
J Intell Robot Syst (2015) 79:507–522
DOI 10.1007/s10846-014-0117-7

Implementation of a BIM Domain-specific Language
for the Building Environment Rule and Analysis

Jin-Kook Lee ·Charles M. Eastman ·
Yong Cheol Lee

Received: 17 January 2014 / Accepted: 11 June 2014 / Published online: 21 September 2014
© Springer Science+Business Media Dordrecht 2014

Abstract This paper describes an implementation
process for a domain-specific computer programming
language: the Building Environment Rule and Analy-
sis (BERA) Language. As the growing area of Buil-
ding Information Modeling (BIM), there has been a
need to develop highly customized domain-specific
languages for handling issues in building models in
the architecture, engineering and construction (AEC)
industry sector. The BERA Language, one of the
domain-specific languages, deals with building infor-
mation models in an intuitive way in order to ensure
the quality of design and assess the design program-
ming requirements using user-defined rules in the
early design phases. To accomplish these goals, the
BERA Language provides the capabilities for an ef-
fectiveness and ease of use without precise knowledge
of general-purpose languages that are conventionally
used in BIM software development. Furthermore,

J.-K. Lee (�)
Department of Interior Architecture Design,
Hanyang University, Seoul, Republic of Korea
e-mail: designit@hanyang.ac.kr

C. M. Eastman · Y. C. Lee
Digital Building Laboratory, College of Architecture,
Georgia Institute of Technology, Atlanta, GA, USA

C. M. Eastman
e-mail: chuck.eastman@coa.gatech.edu

Y. C. Lee
e-mail: zsradox0@gmail.com

the design and implementation of the BERA Lan-
guage focuses on building objects and their asso-
ciated information-rich properties and relationships.
This paper represents the implementation issues of
the BERA Language associated with the building
information models, their mapping into the building
data structure, and their instantiation and execution.
In addition, Portability of the language, extensibility
and platform-dependent issues are involved in the
BERA Language implementation. The implementa-
tion described in this paper is based on the use of
Industry Foundation Classes (IFC) as given building
information models, Solibri Model Checker� (SMC)
as an IFC engine, and the Java Virtual Machine (JVM)
as a compilation and execution environment.

Keywords BERA Language · Language
Implementation · BIM · IFC · Design Rule Checking

1 Introduction

This paper aims to describe an implementation pro-
cess for a domain-specific computer programming
language: the Building Environment Rule and Ana-
lysis (BERA) Language. The advent of computer
applications supporting the three dimensional object
modeling of buildings, called Building Information
Modeling (BIM), allows both automatic parametric
generation of designs that respond to various crite-
ria and the prospect of computer-interpretable models

mailto:designit@hanyang.ac.kr
mailto:chuck.eastman@coa.gatech.edu
mailto:zsradox0@gmail.com


508 J Intell Robot Syst (2015) 79:507–522

and automated checking of designs after they are
generated [1–4]. In addition, this emerging flow of
BIM has led to develop highly customized domain-
specific languages for handling issues in building
models in the architecture, engineering and construc-
tion (AEC) industry sectors. This paper depicts one of
the domain-specific languages, the BERA Language,
which attempts to deal with building information
models in an intuitive way. The application of the
BERA Language aims to provide efficiency in defi-
ning, analyzing and checking rules.

In addition, this paper represents an implemen-
tation process of the BERA language architecture
supporting ease of use, high fidelity, extensibility
and portability. The purpose of the BERA Language
enables users to accomplish an effectiveness and ease
of use without precise knowledge of general-purpose
languages conventionally used in BIM software deve-
lopment. To achieve these goals, this study proposes
an abstraction of the universe of discourse - the BERA
Object Model (BOM). BOM plays a pivotal role as
baseline objects for the implementation of the BERA
Language. The implementation issues are described
with the building information models, their mapping
into the building data structure, and their instantia-
tion and execution, focusing on building objects and
their associated information-rich properties and rela-
tionships. Portability of the language, extensibility and
platform-dependent issues are also involved in the
BERA Language implementation. The implementa-
tion is based on the use of Industry Foundation Classes
(IFC) as given building information models, Solibri
Model Checker� (SMC) as an IFC engine, and the
Java Virtual Machine (JVM) as a compilation and exe-
cution environment. For efficient development of the
language, this paper takes advantages of some useful
reference languages such as ECMA Script language
and Java-based domain specific languages in terms of
their syntax style and execution pipeline

2 Background

2.1 Scripting Languages

Although their boundaries are often too ambiguous
to differentiate, computer programming languages
can be classified based on several perspectives such
as their chronology, category, generation, paradigm,

target user, standardization, and so on. A standard
language can even have many dialects for different
purposes. This study introduces two sets of languages
and represents what features can be borrowed to use
in the design of the BERA Language. As a brief intro-
duction, the first set contains JavaScript and Action-
Script scripting languages in order to review their
effectiveness and scalability according to the expan-
sion of target objects. The second set is the Processing
language that is one of the Java-based domain-specific
languages in order to speculate how it is designed
to alleviate difficulties for both users and developers.
These languages are similar to each other in certain
points because they are created to shorten the conven-
tional language execution process such as edit – com-
pile – run cycle [5]. Especially the scripting languages
aim to support software applications quicker and
easier by end-users.

ECMAScript is a widely used scripting language
especially for the World Wide Web. It is commonly
used in well-known dialects of JavaScript and Action-
Script. It has been standardized by ECMA Interna-
tional in the ECMA-262 specification and ISO/IEC
16262 in 1997 [6–8]. Relying on World Wide Web
Consortium (W3C) [9] supported various Web stan-
dards and APIs, ECMAScript became one of the most
popular scripting languages to users. JavaScript is sup-
ported in many common web browsers for handling
client-side web documents. Most HTML [10]-based
web page developers are familiar with JavaScript and
know how to handle web-document elements such
as text field, image, button, selection box, and other
various web-forms. JavaScript recently has been more
and more popular because there are many existing
standard-based new ways for developing web inter-
faces within the Web 2.0 [11], such as XHTML [12,
13], CSS [10], XML [14], AJAX [15], jQuery library
[16], and so on.

JavaScript was introduced in 1996 through the
Netscape web-browser [17]. Due to the success of
the World Wide Web, JavaScript has been popular
to people even to those who are not familiar with
computer languages. It is an object-oriented scripting
language that runs on client-side web browsers to
access objects within applications. It is influenced by
many languages and its syntax is similar to the Java
language as its name implies, and so it is easier for
novice programmers to develop dynamic web pages.
It enables the control of elements in web pages such



J Intell Robot Syst (2015) 79:507–522 509

as W3C’s document object model (DOM) [18], and
makes user interfaces more interactive. Figure 1 shows
a simplified overview of DOM. It allows for accessing
a page document and controlling its elements by
means of scripts. JavaScript uses dot-notations to
access not only the document’s associated objects and
properties but also the function calls in an intuitive
way. This is also another important distinct feature
of object-oriented concepts and implementation. An
instantiated object has its properties as well as its
pre-defined behavior (e.g. methods, function calls).
Many recent object-oriented commercial program-
ming languages commonly accept it simply because
it is faster to write and clearer to read [19]. For
instance, based on the DOM, a navigation history can
be accessed by the dot-notation: window.history,
and a button in a form can be accessed by the notation:
window.document.forms.button.

Another famous dialect of ECMAScripting lan-
guage is ActionScript. It has also been broadly
used mostly on the web, embedded in Flash movie
clips [20]. As Adobe FlashTM (formerly Macrome-
dia Flash) [21] has been used increasingly on the
web, ActionScript became more popular in producing
sophisticated movies.

As JavaScript controls web DOM, ActionScript
controls the frames and behavior of the movie. They
are very effective and easy to handle specific problems
in each target domain. As the nature of the scripting
language and domain-specific language implies,
ECMAScript-based domain-specific languages influ-
ence many features for the development of the BERA

Language, especially concerning their abstraction
principle and means of handling target objects. BERA
attempts to handle a pre-defined complicated model –
the building information model. A building informa-
tion model, such as one implemented in IFC, already
provides a well-structured data format in its own
scheme, but its internal data structure is usually com-
plicated and heavy for casual users. In BIM software,
building data structure is represented in an explicit
way, but users tend to approach it in an implicit
way because of the nature of a building design.
ECMAScript stands as a precedent since it supports
a pre-defined and standardized object model based
on domain-centred user-defined names. The way tar-
get objects (DOM or Flash Movie) are managed by
such scripting languages is not so difficult for domain
experts. In JavaScript for example, users are accus-
tomed to doing their job with target object models at
a high-level. They do not need to comprehend how
document models, client browsers, network protocols,
and web servers are computationally inter-operated
with each other at a low-level. This DOM concept is
primarily used to generate BOM, which allows users
to manage object-based and domain-specific informa-
tion.

2.2 Domain-Specific Languages Based on JAVA

A domain-specific language is usually hard to distin-
guish between small-sized general programming
languages and scripting languages such as JavaScript.
However, they are commonly found in modern

Fig. 1 Example of the target objects of JavaScript: document object model (DOM)



510 J Intell Robot Syst (2015) 79:507–522

computing environment. Examples include HTML
embedded in web programming languages, CSS [22]
in web scripting languages, Regular Expressions [23]
embedded in many other programming languages, and
so on. Domain specific languages typically have the
connotation of being smaller due to their specific
purposes.

The architecture of Java-based domain-specific
language has its influence on the development of the
BERA Language in some ways, especially in actual
implementation. However, the BERA Language has
another huge layer of implementation: the building
model platform and its bridges to the BERA Lan-
guage. IFC is a reasonable target building model
because it is an effort to normalize the various native
building models embedded in BIM platforms. Current
BIM platforms have the translators that support IFC
import and export, and IFC is a close approximation
to platform specific native building models. In the
scope of this study, therefore the building model is
in IFC format, and it basically transfers BIM data to
be consumed in the framework of BERA Language.
Accordingly, a simpler and neutral building model
that is available to users is necessary. This model
should be easily accessible to users instead of access-
ing either platform-dependent or usually very compli-
cated native data structure including IFC. Moreover,
it should still provide high fidelity to be useful on the
specific problem domains even if it is simplified and
neutralized.

3 BERA Language Design

One of the important factors to be considered in deve-
loping domain-specific languages is to provide high
fidelity to problems. Not only is the capability of
addressing new domain-specific problems necessary,
but also the substantial ability to raise the level of
abstraction on target elements is strongly required
[24, 25]. The BERA Language has a strong bond
to the building information model such as IFC. A
given building model is always defined within its
own data structure: native and partially-open data
structures from native building models, open and
neutral data structure from IFC, etc. [26] describes
how to build an abstract model from these existing
building models, especially from IFC, named BERA
Object Model (BOM). BOM is a semantic set of data

translated and parsed by the predefined schematic
rules. BOM stores structure and information of a
building model and allows the executor to efficiently
analyze and implement it. Thus, we can say even
though IFC and BOM have same information for
building models, the building data in the latter format
is more applicable and executable for rule-based
checking than the former one. The BERA Language
is based on two types BOM – static and dynamic.
Static BOM is a static data set from a specific given
building model, and can be represented by class names
such as Building, Floor, and Space as discussed in the
language design chapter. The Static BOM is mostly
pre-determined by the given building model, and
therefore most of the given property values are stati-
cally established when the building model is loaded
into memory. Some properties can be both statically
and dynamically assigned by user inputs for fur-
ther development. For example, “buildingType” under
Building object can be assigned by users using Han-
dler bReference (See Fig. 2), and “security” under
Space object can be assigned by additional BERA
library which is in charge of automated assignment of
security level, even if their default values are empty.
This is an example of the technical BERA Language
extensibility for further use cases. The definition of
BOM is open-ended, and the authors realized that it is
another challenge to define generic and valuable BOM
as it grows more detailed.

Abstraction is an important process in language
design, because some of the language keyword tokens
and syntaxes will be derived from this model. In
other words, this simple-yet-implicit abstraction will
be used by front-end users, but the complicated-yet-
explicit IFC data structure (or a host native object
model) still needs to be accessed and used in the
implementation stage of the BERA Language.

The syntax of BERA Language is structured
similarly to most programming languages such as
Java and ECMAScripting languages. Each declared
language element in BERA has a close relation
with corresponding entities or properties in the given
building model. In addition, the rules are dealing
with as many properties as the BOM can provide.
As BERA Language is running on top of a given
building model, BOM definition is the first step,
and then rule definition will be followed using the
declared objects. These object declaration or rule
definitions can be derived from the external dataset



J Intell Robot Syst (2015) 79:507–522 511

Fig. 2 A brief data flow
diagram to describe the
implementation of the
BERA language tool.
A BERA code is translated
into a Java code and
executed

such as pre-defined library and external BERA pro-
gram file, thus, “import” functionality is also required
at the beginning of the BERA program statement. In
the highest level, a BERA program has four compo-
nents as follows:

• BERA reference directive: bReference
• BERA Object Model definition and declaration:

bBOMDef
• BERA rule definition: bRuleDef
• BERA execution statement: bExeStat

The term bReference, bBOMDef, bRuleDef, and
bExeStat will be represented in following implemen-
tation section in detail, and sub-divided into their
sub-components level for describing the language
implementation process. Detailed language design
issues and definitions are described in [27].

4 BERA Language Implementation

4.1 Implementation Overview

The BERA Language has been designed and defined
so that its implementation is portable to different
building information modeling platforms. Figure 3
describes the execution architecture of the BERA
Language. In the BERA Language implementation
stage, two main environments should be covered: the
platform-free environment (in other words, the BERA
Language-specific and common front-end part for
different platforms) and the BIM platform-dependent
environment. The front-end part is standard for all
other implementations, while the back-end part varies
by BIM platform. The basis of the target implemen-
tation of this study is the Industry Foundation Classes

(IFC) as given building information models, SMC as
an IFC engine, and the Java Virtual Machine (JVM) as
a compilation and execution environment.

Regarding implementation, the BERA Language
architecture consists of two high-level components as
described below.

• Front-end: BERA engine: This contains user-
generated language programs, the BERA trans-
lator/interpreter to the target language, and other
intermediate representations and executors for
generating the BERA Object Model. This front-
end engine is standard for all implementations and
environments.

• Back-end: Custom engine: The BERA Language
could not be executed without a given building
model. The building information modeling engine
is another huge platform. SMC is a candidate plat-
form that the BERA engine uses, both in terms
of object models and applications. This back-end
implementation varies by platforms, but the target
intermediate model is always the BERA Object
Model.

This chapter describes one of the BERA Lan-
guage implementation approaches regarding a plau-
sible structure for the general language back-end
issues: lexical analysis, syntactic parsing, semantic
analysis, intermediate code generation, target code
generation, and execution [28]. The back-end side
issues and their implementation can be flexibly
adopted by developers. The implementation approach
described in this chapter is based on the actual
application named the BERA Language Tool version
1.0. This chapter focuses on generic issues of the
BERA Language Tool rather than implementation and
platform-specific details.



512 J Intell Robot Syst (2015) 79:507–522

Fig. 3 BERA language architecture detail: front-end and back-end

4.2 BERA Listener

4.2.1 Lexical and Syntactic Analysis

User textual input stream should be parsed and recog-
nized before establishing its semantics and execution.
The module named BERA listener is in charge of
this first process of language recognition – lexical
and syntactic analysis. Language recognition is a very
important step in any language application. Although
this technical parsing has an important role in lan-
guage implementation, it is beyond the scope of this
work. This paper does not attempt to tackle general
and detailed issues concerning parsing or its patterns.
Some of the parsing modules in the BERA Language
Tool have been facilitated by ANTLR [25, 29–32]
as a parser generator for user BERA Language
input, especially for the lexical and syntactic analysis
steps – the first stage of the BERA Language recogni-
tion. Instead, the authors briefly introduce how these
input texts can be handled in terms of building BERA

semantics. The series of input tokens will be classified
by the BERA listener as shown in Fig. 4.

Figure 4 shows four components that are in charge
of handling input texts. They are equivalent to the
highest classification of the BERA programs: bRef-
erence – DefRef, bBOMDef – DefBOM, bRuleDef
– DefRule, and bExeStat - DefExe. Input texts are
still considered unknown textual stream to comput-
ers. However, by using the BERA listener, they can be
classified according to the high-level BERA Language
structure and definition:

DefRef (Reference Declaration),

DefBOM (Dynamic BOM Declaration),

DefRule (Rule Definition Statement), and

DefExe (Execution Statement).

Lexical and syntactic analyzers in the BERA lis-
tener play important roles to validate, report, and



J Intell Robot Syst (2015) 79:507–522 513

Fig. 4 An overview diagram to describe the top-level lexical and syntactic analysis of BERA Language input program

classify the user-input texts for the subsequent and
more important task: semantic analysis.

4.2.2 Semantic Analysis

For the current stage of preliminary study, the demon-
stration of material dispatching is not performed. The
uncertainty events of operation re-planning are simu-
lated in the study. And the accuracy and stability
evaluations of tracking devices for operation guid-
ance re-planning are under investigations. The sensing
abilities for establishing a situation awareness envi-
ronment should be exclusively addressed in the future,
for the whole processes of LNGmodular construction.

As Fig. 5 describes their hierarchy, DefBOM,
DefRule, and DefExe can populate multiple DefBOM,

and a DefBOM and a DefRule include DefCond which
is the condition definition statements. A DefCond con-
tains a single operand for a certain condition using a
dot-notation access to BOM, operator, and value. An
important aspect of this DefCond is that it also has
a one-to-one relation to DOTExpr which defines its
semantic meaning of the dot-notation access to BOM.
The execution statement DefExe has a DefResult to
instantiate its execution result. The BERA listener
works out the implications of these input components
that are validated and takes the proper executions. For
example, a single DefCond can be derived from a Def-
BOM or a DefRule. The following is an example of a
DefCond:

path.one.distance <= 100



514 J Intell Robot Syst (2015) 79:507–522

Fig. 5 An overview diagram to describe establishing the BERA Language semantics

This example DefCond can be derived from a Def-
BOM as one of the conditional statements to define
an instance of SpaceGroup, or from a DefRule as one
of the rule conditions defined as a rule. The DOT-
Expr instance populated from this DefCond can be
represented as follows:

(container.)((quant1.)BOM1.)((quant2.)BOM2.)
(property)

- Where all are non-terminal and optional tokens:
For example, “path.one.Space.area” can be matched
as follows: container – path, quant1 – one, BOM1 –
Space, and property – area. (See Table 1 for more
examples)

The semantic analyzer in the BERA listener is in
charge of converting the text inputs that are processed
by the lexical & syntactic analyzer into the object
instances to be consumed in the language execution.
This also contains most of the features of the seman-
tic analysis such as BOM data type checking, the
assignment of names or variables, and object binding.
Table 1 describes the DOTExpr parser which has
the most important role in establishing BOM
semantics. The semantic analysis can be done by
early syntactic level or late intermediate representa-
tion/execution level, considering the implementation
environment. The use cases and examples are intro-
duced in [26].



J Intell Robot Syst (2015) 79:507–522 515

Table 1 Some valid
examples of the dot-notation
access to BOM (examples
of DOTExpr in Fig. 5)

Tokens DOTExpr Tokens Example Expression

1 container Space

container myOffices

2 BOM1.property Space.area

container.property myPaths.distance

3 BOM1.BOM2.property Space.Floor.name

container.BOM1.property myOffices.Space.height

4 container.BOM1.BOM2.property myOffice.Space.Floor.height

container.quant1.BOM1.property myPath.one.Space.name

5 container.quant1.BOM1.BOM2.property path.one.Space.Floor.height

container.BOM1.quant2.BOM2.property path.Space.one.Floor.height

In the example expression
column, words starting with
upper case letters are BOM
names, and words starting with
lower cases are property names
or quantification words.
User-defined variable names for
dynamic BOM are in italic.

4.3 BERA Object Model Handler

The BERA Language is based on two types of BERA
Object Model (BOM) – static and dynamic. Static
BOM is a static data set from a specific given build-
ing model, and can be represented by class names such
as Building, Floor, and Space as discussed in the lan-
guage design chapter. The Static BOM is mostly pre-
determined by the given building model, and therefore
most of the given property values are statically estab-
lished when the building model is loaded into memory.
Some properties can be both statically and dynami-
cally assigned by user inputs for further development.
For example, “buildingType” under Building object
can be assigned by users using Handler bReference
(See Fig. 4), and “security” under Space object can
be assigned by additional BERA library which is in
charge of automated assignment of security level, even
if their default values are empty. This is an example of
the technical BERA Language extensibility for further
use cases.

BOM builders are in charge of handling building
objects and their properties. The static BOM builder is
building model-specific; therefore there will be more
emphasis in this chapter on describing the dynamic
BOM builder. The focus of this study and implemen-
tation is on the spatial BOM such as SpaceGroup
and Path, but the structural BOM instances (e.g., a
sub class of ObjectGroup) are also instantiated and
used in the tool because they have physical relations
with spatial BOM instances. Figure 6 illustrates the
BOM classes in the implementation described in this
section. Briefly, the arrows between SpaceGroup, Path
and others mean inheritance (the same as between

Structure and others), and other arrows mean their
association relation.

4.3.1 Static BOM Builder

The BOM handler establishes static BOM data when
the model is imported, or before the user input lan-
guage is parsed or executed. BOM is an abstraction
of the complex building state focusing on its several
“rule and analysis” perspectives. BOM is one of the
key concepts to the building environment rule and
analysis as the language name literally implies. In the
BERA Language Tool implementation, many com-
puted and derived properties have been proposed and
implemented for specific purposes, as well as some
basic data obtained directly from the given building
model. The implementation takes advantages of the
input building information, but additional implemen-
tation is required to compute some BERA-specific
properties. These are managed by the static BOM
builder.

4.3.2 Dynamic BOM Builder

The dynamic BOM builder is in charge of establishing
user-defined collection of static BOM. These will be
consumed in the design rule & analysis tasks, as is the
case with static BOM. For example, in a circulation
rule “circulation between A and B should be public”,
how can A and B be obtained? General rule-checking
software uses space names to acquire them from a
given building model. The BERA Language Tool can
also support that, but in addition can provide a variety
of sophisticated methods using this dynamic BOM



516 J Intell Robot Syst (2015) 79:507–522

Fig. 6 Overview of implementation-level BERA object model classes

definition by users. Not only can their space names be
applicable to obtain certain space collections, but also
their spatial properties and relations.

This section introduces two major types of dynamic
BOM implementation – SpaceGroup and another
important sub class of SpaceGroup – Path. They can
be originated from the super class ObjectGroup. The
main difference between the dynamic BOM and the
static BOM is its unlimited instantiability. Users can
create any one of the user-defined SpaceGroup or Path
instances using pre-determined static BOM in a given
building model. Figure 7 describes those two classes
and their super class – ObjectGroup. For handling
and computing the building circulation-specific prop-
erties, there is another static meta-element – Graph. It
is used in calculating metric distances and number of
turns on the path, and these properties are stored under
each Path instance. SpaceGroup is the super class of
Path; therefore Path instances have all properties of
SpaceGroup. For example, a Path instance also has

properties of SpaceGroup such as ‘numberOfSpace’,
‘height’ and ‘area’.

The dynamic BOM objects are instantiated by
users’ BERA Language (The objects named Def-
BOM in Figs. 4 and 5). The dynamic BOM builder
is in charge of instantiating those objects respond-
ing to users’ ObjectGroup and object definitions. Any
dynamic BOM is essentially a derived subset of static
BOM. The user’s variable name for a SpaceGroup will
be a new container for that subset of static BOM. For
example, a user-defined ObjectGroup “myOffices”
can contain Space objects which are named “office”,
and this “myOffices” is the container for selected
space objects. All the information is loaded in the
structure DefBOM – DefCond – DOTExpr structure
as shown in Fig. 5. One of the important features in the
dynamic BOM builder is this kind of object selection
algorithm as introduced in Fig. 8. This returns a series
of Boolean results to determine whether the current
element Object[n] could be selected or not for a given



J Intell Robot Syst (2015) 79:507–522 517

Fig. 7 Overview of the dynamic BOM and its properties implementation

DefBOM. This is also useful to execute the rules. As
an example, Fig. 9 shows this process for the following
dynamic BOM definition:

Space myOffice {

Space.name = ‘‘office’’;

Space.area > 500;

or Space.Floor.height > 16;

or Space.department = ‘‘office’’;

}

4.4 BERA Executor

The BERA Language execution statement basically
consists of a simple line form – execution commands
and their arguments. The fundamental command key-
word is ‘get’, as described in the BERA Language
design chapter. As it literally means, ‘get’ command
retrieves all the BOM and visualizes them based on
its arguments. This section focuses on rule checking –
in this case, command keywords are user-defined rule
names.

Fig. 8 Object selection algorithm overview: multiple conditions DefCond in a DefBOM iterate object collection and collect its array
of Boolean results



518 J Intell Robot Syst (2015) 79:507–522

Fig. 9 Space object selection example for the above program: an instance Space[3] is selected because its result is true. A Boolean
array {T, T, T, F} returns T because one of the conjunctions is “or” and its value is T. (Left to right evaluation)

User-defined rules basically consist of a variable
name, a series of DefCond, and optional nested Def-
BOM as shown in Fig. 5. In the implementation level,
DefRule and DefBOM have almost the same structure
because they are eventually handled by DOTExpr rep-
resentations and their object selection processes for
either defining objects or regulating rule conditions.

The main difference between the definition of
BOM and Rule is their container – a dynamic BOM
definition basically has default or static BOM, but a
rule definition has a dynamic BOM as its container.
Similar to the series of examples to describe the object
selection algorithm overview, Fig. 10 shows the object
selection process as a rule checking process that is
derived from a DefRule. A circulation path collection
“p” is the container for this rule definition DefRule,

and its DefCond emits the Boolean results through
the iteration. This process occurs in the rule execu-
tion. A rule execution statement has a certain rule
name as a function call, and it delivers user-variable
arguments as given object containers. In this example,
the container “p” contains n number of path instances
and this process returns a series of Boolean results
to determine whether this instance Path[n] is satisfied
(selected) by the conditions or not. In the rule check-
ing process, this selected instance means “passed”
instance. The BERA executor is in charge of handling
the process as well as considering given logical con-
junctions on each condition. The simplest result of the
rule checking execution is a Boolean – pass or fail;
however, the BERA Language Tool provides an entire
set of information gathered in this process to users.

Fig. 10 Path object selection example: an instance Path[3] is passed because its result is true. A Boolean array {T, F, T, T} returns
T because one of the conjunctions is “or” and its value is T. (Left to right evaluation)



J Intell Robot Syst (2015) 79:507–522 519

4.5 BERA Language Tool

The BERA Language Tool is implemented as an
integrated development environment of the proposed
BERA Language. It is developed as a plug-in software
on top of SMC, and runs on the JVM environment
(See Fig. 11 as an example).

4.6 BERA Language Extensibility

Similar to the development of other programming
languages, the BERA Language development is an
open-ended project. Language syntax is technically
the main subject of update. This section however
emphasizes language extensibility issues focusing on
its semantics – front and back-end extensibility. There
are two different directions of the BERA Language
extensibility:

Back-end extensibility: Re-targetable BERA Lan-
guage to support other types of BIM platforms such as
BIM authoring tools, model checking tools or simula-
tion tools. For example, currently BERA is designed
to operate in the platform of SMC. However, since
BERA is one of languages, if other BIM authoring

tools such as Revit Architecture or Tekla have features
that accept the implementation and structure of BERA
language, BERA would be successfully executable at
these platforms as well.

Front-end extensibility: Extensible BERA Object
Model, as well as the issues of BERA Language syn-
tactic/semantic improvement, upgraded BERA Lan-
guage Tool, etc. BOM extensibility is twofold: lateral
extensibility (more building elements responding to
the demand of new rules) and vertical extensibility
(properties of elements). BERA language embedded
in SMC platform generally supports the checking
types executed by validation algorithms that SMC pro-
vides. Users can validate their IFC instance files with
regards to building circulation, spatial programming,
and specific query checking. For the circulation anal-
ysis, a SMC platform dynamically computes paths
based on the defined BERA language. The graph
structure represents the calculated walking distances
and paths based on a length-weighted graph structure
for a proposed building model.

This type of extensibility has been researched and
executed for other types of rules such as accessibility
and visibility for a hospital design checking. This new

Fig. 11 BERA Language Tool on top of the BIM platform – SMC



520 J Intell Robot Syst (2015) 79:507–522

project proved the capability of BERA language that
can extend the areas of rules.

4.6.1 Re-Targetable BERA Language

User BERA Language programs are translated by
the reader, and then the interpreter performs a series
of internal processes such as lexical, syntactic and
semantic analysis, data collection, generation of inter-
mediate representations, and so on. As a result of
the translation, a BERA program is re-generated in
the target language internally. The series of processes
by the BERA listener and BOM handler make the
users’ input language executable. Issues on the back-
end extensibility arise in this phase because they are
platform-dependent. How can the BERA Language be
transplanted to different platforms? From a software
engineering standpoint, the principle of “separation
of concerns” [29, 33] may give clues to the BERA
Language back-end extensibility.

In the actual implementation of the BERA Lan-
guage Tool, one of the main concerns is that the BERA
Language aims to be a re-targetable language consid-
ering its extensible capability to other platforms that
are developed by different languages and libraries.
The target language in this implementation is Java, but
other general-purpose languages such as C++ and C#
are also available for application using model-driven
language translation engines [29, 31, 34, 35]. This
approach makes the BERA Language re-targetable to

other platforms. For advanced users, the BERA Lan-
guage Tool also supports its target language directly
from the BERA editor, and this enables users to han-
dle a very detailed level of data as well as the API of
the target BIM platform.

4.6.2 Extensible BERA Object Model

The definition of BOM is open-ended, and the authors
realized that it is another challenge to define generic
and valuable BOM as it grows more detailed. The cur-
rent BERA Language focuses on the applications of
evaluating building circulation and spatial program-
ming with respect to the scope of the research and
implementation. The dot-notation access to BOM is
intuitively used in both the definition of BOM and
rules. There are also several structural building ele-
ments available in the current implementation, as
shown in Fig. 12. These have direct relations to the
spatial objects such as spaces and floors, and they are
instantiable in the current BOM. For example, Struc-
ture is the dynamic BOM similar to SpaceGroup or
Path as another sub-type of ObjectGroup. As these
are beyond the scope of this paper, their properties
are not deeply developed yet – some default prop-
erties are available directly from the building model.
However, they are still building elements that have
direct relations to spatial objects. For example, a dot-
notation operand mySpace.Door.width returns one or
many numeric values of the width of the doors in a

Fig. 12 Two-way extensibility of the BERA object model



J Intell Robot Syst (2015) 79:507–522 521

group of spaces named mySpace, as it implies. Lateral
extensions such as structural building elements and
vertical extensions (such as additional properties for
existing BOM objects) are good examples of the
open-endedness of the BERA Language. Figure 12
illustrates this two-way extensibility of the BOM
development. In the static and dynamic BOM, many
computed and derived properties have been proposed
and implemented for the following purposes: evalu-
ating building circulation and spatial programming.
There are many challenging issues in both lateral
and vertical extensibility according to the domain and
scope of the ‘building environment rule and analysis’.
Therefore, BOM could have multiple model views
with different conventions. In other words, the current
implementation and applications described in the fol-
lowing chapter is one of the model views of BOM for
evaluating building circulation and spatial program.
The goal is to provide easy access to the concepts of a
domain, for rule checking.

5 Summary

This paper proposes the BERA Object Model (BOM):
a human-centered abstraction of the complex state
of real-world building models, rather than the
computation-oriented abstraction which is generally
intended to cover broad-ranged issues. BOM is one
of the key concepts to implement the building envi-
ronment rule and analysis language. By using BOM,
users can enjoy the ease of use and portability to the
pre-defined BIM data, rather than sophisticated and
platform-dependent ways. A newly proposed BOM
data structure has been implemented to cover spatial
objects within the scope of this paper and development
which focuses on evaluating building circulation and
spatial programming. This paper also has described
its open-endedness to cover the broader type of build-
ing object and its properties. However, the feature
is another challenge to define generic and valuable
BOM as it grows more detailed. The good example
of an open-endedness relevant issue is both lateral
extensions such as structural building elements and
the vertical extensions and additional properties for
existing BOM objects In the BERA Language Tool
implementation described in this paper, many com-
puted and derived properties have been proposed and
implemented for different purposes, as well as some

basic data obtained directly from the given building
model. These properties are available to users by
dot-notations that are easy to read and write.

In this paper, the BERA Language implementation
process has been carefully demonstrated and tested.
The ultimate testing and evaluation of the language
per se, however, will come from language users, as
many users as possible. The open-ended testing, feed-
back system and support arrangement is planned for
updated and upgraded BERA Language and its Tool.
The authors expects that more development, espe-
cially on top of other types of building modeling
platforms, have to be carried out by several entities
including the authors so that there are constant contri-
butions to the AEC industry and academia. Expected
contributions of the development and use of BERA
Language can be summarized as follows:

• The BERA Language will allow for automated
building design review and rule checking of BIM
models to come into wide use.

• The BERA Language is effective not only for the
purpose of design rule checking, but also for var-
ious design analysis purposes. In other words, the
rules in the BERA Language can be one of many
possible user-defined rules even if they are not
relevant to existing real world rules. The BERA
Language provides a massive analysis method for
many building models in an efficient way

• This is the first attempt to develop a BIM
domain-specific programming language focusing
on building design issues. Therefore, we expect
the BERA Language design and implementation
to be a model for other domain-specific languages
in other domains.

• Within the scope of this study, the initial imple-
mentation focuses on spatial objects, group of
spaces, circulation paths, their properties, and
relations. This implementation will be a basic
foundation that can be extended to other various
building elements to cover other types of building
environment rules and analysis as BERA literally
implies

The BERA Language Tool implementation des-
cribed in this paper is one of the outcomes of building
environment rule and analysis – BERA. Development
work has just begun: it is open-ended and still gro-
wing. The authors believe that the proposed BERA
Language and its tool development have a positive and



522 J Intell Robot Syst (2015) 79:507–522

active influence upon current and future BIM-enabled
applications in various disciplines.

References

1. Eastman, C.M.: From blue print to database. Economist,
Economist Technology Quarterly June 7, 18–22 (2008)

2. Sanguinetti, P., Abdelmohsen, S., Lee, J., Lee, J.-K.,
Sheward, H., Eastman, C.M.: General system architecture
for BIM: An integrated approach for design and analysis.
Adv. Eng. Inform. 26(2), 317–333 (2012)

3. Lee, J.-K., Lee, J., Jeong, Y.-s., Sheward, H., Sanguinetti,
P., Abdelmohsen, S., Eastman, C.M.: Development of space
database for automated building design review systems.
Autom. Constr. 24(2012), 203–212 (2012)

4. Zhang, S., Teizer, J., Lee, J.-K., Eastman, C.M., Venugopal,
M.: Building information modeling (BIM) and safety:
Automatic safety checking of construction models and
schedules. Autom. Constr. 29, 183–195 (2013)

5. Scott, M.L.: Programming Language Pragmatics,
2nd edn. Morgan Kaufmann Publishers (2005). ISBN
978-0126339512

6. ECMA International.: ECMA International. http://www.
ecma-international.org/ (2010). Accessed Feb 2010

7. ECMA International.: Standard ECMA-262 - ECMAScript
Language Specification. http://www.ecma-international.
org/publications/files/ECMA-ST/ECMA-262.pdf (2010).
Accessed Feb 2010

8. ISO 16262: ISO/IEC 16262:2002, Information techno-
logy - ECMAScript language specification. http://www.
iso.org/iso/catalogue detail.htm?csnumber=33835 (2010).
Accessed Feb 2010

9. W3C: World Wide Web Consortium: W3C, an inter-
national community where member organizations, a full-
time staff, and the public work together to develop Web
standards. Led by Web inventor Tim Berners-Lee and CEO
Jeffrey Jaffe. http://www.w3.org/ (2010). Accessed Nov
2010

10. W3C: W3C Cascading Style Sheets (CSS). http://www.w3.
org/TR/CSS1/ (2010). Accessed Feb 2010

11. Web2.0: Web 2.0 by Paul Graham: Does Web 2.0
mean anything? http://www.paulgraham.com/web20.html
(2010). Accessed Nov 2010

12. W3C: Extensible Hyper Text Markup Language 2
(XHTML2) Working Group Home Page, also contains old
standards for HTML4, XHTML1.0, etc. http://www.w3.
org/MarkUp/ (2010). Accessed Nov 2010

13. XHTML: Extensible Hyper Text Markup Language
(XHTML) Reference. http://xhtml.com/en/xhtml/
reference/ (2010). Accessed Nov 2010

14. W3C: Extensible Markup Language: XML. http://www.
w3.org/XML/ (2010). Accessed Nov 2010

15. W3C: Scripting and AJAX. http://www.w3.org/standards/
webdesign/script.html (2010). Accessed Nov 2010

16. JQuery: jQuery Project, a fast and concise JavaScript
Library that simplifies HTML document traversing, event

handling, animating, and Ajax interactions for rapid web
development. http://jquery.org/ (2010). Accessed Nov 2010

17. Netscape Communications: The Netscape Archive. http://
browser.netscape.com/ (2010). Accessed Feb 2010

18. W3C: W3C Document Object Model (DOM). http://www.
w3.org/DOM/ (2010). Accessed Feb 2010

19. Lethbridge, T.C., Laganiere, R.: Object-oriented Software
Engineering. McGraw-Hill (2005). ISBN 978-0073220345

20. Gay, J.: The History of Flash, Macromedia Showcase,
Jonathan Gay, 2001. http://www.adobe.com/macromedia/
events/john gay/page02.html (2010). Accessed Feb 2010

21. ActionScript: Adobe Inc., Action Script, a scripting lan-
guage based on ECMA script for controlling Adobe
FlashMedia (FLA/SWF files). http://www.actionscript.org/
(2010). Accessed Feb 2010

22. W3C: W3C Cascading Style Sheets (CSS). http://www.w3.
org/TR/CSS1/ (2010). Accessed Feb 2010

23. The Open Group: Regular Expressions, The Single UNIX
Specification, Version 2, 1997. http://www.opengroup.org/
onlinepubs/007908799/xbd/re.html (2010). Accessed Feb
2010

24. Mashey, J.R.: New programming languages are born every
day. Why do some succeed and some fail? ACM Queue
Volume 2, Issue 9 (December/January 2004-2005) - Lan-
guages, Levels, Libraries, and Longevity (2004)

25. Parr, T.: The Definitive ANTLR Reference: Building
Domain-Specific Languages, Pragmatic Bookshelf (2008).
ISBN: 978-0978739256

26. Lee, J.-K., Eastman, C.M.: Building Environment Rule and
Analysis (BERA) Language, Under Review (2014)

27. Lee, J.-K., Eastman, C.M., Lee, Y.C.: Design Review
Applications for the Spatial Program and Building Circula-
tion using BERA Language, Under Review (2014)

28. Scott, M.L.: Programming Language Pragmatics, 2nd
edn. Morgan Kaufmann Publishers (2005). ISBN 978-
0126339512

29. Parr, T.: Language Implementation Patterns: Create
Your Own Domain-Specific and General Programming
Languages, Pragmatic Bookshelf (2009). ISBN: 978-
1934356456

30. Parr, T.: ANTLR, Another tool for language recognition,
http://www.antlr.org. Accessed Feb 2010

31. Parr, T.: StringTemplate, www.stringtemplate.org.
Accessed Feb 2010

32. Parr, T.: Soapbox: Humans should not have to grok
XML - Answers to the question When shouldn’t
you use XML? IBM developerWorks, Terence Parr,
(2001), http://www.ibm.com/developerworks/xml/library/
x-sbxml.html Accessed Feb 2010

33. Dijkstra, E.W.: On the role of scientific thought. In:
Dijkstra, E.W. (ed.) Selected Writings on Comput-
ing: A Personal Perspective, pp. 60–66. Springer-Verlag
New York, Inc., New York (1982). ISBN 0-387-90652-5

34. MDA.: Model driven architecture (MDA), OMG Architec-
ture Board ORMSC, OMG document number ormsc/2001-
07-01 (2001)

35. Kent, S.: Model Driven Engineering, Integrated Formal
Methods. Lect. Notes Comput. Sci. 2335/2002, 286–298
(2002). doi:10.1007/3-540-47884-1 16

http://www.ecma-international.org/
http://www.ecma-international.org/
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835
http://www.iso.org/iso/catalogue_detail.htm?csnumber=33835
http://www.w3.org/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/
http://www.paulgraham.com/web20.html
http://www.w3.org/MarkUp/
http://www.w3.org/MarkUp/
http://xhtml.com/en/xhtml/reference/
http://xhtml.com/en/xhtml/reference/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/standards/webdesign/script.html
http://www.w3.org/standards/webdesign/script.html
http://jquery.org/
http://browser.netscape.com/
http://browser.netscape.com/
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.adobe.com/macromedia/events/john_gay/page02.html
http://www.adobe.com/macromedia/events/john_gay/page02.html
http://www.actionscript.org/
http://www.w3.org/TR/CSS1/
http://www.w3.org/TR/CSS1/
http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://www.antlr.org
www.stringtemplate.org
http://www.ibm.com/developerworks/xml/library/x-sbxml.html
http://www.ibm.com/developerworks/xml/library/x-sbxml.html
http://dx.doi.org/10.1007/3-540-47884-1_16

	Implementation of a BIM Domain-specific Languagefor the Building Environment Rule and Analysis
	Abstract
	Introduction
	Background
	Scripting Languages
	Domain-Specific Languages Based on JAVA

	BERA Language Design
	BERA Language Implementation
	Implementation Overview
	BERA Listener
	Lexical and Syntactic Analysis
	Semantic Analysis

	BERA Object Model Handler
	Static BOM Builder
	Dynamic BOM Builder

	BERA Executor
	BERA Language Tool
	BERA Language Extensibility
	Re-Targetable BERA Language
	Extensible BERA Object Model


	Summary
	References


