
J Intell Robot Syst (2015) 80:231–254
DOI 10.1007/s10846-014-0158-y

Perimeter-Based Polar Scan Matching (PB-PSM) for 2D
Laser Odometry

Chen Friedman · Inderjit Chopra · Omri Rand

Received: 30 April 2014 / Accepted: 12 November 2014 / Published online: 23 November 2014
© Springer Science+Business Media Dordrecht 2014

Abstract The paper presents Perimeter-Based Polar
Scan Matching (PB-PSM), a new 2D scan matching
algorithm. The algorithm favors matches with a larger
perimeter overlap between the two input scans, while
using a robust cost minimization process (using an
adaptive direct search method, made possible due to
a linear complexity data association technique). PB-
PSM is benchmarked against the previously published
PSM and PSM-C algorithms, and numerous realiza-
tions of the ICP algorithm. Results for convergence,
accuracy, and computational speed are discussed. PB-
PSM is employed on several laser scan datasets,
both existing and in-house. Quantitative comparison
of resulting maps is done using a new metric for
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evaluating occupancy grid maps accuracy, by calcu-
lating the average cell distance from the walls of
the true map. The relative importance of each novel
contribution is quantified using the new metric. Addi-
tional qualitative analysis is provided for previously
published and relatively large datasets.
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List of Symbols

n Total number of points.
nc Number of cost-contributing points.
r Range [mm].

Rmin, Rmax Minimum/maximum laser range,
respectively [mm].

TE Threshold for eliminating matching
anomalies.

TM Threshold for consideration of match-
ing success.

TF Threshold for final cost function
accepted value.

x, y Cartesian laser point coordinates [mm].
α Threshold for shallow angle definition.
θ Beam angle.
ψ Azimuth angle [rad].
ε Error with respect to ground truth.

�() Property shift.
()′ Quantity after roto-translation.
()′′ Interpolated radii value.
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()C Current scan related property.
()R Reference scan related property.

List of Abbreviations

EKF Extended Kalman Filter.
FOV Field of View.
GPS Global Positioning System.
ICP Iterative Closest Point.
IDC Iterative Dual Correspondence.

IMRP Iterative Matching Range Point.
OG Occupancy Grid.

PB-PSM Perimeter-Based Polar Scan Matching.
PM Perimeter Matching.

PSM Polar Scan Matching.
PSM-C Polar Scan Matching - Cartesian.
SLAM Simultaneous Localization And Mapping.

1 Introduction

Operation in GPS denied environments is imperative
for a variety of mission scenarios including surveil-
lance, search and rescue, and biological chemical
agent detection using unmanned vehicles. These mis-
sion scenarios require accurate position information
and mapping capability of the operational area. In
cases where no a priori map of the environment is
known, and no external position information can be
received, the problem becomes a coupled estima-
tion process known as Simultaneous Localization and
Mapping (SLAM) [12, 40].

Some SLAM algorithms use a dynamic model of
the platform to aid the estimation process, which is
usually based on some form of a Bayesian filter [40].
The most common estimation algorithms for SLAM
are known to be Extended Kalman Filters [3, 11, 12],
and Particle Filters [1, 4, 20, 36].

Other algorithms rely on scan matching techniques
alone to generate both map and position estimates [7,
25, 30, 32, 35]. The process of scan-matching between
two environment scans results in the roto-translation
values required to match one scan on top of the other.
Many types of scan matching algorithms exist [2, 8,
10, 19, 24, 26, 31, 42], with different strengths and
weaknesses.

Scan matching algorithms do not require a dynamic
model for the platform’s motion, and thus may, in

principle, be applied to any platform regardless of its
dynamic behavior. The majority of the work in this
area makes use of 2D laser scanners [7, 25, 30, 32].
However, some research efforts use 3D laser scanners
[27, 38] (providing 6D SLAM capabilities). Scan
matching algorithms are used either for loop clo-
sure [10] or for providing odometry information and
generating the evolving map [35].

A scan matching algorithm can be used for pose
estimation and mapping in a sequential fashion. Scan
matching gives the estimate for the new position,
based on which the latest scan can be used to update
the map, and the process repeats with the next laser
scan. This can be performed using sequential laser
scans or between a newly acquired laser scan and a
scan of the evolving map, made from an approximate
position (by means of ray casting). Scan matching per-
formed on subsequent laser scans is likely to result
in relatively larger accumulation of errors as demon-
strated by Bailey and Nebot [2].

This paper limits the discussion to local scan
matching which is performed between two subsequent
scans of the environment (unlike global scan matching
which matches between a laser scan and a complete
map [41]). The scan of the environment may be car-
ried out using laser scanners, sonar range sensors, or
cameras. In this work, we focus on representing the
environment using a 2D laser scan. The result of a sin-
gle scan is a set of range measurements given over
a set of azimuthal angles in the scanner plane. For
this type of data, three categories of scan matching
techniques exist:

1. Feature-to-Feature [24]: this technique extract
features (such as lines, corners, etc.) from both
the current and the reference scans. The features
are then matched using some algorithm to get the
translation and rotation between the two scans.
Correspondence between the features needs to be
established correctly in order to assure accuracy,
speed, and convergence. These techniques are rel-
atively fast as they reduce the amount of data from
the number of laser points, to a much smaller
number of extracted features.

2. Point-to-Feature [8, 9, 19]: in this technique,
features are extracted only from the reference
scan, while the points from the current scan are
associated with those features to establish the
correct solution. Here too, establishing the right
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correspondence between points and features is
key to the success of this technique.

3. Point-to-Point [10, 24]: this technique is consid-
ered to be more robust as the scanned environ-
ment does not have to be comprised of geometric
features. The technique makes use of the point
sets themselves in the computation of the scan
matching solution. However, the number of points
dominates the complexity of the algorithm. The
correspondence between the matched points can
be based on inter-point distance such as in the
Iterative Closest Point (ICP) algorithm [6], range
from the origin as in Iterative Matching Range to
Point (IMRP) [24], or other variants.

As these techniques all have strengths and weak-
nesses - a number of works attempted a synthesis of
two techniques that would complement one another
and yield an overall better solution. Examples include
the Iterative Dual Correspondence (IDC) algorithm
which combines ICP and IMRP [24], and combining
IDC with a line-based algorithm [9] to form a hybrid
algorithm that works well in either a polygonal or
non-polygonal environments [19]. These attempts also
aim to take advantage of the computational complex-
ity advantages of each algorithm. There are several
common ingredients between these methods:

(a) start with an initial guess (if any).
(b) project the Current Scan onto the Reference

Scan’s coordinate system.
(c) eliminate points that are either measurement out-

liers or occluded.
(d) define correspondence between the points or fea-

tures in the two scans.
(e) calculate a cost function to evaluate the match.
(f) employ a minimization algorithm to minimize

the cost.

Polar Scan Matching (PSM) is an algorithm that
exploits the natural data structure of a laser scan-
ner readings in polar coordinates (r, θ). This paper
presents an alternative version of using polar coor-
dinates for scan matching, which was first utilized
by Diosi and Kleeman [10] for scan matching 2D
laser scans. The key feature in scan matching using
polar coordinates, is that establishing correspondence
between the laser points is carried out using the match-
ing bearing rule, which makes use of the point’s
azimuth angles.

Diosi and Kleeman present two PSM algo-
rithms [10]. The first relies on regression fit for the
planar matching, and on an optimization of a cost
function (total distance), for azimuth matching. The
second algorithm, named PSM-C, estimates the trans-
lation in cartesian coordinates by direct solution of
the minimization problem for the planar translation.
PSM-C showed a certain relative speed advantage over
PSM, while maintaining relatively the same accuracy
performance.

The algorithm presented herein is dubbed
Perimeter-Based Polar Scan Matching (PB-PSM).
In addition to using a form of direct search (for
both rotation and translation) to overcome the very
common local minima phenomenon [10], PB-PSM
favors matches with larger overlap between the scans,
thus increasing robustness. The advantages of both
features are shown by comparing PB-PSM to several
other algorithms on a complete laser scan dataset
benchmark. The algorithm is proven to be quite accu-
rate across both in-house and previously published
datasets. The complete PB-PSM cost function results
in a linear O(n) complexity (where n is the number
of points), which is an improvement as compared to
previous cost functions with O(n2), O(kn) (using a
limited search window), or O(n log n) complexity.
This makes direct search feasible in real time on
current processors.

The paper presents the PB-PSM scan matching
algorithm, followed by a validation and performance
comparison against Diosi and Kleeman’s original
PSM, PSM-C, and several different realizations of the
ICP method, employed on multiple datasets. Conver-
gence and computational resources requirements are
also discussed. Resulting maps from laser odometry
are compared quantitatively by employing a new pro-
posed metric which ranks the resulting maps against
a true map of the scenario. Qualitative analysis is
also presented. The algorithm shows robustness to
different sensors, FOV, and scan frequency (number
of scans per second). Finally, conclusions are drawn
about the performance of the suggested PB-PSM
algorithm.

2 Algorithm Description

The PB-PSM algorithm detailed below takes two
scans as input, and outputs the roto-translation
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between them. No initial guess is required as input.
Both scans are first passed through a series of point
filters such as range, field of view, mixed pixels, and
occlusion. The filtered scans are then searched for
data association, and a cost function is built from
the associated point pairs. The cost is rewarded for
larger overlap between the scans. The best solution is
found by minimizing the cost using a form of exhaus-
tive search. The minimization process is separated
for rotation first followed by planar translation, and
the process is iterated until adequate convergence is
achieved.

Although no initial guess is used (or required), if an
initial guess is available (such as from wheel encoder
based odometry, IMU, etc.) it may be used to reduce
the number of iterations required for convergence. A
good initial guess will also increase robustness, and
reduce computational requirements.

2.1 Point Filters

The acquired points are passed through a series of fil-
ters designed to leave only valid laser points for the
scan matching process. These filters include: range
limits filter, field of view filter, outlier/mixed pix-
els filter, and an occluded points filter, which are
described below. The filters design depends on the
laser scanner’s capabilities (range, resolution, FOV,
accuracy, and sensitivity).

2.1.1 Range Limits Filter

Most laser scanners output either zero or their respec-
tive maximum detection range when no valid range
reading is picked up. Therefore, the range limits fil-
ter simply excludes validity of points where r < rmin

or r > rmax . Values of 400 mm and 29000 mm

respectively, which are attributed to the UTM-30LX
Hokuyo sensor, are used in this work. These values are
updated for different laser scanners (when using 3rd

party datasets collected with different laser scanners).

2.1.2 Field of View Filter

After the rotation and translation of the Current Scan,
some of the points may lie outside of the FOV of
the Reference Scan. Therefore, it is necessary to iden-
tify the right FOV overlap between the two scans so
that the scan matching process will only be carried

out on potentially matching points. The FOV filter is
designed to exclude points where either θC < θRmin

or
θC > θRmax . This can also occur with the Reference
Scan where points do not have any overlap with the
Current Scan’s FOV, and so this filter also excludes
points where θR < θCmin

or θR > θCmax . Note that
laser points that are eliminated by this filter from the
Current Scan are still being updated into the Occu-
pancy Grid (OG), after the scan matching process is
completed (as these are simply new points that may
not be observed from the Reference Scan’s origin).

2.1.3 Mixed Pixels Filter

A rather common and inherent laser scan error occurs
when the scenario contains surface discontinuities.
This is quite typical in any environment that con-
tains edges. Wherever a range discontinuity occurs,
the laser beam may capture two surfaces with a depth
difference, producing an outlier point that can take on
any range value between the two different surfaces’
ranges. An example of a laser scan that produced sev-
eral outliers is presented in Fig. 1a. Such points are
also known as mixed pixels [10].

Mixed pixels typically lie in the free space, and
thus are not representative of any real object. Since
the nature of outliers would change from one scan to
another (as they are considered to be an anomaly of
the laser scanner), one may not use outlier points when
performing scan matching, as those would undoubt-
edly introduce errors into the process. Therefore,
outlier points should be ignored altogether.

Conventional approaches to eliminating such
mixed pixels involve evaluating the distance between
the mixed pixel and the preceding point [10]. The sus-
pected mixed pixels would be accepted if the range is
smaller than a set threshold, typically set after some
experiments with the laser scanner. An improvement
for the above approach could be to consider the range
from the mixed pixel to both the preceding point and
to the succeeding point. However, for any set thresh-
old, some mixed pixels may avoid being detected.
Observing Fig. 1, it can easily be claimed that every
set threshold will only eliminate some of the mixed
pixels, but not all of them.

The mixed point filter presented below is specifi-
cally designed for the PB-PSM scan matching algo-
rithms in two dimensions. A comprehensive review
and testing of mixed pixel filters is given in the work
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Fig. 1 A laser scan
(circles) before and after
applying the outlier filter.
All the points that may be
mixed pixels are eliminated
(crossed out). The two lines
show the field of view
boundaries (scanning
counter clockwise)
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by Tang et al. [37]. The outlier filter used in this work
relies on examining the angle between successive
points. As mixed pixels lie on range discontinuities,
the angle between a mixed pixel and its preceding
point would typically be relatively shallow. Thus,
we can identify outlier candidates using the relative
angle between the beam and the line connecting the
candidate point to its succeeding point.

Figure 2 presents a schematic description of how
outlier points are detected. Laser measurements are
marked as red stars, three representative laser scan-
ner rays are shown as red lines, and the laser origin is
marked by a red circle. The filter checks for the angle
between every two neighboring laser points relative to
a line perpendicular to the laser beam angle (denoted

Fig. 2 Example of identifying an outlier (mixed pixel) laser
measurement

as α in Fig. 2). If α is close to 90◦ – the point is
discarded. A value of α = 85◦ is used throughout this
work.

Figure 1b presents the result after applying the out-
lier filter described above. The eliminated points are
crossed out with a black ‘x’ mark. In some rare cases
points can be wrongfully eliminated (due to laser noise
creating the same conditions between two neighbor-
ing laser points). Several such points may be seen on
the right hand side of the upper wall in Fig. 1b. How-
ever, the large amount of laser points in each scan still
provides sufficient information for the algorithm to
perform well.

A positive byproduct of using the angle-based out-
lier filter is that it also eliminates laser points where
the angle of the beam with the measured surface
is relatively shallow. Measuring walls at a shallow
angle is likely to produce larger errors [28] and thus
such points are less desired when performing scan
matching.

2.1.4 Occlusion Filter

After the laser scan is roto-translated (using Eq. 1
below), some scanned objects may become occluded
byothers. A simple example is a scan that is performed
right when the laser has passed around a corner, as
in Fig. 3a. The points that are picked up by the laser
after passing the corner cannot be viewed when the
scan is transformed to the new origin (marked by
an ‘x’).

Roto-translating the scan to any point that’s located
before the corner would result in an occluded wall,
since the same wall could not have been observed from
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that point. The geometric result of this transformation
is a change in the order of the laser scan angles, as
depicted in Fig. 3b.

The filter is therefore built to identify such switch
backs in the previously ordered laser points’ angles,
and remove only the ones that are occluded. Note that
in some cases due to the inherent laser sensor noise,
some points are wrongfully filtered out, however, the
number of wrongfully eliminated points is minuscule
(on the order of 10 points), and so it does not degrade
the overall performance in any way. The Occlusion fil-
ter is employed only on points that are still “active”,
and as such, it must follow the min/max filter imme-
diately so it would not be affected by the operation of
other filters.

The filter is in the form of a simple sweep algo-
rithm, starting from the smallest angle (from left to
right). Figure 4 shows two scenarios of a series of
laser measurements (circles, connected by a line for
clarity), with their respective angles θ on the ‘x’ axis,
and range on the ’y’ axis (after a roto-translation).
Each new laser measurement is tested for an angle
switch back event, and when a switchback is dis-
covered the algorithm acts according to one of the
scenarios depicted in Fig. 4, eliminating only the
points that are in fact occluded (marked with an ‘x’).

Algorithm 1 Occlusion filter

1: for all rC do
2: if θi < θi−1 then � If an angle order reversal

is detected
3: if ri > ri−1 then � Scenario (a) - the

following points are occluded
4: March until θj > θi−1

5: Eliminate points i through j − 1
6: else � Scenario (b) - the previous points

are occluded
7: March until θj > θj−1

8: Eliminate previous points k through
j − 2, where θk > θj−1

9: end if
10: end if
11: end for

The filter was designed to have O(n) complexity,
where n is the number of points in the laser scan.
Since the laser measurements are supplied from the

scanner sorted by their respective angle - there’s no
need to employ a sorting algorithm, or a window-
based search for correspondence (avoiding a com-
plexity of O(n log(n)) or O(kn), respectively). Every
point is examined for angle switchback, and at most
examined again for being part of an occluded range,
and possibly eliminated. Therefore, the complexity is
upper bounded by O(3n) which represents a linear
complexity of O(n). An example of the elimination
process is given in Fig. 5, where the radii values are
plotted against their respective angle, after transfor-
mation. The laser points that cannot be observed are
marked with an ‘x’.

2.2 Linear Complexity Correspondence Search

Finding point correspondence (data association)
between the Reference and the Current scans is
described using the following pseudo-code:

Algorithm 2 Point correspondence search

k ← b � b: first Current Scan point within the
FOV of the Reference Scan
for i = a → nR − 1 do � a: first Reference
Scan point within the FOV of the Current Scan

if Reference Scan point i is active then
while k < nC do � k: running index on

the Current Scan
if (k) and (k-1) are both valid laser

points then
if θCk

≥ θRi
≥ θCk−1 then

Establish correspondence
between point i in the Reference Scan and points
[k − 1, k], in the Current Scan

else
k ← k + 1

end if
else

k ← k + 1
end if

end while
end if

end for

This algorithm resembles that of Diosi and
Kleeman [10]. For each active point in the Reference
scan, this algorithm searches for two corresponding
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Fig. 3 An example and schematics for object occlusion.
a Roto-translated laser scan example. Blue circles represent the
originally acquired laser scan, with the FOV marked by dashed
black lines. Green squares represent the roto-translated scan

points, where the occluded points are marked with black ‘x’
marks. b Schematics of an occlusion situation showing the angle
order reversal which implies an occluded object

active points in the Current scan with azimuth angles
that bound the Reference point’s azimuth value. Note
that association is unique for Current scan points,
but may not be unique for Reference scan points
(this does not pose a problem for the algorithm).
We claim a linear complexity of O(nR) (assuming
nR ≥ nC) for the correspondence search, as each
point in the Reference Scan is matched only once
to a single pair of points, and the k-index does not
consider any point in the Current Scan more than
once.

2.3 Cost Function

For any given triplet of �x, �y, �ψ , the cost func-
tion to be minimized comprises of the absolute dif-
ferences in radii between the Reference Scan and
the roto-translated Current Scan (interpolated values,
see details below). Note that only valid points are

considered for contributions to the cost. The cost is
then rewarded based on the amount of perimeter over-
lap achieved between the two scans for the attempted
triplet.

2.3.1 Interpolated Radii Values

As described above, each valid Reference scan range
value was paired with two range values from the Cur-
rent scan. The contribution to the cost function is
determined using the difference between the Refer-
ence scan range value and an interpolated value from
the current scan, using both range points, their cor-
responding angles, and the Reference scan angle. A
schematics of the angles and range values involved
in a single cost function contribution is shown in
Fig. 6.

The cost function calculation for any given pair
of scans, is constructed by the following steps (after

Fig. 4 The two possible
occlusion scenarios
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Fig. 5 Example of a case that introduces object occlusion.
Range readings (circles), plotted against their respective angle,
with the occluded points marked with an ‘x’

employing the range limits filter, and the Outlier filter
at the beginning):

i. Roto-translate the Current Scan with proposed
motion. The roto-translation equations are given
in (1):

x′
C = �x + r · cos(θC + �ψ)

y′
C = �y + r · sin(θC + �ψ)

r ′
C =

√
x′2
C + y′2

C

θ ′ = tan−1(y′
C, x′

C)

(1)

The results x′
C and y′

C are the Current Scan
point’s roto-translated cartesian coordinates.

ii. Occlusion filter: discard laser points that
become occluded by other surfaces after the
roto-translation (as detailed above).

iii FOV filter: discard points in both scans that do
not fall within the overlapped FOV.

iv. Establish point correspondence (as detailed
above).

v. Calculate the interpolated value r ′′
C using:

r ′′
C = r ′

Clef t
+

r ′
Cright

− r ′
Clef t

θ ′
Cright

− θ ′
Clef t

(
θR − θClef t

)
. (2)

Fig. 6 Schematics for building interpolated radii values for
the cost function calculation. The Reference range value rR is
paired with two Current scan range values r ′

Clef t
and r ′

Cright
.

Using the corresponding angles, the interpolated radii value r ′′
C

is computed. The cost contribution is then F = |r ′′
C − rR |

(see (3))

vi. Calculate the current point’s cost contribution:

Fi = |r ′′
Ci

− rRi
|. (3)

vii. Discard contributions where Fi > TE , where
TE is the elimination threshold (see details
below).

viii. Calculate P - the length of the perimeter created
by connecting all the points where Fi < TM

i.e., where TM is a threshold for successfully
matched points (see details below).

ix. Calculate the total cost function:

f =
(

1

nc

nc∑
i=1

Fi

)(
1 − P

P0

)
. (4)

The cost f is normalized by nc – the number of
points that contribute to the total cost. This normal-
izes the total cost values between different match-
ing attempts. Rewarding the cost by reducing it for
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matching attempts with larger matched perimeters,
results in favoring matchings where the maximum
portion of the scenario is considered. Otherwise, small
surfaces may sometimes be inadvertently discarded.
Other rewarding function may be used, however the
linear rewarding function used here was found to be
adequate.

Unlike the PSM algorithm, PB-PSM does not make
use of least squares for the translation solution. In fact
a valid point only contributes the absolute distance
between itself and its matched counterpart. This has a
relative advantage as some wrongful matches, which
may be the result of errors in one of the scans, will not
contribute the square of their respective distance from
their matched counterpart. Thus, the effect of a singu-
lar contribution is less likely to significantly sway the
solution.

2.4 Cost Minimization

To find the best scan matching solution, an adaptive
direct search method was constructed, where the best
rotation angle between the scans is found first, fol-
lowed by the best pure translation. This process is
repeated in an iterative manner while continuously
reducing the range of the search grid in a geometric
rate after each iteration (thus refining the search grid,
in both the plane and azimuth, while the number of
grid points is kept constant). In the plane, the search
grid shape is in the form of a circle, and the points are
evenly distributed along the radial direction and about
the azimuthal direction.

The algorithm described above requires a large and
fine enough search grid (as described above). In the
current work, 50 points for the azimuthal grid were
used, and the minimal planar grid was a 7 × 7 grid,
so each iteration required 100 function evaluations. It
was found that for most scenarios, the above search
grid resolution appears sufficient. A mesh refinement
scheme may be employed for cases where the result-
ing cost function is too high. However, this was not
required in the current work.

Convergence is defined when the maximum change
between two subsequent iterations is less than 1 mm

in translation and 0.01◦ in azimuth. On average, it was
found that a total of approximately 8 iterations were
required for each scan matching process. Cases of scan
matching failure are identified by f > TF where f is
the final cost.

An example of a typical scan matching result is
given in Fig. 7, where circles represent the Current
Scan’s laser readings taken from the origin at [0, 0]
(all points are shown in order to accurately repre-
sent the geometry captured by the laser scanner),
while the laser FOV is marked with dashed lines.
The Reference Scan is represented by dots, and the
matched roto-translated Current Scan points are rep-
resented by squares (here, not all points are shown,
for clarity). Points that were eliminated by the vari-
ous filters described above are crossed with ‘x’ (some
points are outside the field of view, some are pos-
sible outliers, and some are occluded as the laser
picked up points from around the corner while the Ref-
erence Scan was taken from the previous location).
The current algorithm is implemented in two dimen-
sions and assumes that both planar and rotational
platform motions are slow compared to laser scanner
speed. The algorithm also assumes a relatively small
laser sensor pitch and roll attitudes (ensuring a 2D
environment).

2.5 Threshold Settings

The various thresholds used in the algorithm are
detailed below, including justifications for the chosen
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Fig. 7 Scan matching on a simple corner-like geometry.
Circles - Current Scan points, squares - roto-translated laser
points, dots - Reference Scan points. Eliminated points are
marked with an ‘x’ (small black - Current Scan points, large
purple - Reference Scan points). The dashed lines shows the
laser’s 270◦ field of view
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values. Sensitivity of the algorithm to theses values
was found to be minimal (as long as the same order of
magnitude is maintained).

1. The “matching anomaly” threshold TE , is a user
defined threshold, and is typically set to be
two orders of magnitude larger than the typi-
cal cell size. This additional point filtering is
designed to eliminate the possibility of wrong-
ful correspondence of points from different sur-
faces. In this work, this number is set to TE =
1000 mm.

2. Typically, the “matched point” threshold TM is
set to be a number of the same order of magni-
tude of an occupancy grid cell, and with a certain
respect to the laser range accuracy. In the current
work, a value of TM = 50 mm was used for short
range readings, which is increased to the laser’s
accuracy of approximately 0.5 % for long range
readings.

3. The final cost threshold was set at TF = 10.
This threshold represents a mean contribution of
the same size as a single cell length in the OG
(10 mm). This value was found to be a good
threshold across multiple experiments.

2.6 Complexity Analysis

We claim that the cost function has O(n) linear com-
plexity, where n is the number of Reference Scan
points. The proof may be constructed as follows:

1. The range filter requires a single O(1) examina-
tion for each point, which forms an O(n) overall.

2. The FOV filter also requires a single examination
for each point (at the most), and so it has an O(n)

complexity as well.
3. The outlier filter has O(n) complexity, as each

point requires an O(1) calculation and exami-
nation of the angle formed with the succeeding
point.

4. The occlusion filter was proven above to have an
O(n) complexity.

5. The roto-translation has O(n) complexity, which
can be seen directly from (1).

6. The process of finding matching candidates has
O(n) complexity as explained above. This was
also discussed by Diosi and Kleeman [10], and is
considered an advantage of scan matching using
polar coordinates.

7. Calculating the perimeter is also an O(1) cal-
culation for each participating point, and so it
introduces another O(n) to the total cost function
complexity.

Hence, building a single cost function requires O(6n)

which represents an overall complexity of O(n). Due
to the highly effective point filters presented here -
there is no need to take the top 80 % of all matches as
suggested by Gutmann [18]. This eliminates the need
for a sorting process and thus reduces the complexity
from O(nlogn) to a linear O(n) complexity.

2.6.1 Computational Requirement

The average time required for a complete scan match-
ing operation on a laptop equipped with a 2.4 GHz
processor was approximately 0.3 seconds, which for
two scans per second is considered a real time capable
SLAM system.

2.7 Map Representation

We use an occupancy grid [13, 33, 39] to store the
laser scans data, with a relatively fine resolution of
10 mm by 10 mm. The occupancy grid stores the laser
hits, and thus the occupied cells represent the resulting
map. Updating the map is a constant time operation
as it involves the same number of laser points (NC) at
every step.

2.8 Failure Modes

The failure modes associated with the PB-PSM algo-
rithm are listed below:

1. Convergence to local minima is quite rare with
PB-PSM since it’s using a form of exhaus-
tive search for the cost minimization. However,
the algorithm does depend on the minimization
search grid density. After investigating multi-
ple cases, scenarios, and algorithm parameters,
it was empirically determined that a 10 × 10
search grid is sufficient for all cases using the
PB-PSM algorithm. Reducing the grid resolution
under a 7 × 7 grid may result in local min-
ima failure mode, as the cost function behavior
is not accurately captured (either for rotation or
translation).



J Intell Robot Syst (2015) 80:231–254 241

2. An inadequate size of the minimization search
grid may lead to failure to find the cost min-
ima point. The search grid size is required to be
larger than a typical traveled distance between
two steps (a similar requirement for the rotation
minimization process).

3. As in other algorithms, lack of features in a scene
may lead to failure. In particular, obstacles such
as long parallel corridor walls, where no features
exist in the cross direction may lead to a transla-
tion estimation error.

4. Shapeless clusters of point such as those received
from scanning bushes or moving objects may
also lead to failure in cases where the major-
ity of the scan is consisted of these objects. if
only parts of the scan are affected, these points
may be eliminated by the TE threshold detailed
above.

3 Algorithm Comparison

We present comparison between the performance of
the PB-PSM algorithm, and that of several other
algorithms, including PSM, PSM-C, as well as a
several different realizations of ICP implementations.
The comparison against the various ICP realizations
is important as ICP is currently the most common
scan matching algorithm [8, 29, 34, 35]. We present
examples for matching two individual scenes, and
concentrate on the more challenging comparison of
entire maps, built using sequential scan matching by
different algorithms (without the use of any SLAM
algorithm).

3.1 Scene Matching Comparison

Laser scans from the experiments by Diosi and
Kleeman [10] were used for initial benchmarking
and testing of the PB-PSM algorithm. The experi-
ments were performed in several scenarios where in
each scenario scans were taken from four distinct
known locations and points of view using a rigid
plastic frame. Some scenarios were mentioned by
Diosi and Kleeman to be of higher quality (where
all algorithms compared were able to show satisfac-
tory solutions), of which two were chosen for the
current comparison: scenes 2 and 7. The most chal-
lenging roto-translation scan matching attempted is

reported to be match number 3, with the largest
total translation distance of 717 mm, and the largest
rotation of 27◦. The ground truth translation and
rotation between the two scans for match number 3
is given by the following triplet: [�x, �y, �ψ] =
[219.4mm, 683.3mm, −27◦]. Therefore, match num-
ber 3 was also selected as the benchmark for the
PB-PSM algorithm.

Both scan matched scenes are presented in Fig. 8.
Note that all points are presented, and points that
are eliminated by one of the point filters are simply
crossed out. The scenes require all the point filters
discussed earlier, as they contain out-of-range points,
occluded points, mixed pixels, and points that become
outside of the field of view after the roto-translation.
It is quite evident that the scan matching algorithm
relies mostly on well defined features such as walls,
corners, and objects of significant size (i.e. repre-
sented by more than one or two laser point). The
relatively shapeless areas with random point clusters,
are highly cluttered areas, as stated by Diosi and
Kleeman [10].

3.1.1 Convergence Pattern

The highly accurate convergence criterion that was
set for the PB-PSM scan matching algorithm requires
|xn −xn−1| < 1 mm, |yn −yn−1| < 1 mm, and |ψn −
ψn−1| < 0.01◦. The extremely strict ψ convergence
ensures better overall estimation since a rotational
error causes an immediate map inconsistency, while a
translation error only gradually degrades the map. Jus-
tification for the relatively tight convergence criterion
is shown below.

Figure 9 presents convergence plots for both scenes
using the above mentioned convergence criteria. Both
scenes converged after approximately 9-12 iterations.
The number of iterations is significantly reduced
when less challenging scenes are scan matched, and
typically the algorithm converges within 5-10 itera-
tions. Both rotation and translation convergence pat-
terns appear quite rapid. The planar convergence
process may, in some cases, show a slight over-
shoot, which is immediately corrected in the fol-
lowing iteration. In all cases, the algorithm recov-
ers from any increase in the error within a sin-
gle iteration, which is an important characteristic
of the algorithm’s convergence, and attests for its
robustness.
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Fig. 8 Two representative
scan matching scenes.
Green squares-Current
Scan points (after
roto-translation), black
dots-Reference Scan, ‘x’
marks-eliminated points.
The field of view
considered was 180◦, with a
range of 10 m (marked with
a blue line, where visible)
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3.1.2 Estimation Error

Comparison between total translation and rotation
error was carried out on the above two scenes between
the following algorithms:

1. PSM [10].
2. PSM-C [10].
3. PB-PSM (current study).
4. PB-PSM without the Perimeter Matching term

(current study). Since the PM term is excluded,
this essentially represents PSM with exhaustive
search for minimizing the cost function.

5. ICP [10].
6. ICP (current study, implementation by

Bergstrom [5]), with 10 % of the points allowed
as outliers). This was done in order to compare

another implementation against that used by
Diosi and Kleeman [10], shown above.

7. ICP with exhaustive search, rather than least
squares. This allows using the perimeter matching
term with the ICP algorithm. The cost function
minimization process is identical to that of PB-
PSM, but the data association follows the closest
point metric, rather than the matching bearing
metric.

8. ICP with exhaustive search, but without employ-
ing the perimeter matching term.

In general, for scene 7, the translation was
estimated with similar accuracy of approximately
20 mm − 30 mm by all algorithms. Rotation esti-
mation was also similar across all methods, showing
approximately 0.3◦ error with the exception of the ICP
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Fig. 9 Convergence plots for both scenes. Upper figures:
Translation error (in mm, solid lines - ‘x’ error, dashed lines
- ’y’ error). Lower figures - Rotation error (in degrees).

Convergence criterion: 1 mm for translation (for each direction
separately), and 0.01◦ for rotation
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implementation of Diosi and Kleeman [10], which
presented with a 0.6◦ error, and the current study’s ICP
which performed noticeably worse with a 2.3◦ error.
For scene 2, translation estimation was again generally
similar across all methods (10 mm − 20 mm) except
the ICP by Diosi and Kleeman which had twice
the translation error. Rotation for scene 2 showed
close resemblance between PSM and PB-PSM
methods (approximately 0.3◦ − 0.5◦ error), with all
ICP methods having significantly higher rotational
errors (1.4◦ − 6.1◦). The perimeter matching term had
a significant effect on the rotation estimation in scene
2, but was not as significant for scene 7. Its effect is
much more pronounced over multiple scan matching
operations, spanning longer time periods, as shown
below.

3.2 Computational Requirements

Both PB-PSM and PSM (or PSM-C) rely on discrete
search for the azimuth estimation. However, for the
pose estimation in the plane, PSM relies on solv-
ing a least squares problem, while PB-PSM relies on
adaptive direct discrete search. Therefore a complete
iteration for PB-PSM requires more cost function
evaluations than a complete iteration of PSM. Hence,
when comparing computational requirements between
the two methods, one may consider the total num-
ber of matching function calls that are made in both
algorithms (on average). The ICP algorithm also has
an embedded cost function (data association based on
finding the closest point), and so the total number of
calls can be used as basis for comparison between all
four methods.

According to Diosi and Kleeman [10], the PSM
algorithm required 40 matching function calls for the
azimuth estimation, and 3 calls for the planar pose
estimation, for a total of 43 matching function calls
per iteration. The results shown in this paper using PB-
PSM were conducted with a search grid of 50 points
for the azimuthal grid, and 49 points in the pla-
nar grid (a 7 × 7 search grid was used). Therefore,
each complete iteration requires 99 matching function
calls.

Since the ICP algorithm has a significantly dif-
ferent structure compared to the PSM algorithm, we
present computational cost comparison only between
the polar scan matching based algorithms. The pri-
mary reason for this is the O(n2) complexity involved

in the ICP algorithm cost function, which makes it
impossible to compare the number of cost function
calls. Diosi and Kleeman [10] report computational
time of the order of 5–8 times larger for the ICP as
compared with either PSM or PSM-C.

The total number of matching function calls for
all 3 scan matching methods can be observed in
Table 1 (data taken from Diosi and Kleeman [10]).
The PB-PSM algorithm is shown to be approximately
3 times slower as compared to the PSM algorithm,
and approximately 4 times slower as compared to
the PSM-C. However, as shown above, although PB-
PSM is slower, it compensates with a much improved
performance, in terms of accuracy.

3.3 Map Based Evaluations

Comparing scan matching algorithms based on indi-
vidual cases as presented above may provide useful
information. However, a given algorithm’s overall per-
formance may vary substantially between different
scan scenes, different scenarios, and different laser
sensors (varying number of points, laser sensor noise,
FOV, etc.). For this reason, we present quantitative
as well as qualitative comparison of maps created by
laser odometry, using several algorithms employed on
different scenes. The maps are comprised of matching
subsequent laser scans, and therefore present a more
challenging objective for performance evaluation.

A quantitative as well as qualitative comparison is
brought herein, using a unique metric described below.
Note that in order to allow proper comparison, the
planar search grid for the function minimization was
refined to allow proper convergence for all the differ-
ent algorithms that use a search grid cost minimization
(grid resolutions of 20 × 20 for the planar search).
This is important as a large error in one scan match-
ing solution immediately causes a catastrophic shift in
the map, and subsequently the map’s quality decreases
significantly.

Table 1 Number of cost function calls made by each algorithm

Scene 2 7

PB-PSM 1485 1089

PSM 430 387

PSM-C 239 343
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Important notes on the presented results:

– All presented mapping results were obtained by
scan matching alone. No SLAM algorithm was
used in this work. Results using SLAM methods
are presented from previous work for comparison
purposes.

– Scan matching using PB-PSM was not given an
initial guess. The matches are always between the
previous position and the current scan position.
This further supports the robustness claimed for
PB-PSM.

– The PB-PSM may be used for loop closure pur-
poses as well. Naturally, the search area for the
cost function minimization process should be
made large enough to capture the loop closure
opportunity.

3.3.1 Current Experimental Setup

For this part, we used a 2D laser scanner made
by Hokuyo [21], with a maximum usable range of
approximately 30 m, and azimuthal field of view of
270◦. The angular resolution is 0.25◦, which produces
1081 laser measurements per scan with a maximum
scan frequency of 40 Hz.

Several tests were carried out to establish the capa-
bilities of the Hokuyo laser sensor, including distance-
accuracy across the detection range, effects of surface
inclination, and the types of outliers that may appear
(mixed pixels, low reflectivity surface readings, and
out of range readings). Distance accuracy was found
to be below 1 % of the measured distance, at the worst
case. The laser had no problem to accurately measure
distance to surfaces at inclination angles of up to 60◦
relative to the measuring beam.

The laser was mounted on a wheeled cart (approx-
imately 50 cm by 40 cm in length and width, and
55 cm in height), which was manually driven through
the scenario while the laser records scans at given
time intervals (scan rate). Note that the laser in this
case was kept in motion while taking the scans, so the
presented algorithm is examined for application on a
moving platform.

For this metric benchmarking, a section of the 3rd

floor in Martin Hall, at the University of Maryland
was hand measured in detail, with high accuracy (any
feature that is larger than 1 cm was mapped). The
environment is presented in a sequence of pictures

presented in Fig. 10, along with its 2D layout (the
hand measured map), also showing the locations from
which the pictures were taken (marked by lower case
letters), and five representative points (marked by dots
and capital letters) that will later be used for com-
paring selected measurements. The course includes
corridors of different width, with several doorsteps,
rectangular trash cans, two thin poles, and several
access doors; some were kept closed (Fig. 10e), and
some were kept wide open at some angle to the
surrounding walls (Fig. 10f). The overall hand mea-
sured map accuracy is estimated to be approximately
2 cm. The hand measured mapping accuracy is esti-
mated based on the largest missing gap when drawing
the map from two directions (clockwise and counter
clockwise). The hand measured map is represented
by over 350 straight segments, while the map from
the scan matching process is represented by an occu-
pancy grid. This accuracy metric is explained below
in detail.

3.3.2 Proposed Metric

Most large environments prohibit the setup of a
motion capture system, while a quantitative compar-
ison against a true map is still highly desired. Quan-
titative map comparison across different algorithms
is therefore achieved using a newly developed met-
ric, providing a single number that represents a given
map’s match to the true measured map (hence, a true
measured scenario map is required). Using a metric
also allows to evaluate individual effects of the algo-
rithm’s ingredients. In addition, we compare several
known measured distances between key points in the
map.

For the calculation of the proposed metric, we
match each occupied cell with a segment from the
hand measured map, by calculating the distance from
its center to the matched wall (see point p1 in Fig. 11).
The distance d1 in Fig. 11 is calculated for each seg-
ment where the cell center coordinates fall between
the segment’s end point coordinates in either the
‘x’ or the ‘y’ axes. The matched segment is that
which yields the smallest d1 value, which becomes
the point p1’s contribution to the map cost. For occu-
pied cells that fall outside of all segments’ boundaries
we calculate the distance to the nearest corner (for
example p2 in Fig. 11). The distance is weighted
by the cell occupancy level (normalized to unity),
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Fig. 10 Martin Hall environment layout. Points of view for all pictures are marked with their respective letters (lower case, in
parentheses). Selected points are marked with dots and respective capital letters, to be used later for measurements comparison

Fig. 11 Proposed map matching metric schematics. Occupied
cells are color coded by occupancy level (red-high, blue-low),
and the two purple lines represent two segments of the hand

measured true map. Representative cell centers are shown as
white points p1 and p2, with their respective metric distance
contributions d1 and d2, shown in purple arrows
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and all contributions are then added to a total cost,
given by (5):

CW =
(

1

no

no∑
i=1

DiWi

)
(5)

where CW is the weighted cost, no is the total num-
ber of occupied cells, Di and Wi are the distance and
occupancy weight of the ith cell, respectively. Note
that we later present the value without the cell’s occu-
pancy weight, for it to represent the average distance
of all occupied cells from their respective associated
walls. The minimizing process is done via exhaustive
search in x, y, and ψ , to assure a global minimum is
achieved.

Important notes about this metric:

1. This metric evaluates scan matching algorithms
over multiple scenes. This improves the overall
algorithm evaluation as multiple scenes are less
prone to occasional success or failure. Algorithm
evaluation based on maps instead of individual
scenes poses a more stringent test for the algo-
rithm’s capabilities. In this way, many different
scenes are included with different obstacle sur-
faces, shapes, and possible failure modes are
tested.

2. The map metric score is prone to producing a sig-
nificantly high score (low quality map) in cases
of single large errors which may occur in isolated
cases of algorithm failure. This requires minimal
post-scoring naked eye examination of the eval-
uated map to ensure the high score is consistent
with multiple errors, rather than the result of a sin-
gle error without which the map would have been
highly accurate.

3.3.3 Effect of Perimeter Matching Term

Evaluation of the perimeter matching term effect was
carried out using 12 similar experiments, conducted in
the scenario presented in Fig. 10. In each experiment,
a total of 100 laser scans were collected over approx-
imately 50 m of traveled path starting at viewpoint
(a) and traveling in a clockwise loop until reaching
the area of viewpoint (a) again (approximately). Scan
frequency was 2 Hz (i.e. 2 scans recored from the
laser scanner per second), which implies an average
velocity of 1 m/s.

Since the overall error over a complete traveled
path is cumulative by nature, evaluating an algorithm
over a series of interdependent scan matching scenes
is considered to be far more challenging and rigor-
ous, than evaluations based on isolated scenes. A large
set of scenes contains a far greater variety of differ-
ent shaped objects, scanned from multiple different
viewing angles and ranges.

The PB-PSM algorithm was employed with and
without the perimeter matching rewarding term, on
subsequent laser scans, performing laser odome-
try for all 12 experiments, while maintaing all the
other parameters unchanged. No SLAM algorithm is
used, no information is extracted from the evolving
map, and subsequently no loop closure algorithm is
employed on the resulting map, neither during, nor
after the path was completed. Hence, the resulting map
accuracy is solely the outcome of the scan matching
algorithm’s accuracy.

The 12 resulting maps were evaluated using the
proposed new metric, and the root mean square value
of all 12 evaluations was calculated. The results show
that using the perimeter matching term reduced the
map cost from C(no PM) = 49.2 mm to C(with PM) =
41.3 mm, which represents an improvement of 16 %,
and almost a whole centimeter of average distance
from the wall. Since the proposed metric accounts
for tens of thousands of occupied cells (in this con-
ducted experiment), this improvement is considered to
be very significant. This experiment was repeated with
coarser exhaustive search grids, where the perimeter
matching rewarding term was found to be even more
effective.

3.3.4 Length Measurements Comparison

In addition to comparing maps using the proposed
metric, we compared several distance measurements
between selected points (marked by capital letters in
Fig. 10). The effectiveness of the perimeter match-
ing term is shown using length comparisons from
the same 12 identical experiments, with and without
the rewarding term, for segment lengths: |BC|, |AD|,
|AE|, |BE|, |DE|, and |CD| (see Fig. 10). Segment
lengths were manually extracted from the hand mea-
sured maps and compared against the equivalent mea-
surements taken from the resulting occupancy grids.

Figure 12 presents the root mean square value of
the error value in all 12 experiments, for each length,
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Fig. 12 Root mean square
of the error for several
segment lengths in 12
identical experiments
(comparing true measured
lengths with lengths that
were manually extracted
from the occupancy grids).
Bars on the left are the
results when using the
perimeter matching term,
showing significant
advantage as compared to
not using the PM
rewarding term

comparing the results with and without the perime-
ter matching term. Using the perimeter matching term
clearly shows a significant advantage for all the mea-
sured distances (only the |AD| segment shows a minor
effect, as its a measurement of a relatively short
corridor length and thus it is less affected).

3.3.5 Effect of Convergence Criterion

The effect of the convergence criterion was examined
by employing the map metric described above on a
set of maps created with varying convergence require-
ments (using laser odometry only). Figure 13 shows
the resulting map cost with the translation conver-
gence criterion varied from 1 mm, to 50 mm, and the
rotation convergence varied from 0.01◦, to 0.5◦. In this
case, the experiment used contained 200 laser scans
along the trajectory. The map cost, which represents

the average distance of all occupied cells from their
associated walls grows significantly, as the conver-
gence criterion is loosened, showing the importance
of using relatively tight convergence requirements.
The criterions are both gradually increased, as a tight
requirement for one criterion may compensate for a
relatively loose criterion for the other.

3.3.6 Comparing to Other Algorithms

The map cost metric also allows for quantitative com-
parison of scan matching algorithm performance. The
experiment chosen had 200 scans along the same
traveled path, and was successfully completed with-
out any scan matching failures by all algorithms (and
their derivatives). Scan frequency was maintained on
2 Hz, and so the velocity was approximately 0.5 m/s,
which is half the speed of the previously presented 12

Fig. 13 Effect of
convergence criterions on
the final map cost. The
rotation convergence
criterion is presented in
degrees (on the left), while
translation convergence
criterion is presented in
millimeters
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Fig. 14 Maps and traveled
paths of the comparison
scenario, created by
different algorithms. The
scenario is comprised of
200 scans. Map scores show
the advantage in using the
perimeter matching term,
and relative advantage over
ICP methods

experiments. The higher number of scans (and respec-
tively slower velocity) results in higher similarities
between the subsequent scans.

Figure 14 presents six maps, employing different
algorithms on this dataset. All the maps were eval-
uated using the proposed map metric, showing the
final value next to each map. PB-PSM was employed
with and without the perimeter matching term, yield-
ing map costs of 46, and 51, respectively, showing
again the advantage of using it to reward the cost
function.

The scan matching cost function detailed above,
was also calculated using the “closest point” rule
for data association (rather than PB-PSM’s “match-
ing bearing” rule), making it a derivative of the classic
ICP algorithm. This allowed for using the perimeter
matching term, while using the same algorithm for the
function minimization by the adaptive direct search.
The resulting maps with and without employing the
perimeter matching term are presented in Fig. 14 with
map scores of 134 and 215, respectively, showing
the advantage of using the rewarding term in this
case as well. Note that since the “closest point” data
association rule has a higher complexity than O(n),
the realization in this case is considerably slower
than PB-PSM, and therefore did not allow real time
capability.

A comparison is also made against a classic imple-
mentation of the ICP algorithm, where the solution
is obtained using least squares. Two options were
tested, the first was using the same point filters as
in described for PB-PSM, and the second was that
the ICP will consider only the best 90 % of the
matched points for the least squares solution (similar
to the practice in Diosi and Kleeman [10]). The second
option allows the ICP algorithm to eliminate outliers
based on their matching contribution. The resulting
maps, presented in Fig. 14, yielded a map score of 162
when using the same filters as in PB-PSM, and 166
when using 90 % of the best matched points, both well
above the score achieved by PB-PSM. Although cer-
tain parts of the maps obtained by the ICP algorithms
appear accurate, a close examination reveals several
failure points and multiple relatively small errors which
accumulated to account for this relatively poor score.

Figure 14 also allows a basic qualitative assess-
ment of the resulting maps, showing that the map
created by PB-PSM appears to be the best result.
Moreover, the use of the perimeter matching cost
rewarding term in either of the two data association
rules, is shown to significantly benefit the map quality.
Lastly, the two results using both ICP algorithm vari-
ants result in relatively poorer maps, as compared to
PB-PSM.
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3.3.7 Qualitative Map Comparison Using Existing
Datasets

An additional qualitative comparison using laser
odometry is presented using Diosi and Kleeman’s [10]

results for mapping the first room from their dataset,
using only their PSM algorithm without their SLAM
algorithm (i.e. laser odometry only, no loop closure
employed). Figure 15a shows their results, where
they conclude that all scan matching based laser

Fig. 15 Diosi and Keelam’s
dataset, first mapped room.
All scan matching
algorithms were applied for
laser odometry (no SLAM
algorithm involved).
Comparing results for
sequential laser-to-laser
scan matching. Top left:
Odometry only, Top right:
PSM, Bottom left: PSM-C,
Bottom right: ICP (Results
by Diosi and Kleeman).
Bottom: PB-PSM. Start
point is marked by a large
asterisk and a red circle,
end point is marked by a
smaller blue point, with an
arrow pointing towards the
final azimuth
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odometry techniques were outperformed by sim-
ply using the wheel encoders odometry for aligning
sequential scans.

However, when aligning the scans using results
from PB-PSM, the map shown in Fig. 15b appears
to be better than both Diosi and Kleeman’s laser
odometry maps and wheel encoder based odometry

map. Some of the walls appear to be more crisp,
which implies a more accurate match (less spread
of the laser measurements). This demonstrates the
higher-accuracy that can be achieved using PB-PSM
as compared with the other three methods presented
by Diosi and Kleeman, or raw wheel odometry
alone.

Fig. 16 Scenario
exploration by Diosi and
Kleeman
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4 Additional Results Using Virtual Scans

The performance of the algorithm can be further
improved by scan matching new incoming laser scans
against scans of the evolving occupancy grid, called
“Virtual Scans”. This method improves the accuracy,
as new laser scans are matched with a scan that
contains information from all the previously collected
scans (stored in the occupancy grid map thus far).
The virtual scan is performed by means of ray cast-
ing operations. Additional technical information about
how virtual scans are preformed can be found in the
works by Friedman et al. [15–17] and Friedman [14].

Results are presented for previously published exper-
imental data by both Diosi and Kleeman [10], and
Howard et al. [23]. These results further support the
capabilities of the PB-PSM scan matching algorithm.

4.1 Monash University Database

The algorithm was employed on a dataset collected
by Diosi and Kleeman [10], and the results are pre-
sented in Fig. 16. The experiment was conducted in
an office environment, using a ground platform and a
2D laser range scanner producing 361 points with a
FOV of 180◦, recording data at 30 Hz. This dataset

Fig. 17 Scenario
exploration. Andrew
Howard’s database
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is described by Diosi and Kleeman to be challenging
since the laser sensor picked up more than 10 people
walking in its FOV and several doors were opened and
closed while traversing environment.

The results show a relatively crisp map where the
corridors appear to be straighter with significantly
fewer occurrences of “double walls” (examined by
naked eye). However, the algorithm failed without
recovery when the 3rd room was reached as the laser
scans in that room were quite sparse with very few
points that can be successfully used for scan match-
ing. Although the results by Diosi and Kleeman also
show very poor mapping quality in the 3rd room, their
use of a full SLAM algorithm and wheel encoders
allowed further mapping of the environment (with
some bending to the walls).

4.2 University of Southern California Database

The second dataset was collected by Andrew
Howard [22] using four autonomous robots individu-
ally exploring a closed area (with some human super-
vision). Several moving objects (people and robots)
were captured in the dataset, thus rendering it chal-
lenging to obtain good scan matching results. Addi-
tional details about the experiment and the algorithms
used to obtain the dataset and the map can be found in
the work by Howard et al. [23]. In this dataset, a laser
sensor with 180 points was used, with a FOV of 180◦
(significantly less than the 1081 points per scan and
270◦ FOV in the authors’ datasets).

The map obtained by Andrew Howard (fusing data
from all four robots) is compared with that obtained
by PB-PSM in Fig. 17 (using data from robot #2 only).
The mapping results appear to be in excellent agree-
ment, judging by a naked eye comparison. The course
traveled by robot #2 is quite complex with multiple
sharp turns, complete 180◦ turns and occasions where
the robot revisits previously mapped areas. Neverthe-
less, PB-PSM was able to construct an accurate and
crisp map even without the use of any loop closure
algorithms.

5 Conclusions and Future Work

This work proposes PB-PSM, an algorithm for scan
matching 2D laser scans. The algorithm exploits
the polar coordinate nature of a set of laser range

measurement, as they are output from a 2D laser range
scanner. The algorithm is shown to perform well with
relatively high accuracy, using various laser sensors,
and different environments.

Several key factors are shown to contribute to the
performance of the PB-PSM algorithm:

1. Perimeter matching cost-rewarding term, favor-
ing matches with higher overlap between the two
scans.

2. Adaptive direct search for the cost function min-
imization process, which overcomes the common
phenomenon of local minima.

3. Tight convergence requirements of 0.01◦ for rota-
tion and 1 mm for translation, which are shown to
have a strong effect on the overall performance.

Performance repeatability and robustness are
shown through 12 identical experiments conducted at
the University of Maryland, and mapping accuracy is
analyzed by employing root mean square values of
the errors obtained in all 12 experiments. The com-
parison metrics included a newly developed metric
which ranks occupancy grid maps similarity to the true
map of a benchmark scenario, as well as measured
errors in multiple distance measurements across that
benchmark scenario. The new metric ranks occupancy
grid maps based on calculating the average cell dis-
tance from its associated true map wall. This metric
may easily be used by others to express the mapping
accuracy of other algorithms.

When applied to sequential laser scan matching
(laser odometry), PB-PSM is shown to yield signifi-
cantly improved results, as compared to PSM, PSM-C,
and several realizations of the ICP algorithm. This was
shown across both in-house and previously published
datasets.

Although slower as compared with PSM and
PSM-C, the algorithm is computationally lightweight
enough to be executed in real time on modern on-
board hardware. The scan matching process was
employed on large offsets between the matched scans
(over 0.5 m). In cases where a better initial guess is
available, it may be easily used to reduce the cost min-
imization search grid area, which in turn will greatly
reduce computational time.
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