can be calculated.

Given a set of parallel lines in 3D defined by
ground plane function and its orthogonal plane func-
tion (6):

ag · X + bg · Y + cg · Z + dg = 0
ao · X + bo · Y + co · Z + do = 0

(6)

where X, Y,Z is the position of the points belonging
to the lines in 3D space and its line function projected
of the depth image plane (7):

αl · ximage + βl · yimage + ηl = 0 (7)

where ximage, yimage are the pixel coordinates in the
depth image with the camera projection function (8):

ximage = X·fx

Z
+ ox

yimage = Y ·fy

Z
+ oy

(8)
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The parameter of the line function (αl, βl, ηl) can be
solved using Eqs. 6, 7 and 8. By dividing both plane
functions in Eq. 6 with dg and do respectively, the sub-
straction of the two plane functions can be written in
the form of A · X + B · Y + C · Z = 0. Accordingly,
by substituting Eq. 8 into Eq. 7, the derived equa-
tion holds exactly the same form. Since (X, Y, Z) in
both functions represent the same points in 3D space,
the coefficients (αl, βl, ηl) should match and can be
calculated as:

αl =
(

ag

dg

− ao

do

)
/fx

βl =
(

bg

dg

− bo

do

)
/fy (9)

ηl = cg

dg

− ao

do

− αl · ox − βl · oy

Consequently, given a set of lines functions, coordi-
nate of VP in the depth image can be calculated and
the camera heading can be estimated by using Eq. 4.

Depth camera matrix is obtained from calibration.
Since the working principle of depth measurement by
Kinect is based on structured light. The projector is
manually blocked and extra infrared lighting source is
used so that the pattern of the chessboard is clean and
visible in the infrared image. In total, 110 images of
the chessboard were collected and the camera matrix
is estimated by using the calibration toolbox [23].

3.2 The Navigation System

Briefly, the introduced navigation system is based on
using the unscented Kalman filter (UKF) [24]. In the
system prediction model, robot heading is estimated
with IMU using Eular angles. Based on the moved
distance calculated from wheel mounted encoders,
robot position is further predicted. In the measurement
update model, VG is used to update robot yaw, and
ICP is used to update robot position. Since the precise
alignment between IMU and robot is not known, we
model robot attitude with roll, pitch and yaw predicted
by IMU. Additionlly, based on the scenarios that vehi-
cles travel on the ground, the angular constraints are
taken into measurement model: among the three angu-
lar velocities, only the change in the heading angle
is not zero. The state vector of the system model is
therefore defined as (10):

xk = [
px,k, py,k, αk, βk, γk, ωα,k, ωβ,k, ωγ,k

]ᵀ (10)

and the corresponding system prediction model is
shown in Eq. 11:

px,k+1 = px,k + dk · cos γk

py,k+1 = py,k + dk · sin γk

ψk+1 = ψk + Eb2n,k · (Ω̃k − Ωk) · Δt

Ωk+1 = Ωk

(11)

Eb2n,k =
⎡
⎣
1 sinα tanβ cosα tanβ

0 cosα − sinα

0 sinα/ cosβ cosα/ cosβ

⎤
⎦ (12)

where
[
px, py

]ᵀ is robot position vector, ψk is robot
attitude vector presented with Euler angles (roll, pitch
and yaw) which equals to [ αk, βk, γk]ᵀ, Ω̃k is the
IMU measurement input and Ωk is the gyro bias
vector which equals to

[
ωα,k, ωβ,k, ωγ,k

]ᵀ. Eb2n,k is
the rotation rate transformation matrix from body to
global frame.

In the measurement model, DVG heading estima-
tion, position refinement using ICP and angular con-
straints are modeled in the system observation vector:
yk = [

p̂x,icp,k, p̂y,icp,k, γ̂dvg,k, α̂k, β̂k

]ᵀ
. The cor-

responding measurement update equation is written
as:

DVG ICP update

⎧⎨
⎩

p̂x,icp,k = px,k

p̂y,icp,k = py,k

γ̂dvg,k = γk

Angular constraints

{
α̂k = αk

β̂k = βk

In total, the complete system can be written as:

xk = Ak−1xk−1 + wk

yk = Hxk + vk
(13)

where w and v are process and measurement noise
respectively.

Due to high order of nonlinearity of the system
process model, UKF is used in this paper. For nonlin-
ear system models, UKF provides a balance between
computational effort and estimation accuracy. Unlike
extended kalman filter (EKF), UKF use signam points
to yield the transformed state vectors along with the
state covariance. It preserves the states’ probabilistic
model even without linearize the propagation func-
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tion. A detailed description of UKF is shown in
Algorithm 2.

Additionally, the robot motion is constrained on a
2D plane, therefore, the roll and pitch angle of the
robot should equality be zero (attitude constraints).
Comparing the IMU propagation model without using
constrains, the attitude of IMU is constrained with
one possible rotational movement. In other words, the
unknown bias of IMU pitch and roll measurement can
be compensated by using the constrains. Constraints in
UKF can be handled with various approaches [25, 26].
As the angular constraints directly cope with system
states, they are treated as linear equality constraints.
Written as a part of the system observation function,
their covariance should be set as zero accordingly.
Another issue is how to use ICP algorithm output as
position update in the Kalman filter update. Since the
quality of ICP algorithm strongly depends on the ini-
tial alignment, bad initial alignment will result in local
minimum and thus the alignment result diverges. A
simple mechanism to detect false registration of ICP
is used (Algorithm 3):

The exact values in δPx ∼ N(μp,x, σp,x) and
δPp,y ∼ N(μp,y, σp,y) can be obtained using UKF

time update, in other words, running the UKF with-
out measurement update. The only difference is that
the covariance of the states are initialized with zeros
for each new ICP registration process. The overall
system has multi observation models to handle the
issue of availabilities with respect to DVG and ICP
output. In a way that states are updated according to
the corresponding observations. Furthermore, if the
robot is moving under the same scenario such as the
same straight corridor, the detected vanishing point
is consistent and its corresponding DVG output can
therefore be used for continuous robot heading update.
However, once the robot has made a sharp turn or
moved into a new scenario, the reference direction for
DVG should be changed accordingly. For example, the
robot may running to the end of one corridor and turn-
ing into another one. So far, the method to handle such
situation is not implemented. Since our experiment
scenario is mainly consisted of orthogonal corridors,
the reference direction for DVG will be set with the
offset ( π/2 or −π/2 etc. ) if a sharp turn of the robot
is detected by IMU.

4 Experiment Results

The introduced method is verified with a field exper-
iment (Fig. 3). The place for carrying out the exper-
iment is inside a university building. The robot used
for the experiment is KURT2 mobile robot with
wheel mounted encoders. Sensors employed are wheel
mounted encoders, Microsoft Kinect and a MEMS
IMU (Xsens MTi). The sampling rates for IMU and
encoder are 100Hz while Kinect depth image is sam-
pled with 5Hz. The total travelling distance of the
robot is about 61 meters with 937 pairs of RGB and
depth images collected. As shown in Fig. 3, the robot
is mainly travelling in the corridors. In order to verify
the estimated trajectory of the robot, the turning point
of the robot is marked manually and collected as the
ground truth.

4.1 Results of Depth Visual Gyroscope

Figure 4a shows both depth and RGB measurement
of the Kinect camera mounted on KURT2 mobile
robot (Fig. 1a) looking at the travelling direction under
the experiment scenario. The depth image has large
area of missing values since the object in the front is
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Fig. 3 Experiment scenario

beyond the camera’s measurement range. Figure 4c
shows the orthogonal multi plane segmentation results
based on the introduced method. The red cross in the

depth image (Fig. 4b) shows the estimated coordinate
of the vanishing point.

Figure 5 shows the robot heading estimation with
DVG and IMU. The discontinuous red line is the out-
put of DVG, the missing part means that DVG does not
have a valid estimation of current robot heading. It is
clear that the most missing part of red lines are located
shortly before and after robot turns, where the robot
is running to the end of the corridor. For the heading
estimation before 30 meters, the error between DVG
and IMU is smaller than the measured information
afterwards because heading estimation with IMU has
drifted away in long time running situation.

4.2 Results of the Navigation System and Map
Building

Robot trajectory estimation results are shown in
Fig. 6d. The trajectory estimation using wheel
mounted encoders is as bad as expected. Additionally,
the trajectory estimation with similar system model

Fig. 4 Vanishing point
detection using depth image
and multi plane
segmentation
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Fig. 5 Robot heading
estimation with DVG and
IMU

0 10 20 30 40 50 60 70

−100

−50

0

50

100

150

200

Robot travelling distance [Meter]

E
s
ti

m
a
te

d
 h

e
a
d
in

g
  
[
D

e
g
r
e
e
]

Robot heading angle estimated with DVG and IMU

IMU

DVG

which dose not use DVG heading estimation is plot-
ted for comparision purpose. The comparison between
them is obvious: our introduced system outperforms
the others and even after 61 meters running, the posi-
tioning error at the end point is only around 20 cm,
which is even only around half of the length of the

robot (40 cm). Using the estimated robot trajectory
directly, the mapped 3D point cloud of the environ-
ment is presented (Figs. 6a–6c). We did not use any
post processing to merge different sensor scans or
eliminate false measurement, the presented map is
clean and consistent to the real world model.

Fig. 6 Environment3D
using estimated robot
trajectory
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5 Conclusion and discussion

A single frame depth visual gyroscope algorithm is
presented in this paper with its integration to the
robot navigation and mapping system. Using depth
image, the detected vanishing point is restricted with
the observed geometrical information of the observed
scene. Both trajectory and mapping results are pre-
sented, it is a promising method for indoor mobile
robot localization and mapping especially for cor-
ridor scenarios. As long as the environment fills
the assumptions and is consistent, vanishing points
detected in subsequential measurement is also con-
sistent. In other words, it can be treated as virtual
heading landmark which can be used for robot head-
ing update. Therefore, formalize the presented method
shows high potential for further implementation as a
SLAM approach. The advantage is obvious: there is
no need to dynamically add landmarks into the sys-
tem states which results in extra computational effort.
However, our experiment scenario is a unique case,
there is further work to be carried out for implement-
ing this method for scenario with complex structures.
On the other hand, it solves the mapping problem of
the corridors effectively without considering landmark
detection and association which is the key issue of
EKF SLAM. Another perspective is to study map rep-
resentation and scene understanding. For example, the
map can be modeled with the reference angle with
respect to the virtual landmarks as long as the scene is
detected to be corridor like scenario. Comparing with
heading estimation using RGB images, depth image
does not suffer from the light conditions of environ-
ment and the color patterns of the observed scene.
Another part of our future work is to use this method
for large scale environment reconstruction and test it
for outdoor applications.
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