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Abstract In this paper we review more than 140 pub-
lications and try to not only give a snap shot of the
current state of the art research in the area, but also
to critically analyse and compare different method-
ologies used in this research field. Among the inves-
tigated intelligent approaches for solving locomotion
problems are oscillator based Central Pattern Genera-
tors, Neural Networks, Hidden Markov models, Rule
Based and Fuzzy Logic systems, as well as Analytical
concepts. We try to compare those methods based on
the quality of the produced solutions in terms of time,
stability, correctness and the expense and cost for
achieving them. At the end of each section we list the
advantages and disadvantages of the reviewed meth-
ods and scrutinize them considering the complexity of
the approaches, their applicability to the investigated
locomotion tasks and the constraints of the produced
solutions. The reviewed publications examine a range
of legged and non-legged systems, operating in sim-
ple and complex environments, with several different
locomotion tasks.
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1 Introduction

This paper presents a review of published locomo-
tion control methods. The objective of the paper is
to present a comparative overview of the field, so
that the reader may make informed choices in inves-
tigating techniques suitable for their application. To
accomplish this, each major technique identified in
the literature is summarised, assessed and compared in
the final discussion. Over 140 papers were reviewed,
with comparison of techniques acheived by categoris-
ing them, establishing key properties and comparing
in terms of scope of application, ease of parameterisa-
tion, and any desirable or undesirable characteristics.
As many of the reviewed techniques require extensive
parameter specification, this review also outlines key
techniques of learning and optimisation as applied in
the field.

The rest of the paper is organised as follows. In
Section 2, analytical approaches are presented and
subdivided into such that control bipeds (a major
topic with demanding stability issues), and such that
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control other types of systems. In Section 3,
approaches inspired by biological solutions are pre-
sented and central pattern generators (CPGs), that
create patterns based on oscillator primitives, are
introduced. They allow more generalized ways of
parameterisation of the movement patterns than the
analytical approaches. Neural networks based solu-
tions are discussed in Section 4. They offer an even
more generalized approach than the CPGs and give
more options for learning rules and optimisation. In
Section 5, Hidden Markov Model (HMM) techniques
are presented and their use for skill observation, classi-
fication and imitation is analysed. Transition table and
fuzzy logic approaches are discussed as generalized
state based methods in Section 6. Finally, a compari-
son and summary of the presented methods are given
in Section 7. Numerous parameterisation techniques
have been used in the literature, from simple man-
ual specification, through to optimisation. A summary
is given in each section, and an overall grouping of
references by technique is given in Table 1.

Locomotion is the process of moving an organism
or synthetic creature around an environment. Artifi-
cially producing locomotion is required in a range
of disciplines including robot control [1–4], artificial
limb control [5, 6], computer animation [7], and bio-
logical studies [8]. Locomotion may be needed for
simulated models [1] or real world systems such as
robots [9].

Generation of the movement patterns in locomo-
tion is often a non-trivial task, for which a range of
analytical and intelligent solutions have been devel-
oped [1, 3, 8]. The complexity of the problems ranges
from producing straight line movement in a flat envi-
ronment, to steerable navigation in an unpredictable
environment, integrating perceiving sensory informa-
tion and control. Controlled systems include bipeds
and quadrupeds, as well as more unusual models such
as fish, worms and others [10, 11]. A summary of ref-
erences from this review, grouped by method, target
system and type of data presented, is given in Table 2.

Beyond just one method of locomotion, some
papers have investigated different gaits, ranging from
walking to sprinting, along with smooth transitions
between the gaits. As well as locomotion, some
research has been conducted into other movement
skills, e.g., jumping [12, 13]. We also review tech-
niques that allow systems to imitate an observed
movement pattern [114–118].

Table 1 Reviewed references organised by control method,
each of which are examined in separate sections of this review,
and parameterisation technique

Method Parameterisation

Analytical Manual/simple: [1, 2, 9, 12, 55]

Sequential quadratic programming: [56–60]

Sequential surrogate optimisation: [61]

Depth First search: [62]

A* search: [63]

Random search: [64]

Gradient search: [64]

Sequential search: [64]

Genetic algorithm: [65–67]

CPG Manual/simple: [3, 6, 10, 11, 46, 68–85]

Exhaustive search: [84]

Feedback learning: [86]

Policy gradient search: [87]

Actor/critic: [88]

Sequential quadratic programming: [89]

Hill climbing: [90]

Genetic programming: [91]

Genetic algorithm: [5, 8, 92–97]

Hebbian learning: [98]

NN Manual/simple: [99–101]

Delta rule: [102]

Genetic algorithm: [4, 65, 67, 103–106]

Actor/critic: [107, 108]

Self-scaling reinforcement: [109]

Associative learning: [110, 111]

Linear regression: [112]

RPROP: [113]

HMM Expectation maximisation: [114–116]

Greedy policy: [117, 118]

Rule based Manual/simple: [31, 119]

Actor/critic: [120, 121]

Genetic algorithm: [103, 121–124]

Best-first search: [125]

The parameterisation techniques cover a range of approaches,
from simple manual specification to evolutionary algorithms

Although some of the reviewed papers are easy to
classify in a single category, there are also many that
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span and overlap several categories. For example, spe-
cialized NN topologies blur the distinction between
NNs and CPGs. Also, given their biological source,
CPGs are often described as neural models, even if
they do not resemble traditional NNs. Nevertheless,
the aim of this review is to identify the core meth-
ods used in locomotion, and to discuss and provide
comparative analysis of their usability, considering the
application areas.

2 Analytical Approaches

The analytical approach is the oldest and most fre-
quently met method in the reviewed papers. This
approach relies on an understanding of the general
form that locomotion in the target system should take.
This may be based on observations of similar systems
(such as human and animal locomotion) or from other
analytical work. As a result, an algorithm is developed
that explicitly states equations of motion (kinematic or
kinetic) for the system.

2.1 Biped Trajectories

Bipedal movement starts from a simple premise - if
the feet are placed in a forward moving pattern, and
the rest of the body remains supported without falling
to the ground, then the whole mass of the system will
be moved forward continuously. Bipedal motion is
therefore a combination of gait and whole (and espe-
cially upper) body stability. A typical procedure for
constructing bipedal motion would be:

Plan a path to determine foot placements;

• Apply stability constraints to determine the Cen-
tre of Gravity (CoG) trajectory, based on a model
of the weight distribution;

• Construct a plausible gait algorithm, addressing
the double support (both feet on the ground) and
single support (one foot off the ground) phases;

• Solve any remaining degrees of freedom (DoF) by
any sensible manner. Methods may include copy-
ing human movement, simplifying movement, or
even producing something that ‘looks right’.

The first and most common stability constraint is
the Zero Moment Point (ZMP) [30]. It is calculated
as the point under the foot where the ground reaction
force will completely negate the effects of moments
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and forces on the foot from the rest of the body
(assuming sufficient friction). If the ZMP exists under
the foot, then the system is stable, but if the calcu-
lated point is outside the foot, then the ZMP does not
exist and the body (robot) will topple, rotating around
an edge of the foot. The ZMP equations are used to
ensure that the robot remains upright as the feet are
moved. They are combined with a model of the mass
distribution in order to determine a trajectory for the
CoG. The model is often simplified to make deriv-
ing the equations simpler. A common model is the
inverted pendulum model (IPM), which has a single
point mass connected to the ground by a weightless
rod [28]. In two dimensions this is given as:

ẍCoG − (z̈CoG + g)

α(zCoG − zZMP )
(xCoG − xZMP ) = 0 (1)

where xCoG and zCoG are the x and z components

of the Centre of Gravity respectively, xZMP and
zZMP are the x and z components of the desired
Zero Moment Point, α = 1 and g is the gravitational
acceleration.

The gait algorithm is anything that raises a foot
(now labelled as belonging to the swing leg) off the
ground, moves it forwards, and places it back on the
ground. Often, the mass models used assume that all
of the mass is contained above the hip. Therefore, the
CoG trajectory, as determined by the ZMP constraint,
defines the hip angle trajectory. This is calculated to
produce the CoG position relative to the hip position,
which in turn is specified by the foot placements and
leg joint angles. The foot trajectories are used to deter-
mine the leg joint angles and the overall motion is
determined by the desired ZMP. It is located under the
support foot in the single support phase and transi-
tions to the other foot during the double support phase.
Solving for the final trajectories is covered in [2].

Variations to the above procedure involve alter-
ations to the stability constraint, alterations to the mass
distribution model and alterations to the gait algo-
rithm. Some of these variations are discussed below.

Equation 1 is a general form of the ZMP inverted
pendulum constraint, but in many experiments it is
simplified with the condition that there is no verti-
cal movement of the CoG (i.e.,z̈CoG = 0 ). This is
often referred to as the Three Dimensional Linear
Inverted Pendulum Model (3D-LIPM). The simplic-
ity of the 3D-LIPM algorithm made it popular in [2,
9, 24, 41, 43] (with an emphasis on controllability

including steering), [26] (with an observation system
added), and [25] (using ZMP trajectory modification
based on an analysis on the feasible ZMP region). In
[1], a comparison was made between several different
mass models. The authors found that all of the mod-
els could be written in the form of Eq. 1 but with α

varying depending on which mass model was used.
Since different mass models will result in varying lev-
els of accuracy to the true model, the identification
of the constant α allows the mass model to be fine
tuned. By experimentally varying α, the ZMP error
can be reduced. As α multiplies the height zCoG, the
model was called a Virtual Height Inverted Pendulum.
A simple error minimisation procedure was used to
find optimal values for α for different step periods.
The procedure involved incrementing or decrementing
α by a fixed amount, if the ZMP error was outside a
threshold interval.

To further increase the accuracy, more complicated
mass models can be used, at the expense of increased
complexity of analysis. For example, multi-mass mod-
els were used in [31, 36]. In [36], three different
bipedal control methods were evaluated and vali-
dated by comparing them to a reference multi-mass
model with ZMP constraint. The compared models
used polynomial interpolation between start and end
states, actuator driving in the double-support phase,
and a combined approach with added toe support and
shock absorption, respectively. The toe support phase
is omitted in normal ZMP based methods because it
is, by definition, a failure with the foot beginning to
rotate about the front edge. The authors included it
to allow real-time freedom of choice for placing the
landing foot. They argued this would allow for better
walking on uneven ground.

Often, the ZMP is required to be under the centre of
the foot during the single support phase, transitioning
to the other foot in the double support phase. How-
ever, this is not the only way to position it as the ZMP
can exist anywhere in the support polygon. Given this
wider range of possible ZMPs, a control law for the
ZMP was developed in [35]. The motion was based
on the inverted pendulum model but the ZMP and ver-
tical reaction forces were assigned control laws that
allowed the centre of mass (CoM) to closely track a
reference trajectory, allowing for real-time control and
smooth motion.

In an attempt to generate more natural looking
and efficient gaits, an energy control method was
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developed in [15, 19]. The mechanical energy of the
system was controlled to track a reference energy
trajectory, which accounted for energy losses during
the interactions between the robot and the surface.
Trajectories based on conserving potential energy
were developed in [37], and ease of analysis was
suggested as an advantage of this method. Energy
efficiency can be increased by creating self-excited
behaviour in the swing leg [44, 45].

The ZMP constraint was developed for simple envi-
ronment interaction, where the ground is even and the
contact is only between the feet and the environment.
Solutions to deal with uneven ground include an active
balancing system based on distributing appropriate
antigravitational forces to the contact points [34], and
a modified ZMP technique using a nearest possible
point to the desired ZMP during times when it cannot
be found under the support polygon [28].

Extensions to the ZMP have been presented to deal
with cases where other parts of the system are in
contact with the environment. These include the Gen-
eralized ZeroMoment Point [22], and ContactWrench
Sum [16, 32, 33]. Both of these techniques involve the
relationship between all of the contacts made with the
environment (feet, hands, etc...) and the forces through
the system, with the goal of preventing unwanted rota-
tions. They allow locomotion on uneven floors and the
use of supports, such as handrails.

The ZMP can only be used to classify a state as sta-
ble or unstable. More informative alternatives include
the Foot Rotation Indicator (FRI) [127], used to deter-
mine the stability margin or degree of instability, and
the Centroidal Moment Point (CMP) [128], which
provides information on the whole body rotational.
After analysing how the various stability constraints
performed for a human gait, the authors of [128]
recommended a modified FRI that was more sen-
sitive, and that the CMP and ZMP should both be
used, for human-like locomotion. A reason to improve
upon ZMP control is illustrated in [40], where signifi-
cant differences were found between human and ZMP
gaits, such as CoG trajectory, free leg trajectory, and
the position of the ZMP under the foot.

Inspired by passive downhill walking systems, an
active system was controlled, using a virtual slope
walking gait in [39]. The system used knee bending
and straightening to develop a relationship between
the legs on level ground, that was the same as a nor-
mal gait on a downwards slope. The physical design of

the robot helped with stability and the control mecha-
nism was found to be able to produce fast gaits. Quick
gaits were also generated using a polynomial trajec-
tory approach, with algebraic optimisation based on
ZMP evaluation, torque and velocity limits [21].

If the system is dynamically stable, or controlled
in a way to easily guarantee stability, then stability
constraints are not needed [56]. In [23], a robot was
designed that did not have actuators at the ankle and
was stable enough not to require the ZMP constraint.
Furthermore, to easily enable a high speed gait, each
leg contained a telescopic actuator which pumped the
swing leg.

The authors of [20] investigated initiating move-
ment, stopping, and standing, to cope with real world
state changes. Other transitions (e.g., for dealing with
slopes) were examined in [38], where the algorithm
had to control the walking on a flat ground, on a slope,
and the transition between the two.

To help with walk stability, a method to control foot
landing force was presented in [24]. It consisted of
a system that measured impact force and outputted a
foot height in order to absorb the collision. Full jump-
ing and landing control was developed in [12] where,
because of the point model used, ZMP or similar con-
straints were not possible due to the lack of a support
polygon. Convergence to a known stable state guar-
anteed stability in the different phases of the motion.
Another control algorithm for point feet was given in
[58].

To avoid the over-constrained nature of ZMP type
criteria, a different analytical framework was used in
[57–59]. The analysis was based on transforming the
problem into a task of driving a set of dynamic out-
puts to zero. Zero dynamics equations were produced
for the swing and impact phases. The two phases
were combined into a complete model that was called
the hybrid zero dynamics (HZD). A suitable cost
function of the HZD was defined and used to drive
the motion into the swing and impact phases. Addi-
tional constraints were also imposed, such as minimal
ground reaction force, foot landing only at the end
of the swing, plus various boundary condition con-
straints. Given the cost function and constraints, a
sparse sequential quadratic programming optimisation
algorithm was used to determine the parameters of the
model. Using these techniques, asymptotically stable
walking (returns back to the gait after being perturbed)
was produced.
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Instead of synthesising the DoF trajectories, an
alternative is to track supplied reference trajectories.
In [27], a trajectory control law was developed to
be resilient to perturbation. The authors identified a
lack of resilience as a problem of previous track-
ing methods. Using human motion capture data was
investigated in [42], and methods for interpreting the
data automatically, for use by a humanoid robot, were
developed.

Analytical approaches have occasionally been com-
pared to other control methods. A ZMP inverted pen-
dulum method (IMP) was used in [46] but, although
successful, the approach produced slower walking
speeds than an oscillator based control system. Instead
of an inverted pendulum model, a static balance equa-
tion was used for the hip angle in [103]. This was
implemented for a ditch crossing walk, and the foot
placements were determined as a function of the dis-
tance from the ditch. The dynamic stability and energy
efficiency of the analytical approach were compared
to an optimized neural network, and fuzzy logic
approaches. It was found to be the least stable and least
efficient of the three approaches.

2.1.1 Trajectories for Non-bipeds

Bipedal movement is of significant interest because it
allows control of human like systems, as well as pos-
ing challenging stability problems. In conducting this
review, more papers were found examining biped gaits
than any other. However, in this section we show that
several different systems have also been examined.
Most of the other systems examined are legged, but
research can be found for specific control problems
such as hand grasping [60].

With extra legs, stability becomes less of a problem,
and the focus then shifts to developing gait algorithms
– methods of moving the feet in order to move the sys-
tem in a particular direction. Different types of gaits
have been developed, to be used at different speeds,
such as ambling, trotting, bounding and galloping
[47–50]. In order to improve manoeuvrability, forward
and crab (perpendicular) gaits for flat and sloped ter-
rain were developed in [54]. Other research has looked
at fine tuning the gaits, including comparing different
modelling assumptions on final real-world accuracy
[50], and increasing efficiency by utilising the natural
dynamics of the system [14].

Some stability conditions have been considered in
quadrupeds. For example, a set of reactive behaviours
were developed in [52] in order to improve stability.
In [55], an analysis of a spring loaded variation of
the inverted pendulum model (also see [29]) was used
to compare sensory feedback strategies for stabilising
hexapod motion (as well as providing an analytical
framework that could be applied to other systems).
In order to be able to function in an uneven natural
environment, and to support high speeds, a gait param-
eter and active-compliance parameter algorithms were
developed in [51]. Gait adaptation was used to adjust
to changes in the environment and provide a maxi-
mum stability margin, and compliance was used to
deal with impulsive perturbations. The greater stabil-
ity itself enabled faster movement across the uneven
terrain.

In [13], the authors added two legs to a bipedal
robot, in such a way that they were rigidly con-
nected to the first to. This provided stability while only
requiring a two-legged control algorithm. As well as
creating a stable robot, the authors increased mechani-
cal efficiency by introducing passive joint compliance.
Altering compliance was done using pneumatic joints
and, through exhaustive search, optimal compliance
was found for walking, running and jumping gaits.

Control algorithms have been developed for
unipeds. For example, in [64] a pogo stick style
(a body plus one springy leg) robot was controlled
with an established algorithm, but with the addi-
tion of variable correction term to minimize velocity
error. The research in [53] examined the possibility
of using uniped algorithms to control multi-legged
systems (thus raising the possibility of utilising pre-
vious research in one domain across several). Firstly,
they developed single legged gaits, which are gaits for
multi-legged systems where only one foot is in contact
with the ground at any one time. Following this they
developed the concept of a virtual single leg that mod-
elled the situation when two legs were in contact with
the ground, this way expanding the number of possible
gaits.

2.2 Optimisation

The specification of gait form and the use of conserva-
tive stability constraints usually limit the optimisation
scope. However, there are some parameters available
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to adjust, e.g., gait parameters including stride length
and cycle frequency. These parameters can therefore
be candidates for optimisation, according to some
desired goal.

Such optimisation goals have included minimisa-
tion of energy expenditure [17, 58, 59, 65–67], min-
imisation of actuating effort [56, 57], improved form
through minimisation of ZMP error [1], stability [58,
59], speed expressed as maximum distance over a set
time frame [61], minimisation of speed error [64]. For
those systems, which are lightly constrained in the
analysis, constraints are imposed during optimisation
to ensure walking gaits are formed [57]. Energy and
effort goals are important due to difficulties in real-
ising robots in the real world. Reducing the energy
requirements makes robots more practical, and form
and speed goals address their functionality.

Minimising actuating effort, defined as the integral
square of actuator torques, instead of simple energy
minimisation, was done for two reasons in [56].
Firstly, the quadratic nature of the fitness function
favours smooth continuous actuator changes, which
compares to actuator discontinuities that can result
from energy minimisation. Secondly, an upright pat-
tern was favoured, as it required only small torques to
maintain.

The parameters for optimisation can be arbitrary
constants, or they may have a direct interpretation.
To have direct interpretation, the equations have to
explicitly use understandable variables. This may
require extra analytical work or result in more con-
strained solutions. Arbitrary parameters were speci-
fied in [1, 17, 56–59, 61, 64]. In contrast, specific
end and intermediate target points of the gait were
specified by optimisation in [65–67].

Various techniques have been used for optimisa-
tion, including Genetic Algorithms (GA) in [65–67],
sequential surrogate optimisation (which works on
an approximation of the objective function in order
to speed up the optimisation – useful for real world
cases) [61], sequential quadratic programming [56–
59], and simple error based feedback [1]. For the
velocity error minimisation problem in [64], the com-
plicated algorithms derived in analysis were better
optimized with random search when compared to
gradient and sequential searches, due to numerical sta-
bility issues. In [62] a Depth First Search algorithm
was used to plan the movement of a hexapod’s legs

in order to navigate along a path, and in [63] an A*
search algorithm was used for similar reasons.

2.3 Advantages and Disadvantages of the Analytical
Method

Advantages

• If the analysis is suitably accurate, solutions can
work correctly right away;

• In general, there is no need for a training phase
and this means implementation in real hardware
is easier than for methods that require learning or
evolving;

• Analytical approaches have been investigated for
a long time and there is a diverse set of solutions,
covering many task conditions and requirements;

• Solutions are directly interpretable and expert
knowledge is a key feature.

Disadvantages

• The analysis used to construct gait algorithms is
generally very task specific. Because of this, loco-
motion is unlikely to succeed under conditions not
assumed or accounted for during the analysis;

• Likewise, behaviour is generally task limited and
there is unlikely to be any emergent properties,
e.g., gait transitions;

• Usually the models used in the analysis are
approximate. This gives the risk of inaccurate,
unstable, and/or inefficient movement compared
to the aims followed during analysis;

• In order to simplify, or even enable analysis,
solutions are generally over constrained and there-
fore will rarely be optimal. Some more advanced
approaches, e.g., those using the hybrid zero
dynamics framework, can produce less constric-
tive constraints;

• The limited number of parameters reduces the
effectiveness of optimisation. Desired goals, such
as speed or efficiency, are hampered by the over
constrained nature of the analytical approach.
Often, the form cannot be significantly parame-
terized, only specific values can be changed (e.g.,
stride length);

• Over-constrained results can look unusual when
compared to equivalent systems in nature.
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3 Central Pattern Generators and Oscillators

In motor skills science there was a debate over
whether locomotion is reflex based or is generated
internally. Experiments in the second half of the 20th
century demonstrated that internal generation had to
be a significant part of locomotion [129]. This was
proved by severing sensory neural pathways in animal
subjects and observing that they could still perform
locomotion. In more recent times, dissections have
enabled a reverse engineering of the neural networks
that control this innate locomotion. Those networks
that have been discovered exist in spinal regions and
have therefore been called ‘central pattern generators’,
or CPGs [130–133].

A biological CPG can be defined as a neural net-
work that produces rhythmic pattern outputs without
the need for patterned input. However, a distinc-
tion should be made between CPG neural networks
and more traditional NNs, which are discussed in
Section 4. In reviewing the engineering use of CPGs,
we have determined that it is better to see CPGs as
systems of oscillators, rather than as neural networks.
In biological systems, the primary unit of rhythm is
built around a pair of inhibitory/excitatory neurons
that produce oscillations. A detailed examination of a
biological CPG from an engineering perspective was
conducted in [134] but, for most applications, the neu-
ron pair is approximated with a pair of differential
equations.

The review of CPGs here focuses on application to
robotic control and generalises the concept to oscilla-
tor models. For other perspectives, including historical
and biological contexts, see the reviews in [135, 136].
Some approaches, that are referred to as CPGs, do not
even explicitly use pairs of differentials equations, but
rather use oscillators with more transparent sinusoidal
forms, as discussed in the next section.

3.1 Oscillator Types

3.1.1 Simple Sinusoidal Systems

These systems are based on simple sinusoidal oscilla-
tors. Coupling terms added to each oscillator equation
allow phase relationships to be established between
them. In [10], this form of oscillator acted as the basis
of a CPG controlling a swimming robot. Oscillators
with amplitude and angle offsets controlled each fin.

Setting different values for these two controls enabled
forward swimming, backward swimming, spinning,
turning while swimming, turning on the spot, swim-
ming up or down and crawling gaits.

For some systems, their locomotion comes from
whole body sinusoidal movement. In order to replicate
movement seen in nature, simple sinusoidal oscilla-
tors were used to produce forward, circular, turning
and sideways movement in an eel robot [83, 126].
Sinusoidal control of serpentine motion on a planar
surface was investigated in [84]. Of interest was the
mechanical efficiency of the gait for a range of speeds,
and optimisation was used to find the best values for
the constants in the algorithm, under three different
friction models.

For other systems, such as bipeds, sinusoidal
motion does not initially seem a good option. How-
ever, in [3], simple sinusoidal oscillators were com-
bined to construct gaits for two humanoid robots, one
of which was human sized. The coupling of differ-
ent oscillators allowed more complicated trajectory
shapes, suitable for bipedal locomotion.

Systems with several legs (four or more) can be
stable enough to allow a leg to be moved without
worrying about the system falling over. Without sta-
bility requirements, the control mechanism can be
very simple. For example, simple sinusoidal oscilla-
tors were used in [81] to control an eight legged robot
simulation. A simple oscillator system coupled with
feedback, investigated in [46], was able to produce
faster walking speeds than a ZMP IMP approach.

3.1.2 Systems of Differential Equations

Analysis of biological CPGs has identified oscillators
made from pairs of mutually inhibiting neurons [137].
These can be modelled or approximated by systems
of differential equations. The solutions of these sys-
tems, and variations on this theme, range from simple
sinusoidal forms to more complex shapes.

Matsuoka oscillators are commonly used for CPGs
[5, 68, 69, 72, 75, 79, 88, 92–95, 138], and one reason
for their popularity is that their dynamics, including
limit cycle behaviour, are well known [138]. Matsuoka
oscillators are capable of different gaits, such as the
walk, trot and pace quadruped gaits, by specifying dif-
ferent phase relationships [75]. They are also capable
of smooth gait transitions, which were dramatically
demonstrated in [72] where a 2D biped switched to
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climb on all fours up the slope. Using sensory infor-
mation, Matsuoka CPGs are able to control walking
not just on a flat surface but on an irregular [75] or
slippery surfaces [79].

Van der Pol oscillators (VDP) are also popular for
CPGs [11, 73, 78, 89]. The benefits of these oscilla-
tors are that they have stable limit cycles and relatively
interpretable coefficients. Frequency, amplitude and
shape coefficients can be identified, although they are
not completely independent. Different gaits are pos-
sible with VDP oscillators, including walk, trot, pace
and bound quadruped gaits [73], walking and forward
jumping biped gaits [78]. In both situations, the abil-
ity to transition between gaits was developed through
simple changes to the parameters of the oscillators.
Rayleigh oscillators, which are similar to VDP oscil-
lators, were used in [6] to construct a CPG for an
active prosthetic leg. Reduced sensory requirements
were highlighted as an advantage over conventional
prosthetic systems.

Similar to the Matsuoka oscillators in form, Amari-
Hopfield oscillators are also used in CPGs [71, 87].
In [87] they generated biped locomotion that was
resilient to perturbations as a result of the limit cycle
properties of the oscillator. In [71], they were able to
produce walk, trot and gallop quadruped gaits, with
prompt gait transitions.

Hopf oscillators were used in [74, 90, 98] for
quadruped locomotion. In [74], they were chosen for
their stable limit cycle (even when the frequency
changes), and for their independence of cycle shape
and frequency. In [86], a series of Hopf oscilla-
tors was investigated, that included feedback terms
allowing learning of an input trajectory, with each
sub-oscillator matching a partial of the input. A CPG
using these combined oscillators was trained with a
reference bipedal locomotion pattern, thus converting
a reference trajectory into a system with limit cycle
properties, so that it became resilient to perturbation.

Spiking Integrate and Fire with Adaption neurons
were used in [96] for biped locomotion. The CPG had
a hierarchical structure of hip timing, knee timing, and
finally output patterning. The core oscillator consisted
of a neuron pair that controlled the hip timing, which
in turn coupled to a pair for the knee timing, therefore
establishing the gait characteristics. Finally, the out-
put of the timing neurons was sent to sets of parallel
motor neurons that had independent configurable fir-
ing characteristics. They therefore allowed production

of complex patterns that were driven by the periodicity
of the timing neurons. This three sub-system design
allowed separate configuration of walking frequency,
gait and joint angle profile, by adjusting the parame-
ters of the hip oscillator, the hip-knee coupling, and
the motor neurons respectively.

Generalized CPGs were developed in [139] using
piecewise affine systems. Analysis was given that
allowed amplitude and frequency to be independently
specified. The paper cited flexibility, and linear rela-
tionships between input frequency and amplitude con-
trols and the output frequency and amplitude, as
benefits of this approach.

Another type of biologically inspired oscillators is
the Ellias shunting oscillator, which was used in [80,
140].

3.2 Parameter Selection

In general, the oscillator constants and coupling
weights of the CPG need specifying. At the simplest
level, manual specification can be used, as discussed
in [3, 6, 10, 11, 68–70, 73, 74, 76, 78, 80, 82, 141].
Although this approach is unlikely to be optimal for
any particular criterion, it may be sufficient to give
good results. It allows solutions to be determined with
few trials and is therefore appropriate for implement-
ing directly in hardware. By analysing gait character-
istics common to several animals of a type similar to
the target system, variables such as phase differences
can be determined. For oscillator types where there is
good parameter separation, frequency and amplitude
components can again be specified by observing or
making logical arguments and conclusions.

Parameter optimisation criteria include minimising
energy expenditure [84], maximising speed [87, 90,
97], matching a control speed [98], reference tracking
[86, 89, 95, 96], maximising stability [5, 88, 92], and
producing walking in an unconstrained system [93,
94].

The implemented optimisation techniques vary
from exhaustive search [84], to hill climbing [90], pol-
icy gradient search [87], actor/critic [88], sequential
quadratic programming [89], Hebbian style learning
rules [98], integrated oscillator learning terms [86],
and GAs [5, 8, 92–97]. The exhaustive search, hill
climbing and sequential quadratic programming offer
straight forward approaches but are limited in their
application. The learning rules/terms provide real time
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error correction or reference tracking, and are there-
fore possibly appropriate for direct hardware imple-
mentation. The gradient and actor/critic searches are
used to speed up optimisation, while the GA are used
to fully explore and exploit the search space and pos-
sibly find global optimal solutions, but require more
computation.

Multi staged optimisation has been used to simplify
the complex process [95, 96]. For example, in [95] a
GA was used to find parameters for the hip joints first,
then all joints in the left leg, the whole lower body, the
upper body, and then finally, the whole body (which
had 271 parameters). The optimized fitness functions
can include multiple components [92, 97]. In [92], sta-
bility, pose angle and step length were optimized in
order to find good solutions for stability, form and
speed.

Using outcome measures to produce walking in an
unconstrained system can be difficult. The optimisa-
tion process needs to find a workable solution from
a large solution space. Using travelled distance as a
fitness function was successful in [93] when com-
bined with analysing final height, to detect possible
falling, and average step length. In [94], the authors
initially failed to produce a walking gait with the
outcome measures of travelled distance, frequency of
foot strikes, and uprightness. They presented a theory
that control systems in nature may have co-evolved
with the structure of the physical system. With this in
mind, they added support structures to the biped that
allowed it to evolve effective gaits without the risk of
falling down. Although not investigated, the authors
suggested that the supports could then be removed and
optimisation continued.

A somewhat different approach was demonstrated
in [91], where a genetic programming algorithm was
employed to construct a sinusoidal system, producing
optimal side winding locomotion for a snake model.
The function set of the GP algorithm consisted of
trigonometric and basic arithmetic functions, and the
fitness function was the distance travelled in a set time.

3.3 CPG Advantages and Disadvantages

Advantages:

• In general, the oscillator nature of CPGs produces
limit cycle behaviour. This means that often,
CPGs are resilient to perturbation;

• Another feature of the limit cycle properties is
that there can be emergent behaviour, such as gait
switching with smooth transitions;

• CPG oscillators have a clear parameter structure
that is open to optimisation;

• The oscillator based approach is less constrained
than analytical approaches and therefore poten-
tially capable of better solutions when optimized.

Disadvantages:

• Parameterisation often requires calibrating, train-
ing or evolving;

• It is sometimes difficult to interpret the method
of the control system, compared to those derived
analytically;

• Although less constrained than analytical
approaches, CPGs are more constrained than
some other solutions. This implies they have less
optimisation potential than some of the other
methods;

• Due to the oscillator structure, CPGs are mostly
limited to cyclic behaviour. Non cyclic behaviour
would require some starting and stopping mecha-
nisms.

4 Neural Networks

Although the CPGs discussed in Section 3 are often
described as neural networks, they are in fact highly
specialized and better interpreted as oscillator mod-
els. In this section, the use of conventional neural
networks (NN) for locomotion is discussed, and the
NN are grouped into feed-forward and recurrent net-
works. As typically used, NN process data inputs and
are therefore suitable for state based approaches. They
are also capable of self generated patterns when using
recurrent structures.

4.1 Feed-Forward Networks

Feed-forward neural networks (FFNNs), in which
each neuron has a summing junction and a transfer
function, have a straight forward input-process-output
architecture. They can be readily applied to state based
motion generation, where current kinematic or kinetic
sensory variables can be processed through the lay-
ers of the network to generate actuator values. These
networks can be used in continuous or discrete time,
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and can optionally include external sensory informa-
tion in the input layer. The lack of feedback within the
FFNNs prevents them from implicit trajectory genera-
tion over time, but by providing a time input, a FFNN
is able to generate a trajectory that is not state based.

4.1.1 Multi-Layer Perceptron

In a multi-layer perception (MLP), data is fed forward
through layers of neurons. A typical arrangement is
to have an input layer, a hidden layer and an output
layer, although more hidden layers are possible. Each
layer after the input layer can be fully connected to the
previous layer. So, a neuron in the first hidden layer
takes a weighted sum of the inputs, plus a weighted
bias value, and processes that information through an
activation/transfer function, which is usually a non-
linear, sigmoid type. Similarly, output neurons process
a weighted sum of the output of the hidden layer neu-
rons, plus another weighted bias, to produce an output.
MLPs are then trained and configured by adjusting
their weights, so that the produced output is close to
the target.

In [103] (also mentioned in Section 2), two MLPs
were used to specify parameters of a bipedal ditch
crossing gait. The gait was largely constructed analyt-
ically but actuator values for the swing leg were left
to be controlled by the NNs. The NNs were trained
with GA and the best solution was found to be more
stable and efficient than one from a fully analytical
approach, and slightly better than the result obtained
with a fuzzy logic based method.

In [65, 67] NNs were trained with a GA derived
data set that contained optimal parameter values (for
energy minimisation), for an analytical based stair
climbing solution. The set had values for different step
lengths of the robot and stair heights in the environ-
ment. Once trained, the NN gave an effective method
to interpolate between the GA derived data, in order to
approximate optimal values for new step lengths and
stair heights.

4.1.2 Radial Basis Function Network

The activity of the neurons in a MLP is distributed
across the layer with potentially several neurons fir-
ing (giving a high output) for a particular input. In
contrast, the neurons in the hidden layer of a radial
basis function network (RBFN) are local and respond

strongly only to inputs in a particular part of the input
space. To do this, they have a reference vector called
the weight, or centre vector, which is of the same
dimension as the number of inputs. Their activation
is typically a Gaussian function of the Euclidean dis-
tance between their weight vector and the input vector.
Each vector, then responds strongly when the input is
close to its weight vector and weakly when the input
moves away from the weight vector. If the Gaussian
is sufficiently flat, then the output can offer generali-
sation for inputs that fall between the weight vectors
of the hidden neurons. The output neurons are a func-
tion of a linear combination of the outputs of the RBF
neurons and their weighted connections.

In [107], an RBFN was used to control hexapod
locomotion. The inputs to the system were the sen-
sor states of the robot at discrete time intervals and
the outputs were the actuator actions, as well as an
evaluation output used for actor-critic temporal dif-
ference training. The network was self-organising and
expandable, so that sensor vectors that were different
to those experienced previously could be accommo-
dated. Training was done in stages; firstly single leg
control was developed, followed by leg coordination.
The network was interpretable enough that it could be
seeded with expert knowledge, and this was found to
greatly speed up the subsequent training.

In [108] reinforcement learning for a RBFN net-
work alone was compared to such with the addition of
analytical processing. The analytical addition reduced
the number of outputs the RBFN network needed by
incorporating prior knowledge. The hybrid approach
produced faster training and well behaved characteris-
tics in comparison to reinforcement only approach.

4.1.3 CMAC

A Cerebellar Model Articulation Controller or CMAC
network is a type of associative memory network
based on the cerebellum [142]. The continuous input
space is divided into hyper-rectangles so that an input
is located in one rectangle at any one time. Multiple
layers are used with the placement of the rectan-
gles slightly offset for each layer, so a rectangle in
one layer will overlap several in the other layers.
In this way one input is associated with multiple
hyper-rectangles, one in each layer, but changes in
the input will result in different changes in activa-
tion in each layer. Each hyper-rectangle in each layer
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has a weighted connection to the output neurons. The
output of each node is the weighted sum of the acti-
vated rectangles, and the weights are adjusted through
training.

In [109], a set of CMACs were used to gener-
ate locomotion. At the core was a pattern generator
formed by a CMAC that took time, step length and
walking period as inputs, and generated six desired
joint angles as outputs, and was trained using least
mean squares supervized learning to match a basic
joint trajectory profile over one walk period. The sys-
tem also used CMACs as peripheral controllers that
helped maintain body posture and body height. Addi-
tional reinforcement learning was used by the pattern
generator and peripheral controllers, based on several
constraints: energy, step, posture and a body height
constraint. The last two constraints were themselves
calculated by CMACs that were trained to assess the
current posture and body height states, and to out-
put an appropriate evaluation. The additional learning
enabled the robot to refine its movement and learn new
solutions. The modular nature of the solution allowed
for smaller, easier to train neural networks.

In [110, 111] CMACs were used to learn walk-
ing patterns derived by an analytical approach. The
CMACs successfully learned the movement patterns
and showed resilience to perturbation (including on
uneven or slippery floors), thereby translating a rigid
analytical solution into an adaptable one.

4.2 Recurrent Neural Networks

Recurrent neural networks (RNN) recycle informa-
tion, via time delays, back into themselves, which
makes them useful for processing inputs that evolve
over time. Of particular interest to locomotion is that
they can also exhibit limit cycle behaviour, and self
generated patterns, and so are capable of producing
periodic trajectories.

Upon this simple premise, more complicated net-
works can be developed to produce complex patterns
and handle different types of input. With the RNNs
outlined here there is a partnership between process-
ing external sensor data and internally generating
patterns. Inputs into the RNNs for locomotion gener-
ally consist of gait selection and sensory information.
For non-recurrent networks, the inputs are vital to pro-
duce the trajectories but, for the RNN, the pattern is

produced internally and modified or selected by the
inputs.

4.2.1 Jordan and Elman Recurrent NN

A modified Jordan network was used in [102], trained
using the generalized delta rule [143] to match ref-
erence trajectories, indexed by different inputs to the
control nodes. The network is similar to a standard
feed-forward network except that the outputs are fed
back into a set of input neurons for the next itera-
tion, but without self-feedback connections normally
present in Jordan NNs, as these were found to hamper
the ability of the system to learn periodic trajectories.
Accurate fault tolerant trajectories were learned, and
the system could interpolate between forms found in
the training set, by varying the control inputs accord-
ingly.

Elman NNs are similar to the Jordan architectures,
except that instead of recycling information from the
output layer, time delayed copies of the hidden layer
are maintained and fed back into the hidden layer.
The Elman network was used in [113] and the authors
claimed it had increased power (capable of a wider
range of solutions) over the Jordan network. The
resilient backpropagation (RPROP) training algorithm
was used and the system showed an ability to learn
supervised trajectories and interpolate between them.

4.2.2 Fully Connected Recurrent NN

In [4], a network of ten fully connected leaky-
integrator neurons was used as a pattern generator,
where six of them were also connected to the actua-
tors to output the trajectories. The output functions of
the neurons insured changing outputs over time, even
if the network was initialized with zero outputs for
all neurons. Successful bipedal walking patterns were
evolved using a GA, using distanced travelled in a set
time frame as the fitness function.

A similar network was used in [106] where it was
evaluated for properties that may be useful in loco-
motion, by learning sinusoidal patterns. The param-
eters of the network were again evolved with a
GA. The number of generations required was found
to be largely independent of the NN sampling rate
(how many iterations the network should perform per
second). This implied that the network learned the
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form of the patterns rather than individual sample
values and simply scaled output frequency to the
sampling rate.

The network was able to learn multiple sinusoidal
patterns, selectable by an input level, but evolution
took more generations as the number of patterns
required increased. Learned patterns were resilient to
noise at the inputs, and even if the input was disrupted
by a large amount, the output would quickly return to
normal when the input was corrected. It was found that
a six neuron model was sufficient to store eight dif-
ferent sinusoidal patterns, as long as the form of those
patterns was different.

A six neuron fully connected RNN was also inves-
tigated in [105], to control an agent moving to the
location of a chemical marker in two dimensional
space. The network was trained with GA but, although
successful, a large population size was needed to avoid
convergence to sub-optimal local solutions. A sparsely
connected set of RNNs (one for each leg), consist-
ing of five neurons each, was then applied to produce
an insect gait. The approach was later shown to be
successful in a real hexapod robot in [104].

4.2.3 Reservoir

Reservoir networks are different from traditional
RNNs. Normally, RNNs should be as small as possible
to help training, but reservoirs use a big network with
potentially much redundancy. This succeeds, however,
because the reservoir, which is a large set of inter-
connected neurons, remains unchanged over training -
only the output neurons are trained. The assumption is
that the dynamics needed are already present when the
network is formed (randomly), and all that is required
is to correctly listen for them by adjusting the out-
put weights. This gives reservoir NNs the advantage
of simplified training (for example, linear regression
techniques can be used), albeit at the expense of some-
what inefficient operation due to the larger number of
neurons.

In [112], a reservoir NN was used to generate tra-
jectories that matched references taken from human
motion capture. The network was trained with ridge
regression, and noise was added during the training
phase in order to produce a more stable pattern gen-
erator. The NN produced accurate trajectories over
long time periods and was resilient to perturbation.

The system was also trained to have controllable
frequency and managed to specify patterns for 22 DoF.

4.2.4 Specialized

Partially hand crafted, and partially trained NNs were
developed in [99] for pattern matching real life gaits,
and in [100] to control a biped that was resilient
to sensor noise and self generated sensor movement
patterns. An analytically derived NN was created in
[101] with no training or learning, for a hand grasping
movement.

4.3 NN Advantages and Disadvantages

Advantages:

• They are the least constrained of the approaches
in this review. Generalisation abilities can be
improved by optimising the network topology, at
the potential expense of greater processing load
and training complexity;

• NNs have shown an ability to cope with situations
outside those found in training. This includes
good limit cycle behaviour in RNNs (resilience to
perturbation) and an ability to interpolate between
training inputs. Examples have been given where
trajectories derived from an analytical approach
have been learned by a NN, with the output of
the NN then resilient to changes in the environ-
ment that were not accounted for in the original
analysis;

• The ability to produce interpolated output when
controls are varied allows for novel gaits to be
generated, that were not originally trained or opti-
mized for;

• The NN architectures are convenient for training
or optimisation and, in general, this is how their
parameters are specified. Optimisation techniques
such as GA can be easily applied for NN training;

• Some of the FFNN structures are interpretable
enough that they can be modified or seeded with
expert knowledge.

Disadvantages:

• Many iterations are generally needed for train-
ing (optimisation) and learning so using a real
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world platform becomes difficult. This means that
simulation is often required;

• Many of the structures, especially the RNNs, are
difficult to interpret. For practical implementa-
tions this may not be a concern, but it does mean
development often cannot be aided with expert
knowledge;

• Theoretical interpretations of the resultant meth-
ods are limited.

5 Hidden Markov

Some research has been conducted into robotic learn-
ing by imitation, where the robot goal is to observe
a motion pattern and then to reproduce it. Often, a
human may be the source of the motion pattern to be
copied and because the physical workings and capa-
bilities of the source and target systems are different,
simple copying will not work. Imitation therefore,
becomes a process of observation and re-synthesis.
Here, observing is estimating the underlying state
variables of the source system where only the output
is available, and Hidden Markov Models (HMM) have
been used in robotics for this task [114–118].

When imitating, the system first observes a move-
ment pattern and a recognition algorithm is then used
to determine if the movement is already known, in
which case the pattern is used to refine the stored one.
If the pattern is not recognized, then it is added to
the database as a new, learned pattern. The observed
kinematic or kinetic values, as well as the synthe-
sized values, are called ‘motion elements’ in the HMM
papers reviewed here. One motion element represents
the kinematic/kinetic values at one discrete moment
of time. The hidden states of the HMM provide an
abstraction of the movement patterns, which can be
used to re-synthesise the motion in the target system.

The first part of imitation is recognition, where
a recursive algorithm calculates the probability of
observing a movement pattern, if the candidate HMM
was used to generate it. If this probability exceeds
a threshold value (which can be varied to control
grouping of similar observations), then the observa-
tion is determined to have fit the stored model and
is, therefore, recognized. This recognition algorithm
was modified in [115] to cope with missing elements.

This could be used if observation was temporarily
occluded.

If recognition does not occur, then the next stage
of imitation is learning. A new HMM is generated
from the observation sequence using an expectation-
maximisation algorithm (EM), such as the Baum-
Welch algorithm [144].

To synthesize, or produce the movement once
stored, it is usually generated stochastically from
the HMM. Because of its probabilistic nature, typ-
ically, the synthesis is repeated several times, with
each sequence normalized in time. The sequences are
then averaged to produce a final output. In [115], the
Viterbi algorithm [145] was used instead, to generate
a sequence that most closely matches the observation.

Finally, an error value is generated based on the
difference between the synthesized and observed
sequences. This error value can then be used in a learn-
ing rule to modify the matrices of the HMM and refine
the stored pattern.

Although typically used for imitation tasks, HMM
have also been employed to detect problematic states.
For example, in [116], a Gaussian Mixture Model
method was used to identify the current state and
a HMM method was used to classify a series of
states over time. Once a problem, such as falling, was
detected, a reflex algorithm was initiated in which
both methods were successful with one version of the
HMM approach being excellent at fall prevention, or
at least producing a controlled fall.

5.1 HMM Advantages and Disadvantages

Advantages:

• HMM can be used as a specialist technique for
movement control. They are well suited to imita-
tion when compared to other techniques;

• They provide a way of recording underlying tra-
jectory data to a high precision;

• HMM can be employed to identify problematic
states and therefore, to initiate saving reflex pro-
grammes;

• The database structure found in the methods using
HMM allows the ability to learn multiple skills.
However, this is more a property of how they
have been used in the literature than an inherent
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advantage. Other methods could also have a
database of parameter sets that allow them to
perform multiple skills.

Disadvantages:

• HMM do not provide emergent behaviour, such
as the gait changing found in some CPG and
NN approaches. Indeed, as used so far, HMM
approaches are a trajectory playback system –
therefore not inherently adaptable;

• Expert knowledge cannot be implemented
directly into HMM;

• Hybrid designs would be needed to add enhanced
properties such as resilience to perturbation.

6 Rule Based Systems

By classifying the current state, the next action can
be determined through a table lookup or rule based
system. The simplicity of these approaches enables
clear interpretation, and therefore the use of expert
knowledge or learning/optimising techniques to spec-
ify transition rules.

6.1 Transition Table

In [124], a transition table was evolved, in order to
specify actions based on the current system state, for
a hexapod. Body states were classified into an integer
value and this was used to index a list of actions, used
to move the legs. For a given transition table, gener-
ated using a GA, the hexapod was simulated starting
with each possible initial configuration, and the fitness
function was the proportion of those starting positions
that led to a tripod gait. The best table evolved gave
stable tripod gates for 98.4 % of the initial states,
with the failures arising from initial symmetrical leg
positions that could not lead to asymmetrical tripod
gaits.

A transition table was also used in [125] to control
a hexapod, but this time, the state value was calcu-
lated as a binary string where each bit represented
either supporting (down) or not supporting (up) leg.
With one leg being raised or lowered at a time, the
goal was to move through a terrain that had specified

bad patches (pre-known to the algorithm). Using a
graph search technique, locomotion was successfully
generated and exhibited different gates.

6.2 Fuzzy Logic Systems

A zero moment point controlled biped was developed
in [31], where in order to improve the gait, a fuzzy
logic controller was used to vary the ZMP position
in the support rectangle of the foot. This was done to
match the shifting in real human gaits from the rear to
the front of the foot. After simulations, this technique
resulted in a more desirable gait with less trunk swing.

In [123] fuzzy logic controllers were used for path
planning, ditch crossing, and turning for a hexapod.
The controllers processed ditch distance and angle
information, and outputted actions for each leg. Ini-
tially, the rules were specified by the author, but it
was assumed that a subset could be more effective. To
achieve this, GAs were used to prune the rules, using
a fitness function developed to minimize travel time
and maximize walking efficiency. Through simulation
it was found that, whatever the composition of the
original rule set, the GA always improved the fitness.

The approach was extended in [122] to control a
biped walking up stairs. Two fuzzy logic controllers
were used, one to analyse the current system state, and
one to prescribe actions based on this state. A ZMP
based criterion was employed to monitor the suc-
cess in creating an effective climbing gait. An author
specified rule set and GA pruned subset were com-
pared as in [123], plus a fully GA determined set. The
fully GA specified set was found to be superior to
the GA pruned set, which in turn was superior to the
author set.

A biped ditch-crossing fuzzy logic algorithm was
developed in [103] (also mentioned in Sections 2 and
4), where the gait was largely constructed analytically,
but two fuzzy logic controllers were used for four free
parameters. The rule sets were specified by GA and
the best solution was found to be more stable and
efficient than a fully analytical approach, but slightly
worse than a NN based one.

Linguistic rules and data based rules were fused
in [119] to produce bipedal control, where an expert
based fuzzy rules system was combined with a data
based neuro-fuzzy network to produce a final control
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value. In [120, 121] an actor-critic system was used for
on-line learning. The actor and critic were constructed
using neuro-fuzzy networks, and had layers with neu-
rons corresponding to system states. The architecture
allowed learning algorithms to be applied to adjust
the parameters of the fuzzy system. The classifica-
tion of the fuzzy system was author specified and
therefore the behaviour was interpretable. An exter-
nal error reinforcement signal with fuzzy encoding
was also used, again allowing expert knowledge to be
incorporated and this way reducing the training time
considerably.

In [122] comparisons were made for the GA fuzzy
technique against others. The authors cited the abil-
ity to optimize the system as preferable over more
restrictive analytical techniques. Compared to NNs,
the authors valued the ease of interpretation of the rule
based system and argued their implementation (using
a GA) had better search of the solution space than the
one in [120]. However, it should be noted that a GA
version of [120] was presented in [121].

6.3 Rule Based Advantages and Disadvantages

Advantages:

• They can be very simple to implement;
• The rules are easily interpretable. Therefore, rule

based systems can easily be seeded with expert
knowledge;

• The flat nature of the rule tables makes them easy
to optimize;

• Fuzzy systems can cope with varied environ-
ments.

Disadvantages:

• Transition tables are generally only good for spec-
ifying coarse movements;

• The methods are over constrained and therefore
have less potential for optimisation than the other
techniques.

7 Conclusion

The suggestions in this section, although follow-
ing informed arguments, are hampered by a lack
of research publications directly comparing different
techniques. This section could be used as a starting
point but obviously there are always other methods to
try.

Despite being relatively scarce, some direct
comparisons have been made between different
approaches:

• A simple oscillator CPG was found to produce
faster movement than a ZMP inverted pendulum
model method in [46];

• A NN approach appeared to be more stable and
efficient than a fuzzy logic approach for a ditch
crossing robot in [103]. The fuzzy logic method
was in turn found to be better than a ZMP IPM
technique.

A continuum of approaches exists to produce the cor-
rect movement, from those that rely fully on prior
knowledge and require no training, to those that are
very generic pattern generators that require intensive
training (Fig. 1). A summary of the highlighted advan-
tages and disadvantages is given in Table 3.

Researchers’ preference must also influence the
decision. Analytical techniques can become very
complex in more demanding situations. However,
extensions such as the CWS [32] show that the
analytical approach is capable of dealing with diffi-
cult environments. Conversely, RNNs may be more

Fig. 1
Constraint/adaptability and
learning demands of the
control methods presented
visually. The figure gives an
approximate scatterplot of
method positions, to aid
comparison

Heavy learning / 
optimisation demands

Simple parameterisation

Over-constrained
or non-adaptable

Minimal constraints
and adaptable

Neural
network

CPG

Rule
based

Analytical

HMM
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Table 3 Advantages and disadvantages of the reviewed control methods, examining characteristics including ease of implementation,
generality, emergent behaviour, need for learning/optimisation, and special features

Advantages Disadvantages

Analytical • Accurate analysis can produce immediate • Usually very task specific

results • Generally task limited with no

• Training not required so implementation in emergent behaviours

hardware can be easier • Approximate modelling can produce

• Long research history inaccuracy or inefficiency

• Easy to interpret solutions • Simplification of analysis through

over-constraint can lead to sub-optimal

solutions

• Constraints can produce ‘un-natural’

gaits

CPG • Limit cycles are resilient to perturbation • Calibration, training or evolution often

• Emergent behaviours required

• Clear parameter structure, good for • Less easy to interpret solutions

optimisation compared to analytical

• Less constrained than analytical, possible • Still more constrained than some other

that better solutions exist approaches

• Non-cyclic behaviour difficult to

implement

Neural • Least constrained approach • Training costs can be high

networks • Capable of good limit cycle behaviour, • Difficult to interpret method of

resilient to perturbation, and able to solutions (black box solutions)

interpolate behaviours

• Emergent, new behaviours possible

• Suitable for training or optimisation

• Some interpretation possible with FFNNs

HMM • Used for imitation tasks • No emergent behaviour

• Can be used as an identifier to initiate • Lack of resilience to perturbation

reflex behaviours • Difficult to interpret method of

• Often used with a database of skills solutions

Rule • Can be very simple to implement • Often only coarse movements can be

based • Easy to interpret solutions specified

• Easy to optimise • Over constrained so less optimisation

• Fuzzy systems can cope with varied potential

environments

difficult to develop than the analytical solutions for
simple situations, but their generality means a solution
should still be available. If a researcher is knowledge-
able in one domain but not the other it may be worth-
while searching for solutions using those methods
even if another approach is theoretically more suitable.

The first criterion for selecting an approach is the
availability of prior knowledge. If none is available,

then an analytical approach is usually ruled out
because of the need for template foot trajectories
(analysis is used to provide stability constraints).
If prior knowledge is available, and the researcher
wishes to use it, then wholly generic approaches such
as RNNs, generic CPGs and Markov chains could be
ruled out. If the problem is well understood, then a
primarily analytical approach may be appropriate. If
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only a limited amount of prior knowledge is available,
then this can still be used in customising the structure
of the control or setting some parameter values.

In this review, CPGs and NNs have been found
to offer the option to evolve or learn solutions via
reinforcement or supervision. This frees the designer
from having to specify too much, as would be the
case for an analytical approach. NNs offer a more
generic option (compared to the oscillator primi-
tives of CPGs), with RNNs being the most generic
(allowing a combination of internally generated and
input driven patterns). However, this generality comes
at the expense of more difficult training. Oscilla-
tor based CPGs provide a more constrained option
that can help reduce the training load. Transition
tables should be noted for the ease of training, but
they are limited in the kind of information they can
generate.

To a certain extent all approaches could allow for
the development of multiple skills or gaits through
the use of a database of parameter values (as is com-
mon in HMM approaches [117]). However, analytical
approaches will need a new analysis for each skill.
CPGs and RNNs have shown examples of emergent
gaits and smooth skill transitions as a natural conse-
quence of their limit cycle behaviour [72, 73, 102,
112].

Hidden Markov Model systems are used for obser-
vation and classification as well as learning and gen-
eration. They are therefore an option for applications
of learning through imitation [117], and initiating
reflexes [116].

Rule based systems such as transition tables or
fuzzy logic controllers have the advantage of clearly
interpretable processes, even if they are developed
through an optimisation algorithm. The transition
table method is suitable for simple situations, with the
fuzzy logic controller being more fault tolerant and
appropriate for more complex situations [103].

Reinforcement learning allows effective control
to be learned in situations where uncertainty exists,
where a lack of input-output data prevents the use
of supervised learning. However, reinforcement learn-
ing can often be slow, which often forces learning
to be through computer simulation rather than in the
real world. Systems that allow a hybrid of expert
knowledge plus reinforcement learning give the option
of speeding up the process by giving the system a
head start. Options include RBFNs and fuzzy logic

Table 4 Number of simulations used in evolving solutions
using genetic algorithms, in a sample of publications covering
rule based, CPG and neural network control methods

Reference Method Simulations

[103] Rule based 900

[124] Rule based 1150

[122] Rule based 7200

[123] Rule based 5000

[97] CPG 500

[91] CPG 5000

[105] Neural network 40000

controllers, where networks or rule based systems are
sufficiently interpretable in a sense that an expert can
specify an initial solution, as investigated in [107,
123].

Although the less constrained methods potentially
offer a greater range of solutions, their parameter-
isation can become complicated. As an example,
Table 4 shows the large number of simulations often
required for genetic algorithm based solutions (a pop-
ular choice). The table does not show the amount
of time per simulation and this can vary largely
between tasks. However, it can readily be seen that
a great amount of simulation time is often required
when control methods are general and need extensive
parameterisation.
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