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Abstract This work addresses the position tracking
control problem for tendon–driven robotic mecha-
nisms in the presence of parametric uncertainty and
additive external disturbances. Specifically, a full state
feedback nonlinear robust controller is proposed to
tackle the link position tracking problem for tendon–
driven robot manipulators with uncertain dynamical
system parameters. A robust backstepping approach
has been utilized to achieve uniformly ultimately
bounded tracking performance despite the lack of
exact knowledge of the dynamical parameters and
presence of additive but bounded disturbance terms.
Stability of the overall system is proven via Lya-
punov based arguments. Simulation studies performed
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on a two link planar robot manipulator driven by a
six tendon mechanism are presented to illustrate the
effectiveness and viability of the proposed approach.
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1 Introduction

The idea of separating the actuators from the links of
the robot and remote actuating each joint has always
attracted the robot designers as this will reduce the
bulk and extra inertia from the mechanical system.
Among other remote power transmitting methods,
tendon–driven transmission systems present a less
noisy, clean (as they do not require lubrication), and
shock absorbent characteristics. Therefore tendon–
driven mechanisms have been used in the design
of both small [1–3] and large robot manipulators
[4–6]. However the use of tendon–driven actuation
has been more popular in dexterous hands [2, 3, 7]
as the resultant task–space motion in robotic hand
designs does not need to be accurate and relatively
simple controllers can handle desired objectives. For
robot manipulators where the main aim is to track a
task–space trajectory as closely as possible, the use
of tendon–driven mechanisms are limited. We believe
that the main reason for this is the additional com-
plexity of the overall system dynamics. For better
control performance, it is necessary to consider the
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system dynamics in the controller design. However,
when the dynamics of the power transmission sys-
tem is added to the system model, the control design
problem becomes more complicated mostly due to the
addition of extra dynamics and therefore additional
uncertainties. On top of this, for an acceptable track-
ing performance, tendon elasticity in the transmission
system, specific to tendon–driven systems, has to be
considered in the controller design [5, 8].

Aside from the classical linear control approaches
(see [9, 10], and the references therein), to our
best knowledge, controller formulations including the
system dynamics for tendon–driven robot manipula-
tors are penurious in the literature. To name some; the
development and performance of an inner–loop adap-
tive and robust outer–loop controller was investigated
in [11], while in [12], robotic mechanisms with redun-
dant tendons were investigated and in [13], authors
propose a puller–follower controller both compli-
ant and non–compliant antagonistic tendon drives in
robotic systems. In [5], Kobayashi and Ozawa pre-
sented an adaptive and an adaptive neural network
based controller for tendon–driven robotic mecha-
nisms with elastic tendons. In [14], Nakayama and
Fujimoto tackled the tracking control of tendon–
driven robots by applying the delayed reflexive
force feedback. In [15, 16], Haiya et al. proposed
a controller for multiple degree–of–freedom tendon
mechanisms using nonlinear springs with hysteresis
characteristics like stiffness adjustable tendons. For
the proposed controllers, error of the equation of
spring was estimated by a disturbance observer and
compensated by utilizing the estimated disturbance. In
[17], Wimbock et al. proposed an application of the
Immersion and Invariance type framework to tendon–
driven systems with variable stiffness. Among the
above cited work, the only work that considered the
uncertainties in the system dynamics was given in [5],
however the proposed adaptive controller required the
measurement of the second and third time derivatives
of link position measurements (see assumption 2 of
[5]) which are usually not available.

Review of the past research on control of tendon–
driven robot manipulators has revealed that almost
all of the control designs required accurate knowl-
edge of the system model along with exact knowledge
of model parameters, and according to the authors’
best knowledge, the only work considered parametric
uncertainties was [5] which utilized link acceleration,

and jerk measurements. In this study, we aim to
design a robust controller that does not require accel-
eration and jerk measurements. Specifically, for the
restrictive case of full state feedback (i.e., position
and velocity information of both the actuators and
robot links and tension measurements of each ten-
don) being available, and the robot dynamic model
and the actuator dynamics including uncertain param-
eters is considered. Adding the dynamics of the power
transmission system and considering tendon elasticity
yield a complicated dynamic model, and the result-
ing system dynamics mandates the use the backstep-
ping technique twice (unlike our previous work [18],
where robust backstepping was applied only once).
After fusing the backstepping design procedure with
Lyapunov–type analysis tools, we design the auxil-
iary backstepping control inputs and the control input
applied to the actuators. The stability analysis ensures
the boundedness of all the signals under the closed–
loop operation and uniform ultimate boundedness of
the link position tracking error. Our theoretical results
are verified via numerical simulations.

The rest of the work is organized in the fol-
lowing manner. The dynamical model of tendon–
driven manipulators along with model properties are
presented in Section 2. Controller formulation and
the corresponding stability analysis are given in
Sections 3 and 4, respectively. Section 5 contains
the numerical simulations performed on a two link
manipulator driven by a six tendon mechanism, and
concluding remarks are given in Section 6.

2 System Dynamics and Model Properties

The dynamics of an n degree–of–freedom robot
manipulator driven by an m−tendon mechanism have
the following form [5]

M(q)q̈ + Vm(q, q̇)q̇ + Fdq̇ + G(q) + d1 (1)

= −J T
j (q)ft (l)

J θ̈ + Bθ̇ + Raft (l) + d2 = τa (2)

l̇ = Jj (q) q̇ + Raθ̇ (3)

where q(t), q̇(t), q̈(t) ∈ R
n represent the link posi-

tion, velocity and acceleration vectors, respectively,
θ(t), θ̇ (t), θ̈ (t) ∈ R

m represent the actuator posi-
tion, velocity and acceleration vectors, respectively,
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l(t), l̇(t) ∈ R
m are the m− dimensional tendon expan-

sion vector and its time derivative, M(q) ∈ R
n×n

denotes the link inertia effects, Vm(q, q̇) ∈ R
n×n rep-

resents the centripetal Coriolis effects, G(q) ∈ R
n

denotes the gravitational terms related to the robot,
Fd ∈ R

n×n is the constant diagonal link viscous
friction matrix, d1 ∈ R

n and d2 ∈ R
m are used

to represent the bounded (with known upper bounds)
disturbance vectors, J, B ∈ R

m×m are the diagonal
actuator inertia and actuator viscous friction matri-
ces, respectively, Ra ∈ R

m×m is the diagonal matrix
containing the known radius of pulleys mounted on
each actuator, Jj (q) ∈ R

m×n is the known Jaco-
bian matrix that maps the joint space to the tendon
expansion space, ft (l) ∈ R

m is the known vector of
tendon tensile forces generated by the tendon expan-
sions, and finally τa(t) ∈ R

m is the control input
vector applied the actuators. A schematic representa-
tion of the system dynamics is presented in Fig. 1.
The dynamic equations of Eq. 1 exhibit the follow-
ing useful properties, which will be utilized in the
controller development and the subsequent stability
analysis.

Property 1 The inertia matrix can be bounded from
above and below by the following inequalities [21]

m1In ≤ M(q) ≤ m2In (4)

where m1 and m2 are positive constants, and In is
the n × n identity matrix. Likewise the inverse of the
inertia matrix can be bounded as follows

1

m2
In ≤ M−1(q) ≤ 1

m1
In. (5)

Property 2 The inertia and the centripetal Coriolis
matrices satisfy the following relationship [22]

ξT

(
1

2
Ṁ(q) − Vm(q, q̇)

)
ξ = 0 ∀ξ ∈ R

n (6)

where Ṁ(q) represents the time derivative of the
inertia matrix.

Property 3 The centripetal Coriolis matrix satisfies
the following relationship [20]

Vm(q, ν)ξ = Vm(q, ξ)ν ∀ ξ, ν ∈ R
n. (7)

Property 4 The norm of the centripetal Coriolis
matrix, and the gravitational effects with the friction
vector can be upper bounded as follows [21]

‖Vm(q, ξ)‖i∞ ≤ ζc1 ‖ξ‖ , ‖Fd‖ ≤ ζf , ‖G (q)‖
≤ ζg ∀ξ ∈ R

n (8)

where ζc1, ζf , ζg ∈ R are known positive bounding
constants and ‖·‖i∞ denotes the induced infinity norm
of a matrix.

Property 5 The robot dynamics given in Eq. 1 can be
linearly parameterized as follows [21]

Y (q, q̇, q̈)φr = M(q)q̈+Vm(q, q̇)q̇+G(q)+Fdq̇ (9)

where φr ∈ R
p contains the constant system param-

eters, and Y (q, q̇, q̈) ∈ R
n×p denotes the regression

matrix that is a function of q(t), q̇(t) and q̈(t). The
formulation of Eq. 9 can be rewritten in terms of
the desired trajectory and its time derivatives in the
following manner

Yd(qd, q̇d , q̈d )φr = M(qd)q̈d + Vm(qd, q̇d)q̇d

+G(qd) + Fdq̇d (10)

Fig. 1 Tendon driven
system dynamics: a general
view
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where the desired regression matrix Yd(qd, q̇d , q̈d ) ∈
R

n×p is a function of the desired link position, veloc-
ity, and acceleration vectors denoted by qd(t), q̇d (t),
q̈d (t) ∈ R

n, respectively.

Property 6 The unknown actuator parameter matrices
J and B are bounded by known upper bounds which
are determined as follows

λmax {J } < J̄ , λmax {B} < B̄ (11)

where J̄ , B̄ ∈ R are positive constants, and λmax {·}
denotes the maximum eigenvalue of a matrix.

Aside from the assumption that the force/
elongation characteristics of the tendons being per-
fectly known, our controller development and stability
analysis also utilizes the following assumptions, simi-
lar to that of [5]:

Assumption 1 rank(Jj (q)) = n for any q ∈ R
n.

Assumption 2 There exists a positive valued vector of
bias forces, fb, such that Jj (q)T fb = 0 where this
bias vector is used to keep the joint tendon tension
vector ft (l) positive without changing the joint forces
generated by the tendons.

Assumption 3 Each entry of the vector ft (l) satisfies
fti(li) = 0 for li < 0 and fti(li) ≥ 0, ∂fti (li )

∂li
> 0 for

li ≥ 0 where i = 1, 2, ..., m.

Assumption 4 The matrix ∂ft (l)
∂l

∈ R
m×m is non–

singular.

3 Controller Formulation

The control objective is to design a link position track-
ing controller for the tendon–driven robot manipulator
model given by Eqs. 1, 2 and 3 under the restric-
tive constraint that the dynamical system parameters
of Eq. 1, Eq. 2 are uncertain. In the subsequent con-
trol design, we utilize full state feedback (i.e., position
and velocity information). Specifically, the controller
should ensure the robot links follow a desired tra-
jectory as closely as possible, despite the uncertain
robot/actuator system parameters. In order to quantify

the control objective, we define the link position track-
ing error e(t) ∈ R

n as follows

e � qd − q (12)

where it is assumed that the desired link position,
qd (t) and its time derivatives are sufficiently smooth
and bounded functions of time. To facilitate the sub-
sequent control development, we define the filtered
tracking error r (t) ∈ R

n as

r � ė + αe (13)

where α ∈ R
n×n is a positive definite, diagonal con-

trol gain matrix. In addition, to provide a method
of quantifying robustness, we define the difference
between the actual and estimated parameters as fol-
lows

φ̃r � φr − φ̂r (14)

where φ̃r (t) ∈ R
p represents the parameter estima-

tion error vector and φ̂r ∈ R
p represents the constant

best guess estimates of φr defined in Eq. 9. The back-
stepping based controller design procedure enforces
us to define two additional auxiliary error terms ηf (t),
ηθ (t) ∈ R

m as

ηf � ft − fd (15)

ηθ � θ̇ − θ̄d (16)

where ft (t), θ̇ (t) were defined in Eqs. 1 and 2,
respectively, and fd (t), θ̄d (t) are yet to be designed
auxiliary control inputs.

Taking the time derivative of Eq. 13, pre–
multiplying the resultant equation by M (q),
adding/subtracting Ydφr , J T

j (q)fd and Vm(q, q̇)r to
the right hand side of the resulting equation, we obtain

M(q)ṙ = −Vm(q, q̇)r + χ + d1 + J T
j (q)ηf

+J T
j (q)fd + Ydφr (17)

where χ (q, q̇, t) ∈ R
n is an auxiliary term defined as

χ = M(q) (q̈d + αė) − M(qd)q̈d

+Vm(q, q̇) (q̇d + αe) − Vm(qd, q̇d)q̇d

+G(q) − G(qd) + Fdq̇ − Fdq̇d . (18)

Based on Properties 1 and 4, and using Eqs. 12 and 13,
it can be proven that (see Appendix for details)

‖χ‖ ≤ ρ1(‖z‖) ‖z‖ (19)

where z (t) ∈ R
2n is defined as

z (t) �
[
eT (t) rT (t)

]T
(20)



J Intell Robot Syst (2015) 80:3–14 7

and ρ1 (·) ∈ R is a known positive bounding function.
From the structure of Eq. 17 and the subsequent sta-
bility analysis, we design fd (t) in the following form

fd =
(
J T

j (q)
)+(

−Krr−kn

(
ρ2
1(r,e)+ρ2

2

)
r−e−Ydφ̂r

)
(21)

where (·)+ is used to represent the pseudo inverse
of a matrix [19], Kr ∈ R

n×n is a constant, positive
definite, diagonal gain matrix, kn ∈ R is a constant
positive damping gain, φ̂r was defined in Eq. 14, and
ρ2 ∈ R is a positive bounding constant designed to
satisfy

ρ2 ≥ ∥∥F̃
∥∥ (22)

where F̃ (t) � Ydφr − Ydφ̂r + d1 ∈ R
n. Inserting

Eqs. 21 into 17, the closed–loop dynamics for the fil-
tered tracking error term r (t) is obtained to have the
following form

M(q)ṙ = −Vm(q, q̇)r + χ + F̃ + J T
j (q)ηf − Krr

−kn

(
ρ2
1(r, e) + ρ2

2

)
r − e. (23)

From Eq. 23, it can be seen that to ensure the stabil-
ity and convergence of the tracking error signal, we
require the dynamics of the auxiliary signal ηf (t). To
this end, we take the time derivative of Eq. 15 and
make use of Eqs. 1, 3, 13 and 21, to produce

η̇f = �1 + �2 + ∂ft (l)

∂l
Raθ̇ (24)

where the right hand side is segregated into the auxil-
iary variables �1 (q, q̇, l, t) ∈ R

m containing known
and measurable parameters, and �2 (q, q̇, l, φr , t) ∈
R

m containing uncertain system parameters, and are
explicitly defined as

�1 � ∂ft (l)

∂l
Jj (q) q̇ + d

dt

{(
J T

j (q)
)+

Ydφ̂r

}

− d

dt

{(
J T

j (q)
)+}(

−Krr−kn

(
ρ2
1+ρ2

2

)
r−e

)

+
(
J T

j (q)
)+ {

ė + 2knρ1r
∂ρ1

∂e
ė

+
[
Kr + kn

(
ρ2
1 + ρ2

2

)
In

+2knr

(
ρ1

∂ρ1

∂r

)]
(q̈d + αė)

}
(25)

and

�2 �
(
J T

j (q)
)+{[

Kr +kn

(
ρ2
1+ρ2

2

)
In+2knr

(
ρ1

∂ρ1

∂r

)]

×
[
M−1 (q)

(
J T

j (q)ft (l) + Vm(q, q̇)q̇ + Fdq̇

+G(q) + d1

) ]}
. (26)

Notice that all the entries of Eq. 25 are known and/or
measurable signals while Eq. 26 contains uncertain
system parameters, therefore cannot be directly used
in the controller design. At this stage, motivated to
ensure the convergence of ηf (t), we add/subtract
∂ft (l)

∂l
Raθ̄d term to the right hand side of Eq. 24 to

obtain

η̇f = �1 + �2 + ∂ft (l)

∂l
Raηθ + ∂ft (l)

∂l
Raθ̄d (27)

where Eq. 16 was utilized. From the structure of
Eq. 27 and the subsequent stability analysis, we design
the auxiliary signal θ̄d (t) in the following form

θ̄d = �
(−Kf ηf − Jj (q) r − �1 − �̂2 − vR1

)
(28)

where the auxiliary variable �(l) ∈ R
m×m is defined

as

� �
(

∂ft (l)

∂l
Ra

)−1

, (29)

Kf is a positive definite, constant, diagonal gain

matrix, �1 (·) was defined in Eq. 25, �̂2

(
φ̂r , t

)
is the

estimate of �2 (φr , t) with φ̂r being the constant best
guess estimates of φr , and vR1(t) is a differentiable
robust term defined in the following form [23]

vR1 = ρ2
3

ε1
ηf (30)

where ε1 ∈ R is a positive constant, and
ρ3 (e, r, l, t) ∈ R is a positive bounding function
designed to satisfy

ρ3 (e, r, l, t) ≥ ∥∥�̃2
∥∥ (31)

with �̃2 � �2 − �̂2.
After substituting Eqs. 28 into 27, the closed–loop

dynamics for the auxiliary tracking error signal ηf (t)

is obtained to have the following form

η̇f = −Kf ηf − Jj (q) r + ∂ft (l)

∂l
Raηθ + �̃2 − vR1.

(32)
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At this stage, the backstepping design procedure
requires the dynamics of ηθ (t), which can be obtained
by taking the time derivative of Eq. 16, inserting
Eq. 28 then pre–multiplying both sides of the resulting
equation by J and applying Eqs. 1, 2 and 3 as

J η̇θ = �3 + �4 + τa (33)

where the right hand side is segregated into the auxil-
iary terms �3(q, q̇, l, θ̇ , t) ∈ R

m containing measur-
able/known variables, and�4(q, q̇, l, θ̇ , φr , J, B, t) ∈
R

m containing uncertain system parameters, and are
explicitly defined as follows

�3 � −Raft (l) + J
d�

dt

(
Kf ηf + Jj (q) r + �1

+�̂2 + vR1
) + J�

{
Kf

(
�1 + ∂ft (l)

∂l
Raθ̇

)

+ d

dt

{
Jj (q)

}
r + Jj (q) (q̈d + αė)

+ ∂

∂q

(
�1 + �̂2 + vR1

)
q̇

+ ∂

∂l

(
�1 + �̂2 + vR1

) (
Jj (q) q̇ + Raθ̇

)

+ ∂

∂t

(
�1 + �̂2 + vR1

)}
(34)

and

�4 � −Bθ̇ − d2 + J�

{
Kf �2

−
(

Jj (q) − ∂

∂q̇

(
�1 + �̂2 + vR1

))

×
[
M−1 (q)

(
J T

j (q)ft (l) + Vm(q, q̇)q̇

+Fdq̇ + G(q) + d1

)]}
. (35)

Based on the previous development and the ensuing
stability analysis, we now design the control torque
input signal τa (t) as follows

τa = −Kθηθ−
(

∂ft (l)

∂l
Ra

)T

ηf −�3−�̂4−vR2 (36)

where, similar to the design of Eq. 28, Kθ ∈ R
m×m

is a positive definite, constant, diagonal gain matrix,
�3 was defined in Eq. 34, �̂4(φ̂r , Ĵ , B̂, t) ∈ R

m is
the estimate of �4 (φr , J, B, t) with (·̂) being used to
illustrate the constant best guess estimates of (·), and
vR2(t) is the robust term defined in the following form
[23]

vR2 = ρ2
4

ε2
ηθ (37)

where ε2 ∈ R is a positive constant, and
ρ4 (e, r, l, ηθ , t) ∈ R is a positive bounding function
designed to satisfy

ρ4 (e, r, l, ηθ , t) ≥ ∥∥�̃4
∥∥ (38)

with �̃4 � �4 − �̂4 ∈ R
m. After substituting the con-

trol torque input given by Eqs. 36 into 33, we obtain
the closed–loop error dynamics for ηθ (t) as shown
below

J η̇θ = −Kθηθ −
(

∂ft (l)

∂l
Ra

)T

ηf + �̃4 − vR2. (39)

A schematic representation of the controller for-
mulation is presented in Fig. 2. Having formed the
closed–loop dynamics for the error signals r (t), ηf (t)

and ηθ (t), we are now ready to analyze the stability
of the overall system and the convergence of the link
position tracking error e (t).

Fig. 2 An illustration of
the controller formulation
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4 Stability Analysis

The stability of the closed–loop system will be inves-
tigated by utilizing Lyapunov–based arguments. Fol-
lowing theorem formalizes the stability analysis.

Theorem 1 The robust controller of Eq. 36 and
the auxiliary control inputs (21) and (28) with the
robust terms (30) and (37) guarantees uniform ulti-
mate boundedness of the link position tracking error
e(t) in the sense that

‖e (t)‖≤
√

a

b
‖x (0)‖2 exp (−βt)+ 2ε

bβ
(1−exp (−βt))

(40)

where x (t) �
[

eT rT ηT
f ηT

θ

]T ∈ R
2(n+m)×1 is the

combined error signal, a, b, β, ε ∈ R are positive
scalars defined explicitly as

a � max
{
1,m2, J̄

}
(41)

b � min {1,m1, λmin (J )} (42)

β �
2min

{
min{λmin(Kr),λmin(α)}− 1

4kn
,λmin(Kf),λmin(Kθ)

}
max

{
1,m2, J̄

}
(43)

ε � 1

4kn

+ ε1 + ε2 (44)

where m1, m2, J̄ , ε1, ε2, kn, Kf , Kθ and Kr were
previously defined, and the notation λmin (·) is used to
denote the minimum eigenvalue of a matrix.

Proof To prove the Theorem, we start by defining a
non–negative scalar function of the form

V = 1

2
rT Mr + 1

2
eT e + 1

2
ηT

f ηf + 1

2
ηT

θ Jηθ (45)

which can be bounded from below and above as

1

2
min{1,m1,λmin(J )}‖x‖2≤V≤ 1

2
max

{
1,m2,J̄

}‖x‖2 .

(46)

Taking the time derivative of Eq. 45 along Eqs. 23, 13,
32 and 39, making use of Eq. 6, and then canceling
common terms, we obtain

V̇ = −rT Krr − eT αe − ηT
f Kf ηf − ηT

θ Kθηθ

+rT
[
χ − knρ

2
1r

]
+ rT

[
F̃ − knρ

2
2r

]
(47)

+ηT
f

[
�̃2 − vR1

] + ηT
θ

[
�̃4 − ρ2

4

ε2
ηθ

]
.

Note that using the definition given in Eq. 30 the
ηT

f

[
�̃2 − vR1

]
term can be bounded as follows [23]

ηT
f

[
�̃2 − vR1

] ≤ ρ3
∥∥ηf

∥∥ − ρ2
3

∥∥ηf

∥∥2
ε1

≤ ρ3
∥∥ηf

∥∥
(
1 − ρ3

∥∥ηf

∥∥
ε1

)
(48)

≤ ε1.

After applying Eqs. 19, 22, 38 and 48, the right hand
side of Eq. 47 can be upper bounded to have the
following form

V̇ ≤ −λmin(Kr)‖r‖2−λmin(α)‖e‖2−λmin
(
Kf

)‖ηf ‖2
−λmin (Kθ ) ‖ηθ‖2
+

[
ρ1 ‖z‖ ‖r‖ − knρ

2
1 ‖r‖2

]

+
[
ρ2 ‖r‖ − knρ

2
2 ‖r‖2

]

+
[
ρ4‖ηθ‖ − ρ2

4 ‖ηθ‖2
ε2

]
+ ε1. (49)

Applying the nonlinear damping argument (i.e., first
by adding and subtracting 1/4kn and then completing
the squares) to the first and second bracketed terms of
Eq. 49, the right hand side can further be bounded as

V̇ ≤ −
(
min {λmin (Kr) , λmin(α)} − 1

4kn

)
‖z‖2

−λmin
(
Kf

) ∥∥ηf

∥∥2 − λmin (Kθ ) ‖ηθ‖2

+
[
ρ4 ‖ηθ‖ − ρ2

4 ‖ηθ‖2
ε2

]
+ ε1 + 1

4kn

. (50)

where z (t) was previously defined in Eq. 20. Finally,
using a similar manipulation to that of Eq. 48 to the
bracketed term of Eq. 50, we obtain

V̇ ≤ −min

{
min {λmin (Kr) , λmin(α)}

− 1

4kn

, λmin
(
Kf

)
, λmin (Kθ )

}
‖x‖2 + ε (51)
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where ε was previously defined in Eq. 44. Using the
definition of x (t) and the upper bound of V (t) given
in Eq. 46, the upper bound of V̇ (t) given (51) can be
reformulated as

V̇ ≤ −βV + ε (52)

where β was defined in Eq. 43. The solution of the
above differential inequality yields

V (t) ≤ V (0) exp (−βt) + ε

β
(1 − exp (−βt)) (53)

and from Eq. 46, we can obtain the following upper
bound for x (t)

‖x (t)‖≤
√

a

b
‖x (0)‖2 exp (−βt)+ 2ε

bβ
(1−exp (−βt))

(54)

where a and b were previously defined in Eqs. 41 and
42, respectively. Based on the definition of x (t) and
Eq. 54, it can be shown that the tracking error term
e (t) is bounded as stated in Eq. 40. Moreover after
applying standard signal chasing arguments, we can
show that all signals in the closed–loop system are
bounded.

Remark 1 In the controller design it was assumed
that the force/elongation characteristic of the tendon
is perfectly known. We would like to mention that the
proposed robust controller can be modified to com-
pensate for simplistic tendon transmission models (i.e.
linear). However as presented in [4–6] the actual ten-
don characteristics includes highly nonlinear terms
as hysteresis. We would like to point out that in an
actual implementation due to the robust nature of pro-
posed controller, some of these uncertainties might be
compensated by readjusting the controller gains upto
a point. Still additional uncertainties like the elastic
tendon characteristics would result in higher tracking
errors in an actual implementation.

5 Simulation Studies

To illustrate the performance of the proposed con-
troller we have performed simulation studies on a two
link robotic arm driven by 6 tendons as shown in
Fig. 3.

The dynamical parameters of the robot used in our
simulation studies has the following model matrices

M =
[

p1 + 2p3 cos(q2) p2 + p3 cos(q2)
p2 + p3 cos(q2) p2

]
(55)

Vm =
[ −p3 sin(q2)q̇2 −p3 sin(q2)(q̇1 + q̇2)

p3 sin(q2)q̇1 0

]
(56)

Fd =
[

fd1 0
0 fd2

]
(57)

and the Jacobian matrix is defined as follows [5],

Jj = s1

[
1 −1 1 −1 1 −1
0 0 −1 1 1 −1

]T

. (58)

Tendon tensile forces can be calculated as a function
of tendon expansions in the following manner [5],

ft,i(li) =
{

s2li + s3l
3
i li � 0

0 li < 0

for i = 1, .., 6 where li are the tendon expansions and
ft,i(li) are the members of the vector of the tendon
tensile forces which is defined as follows

ft (l)= [ft,1(l1)ft,2(l2)ft,3(l3)ft,4(l4)ft,5(l5)ft,6(l6)]T.
(59)

The robot parameters were taken as p1 =
0.006 kgm2, p2 = 0.003 kgm2, p3 = 0.002 kgm2,
fd1 = 0.005 Nm sec, fd2 = 0.001 Nm sec, s1 =
0.015, s2 = 7907.5 N/m and s3 = 1.7898 ×
108 N/m3 for the simulations. We would like to note
that most of the system and tendon parameters used in
our simulation studies are taken from [5]. The actua-
tor part of the tendon mechanism has identical six dc
motors which have the inertia of 10 gcm2 and viscous
friction of 0.25 × 10−3 Nm sec /rad, each actuator
is assumed to have a gearbox mechanism having 1/32
gear ratio and the pulleys mounted on the actuators
have a radius of 10 cm. During the numerical studies
the best guessed estimates of the system parameters
are selected to be 80 percent of the actual system
parameters.

The desired trajectory of the robot is selected as
qd1 = qd2 = 0.5sin(0.5t)(1 − exp(−0.3t3)) rad

with the initial positions of each link being set to
0.5 rad . To ease the tuning process an auxiliary gain
Kp = Kr + kn

(
ρ2
1 + ρ2

2

)
was taken and assumed
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Fig. 3 Two link planar
robot driven by six tendons

(a) (b)

(c)

to be a constant gain matrix. In view of Eq. 51, the
controller gains were selected to ensure that

min (λmin (Kr) , λmin (α)) − 1

4kn

> 0 (60)

is satisfied. Controller gain matrices are selected as
α = diag {8, 10}, Kp = diag {2.8, 2.6}, Kθ = 0.1I2,
Kf = 5I2, ρ3 = 1, ρ4 = 4 and ε1 = ε2 = 0.01.
As can be seen from the selection of controller gains,
superficially tuning of the controller gains is enough
to prove the validity of the controller algorithm

nevertheless accurate tuning of the controller gains
may increase the controller performance.

The simulation results are shown in Figs. 4, 5, and
6. Figure 4 shows the link position tracking errors in
degrees and in inner figure the enlarged steady state
error signals can be seen. Figure 5 presents the control
torques applied to each actuators, while Fig. 6 presents
the each tendon tensile forces. As can be viewed from
Fig. 4 after a very short period of time (less than 5
secs.) the tracking error terms for both joint converge
to small values. During this time the controller inputs

Fig. 4 Position tracking
errors for each link
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Fig. 5 Control input
torques
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Fig. 6 Tendon tensile
forces
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(see Fig. 5) with the tendon tensile forces (see Fig. 6)
are in acceptable regions.

6 Concluding Remarks

In this work, we have presented a full state feed-
back, nonlinear robust controller for tendon–driven
robotic mechanisms subject to parametric uncertainty

in system dynamics. Despite the lack of exact knowl-
edge of system parameters and presence of external
disturbances, the proposed controller ensured prac-
tical trajectory tracking in the sense that; the norm
of the link position tracking error signal is forced
to enter an ultimate bound in finite time. Stability
of the closed–loop system and boundedness of sys-
tem states are proven via Lyapunov based arguments.
Simulation studies are performed to illustrate the



J Intell Robot Syst (2015) 80:3–14 13

effectiveness and viability of the proposed method.
Our controller requires the full state feedback of all
system states (i.e. both position and velocity informa-
tion of the robot joints and the actuators) and the exact
knowledge of the tendon tensile forces generated by
tendon expansions. From the illustration given Fig. 2,
it is obvious that the implementation of the proposed
controller is far more complex compared to most con-
ventional controllers. However thanks to the current
state of micro–controllers the controller algorithm is
still implementable in real time. Future work will con-
centrate on the design and implementation of partial
state and/or output feedback controllers that would not
require the perfect knowledge of the force/elongation
characteristic of the tendons.
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Appendix: Proof of the Bound of ‖χ‖

For the Eq. 19 we start with the previously found
bound on the same term [21] (Chapter 6 Eq: 6.2-9) as

‖χ‖ ≤ ζ1 ‖e‖ + ζ2 ‖e‖2 + ζ3 ‖r‖ + ζ4 ‖r‖ ‖e‖ (61)

where ζi, i = 1, 2, 3, 4 are positive bounding con-
stants that depend on the desired trajectory and phys-
ical parameters (i.e. link mass, link length, friction
coefficients, etc.). After some mathematical manipu-
lations (61) can be written to have the following form

‖χ‖ ≤ (ζ1 + ζ2 ‖e‖) ‖e‖ + (ζ3 + ζ4 ‖e‖) ‖r‖ . (62)

when bounding functions ζ5 (e) , and ζ6 (e) are
selected as

ζ5 (e) = ζ1 + ζ2 ‖e‖ (63)

ζ6 (e) = ζ3 + ζ4 ‖e‖
we can further upper bound (62) as

‖χ‖ ≤ max {ζ5 (e) , ζ6 (e)} ‖z‖ (64)

from Eq. 64 it is clear that the bound given in Eq. 19
is satisfied via a proper selection of the bounding
function ρ1(‖z‖) differentiable at e = 0.
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