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Abstract In this work, experimental data is used to
estimate the free parameters of dynamical systems
intended to model motion profiles for a robotic sys-
tem. The corresponding regression problem is formed
as a constrained non-linear least squares problem.
In our method, motions are generated via embed-
ded optimization by combining dynamical movement
primitives in a locally optimal way at each time step.
Based on this concept, we introduce a model predic-
tive control scheme which allows generalization over
multiple encoded behaviors depending on the current
position in the state space, while leveraging the ability
to explicitly account for state constraints to the fulfill-
ment of additional tasks such as obstacle avoidance.
We present a numerical evaluation of our approach
and a preliminary verification by generating grasp-
ing motions for the anthropomorphic Shadow Robot
hand/arm platform.
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1 Introduction

On the frontier between motion planning and control,
Dynamical Systems (DS) have emerged as a pop-
ular way to encode desired movement behaviors in
form of state transition policies. Here, opposed to
strictly following pre-planned paths or using spline-
based methods [1, 2], motions are generated reactively
which provides robustness to perturbations occurring
during execution.

In order to generate “appropriate” motion patterns
for a targeted robotic system, the underlying DS
parameter estimation problem' is commonly solved
by providing data examples specifying desired tran-
sitions from given initial to final states. One way
to provide experimental data is to record movements
of a human expert in a Programming by Demon-
stration setting [4]. Another possibility is to create
data artificially, e.g., in form of smooth minimum-jerk
trajectories [5] or as the pre-computed solutions of
optimal control problems [6].

The choice of an appropriate DS for motion genera-
tion is typically guided by the ability of the underlying
model to generalize over the provided examples while

1 Also referred to as parameter identification, nonlinear regres-
sion or data fitting [3].
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guaranteeing certain structural properties, and their
potential to express coupling between the dynamics
of different subsystems. Also, in order to facilitate
the parameter estimation problem, simple models are
often preferred. Especially in an imitation learning set-
ting where the provided demonstrations are usually
relatively sparse, it might happen that the behavior of
the DS in “unexplored” parts of the state space is unex-
pected/undesirable. A classical approach for dealing
with this problem is to enforce certain structural prop-
erties of the DS such as Global Asymptotic Stability
(GAS), ensuring that the state is guaranteed to (at
least) converge to the global equilibrium point. One
shortcoming of such an approach is that it does not
state any preference about the behavior of the system
in relation to the demonstrations.

Since the considered DS constitute policies over
the state space whose state evolution is guaranteed to
converge, they can be seen as global planners which
always reach their goal in the absence of obstacles [7].
In the context of reactive planning schemes, obstacles
are typically dealt with locally - often by modeling
them with repelling potential fields as suggested by
Khatib [8].

The presented work originates from efforts related
to modeling and generation of grasping movements,
based on demonstrations of taxonomic grasps [9], for
the anthropomorphic Shadow Hand robotic platform
[10] which is shown in Fig. 1. Including the two wrist

Fig. 1 The Shadow Robot
platform at ISIR, UPMC
Paris: The platform utilized
in the test runs in Section
6.2 comprises a 4 DoF arm
and a hand with 20 actuated
DoF. Five ATI-Nanol7 6D
force/torque sensors
embedded in the fingertips
enable tactile sensing
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joints, the hand comprises 20 controlled Degrees of
Freedom (DoF). Even under consideration of possible
dimensionality reduction techniques [11], this requires
a model capable of dealing with a substantial number
of DoF. Another desideratum is the ability to incor-
porate multiple demonstrations since, even for the
same grasp type, grasping motions can exhibit funda-
mentally different dynamics (e.g., when starting the
movement from an open and closed hand configura-
tion). In this work we suggest an approach using a
dynamical system described by Ordinary Differential
Equations (ODE) to encode demonstrations provided
by a user. The method incorporates the concept of
Dynamical Movement Primitives (DMP) which was
proposed by Ijspeert et. al. [12]. The contributions of
this work are the following:

(i) We extend the DMP concept to learning of
separate DS corresponding to multiple demonstra-
tions which allows to better capture a motion’s actual
underlying dynamics. The corresponding parameter
estimation is carried out using nonlinear optimiza-
tion (instead of the usually used linear approximation)
which reduces the number of parameters necessary to
achieve a good fit to the provided demonstrations.

(i) For real-time motion generation and control,
we employ online optimization and introduce a lin-
ear receding horizon Model Predictive Control (MPC)
scheme, which is based on a convex combination of
the learned DS ensuring predictable behavior over
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the state space. Opposed to the usage of explicit DS
as in related works [12—15], our formulation is able
to account for spatial and temporal constraints to
account for additional considerations such as obstacle
avoidance.

Part of this work has been published in preliminary
form in [16]. Here, we give a more extensive numeri-
cal evaluation of our DMP learning method and extend
our previous online optimization approach to a MPC
scheme. The remaining article is structured as follows:
below, we review related work before we formalize
the tackled problem in Section 3. Our DMP formula-
tion is introduced in Section 4. In Section 5 we suggest
a method to combine multiple DS online in order to
generalize over multiple demonstrations and introduce
our MPC scheme for obstacle avoidance. Next, we use
simulations and test runs with a robotic hand to evalu-
ate the proposed approach in Section 6 before we draw
our conclusions in Section 7.

2 Related Work

Dynamical systems have become a popular frame-
work for encoding motions. In the DMP framework,
the underlying DS (usually referred to as the transfor-
mation system) consists of a predefined stable linear
DS which is modulated by a nonlinear forcing func-
tion that decays over time ensuring GAS. Arbitrarily
many DoF can be synchronized via a phase vari-
able (whose evolution is governed by the so called
canonical system) which acts as a substitute of time.
The learning problem is usually solved by fixing the
nonlinear parameters of the forcing function and fit-
ting only the linear parameters with Locally Weighted
Regression (LWR). The DMP framework (see [17]
for a recent review) can be used to generate point-
to-point motions as well as periodic movements and
lends itself well to reinforcement learning techniques
[18-22]. Although DMP offer a compact way of cap-
turing the dynamics of a single demonstration, the
actual underlying dynamics can differ substantially in
regions of the state space not covered by this demon-
stration. Hence, it is desirable to account for multiple
different demonstrations to increase generalization.
Most works aiming at generalization of DMP are
based on statistical learning techniques. Pastor et. al.
[23] build a library of template primitives which can
be used for sequencing movements. Matsubara et. al.
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[24] learn DMP from multiple demonstrations and
combine them using a style parameter. In [25], a sta-
tistical movement representation using Gaussian Mix-
ture Regression is proposed. Ude et. al. [13] suggest
to keep multiple demonstrated trajectories in memory
and to synthesize new primitives using LWR in order
to compute local models. This approach was extended
in [15] to make it feasible for on-line computation by
directly representing demonstrations as DMP and uti-
lizing Gaussian Process Regression to compute new
DMP parameters depending on a given desired goal
point. Similarly, in [26] striking movements for table
tennis are learned by mixing primitives via a gating
network.

An alternative DS model structure was proposed
by Gribovskaya et. al. [27]. Here, the authors define
a locally stable DS via a probabilistic representation
of the demonstrations as a Gaussian Mixture Model
(GMM). Their system is time-independent which,
depending on the application, can increase robustness
in the presence of temporal perturbations. Further-
more, only one DS is learned which potentially allows
to capture coupling effects between different DoF.
Extending the work in [27], Khansari-Zadeh et. al.
[14] introduce the Stable Estimator of Dynamical Sys-
tems (SEDS) approach. Here, the parameters of the
GMM are estimated by solving a Nonlinear Program-
ming Problem (NLP). As in [27], SEDS learns a
single time-independent coupled DS with additional
constraints guaranteeing that the system is GAS. How-
ever, as stated by the authors in [14], with increasing
number of DoF the learning problem can become
intractable. Also, since the behavior of the DS in
regions of the state space not covered by demon-
strations depends on the specific parameters of the
underlying GMM, there is no direct way of predicting
the resulting state evolution.

In a reactive planning setting based on DS, obsta-
cles are typically dealt with locally by augmenting
the DS formulation with repelling potential fields [8,
28]. Alternatives include the use of coupling feed-
forward terms [29] and appropriate modulation of the
original DS depending on the distance of the current
state to the obstacles [7, 30]. With increasing matu-
rity of online optimization algorithms and solvers, it
is becoming feasible to formulate obstacles directly
as constraints in the state space [31, 32]. Approaches
in this mould require online solution of optimiza-
tion problems during motion execution, in order to
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ensure that the constraints are obeyed at each point
in time. Variants of this concept have recently been
successfully applied to on-line path planning schemes
for autonomous/semi-autonomous vehicles [33, 34]
and multi-robot production systems [35]. In a similar
work, Da Silva [36] use MPC to track demonstrated
human motions in simulation.

3 Problem Description and Assumptions

Nomenclature
Indices
m Trajectory point index, m € {1, ..., M}
d Demonstration index, d € {1, ..., D}
n Gaussian basis function index,
nefl,...,N}
f DoFindex, f € {1,..., F}
p Preview window index, p € {1, ..., P}
h Hyperplane index, h € {1, ..., H}
k Discrete time index, k € Z

General

q Joint configuration, ¢ = [q1, ..., qr]"

X State vector, x = [g, c}]T

q Discretized demonstration,

) ¢i=[f§1,---,fiM]T

t Dilated time, t € [0, 1]

() Dynamical Movement Primitive,
®:R? xR —> R?2

s Phase variable, s € R

u(-) Forcing function, u : R — R

v, (4) n-thGBE ¥, : R — R

w GBF weights, w = [wy, ..., wy]”

P GBF centers and widths,
p=Ilci,o1,....en,on1"

€ Basis function limitats = 1, € € R

T Motion duration, T € R

A Continuous system matrix, A € R2%2

B Continuous input matrix, B € R?

A Discrete state transition matrix, A e R?x2

B Discrete control matrix, B € R?

K, V Penalty coefficients, k € Ry, v € Ry

C Selection matrix, C € R2

(H, e) State constraints, H € R€*F ¢ ¢ R

Our goal is to develop a reactive motion genera-
tion system whose output trajectories resemble given
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demonstrations and which allows to incorporate state
constraints for auxiliary targets such as obstacle avoid-
ance. To this end, we learn movement primitives by
fitting the parameters of dynamical systems, described
as a set of ODE with a single global attractor point, to
experimental data provided in form of multiple point-
to-point trajectories in either joint- or task-space. The
state evolution of these dynamical systems, obtained
by integrating from a given initial state, describes
motion profiles which then can be converted to motor
commands for the targeted platform by a low-level
tracking controller. Important requirements are the
ability to account for inherently different dynamics in
the demonstrations and ensuring predictable behavior
in regions of the state space which were not covered
by the demonstrations. Also, a model structure not suf-
fering from the curse of dimensionality is necessary,
since we aim at platforms with a substantial number
of DoF.

For convenience and without loss of generality,
all definitions regarding dynamical systems and their
respective states are stated under the assumption of an
implicit change of variable, such that the equilibrium
point of the considered system is at the origin [37].
A demonstrated point-to-point trajectory is given as
position, velocity and acceleration vectors g, ¢, g €
RM sampled at M discrete points in time. The trajec-
tory is rescaled on a time interval between zero and
one,i.e..t, €[0,1], m =1,..., M, in order to make
different trajectories comparable. In accordance with
the above assumption regarding the change of vari-
able, the trajectory is shifted to converge at the origin,
i.e., gy = 0. For simplicity of notation we assume
that each trajectory is sampled with the same number
M of points and that the same number D of demon-
strations is provided for each DoF, although these are
not explicit requirements of the proposed methods.
Although we present our approach for motion genera-
tion in configuration space, it is equally applicable in
task space.

4 Learning Dynamical Movement Primitives

In this Section we revisit the DMP learning approach
described in [16] and first show, for one DoF, how to
learn a motion primitive from a single demonstration
by solving a NLP. Subsequently, we extend the formu-
lation to account for multiple demonstrations which
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allows to encode fundamentally different dynamics
for the same DoF.

4.1 Encoding a Single Demonstration

The motion of one DoF, corresponding to a given
demonstration, is encoded in a DS @ : R? x R — R?
formulated as the ODE

x(1) =@ (x(1), s@); w, p),

depending on parameters w and p, the state x(t) €
R?, and a phase variable s(r) € R. The phase vari-
able provides a convenient way to scale time in order
to modify the duration of the resulting motion. Its evo-
lution is governed by the following simple dynamics

ds
dt
where the scalar constant t € R; determines the
movement’s duration. The DS, together with the phase
variable driving it constitutes a DMP. Synchronized
motions across multiple DoF, each of which is asso-
ciated with a separate DS, are achieved by using a
common phase variable s(¢). A DS consists of a lin-
ear mass-spring-damper excited by a nonlinear input
u(s) : R — R which is often referred to as a
forcing function. As in [12], we choose to repre-
sent the forcing function as a weighted sum of N
Gaussian Basis Functions (GBF) with weights w =
[wi,...,wy]T € RN, respective centers ¢, € [0, 1]
and widths o, which are collected in the vector
p = [c1,01,....cn,on]T € RN, The system
P(x(1),s(¢); w, p) is given by

gl [ o 1 g 0
[51'}_[a/rzﬂ/r”q}{l/,z}u(@ )

[ =

=§=1/t, (1)

~— ~ — -
i A x B
N
w(s) =Y Wy(s; nr )0, 3)
n=1

where « € R_ and B € R_ are predefined
such that critical damping is enforced and WV, =
exp (—0.5(s - c,,)z/anz)). In the original DMP frame-
work [12], the phase variable s is governed by con-
verging dynamics and used to scale the inputs u in
order to guarantee GAS. In our formulation this is
not required since we compute the parameters of the
DS by solving an optimization problem in which
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we enforce appropriate constraints to ensure GAS as
shown in Section 4.2.

To generate a motion, s is reset to zero and the DS
in (2) is integrated from a given initial state. When
s reaches one, the forcing terms u# become negligi-
ble. The time evolution of the phase variable, and thus
the movement duration, is governed by 7. Our choice
of the system in (1) governing the evolution of the
phase variable was made for simplicity. The use of
alternative canonical systems is possible but would not
qualitatively change the results.

4.2 Parameter Estimation via Nonlinear Programming

Learning a DMP amounts to estimating the GBF
parameters w and p of the forcing function u(s) in (3).
This is a nonlinear problem which is usually tackled
by fixing the nonlinear parameters in p according to
some heuristics (e.g., uniform Gaussian widths o,, and
equidistantly spaced centers ¢, ). Here, in a first step,
we formulate a NLP in order to fit the parameters for a
single system ®(x, s; w, p) to a provided demonstra-
tion. The goal is to learn forcing terms u such that the
system resembles the dynamics of the demonstration.
This is achieved by minimizing the squared L, norm
of the acceleration residual between the demonstrated
data and the output generated by the model. The corre-
sponding constrained nonlinear least squares problem
is given below?

M
minimize ; mX::I [CO o, 5; w, p) — G| (4)
subject to
on <o(1 —cy), n=1,....,N (5)
0<c, <1, n=1,...,N
Acy, < ¢ —Cp—i, n=2,...,N,

where ¥, = [Gm, gm]” and 5,, = £, due to the time
scaling of the demonstrations as stated in Section 3.
C = [0, 1] is a selection matrix and Ac € R,0 <
Ac < 1/N is a constant limiting the minimum dis-
tance between the centers of basis functions in order
to prevent overlapping. The scalare € R,0 < € < 1
can be used to arbitrary limit the value of the basis
functions at the end of the interval s € [0, 1], i.e.,

2This problem is not convex and thus, in general, only a local
minimizer will be found.
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W, (1) < e, Vn, which ensures GAS. To this end, 6 =
\/ —0.5/log(€) corresponds to the width of a basis
function centered at ¢, = 0. To provide the solver with
a feasible initial guess, the problem above is solved
with fixed basis functions centers and widths which
reduces (4) to a Quadratic Programming (QP) prob-
lem. Here, the N initial centers ¢, are equidistantly
spaced on the interval s € [0, 1] and the associated
widths are located on the corresponding constraint in
(5) such that 6, = 6(1 — ¢,), Vn.

An example of the parameters p obtained by solv-
ing (4) is shown in Fig. 2. The corresponding demon-
stration, along with a comparison to a solution gen-
erated with heuristically fixed nonlinear parameters is
depicted in Fig. 3. Evidently, by including the nonlin-
ear parameters p in the decision variables, a better fit
can be obtained as shown in Section 6.1.

4.3 Encoding Multiple Demonstrations

In the next step, the goal is to fit (for one DoF)
the forcing terms of D dynamical systems to D pro-
vided demonstrations such that the d-th DS encodes
the dynamics in the vicinity of the d-th demonstra-
tion. One could simply use the NLP in (4) to identify
w € RY and p € R?N separately for each DS
which would amount to estimate 3DN parameters.
Instead, we reformulate (4) such that the nonlinear
basis function parameters p are shared among the D

Fig. 2 Gaussian basis
functions: Shown are

N = 5 basis functions ¥,
obtained via solving (4) for
the demonstration in Fig. 3.
The widths decrease with
the distance to s = 1
according to the constraint
on < 6(1 —cp)in(4),
ensuring negligible
magnitudes of u fors > 1
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dynamical systems while the d-th DS has associated
linear parameters w,. The objective function becomes

D M
1 -
minimize , {Z [C®4 (Xam.5m: wa, p) — éd.m]z}

wy,...,Wp, p i

Q)

and the problem is subjected to the constraints in (5).
The above formulation allows a fit with N(D + 2)
parameters and was used for the evaluation in
Section 6. The concept of sharing basis functions
between motion generators is similar as the one used
by Riickert and d’ Avella in [38], where it is put in the
context of muscular synergies.

5 Real-time Control with Movement Primitives

In this section we first discuss how to form a new
implicit DS based on a locally optimal combination
of the previously learned systems (each of which cor-
responds to a demonstration). Then, we proceed to
derive our MPC scheme with state constraints.

5.1 Generating Locally Optimal Motions

Let x4[k] denote the state at time #; obtained by inte-
grating ®4(xy4, s) from ¢ = | to t = # starting from
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Fig. 3 Comparison of parameter estimation methods: Shown
is the reproduction ability of the DS in (2), parametrized by
solving (4), compared to a DS using equidistantly spaced basis
functions and uniform basis function widths. The result was
generated by integrating the respective systems from the ini-
tial state x(0) of the demonstration. The demonstration g(¢) is

X4(0) (i.e.,from the initial state of the d-th demonstra-
tion). Our approach makes dual use of the dynamical
systems. First, the set of reference states collected in
the columns of the matrix

RIKk] = [x1[k], ..., xq[k]] € R?*P (7

provides, at each time #, a representation of the cor-
responding demonstration encoded in ®,4(x 4, 5). Sec-
ond, we formulate a movement primitive comprising a
new DS where the forcing term is formed as a convex

combination of individual inputs u,4[k] corresponding
to the systems ®,4(x4, s)

x[k] = Ax[k] + Bul[k]"A[K], (8)

where u[k] = [u[k],...,up[k]]T and A[k] =
[(Ailkl, ..., AplkNT.

Here, A and B are the same as in (2). Equation (8)
describes an implicit DS, where by implicit we imply
that the system is not given in closed form. Rather,

its definition relies on an online solution of an opti-
mization problem. Here, the coefficients Ay[k] are

t[s]

denoted in pink, the dashed black line represents the position
curve ¢(t) yielded by our DS, the dashed magenta line shows
the result obtained from the DS with predefined nonlinear
parameters p (g(t) was generated with the code accompanying
[12]). In both cases, N = 5 basis functions were used.

recomputed at every time-step # by minimizing the
residual

Ax[k] = x[k] — R[k]IA[K] C))

of the projection of the current state x[k] of the system
onto the convex hull over the current reference states
in the columns of R[k] (see Fig. 4). The associated
minimization problem is stated in the QP below

mnii[%nze||Ax[k]||%, + kl[k]TALK] (10)
subjectto  1TA[k] =1,
Alk] = 0,

where the elements [y[k] = |x[k] — xgql[k]||2 of
the vector I[k] = [li[k],...,Ip[k]]" describe the
euclidean distances of the reference states to the cur-
rent states, k > 0 is a (small) scalar and 1 is an
appropriately dimensioned column vector of ones. The
second term in the objective function in (10) is added
in order to resolve the redundancy between multiple
equivalent solutions for A[k] which can occur if the
residual Ax is zero. We define IIZII%, = z' Hz for

@ Springer



24

Fig. 4 Convex
combination at time #: The
pink shaded area represents
the convex hull over the
reference states in R[k], the
projection R[k]A[k] of the
current state x[k] onto this
convex hull is indicated by
the blue cross, Ax signifies
the projection residual

J Intell Robot Syst (2015) 77:17-35
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some z € RZ and a positive semi-definite (and sym-
metric) matrix H € R%*Z. Let the vector A* =
[A1. ..., A%]7 denote a solution of (10) (i.e., A[k] =
1*). The coefficients A’ are recomputed only at dis-
crete steps k according to (10) and are assumed to be
constant within the time window [#, fx41]-

In order to characterize the behavior of the
newly formed DS in (8) we formulate the following
proposition.

Proposition 1 The projection residual Ax[k] con-
verges onto the convex hull over the reference states in
R[k] with dynamics governed by the matrix A

Ax[k] = AAx[k], t € [tk tit1]-

If the convex hull over the states in R[k] contains
the current state x|k], the projection residual Ax[k]
is zero and the next state x[k + 1] will be a convex
combination of the reference states in Rk + 1], i.e.,

x[k + 1] = R[k + 1]A*.

A proof of the above proposition is given in
Appendix A. Proposition 1 summarizes a key concept
in this work. The DS in (8) accounts for differ-
ent dynamics encoded from multiple demonstrations
while exhibiting a predictable behavior over the whole
state space. This is achieved by encoding a representa-
tion of the underlying demonstrations by means of the
DS itself. States inside the convex hull of the reference
states evolve according to a convex combination of the
references. The matrix A in (8) governs the evolution
for states outside the convex hull of the references and

@ Springer

can be tuned according to the application. As in the
original DMP formulation [12], arbitrary many DoF
can be synchronized via a common phase variable s.
What sets this work conceptually apart from existing
approaches such as presented in [6, 1315, 23], is the
ability to modify the dynamical system which drives
the motion on the fly via embedded optimization. This
is a useful ability in the context of, e. g., obstacle
avoidance and disturbance compensation as shown in
the following.

5.2 DMP-based Model Predictive Control

A remaining question is how appropriate the trajecto-
ries generated by the policy in (8) are in the presence
of obstacles which are not known a priori. One could
imagine an example were the combination of the ref-
erence dynamics leads to collisions with unforeseen
obstacles.

Opposed to existing approaches [13, 15, 24, 26]
which use statistical learning techniques to combine
pre-learned DMP in order to generalize to novel sit-
uations, the suggested method provides a straightfor-
ward way to incorporate state constraints. Since the
approach allows to modify the motion generating sys-
tem in (8) at each time step, we suggest an alternative
way of handling obstacles using model predictive con-
trol under a set of spatial and temporal polyhedral
constraints which are designed to lead the system
around a given (potentially moving) obstacle.

To start, let us note that the matrix formed by the
product Bulk] € R2*D in (8) can loose rank (e.g.,
towards the end of a motion when the elements of u[k]
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vanish) and that the vector A[k] is bound by the con-
vex constraints in (10). Therefore, to ensure the ability
to satisfy additional state constraints, we augment the
system in (8) with an auxiliary control input A and
discretize to obtain

x[k + 1] = Ax[k] + Bu[k]T y[k), (11)

where A and B are  state  transition

matrix and control matrix of the dis-

crete  system, u[k] = [u[k], 1]7 € RP*!  and
- T

ylk]l = [X[k], k[k]] € RP+! denotes the augmented

control vector. Next, we want to predict the residual

—R[k] 0
Bpikl  —RIk+1] 0
7 — ABplk] Bulk+11 —R[k+2]

| A" Buik A" Btk + 1)

Without consideration of additional state constraints,
we can now formulate a receding horizon MPC
scheme as the following optimization problem which
needs to be solved at every time step #

P
minimize | AX[k]|3; +«Ik]"ATK]+v Y K[k + p]?
r par
(13)
subjectto 17Alk+pl =1, p=0,...,P,
Alk+pl =0, p=0,...,P.

Here, compared to the previous formulation in (10)
where only the current projection residual at time #
is optimized, the minimization is carried out over a
temporal preview window of P steps according to
(12). The penalty factor v in (13) is chosen to be
large in order to suppress the auxiliary control inputs
L[k 4+ p] since their role is to deviate the system only if
additional constraints need to be obeyed as discussed
below.

5.3 State Constraints for Obstacle Avoidance

Here, the goal is to avoid obstacles in state space.
For simplicity, we only consider constraints on the
positions ¢ = [g1,...,qr] of the F state vec-
tors xy in (13) although velocity constraints on

0
0
0 0
. 0
Bulk+ P —1] —R[k+ P] |
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of the projection of the current state on the reference
states P step forwards in time. Inserting the aug-
mented system in (11) in the residual formulation in
(9) and performing recursion yields

-0
Ax[k] A ylkl
Ax[k +1] A' plk + 11
. = o |x[k]l+Z . ,(12)
Ax[k + P] Al ylk + P]
AX 671%‘2“’*1) T e R(El)(ml)

where the matrix Z € R2(PHDx(D+D(P+D) ig oiven as

g = [41-, ..., ¢r)" can be handled in the same fash-
ion. To ensure convexity, we only consider linear state
constraints of the form th + e < 0 which facilitates
the solution of the underlying optimization problem.
Here, h € RY is a unit normal vector and e is a scalar
offset.

In our framework one DS in (11) is learned to guide
each DoF. At this point, the state evolutions of these
DS are independent, there is only a potential tempo-
ral coupling via shared phase variables s driving the
inputs u[k] in (11). Here, we couple J systems in (11)
via the state constraints which requires extending the
MPC scheme in (13) as shown below

F
inimi AX £[k])1? 1k A[k
minimize ;(n 7K + Kl K1 ALK
P
+v ) Ak + pP (14)
p=0
subject to
1"Aplk+pl=1, p=0,..., P, f=1,..., F
Alk+pl=0, p=0,..., P, f=1,....F
Hlk+ pl"qlk+pl+ Elk+p1 <0, p=1,..., P. (15)

We consider C constraints at a given time
step in the preview window, their normals are
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collected in the matrix H[k + p] = [hi[k + p], ...,
helk+pll” € ROF, Elk+p] = [e1[k], ..., ec[k]]”
holds the corresponding offsets. To account for the
coupling introduced by q[k + p] in (15), we have
to consider the evolutions of each of the F states
xflk+ pl

-1

xglk+1] A

x [k +2] A’
. = . x[k]+ YTy,

x [k + P] A’

where the matrix ¥ € R2P*(P+D(P+D g given as

Bulk] 0 0

. ABulk] Bulk+1]1 0
: : : 0 :
AT Butk) A" Bulk+ 11 ... Bulk+P —1]10

Note that the state coupling is only introduced
in the constraints of (14), not the objective function
which is simply a sum over the objectives in (13).
Thus, if no constraint in (15) is active at a given time
step, the resulting behavior is identical to the one pro-
duced by the uncoupled scheme in (13) and resembles

Fig. 5 Finding Constraints
for obstacle avoidance:
Shown is an example in a
2-dimensional configuration
space, (i.e., F = 2) with a
preview window size of

P = 2. The velocity ray at
qlk + 2] intersects
hyperplane H4 at the point q
gl + 21 + €41k + 21, 1
which is indicated by the
black cross. Thus the
constraint with normal o4
and offset f4 associated

J Intell Robot Syst (2015) 77:17-35

the learned trajectories. Only if constraints in (15) are
active, the auxiliary controls A rlk + p] cause devia-
tions in order to satisfy these constraints. Considering
the choice of objective function in (14) and assuming a
long enough preview horizon, the stability of the pro-
posed controller can be guaranteed [39]. In the tests
reported in Section 6.3, we experimented with horizon
lengths of P = 5 and P = 10 time steps which led to
stable behavior.

A remaining issue is how to extract appropri-
ate spatio-temporal constraints for obstacle and self-
collision avoidance from the robot’s environment.
This is an open research question and is out of the
scope of this work. Previous works suggest heuris-
tics based on simplified pre-planned paths [33, 34].
Here, we only consider a point-robot model and intro-
duce a simple heuristics in order to be able to verify
our MPC scheme in Section 6.3. We assume that
an obstacle is represented as a convex hull in H-
representation, given as a set of bounding hyperplanes
Hp = {(hp,en)}, h=1,..., H, where h, e RF
denote the associated unit normal vectors and ey the
corresponding distances to the origin.

At each time step #; we want to determine whether
to augment (H[k + P], E[k 4 P]) in the optimization
problem in (14) with a new constraint at the end of the

alk :%— 2] + &4k + 2]

with Hy4 is added to (15)
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Fig. 6 Teaching procedure:
a An Immersion
Cyberglove-18 was used to
record joint angles during
grasp motions at a sample
rate of 30 Hz. Starting from
open and closed initial hand

configurations, grasps
according to the taxonomy
in [9] were performed. b
Corresponding final grasp
configurations were
obtained by kinesthetic
teaching and recording the
robot’s hand joint encoder
values

preview horizon (i. e.,at time #;p). To this end, we
formulate the following Linear Program (LP)

minimize & (16)
£eR

subject to

hj (qlk + P1+£&qlk + P1+ep) >0,
h=1,...,H,E>0,

which projects the state g[k 4 P] along the ray cor-
responding to the velocity ¢, p onto the obstacle

Fig. 7 Reproduction

(a) Teaching grasp motions

(b) Teaching final grasp configurations

as illustrated in Fig. 5. If the above LP is feasible
(i. e.,the state evolution “heads towards” the obsta-
cle), the hyperplane containing the projection forms a
new constraint in (15).

The computational load of the presented MPC
scheme at each time-step k consists of integrating the
canonical system in (1) and the F D dynamical sys-
tems in (3), where F is the number of DoF and D
denotes the number of DS (each corresponding to a
demonstration) per DoF. Furthermore, the solution of
J QP’s according to (14) and an LP according to (16)
is required.

x 10

quality: Illustrated are the o0

MSE describing the

deviation from the 2500
trajectories produced by the

systems in (8) from the 2000

learning data. Shown are
the MSE for position (left)
and velocity (right) for
different numbers N of
basis functions and for the 1000
basis function parameters p

in (4) fixed/optimized 500,

1500

2
[ Ag|l3

—%— p fixed
—®— p optimized

—+— p fixed
—®— p optimized

3.5
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6 Evaluation

In this section we evaluate, by means of simulations
and test runs on the Shadow Robot platform, the
application of the suggested methods to offline learn-
ing of motion primitives from experimental data and
the usage of these primitives for real-time motion con-
trol. To this end we used a sensorized glove to record
taxonomic grasps on two cylindrical objects with dif-
ferent diameters as shown in Fig. 6a. Opposed to

801~ :
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(c) Phase plane generalization
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[16], where we only performed one grasp type, in this
work we chose to evaluate the approach on the fol-
lowing nine grasp types according to [9]: Tripod, Par-
allel Extension, Palmar Pinch, Large Diameter, Small
Diameter, Lateral, Precision Sphere, Power Sphere
and Inferior Pincer. The recordings were made while
starting from open and closed initial hand configu-
rations respectively. The Shadow hand’s joint angles
were obtained via a linear regression mapping from
the glove’s sensor space to the robot’s joint angle

3001

a1 4a(t)
q(t)

100

q["/s]

-100

-200

-300

3001 ;
x4t

200 [oeinnifo N

&
8
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T —s (B

z:
\

200 : \ s 7

-80 -60 -40 -20 0 20 40

(d) Phase plane - disturbance compensation

and open initial hand configurations respectively, d = 2 and

Fig. 8 Generalization over demonstrations and disturbance
compensation: Black dashed lines represent the trajectories
obtained by simulating the dynamical system in (8), describing
the tripod grasp motion primitive for the MCP joint, starting
from different initial conditions. The system was parametrized
via the demonstrated trajectories denoted in pink. Demonstra-
tions d = 1 and d = 3 are associated with grasps made on
a cylindrical object with diameter 65 mm starting from closed

@ Springer

d = 4 correspond to grasps on an object with diameter 33
mm. a and b depict the curves for position and velocity, the
corresponding phase diagram is shown in ¢. The behavior of
the system in the presence of disturbances is depicted in d.
After evolving unperturbed initially, the system was subjected
to disturbances in position, velocity and a combined disturbance

respectively
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space. As the goal is to model grasp joint motions
using DMP driven by a common phase variable s,
the corresponding demonstrations have to live on a
common time interval. Thus, all trajectories were seg-
mented from the time a non-zero velocity was detected
at a joint, until all joints stopped moving. Further-
more, the demonstrated trajectories were smoothed by
means of a linear least squares regression and numer-
ically differentiated to obtain velocities and accel-
erations. After rescaling and shifting, as described
in Section 3, the trajectories were re-sampled with
a number of M = 100 points each. A standard PC
equipped with 6 GB memory and a 3.40 GHz Intel
i7-2600 CPU was used to generate the presented
results.

6.1 Reproduction and Generalization Capabilities

Here, the aim is to assess the introduced offline DMP
learning scheme in (6). For the FF = 20 DoF of
the Shadow hand we used, for each of the afore-
mentioned nine grasp types, demonstrated trajectories
to estimate the free parameters of 20 motion prim-
itives in (8) as described in Section 4.3. Thus, a
total of 180 trajectories were used for the evalua-
tion, the utilized fixed parameters are summarized

29

in Table 1 in Appendix B. The constrained nonlin-
ear least squares problems in (6) were solved with a
Sequential Quadratic Programming (SQP) algorithm,
utilizing the ACADO Toolkit [40].

In order to quantify the reproduction capabilities
of the learned DMP, we reproduced the demonstrated
trajectories by integrating (8) starting from the same
initial values as the corresponding demonstrations.
We experimented with different numbers N of basis
functions in (3) and compared to results generated
with DMP learned with fixed basis function param-
eters as in [12]. The resulting position- and velocity
mean square errors (MSE), as well as the compu-
tation times for solving (6) for different numbers
N of basis functions are summarized in Table 2 in
Appendix B. Additionally, the position/velocity MSE
are also depicted in Fig. 7. It is evident that, for small
numbers of employed basis functions, the nonlinear
learning scheme vastly outperforms linear learning
with fixed basis function parameters. Also, the mean
computation times for solving (6) while including the
basis function parameters in the decision variables
are within reasonable bounds (e.g. for N = 7 basis
functions, the mean computation time is 6.2s).

To gauge the generalization capabilities of the
learned models for the considered point-to-point

’i;i 33 -iig‘ 33

'iii =33

'ig. 32

Fig. 9 Tripod grasp primitives triggered from different initial
configurations: Synchronized finger joint movements are gen-
erated by means of integrating motion primitives corresponding

to (8) which are driven by a common phase variable. Top row:
Starting from an open hand configuration; bottom row: starting
from a closed hand configuration
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i } i f L
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1 0.8 0.6 0.4 0.2 0.2 04 0.6 0.8

qQ q[m]

(a) Obstacle space

Fig. 10 Constraint satisfaction: Shown is the evolution of a 2D
system driven by two primitives in (11) controlled by the MPC
scheme in (14) with a preview window size of P = 10. The
positions ¢ computed by the controller are depicted with dashed
black lines, the pink lines indicate the evolution of the encoded
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demonstrated position curves g,. The constraint vanishes after
t = 0.7s which allows the system to converge to its equilibrium.
a shows the behavior in obstacle space, b depicts the according
position curves
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movements, we performed simulations by initializ-
ing our combined motion primitive formulation in (8)
from different initial states. Exemplary, the results for
the dynamical system describing the flexion/extension
motions of the middle fingers Metacarpophalangeal
(MCP) joint (the MCP joints connect the proximal
phalanges of the fingers to the palm) during a tripod
grasp are shown in Fig. 8. Depicted are the obtained
position, velocity and phase plane curves. As argued
in Section 5, for states evolving inside the convex
hull over the reference states the distance ratio to
the references is governed by the convex combination
coefficients computed as a solution of (10). States out-
side the convex hull over the references are attracted
towards this convex hull according to dynamics gov-
erned by the matrix A in (8). It can be seen that
the model can reproduce the demonstrated trajecto-
ries with high fidelity while exhibiting a deterministic
behavior in regions of the state space not covered by
the demonstrations.

Furthermore, we analyzed the behavior of the
model in the presence of state disturbances. We inves-
tigated separate position and velocity disturbances as

Fig. 11 Automatic 1
constraint update: Shown is
the obstacle avoidance
behavior of the system
controlled by (14) with a
preview window size of 0.6
P =5, while using the
heuristic according to (16)
in order to extract 0.4~
constraints. The system was
initialized with different
start states, positions g
computed by the controller
are depicted with dashed
black lines, the pink lines
indicate the evolution of the
encoded demonstrated 0.2
position curves ¢,

0.8-

0.2

q2 [m]

-0.4

-0.6
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well as a combined disturbance. When, at time #, the
system is perturbed inside the convex hull of the ref-
erence states, the update of the convex combination
coefficients according to (10) at time #;41 adjusts the
future evolution of the system according to the ref-
erence states at time fx11. An example is shown in
Fig. 8d where a trajectory was started at the initial
state X, (0) corresponding to the second demonstration
and is pushed onto the reference trajectory associ-
ated with the first demonstration. After adjusting the
combination coefficients in the next time step, the sys-
tem continues to evolve according to x ;. Disturbances
with states resulting outside the convex hull of the ref-
erences again cause the system to converge towards
the projection onto this convex hull with dynamics as
specified in (8).

6.2 Verification on the Shadow Robot Hand/Arm
Platform

Here, the goal is to demonstrate the feasibility of
the developed motion primitives for real-time motion
generation and control rather then to show a fully

0.2 0.4 0.6 0.8 1
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applicable grasping/manipulation system for which
other components such as grasp planning and object
perception are necessary which are not in the scope
of this work. A standard laptop was used to control
the Shadow Robot platform via the Robot Operat-
ing System (ROS) framework at 100 Hz. Compared
to [16], where only a single grasp type was used,
here we use the aforementioned nine grasp types con-
sidered feasible for the specific mechanical structure
of the Shadow hand. The learned motion primitives
were used to generate motion profiles for the 20
DoF of the Shadow hand. Appropriate motion pro-
files for the 4 DoF of the arm were generated with
the ROS joint spline trajectory controllers, such that
hand and arm motion comprised the same duration.
Desired final hand/arm configurations were obtained
via kinesthetic teaching, as shown in Fig. 6b, and
subsequently adding an empiric small increment to
the joint values in order to ensure sufficient squeez-
ing of the object. Then, the motion primitives for
the hand joints were triggered from initial conditions
corresponding to open, pronated and closed hand con-
figurations respectively which allowed to successfully
execute synchronized grasp and subsequent lifting
motions as shown in Fig. 9. Here, the arm joints were
moved between predefined start- and final positions.
One encountered problem was that the ROS messag-
ing system introduced unacceptable feedback delays
and that the available low-level position PID tracking
control was of limited quality. Thus, the test runs were
carried out in an open-loop fashion, i.e., the primitives
were only used for online planning of reference pro-
files between the given start and end positions without
considering state feedback. Despite the obvious limi-
tations in the low-level control as argued in [16], the
grasping tasks were conducted successfully.

6.3 Obstacle Avoidance via State Constraints

Here, we want to discuss the behavior of the MPC
scheme formalized in (14) under the influence of state
constraints. To this, end we give two illustrating exam-
ples in a two-dimensional (i.e., F = 2) obstacle
space. The fixed parameters which were used in (14)
are summarized in Table 3 in Appendix B. We use
two primitives in (11), each of which learned from
the same D = 6 synthetically generated examples of
minimum-jerk trajectories. Figure 10 shows the evo-
lution of the system at different points in time under
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influence of a single spatial constraint which is active
during part of the motion. The controller in (14) com-
putes auxiliary control inputs A[k + p] such as to obey
the constraint.

A second example is depicted in Fig. 11. Here we
employ the heuristic for the automatic extraction of
appropriate constraint hyperplanes, as it was presented
in Section 5.3, to avoid a convex obstacle. Shown are
the trajectories generated when starting from different
points in the obstacle space.

7 Conclusions

In this work we present an approach using demon-
strated motion data in order to parametrize dynam-
ical systems for movement generation via nonlinear
optimization. Offline learning is used to fit the param-
eters of dynamical systems to the demonstrated data.
For real-time control, we introduce a MPC scheme
based on a locally optimal combination of the pre-
viously learned DS. This results in a deterministic
behavior in state regions which were not explored
during the demonstrations. Furthermore, the demon-
strations can be reproduced with high fidelity while
relying on a comparatively small number of param-
eters. We assessed the introduced method by means
of parametrizing the proposed model from demonstra-
tions of grasp movements and subsequent simulations
and test runs with the Shadow Robot platform. Our
approach affords the flexibility to modify the control
inputs of the implicit system used for motion gener-
ation at each time-step, which allows to incorporate
state constraints to account for additional tasks such
as obstacle avoidance. The use of embedded opti-
mization for addressing the online obstacle avoidance
problem is a promising approach already heavily uti-
lized in other scientific fields, this work is a first step
towards a reactive on-line planning/control scheme.
Future work will aim at extending the introduced
obstacle avoidance scheme beyond the presently used
point-robot model in order to make it applicable to
real-life robot motion execution tasks.
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Appendix A Proof of Proposition 1

To prove Proposition 1 in Section 5 we consider
for simplicity zero-order hold discretized systems,
although the proof can be trivially extended to handle
the continuous time case. The respective discretiza-
tions of the systems in (2) and (8) are

xqlk + 11 = Axy[k] + Bug[k] 17)

x[k+ 11 = Ax[k] + Bu[k]"1*, (18)

where A and B are the respective state transition
matrix and control matrix of the discrete system.

Appendix B Tables

Table 1 Fixed parameters used for the evaluation presented in
Section 6.1
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Substituting (17) and (18) in (9) for time #;4 results
in

Axlk + 1] = A (x[k] — RIKIA), (19)

Ax[k]

which confirms the first part of Proposition 1.

Furthermore, we note that if the projection residual
Ax[k] in (19) is zero, the state x[k] can be expressed
as a convex combination of the reference states in the
columns of R[k]. Thus, for Ax[k] = 0, we can rewrite
(18) as

x[k 4+ 1] = A R[kIAN* +Bu[k]"A*
x\[;]
= R[k+ 1]1*

which concludes the proof.

Table 3 Fixed parameters used for the examples in Section 6.3

N «o B € Ac H K v D
N o B € Ac H K

5 —1325 —23 107* 0.05 diag(1, 1) 107° 10* 6
5 —1325 =23 107* 0.05 diag(100,1) 0
Table 2 Demonstration reproduction results: Ag and Ag
denote the position/velocity errors between the demonstrated
N 1ag” 113 11ag113 1AGT 113 11869113 7F [s] 72 [s]
3 2770.6£6802.7 454.7+1552.1 3.8:10°4+9.0 - 10° 5310 £ 1.6 - 10° 0.00540.026 0.540.4
5 415.4 £1094.6 78.1 £170.5 9.6-10* £2.5-10° 4694.3+1.1 - 104 0.0060.002 2.144.0
7 98.4 £217.4 70.1 £150.7 2.0-10* £ 4.8 - 10* 2772.6+5470.8 0.0060.002 6.249.4
9 74.4 £160.8 69.7 £150.5 7841.9+1.8 - 10* 2399.94+4931.8 0.0060.002 30.9463.9
11 70.4 £152.4 69.3 £149.4 4089.4+9328.8 2358.6+4798.7 0.0060.002 58.8+92.13
13 69.1 £149.9 68.8 £149.1 2751.246087.1 2355.0+4927.6 0.00740.004 26.9450.0
15 68.8 £149.3 68.9 £149.1 2411.845184.8 2350.84+4786.2 0.00740.003 62.2+79.4

Data and the trajectories reproduced by the locally optimal DMP combination in (8), 7, denotes the computation time needed to solve
(6). Superscripts (-)F and (-)© denote whether the results were generated with fixed or optimized basis function parameters
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