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Abstract In this paper, a fast human-in-the-loop path
planning strategy in cluttered environments based on
cloud model is proposed, and it is implemented in a
human-machine cooperative Unmanned Aerial Vehi-
cle (UAV) path planning system. Firstly, a dynamic
guidance A* (DGA*) search algorithm is proposed
to allow human’s participation in machine searching
loop. Secondly, online uncertainty reasoning based
on cloud model is introduced to allow human’s
fuzzy decision about path direction and trending,
then human’s perception, expertise, and preferences
are incorporated into the DGA* optimality process.
Therefore, this effective cooperative decision sup-
port can provide a robust solution exploration space,
overcoming some shortages of original A* algorithm,
such as slow search speed, easily falling into local
dead-ends, and so on. Experimental results demon-
strate that the proposed method is much more effi-
cient than original A* planner, and generates good
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solutions that match mission considerations and per-
sonal preferences.

Keywords Path planning · Human-machine
cooperation · Dynamic guidance A* (DGA*)
search · Cloud model · Uncertainty reasoning

1 Introduction

Path planning is one of the fundamental issues in
UAV research, which aims at obtaining the optimal
or sub-optimal path between an initial position and
the desired destination [1], satisfying a series of con-
straints. In the past decades, various automated path
planning approaches have been proposed and the
majority of them fall into the following categories
[2]: 1) Graphic-based algorithms[3]. 2) Grid-based
algorithms [4]. 3) Potential field algorithms [5].

It has been demonstrated that an optimal solution
of the path planning problem is NP-complete problem
in nature [1]. When the search space is complex and a
resultant path must satisfy the vehicle dynamics, direct
applications of automated path planners are associated
with huge computational resources and time consump-
tions. For example, A* algorithm, which is the most
often used search algorithm for path generation [2, 6],
is easy to get trapped in map dead-ends and requires
significantly more computation time in the presence of
map dead-ends [7]. Unlike automated path planners,
which often fall into local minima, humans are well
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capable of making intuitive decisions because they
have powerful heuristics, qualitatively described as the
ability to apply their perceptive grasp of the over-
all problem space and environment. Therefore, it is
important to incorporate human’s intelligence into the
search process of automated planner.

In recent years, multiple studies explored the ben-
efits of allowing a human operator and a computer
algorithm to work cooperatively in the path plan-
ning tasks, and investigated how humans generate and
optimize paths to support human-machine coopera-
tive systems developments [8–14]. Cummings et al.
studied the benefits of allowing a human operator to
manually adjust robot paths generated by an auto-
mated planner if they do not reflect objectives of the
users [13]. Andrew et al. developed a Collaborative
Mission Planning & Autonomous Control Technol-
ogy system implementing evolutionary algorithms to
carry out mission planning, where the human oper-
ator could specify mission functions, constraints and
priorities [14]. There has also been little research so
far that investigates strategies by which humans could
guide a computer algorithm in a collaborative process,
especially when working in time-pressing situations
with significant uncertainty [15–17]. For example,
recent research by Clare et al. suggested that providing
operators with the ability to dynamically modify the
objective function weightings of an automated plan-
ner during planning process could have performance
benefits [16]. Badillo et al. proposed a user-centric
memetic algorithm, and they reported that interac-
tive memetic algorithms could take advantage of good
quality human feedback and behave in a proactive
manner [17]. Most of these previous research works
were focused on human-machine interactions such as
the addition or removal of waypoints and changing
the inputs to the algorithm. Human experience and
high level knowledge that are important for the path
planning problems were not effectively implemented
in their systems. Therefore, it is important to take a
balance between human and automated planner col-
laboration to take full advantage of computational
power of automation, as well as the experience and
knowledge based reasoning of humans.

It is well recognized that human knowledge and
judgments are represented by uncertain and impre-
cise patterns for a complex problem. Although vari-
ous studies demonstrated the capacity of fuzzy logic
in uncertainty management and human knowledge

implementation [18, 19], due to the complexity of path
planning problems, a large number of fuzziness and
randomness existing in human knowledge were not
fully considered in their key steps. Cloud model pro-
posed by Li et al. [20] is based on both fuzzy theory
and probability, combining fuzziness and randomness
together to map qualitative concepts and quantita-
tive data. Hence, it overcomes subjective randomness
in fuzzy membership grade when being determined,
which has been successfully applied to various areas
[21–23].

Therefore, based on cloud model, this paper pro-
poses an effective human-in-the-loop path planning
strategy. The motivation is to combine the capabil-
ity of a human to quickly compute an approximate
and coarse solution with the computational capabil-
ity of the automation. During the planning process,
human operator guides the planner’s searching direc-
tion through specifying the command of “turn right”
or “turn left”, it means which side the path will
pass by to avoid the closest threat. To enable human
operator to actively participate in A* search process,
a DGA* planner is proposed. To cope with uncer-
tainty and imprecision in human knowledge and judg-
ments about path direction and trending, cloud model
based online reasoning is introduced to provide rea-
sonable instant guide points, effectively implement-
ing human’s perception, knowledge, and preferences
to guide the DGA* planner in a collaborative pro-
cess. Therefore, the problem of getting trapped in
map dead-ends is avoided, and complexity of the
path planning problem is effectively reduced, enabling
humans and computers to discover effective solutions
efficiently.

The rest of this paper is organized as follows.
Section 2 presents details of the proposed human-
machine cooperative techniques, followed by the pro-
posed DGA* path planner. The introduction of cloud
model to generate instant guide fields for DGA* plan-
ner is briefly described in Section 3. The experimental
results are given in Section 4. Finally, the paper is
concluded in Section 5.

2 Human-Machine Cooperative Path Planning
Method

This section presents techniques to combine strengths
of both a human operator and A* planner, and
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proposes a DGA* planner. The developed DGA* plan-
ner can effectively utilize the heuristic information
provided by guide points to judge search direction, and
return the optimal path passing by guide points

2.1 Guide Points in Path Planning

In our human-machine cooperative path planning sys-
tem, the planning environment is a digital terrain ele-
vation map (DTEM) with m × n grid cells (or, nodes).
In all figures, S and D denote the start node and desti-
nation node, respectively. As depicted in Fig. 1, circles
on the map represent Air Defense Units (ADUs) like
united detect radar and/or surface to air missile (SAM)
groups, while the radius represents the relative risk
range of each ADUs. UAVs are not permitted to enter
the regions with these circles, even close to these cir-
cles UAVs will be vulnerable to the threats with a
certain probability associated with the distance away
from the threat centers.

As previously mentioned, A* solver is the most
often used graph search algorithm for path gener-
ation [2, 6]. In this study, A* is selected as the
automated path planner since it is an optimal, robust
and informed search method. A* algorithm could be
able to effectively collaborate with the human oper-
ator since we can provide reasonable heuristics to
guide the search. Despite the need for in-flight re-
planning, a heuristic re-planning algorithm (e.g. D*) is
not selected because of the presence of many dynamic
elements [24]. For example, changing battlefield envi-
ronments can invalidate prior search results for a
large number of nodes in the search space. In these

Fig. 1 Influences of human’s awareness and preferences on the
resultant path solutions. G1, G2, G3, and G4 are guide points
specified by human operator. The two dash curves A1 and A2
represent two reference paths

situations, planning from scratch using A* is more
efficient than re-planning algorithms [25]. A random
algorithm like RRT is not selected because it can not
guarantee optimality of the solution, and it is difficult
to predict the behavior of the algorithm [12]. How-
ever, A* algorithm can not pre-perceive some zones
without solution path from start position to destina-
tion position (e.g., in front of a threat zone), and can
easily fall into map dead-ends [7]. Hence, it is fore-
seeable that it will perform better if the human has
opportunities to intervene search tactics and applied
his heuristic knowledge in an efficient way to guide
the A* optimality process. As humans can visually
identify promising areas of a solution search space, we
can let human operator identify several intermediate
waypoints along a potential solution and A* planner
search the optimal path passing by guide points after-
wards. As shown in Fig. 1, we can set the guide points
G1 and G2 around threat zones to provide a general
guideline. It is needed to be mentioned that a guide
point Gi is such a point that can guide A* search pro-
cess and does not have to be passed by the resultant
path. Guide field is the region with the guide radius ri
associated with it. A guide point is considered reach-
able only if the path passes by any point in the guide
field. If a point must be passed by the UAV, its radius
is set to zero.

There are other benefits of incorporating human
experience and preferences into optimization process.
Automated planner usually automatically generates a
minimum cost solution based on a predetermined cost
function. In some cases, it is difficult to express the
complete objective of a human through an a priori
coded objective function, and the predetermined cost
function may not reflect the true state of all vari-
ables [13, 17]. The optimal or near-optimal solutions
provided by automated optimization algorithms may
result in erroneous decision support [13, 26]. There-
fore, it is desirable to incorporate human judgments
into the optimization process of automated planner, as
having a solution that is good enough, robust, desir-
able, and quickly reached is generally preferable to the
optimal one that requires complex computation and
extended periods of times [26].

2.2 Dynamic Guidance A* Planner

Once guide points are determined, we assume that,
the order of the guide points from start position to
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destination position is in ascending order and the des-
tination node is regarded as the last guide point with
guide radius zero. To exploit the information provided
by guide points, the search engine employs a sparse
A* search (SAS) algorithm similar in [4] to search the
map and plan the minimal cost path passing through
guide fields under various path constraints, including
maximum turning angle αmax and minimum turning
radius rmin.

SAS algorithm incorporates various path con-
straints into its planning process, and was further
extended by Zheng et al. [27] to solve the on-line
path planning problem in unknown planning environ-
ment. As illustrated in Fig. 2, SAS employs fan-tails
to expand nodes until the destination node is reached.
Note that when a node is expanded in SAS search pro-
cess, expanding direction (i.e., direction of the line
between the node and its parent node) determines the
successor nodes to be explored. Therefore, expanding
direction of each node is also recorded when being
searched, for example, expanding direction at the node
P5 is the direction of

−−→
P2P5 as in Fig. 2.

With respect to the planning paths with guide fields,
two major issues need to be addressed: Firstly, as
shown in Fig. 2, the computed path must pass through
all guide fields in order. Secondly, A* heuristic cost
function needs to be carefully designed to effectively
guide the planner to search the optimal path passing
through guide fields. To handle these issues, a novel
path planner called DGA* search is proposed in this
research, described as follows.

To make sure the resultant path passes through
guide fields in order, each node of the search tree
has a guide number attribute recording which guide
point the node should be expanded towards. As illus-
trated in Fig. 2, initially, set the start node’s guide
number to 1, indicating that the start node should be
expanded towards G1. At each expanding step, a node
n is extracted from Open list and its successor nodes
are being explored and evaluated. Assume that guide
number of node n is k. When a successor node n′ to

n is explored, if n′ lies in the guide field of Gk , set
guide number of n′ to k + 1, indicating the search tree
has passed by Gk . Otherwise, set guide number of n′
to k, implying the computed path from the start node
to node n′ found in the search tree so far hasn’t reached
Gk yet.

By forcing path solution to pass through guide
fields, search space is effectively reduced, enabling
the path planning problem in this pruned search space
to be more efficient to solve. Detailed implemen-
tations of the DGA∗ algorithm are summarized as
follows:

Step (1) Set the start node’s guide number to one and
push it to the Open list.

Step (2) Remove the minimal cost node nfrom the
Open list to the Close list.

Step (3) Generate all the successor nodes of node n.
Step (4) For node n with the guide number k, if each

of its successor node n
′

is within the guide
field of Gk , set its guide number to k + 1,
otherwise, its guide number is unchanged.

Step (5) For each successor node n′, compute its
total cost f (n′) = g(n′) + h(n′), where
g(n′) is the actual cost of the path from the
start position to node n′. h(n′) is the esti-
mated cost of the path from node n′ to the
destination position.

1) If n′ is neither in the Open list nor in
the Close list, place it in the Open list.

2) If n′ is already in the Open list or
the Close list, and its new expanding
direction is different from its previ-
ous expanding direction, place it in the
Open list.

3) If n′ is already in the Open list or
the Close list and its new expanding
direction is the same as its previous
expanding direction. Compare the new
f (n′) with the previously calculated
f (n′). If the new value is lower, direct

Fig. 2 Node expansion
process with guide fields
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its pointer to node n, and change its
total cost to the new f (n′). If n′is
already in the Close list, move it back
to the Open list.

Step (6) Repeat Steps (2)–(5) until the termination
condition is reached. The final path can be
generated by tracing back up the search tree
once the minimal cost node extracted from
the Open list is the destination node.

2.3 Evaluation Function

This part describes the cost function that measures the
fitness value for a specific path Z. In this study, the
cost function is defined as follows:

J (Z) = ω1Jlength+ω2Jhazard+ω3Jsmooth+ω4Jheight

(1)

where Jlength, Jhazard , Jsmooth, and Jheight are costs
of distance, threat, smooth, and height, respectively,
and ωi (i = 1, . . . , 4) are their corresponding weight
coefficients, which can be assigned according to
preferences of experts and mission situations. For a
given path Z, it can be described as a sequence of
nodes:

Z = (C1, C2, . . . , CM) (2)

such that C1 is the start node, CM is the destination
node, and M is the number of nodes. Each node Ci is
specified by its 2-D coordinates (xi, yi). Then the four
cost components can be formulated as follows.

Let d(A, B) denote the distance from node A to
node B. Path length cost Jlength is defined as the total
length of line segments from the start node to the
destination node.

Jlength(Z) =
M−1∑

i=1

d(Ci, Ci+1) (3)

Hazard cost Jhazard penalizes paths dangerously close
to threat sources. To simplify calculations, a compu-
tationally efficient and acceptably accurate approxi-
mation to the exact solution is to calculate the hazard
cost at several locations along a path segment and take
length of the path segment into consideration [28, 29].
In this study, Jhazard is expressed as:

Jhazard(Z) =
M−1∑

i=1

d(Ci, Ci+1)Fi (4)

where Fi is hazard cost of the i th path segment. As
Fig. 3 shows, Fi is calculated at three points (locations
of these points can be changed according to shape of
the threats) along each path segment [28], defined by:

Fi =
K∑

j=1

(P (d
j

1/6) + P(d
j

1/2) + P(d
j

5/6)) (5)

where d
j

1/6 is the distance from the 1/6 point on the i th
path segment to the j th threat, and K is the number
of threat sources. P(d

j

1/6), P(d
j

1/2), and P(d
j

5/6) are
instantaneous probabilities of radar detection of the
UAV by the j th threat, calculated according to radar
equation [30]:

P(R) = 1

1 + c2

(
R4

σ

)c1
(6)

where c1 and c2 are constants associated with model
and lethality of the radar. σ is radar cross section
(RCS) of the UAV. R is the distance from the UAV to
the threat source.

In view of the physical limitation of UAV, it usu-
ally does not wish to make severe turns in some flight
scenarios. Turning angle at node Ci is defined as the
angle difference between two adjacent path segments−−−−→
Ci−1Ci and

−−−−→
CiCi+1. Smooth cost Jsmooth is measured

by sum of all node turning angles. Height cost Jheight

is the average terrain altitude of the path.

2.4 Heuristic Function

To effectively guide the planner to search the optimal
path passing through guide fields, the heuristic cost of

Fig. 3 Model of the UAV threat cost
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the DGA* planner, h(n), is designed here, expressed
as:

h(n) =
{

ω1h
′
(n) h

′
(n) ≥ 0

0 h
′
(n) < 0

(7)

where ω1 is the weight coefficient of distance cost. Let
N denote the number of guide points between guide
point Gk (guide point of node n) and the destination
node D. h′(n) is given by,

h′(n) = d(n, Gk) − rk +
N−1∑

i=0

(d(Gk+i , Gk+i+1)

−rk+i − rk+i+1) + d(Gk+N, D) − rk+N

(8)

where d(A, B) represent the distance between node A

and node B. rj is radius of the j th guide field (shown
as Fig. 4). This heuristic function adopts Euclidean
distance to the DGA* algorithm, and we have the
following proposition:

Proposition 1 The heuristic function designed as for-
mula (7) and (8) for the DGA* planner is admissible.

Proof Assume that path Z′ is the minimum cost path
from node n to the destination node in the reduced
space imposed by guide fields, that is, Z′ starts from
node n, passing through guide field of Gk and the fol-
lowing guide fields, and terminates at the destination
node D, i.e.,

Z′ = (n, . . . ,Tk, . . . , Tk+1, . . . , Tk+N . . . , D) (9)

where Tk+i (0 ≤ i ≤ N) are path nodes lying in the
corresponding guide fields of Gk+i (0 ≤ i ≤ N).

As demonstrated in Fig. 4, in triangle nGkTk , the
difference between length of edge

−−→
nGk and length of

edge
−−→
GkTk is smaller than length of

−→
nTk , and length of−−→

GkTk is smaller than guide radius rk , hence,

d(n, Gk) − rk ≤ d(n, Tk) (10)

And for the same reason, one has:

d(Gk+N, D) − rk+N ≤ d(Gk+N, D) (11)

Similarly, in quadrilaterals Gk+iGk+i+1Tk+i+1Tk+i

(0 ≤ i ≤ N − 1),

d(Gk+i , Gk+i+1)− rk+i − rk+i+1 ≤ d(T k+i , Tk+i+1)

(12)

Combining Eqs. (10), (11), and (12), it follows that,

h′(n) ≤ d(n, Tk)+d(Tk+N, D)+
N−1∑

i=0

d(Tk+i , Tk+i+1)

(13)

According to its definition, distance cost of
Z′, Jlengh(Z

′), is sum of all path segment lengths from
node n to the destination node, and Tk+i (0 ≤ i ≤ N)

are path nodes of Z′, apparently,

d(n, Tk) + d(Tk+N, D) +
N−1∑

i=0

d(Tk+i , Tk+i+1) ≤ Jlengh(Z′)

(14)

Let h∗(n) represent the actual cost of path Z′. Com-
bining Eqs. (13) and (14), h′(n) ≤ Jlengh(Z

′) holds,
which leads to h(n) ≤ h∗(n). Therefore, the designed
heuristic function is admissible [31], and the DGA*
planner will find the optimal path in the reduced
search space imposed by guide fields if one exists.

Fig. 4 The minimum cost
path from node n to Gk ,
passing through the
following guide fields,
finally to the destination
position
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3 Cloud Model Based Guide Points Generation

This section proposes an effective human-in-the loop
strategy based on cloud model. It begins with a
description of the general scheme of the strategy in
subsection 3.1. Then, cloud model and human knowl-
edge representation based on cloud model are pre-
sented in subsections 3.2 and 3.3, respectively. Finally,
the introduction of cloud model based online reason-
ing to mimic the process of human decision about path
direction and trending is presented in subsection 3.4.

3.1 Human-machine Cooperation in the A* Search
Process

This part presents general scheme of our human-
in-the-loop strategy. In real applications, battlefield
changes dynamically, and it is difficult to specify suit-
able guide points in advance in the presence of pop-
up threats. Therefore, it would be valuable to allow
human operator to participate in A* optimality process
to actively guide the algorithm. As discussed previ-
ously, to avoid map dead-ends, A* search engine can
be directed to guide points, thus our goal for handling
threats avoidance is introducing effective human inter-
actions and intelligence to provide reasonable instant
guide points. The schematic of the concept is given in
Fig. 5.

In Fig. 5, point A is the position of an expanded
node before threat 2. The solid curve is the path from

Fig. 5 Two-dimensional illustration of a simple threat zone
avoidance problem. Threat 2 was shown as a gridding circle
to alert the operator and the planning process of DGA* is sus-
pended. After the operator had specified a coarse pass azimuth,
on-line reasoning based on cloud model generated a guided field
for the DGA* planner to circumvent the threat zone

the start node to current expanded node that has been
planned, and the line of dashes is the heuristic path
(line between current expanded node and the desti-
nation node). During A* search process, if there is a
large threat zone in front of the expanded node, huge
numbers of useless nodes near the threat zone will be
searched, till one tree can bypass this threat zone. To
avoid such meaningless search, an instant guide point
is necessary. Cloud model help us generate instant
guide fields as follows.

When distance from the expanded node to the clos-
est threat zone along the heuristic path is smaller
than a given threshold, the closest threat zone that
the heuristic path passes through will be shown as
gridding circle to notify the human. Meanwhile, the
planning process of DGA* planner pauses to wait for
the operator to specify a coarse pass azimuth. Based
on his perceptive grasp of the of the overall problem
space and battlefield environment, the human opera-
tor issues the command of “turn right” or “turn left”,
representing the turn that the path must make to avoid
the closest threat. As Fig. 5 demonstrates, direction of
the heuristic path is always taken as the zero direc-
tion, with the negative direction to its left and the
positive direction to its right, respectively. The auto-
mated planner interprets the command, and on-line
reasoning based on cloud model provides a reason-
able intermediate guide field (the smaller circle near
threat 2). Then the DGA* planner effectively employs
the information provided by this guide field to judge
search direction and seek path going through it. In
this way, different agents’ exploration of the potential
solution to the path planning problem is coordinated
and the problem of getting trapped in dead-ends can
be avoided.

When multiple UAVs are managed by a single
operator and/or under complex environments, human
operator plays a fundamental role as a high level mis-
sion manager, and will need to comprehend a large
amount of information under time-pressure to make
effective decisions. Cummings and Mitchell proposed
an upper bound formulation for predicting the number
of UAVs that an operator can control [32]. Because
the process of DGA* planner can plause to wait for
operator decision if there is a threat in front of the
searching direction, the number of DGA* planning
process that an operator can manage could be unlim-
ited in this study. To measure the human-machine
cooperation performance, the metric of workload is
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considered. In this study, workload is characterized
by a utilization metric, calculated as the ratio of the
total operator “busy time” (including the three major
elements of information processing: perception, cog-
nition, and action) to the total planning time [15,
16].

Note that center of the guide field should be placed
at a position with a certain safe distance away from
the threat circle to ensure safety of the path. Refer to
Fig. 6, point A is the position of the current expanded
node. Line MN is either to the left or the right of line
AD and tangent to the threat circle at point G. The
guide field’s center E is set in the normal direction of
line AD with a safe distance d to tangent G.

Based on multi-objective optimization theory [33],
safe distance d determines the risk-taking relations
between the planned path and the given threat. A
larger d results in a farther path away from the threat
with longer distance and smaller threat risk, while a
smaller d results in a shorter path with larger threat
risk.

As mentioned previously, it is desirable to incorpo-
rate human knowledge and preferences into optimiza-
tion process to generate paths satisfying personal pref-
erences. Previous study demonstrated that operators
tended to think less in terms of numerical optimization
when planning paths but more in qualitative words
about the overall goals or preferences [34]. It also has
been argued that developing a method to communicate
their goals and preferences to the optimization algo-
rithm would result in solutions that match the desires
of the operator [34]. However, human knowledge and
judgments are fuzzy and uncertainty in nature, and
some theoretical methods are required for dealing with
both fuzziness and randomness in human knowledge
and preferences.

Fig. 6 The geometry relationship between the guide field and
the threat zone

In previous research, safe distance was usually pre-
determined [35]. To obtain a reasonable path better
matching battlefield situation and personal prefer-
ences, we introduced to generate instant field by using
cloud model based uncertainty reasoning in our pre-
vious study [36], which can simulate the process of
human reasoning in specifying a guide point. Cloud
model integrates fuzziness and randomness to trans-
form qualitative knowledge described in a natural
language to distribution patterns of quantitative val-
ues, effectively expressing the uncertainty in human
knowledge and the association of randomness and
fuzziness [22, 23]. Therefore, it can allow the opera-
tor to communicate his/her desires to the automated
planner in a highly flexible and intelligent manner.
However, factors that affect position of the instant
guide point considered in that paper were of lim-
ited representations of battlefield situations. In this
research, we make further improvements and incor-
porate mission requirement into knowledge base, and
therefore, the reasoning results are more reasonable.
Meanwhile, the DGA* can effectively use the infor-
mation provided by guide fields to find the optimal
path passing through pre-determined guide fields. In
this way, the respective strengths of the human and
the automation can be balanced to create an effective
and efficient planning process that can generate sat-
isficing, or good enough paths. The following parts
present a brief description of cloud model and how
it is applied in the human-machine cooperative path
planning process.

3.2 Cloud Model

Cloud model is an uncertainty conversion model
between qualitative knowledge description and quan-
titative value expression, defined as follows [23].

Suppose that T is a language value of domain U,
mapping CT(x): U → [0, 1], ∀ x ∈ U, x → CT(x).
Then the distribution of CT(x) in U is called the
membership cloud of T, or cloud in short, and each
projection is called a cloud drop in the distribution.
If distribution of CT(x) is normal, it is named normal
cloud.

Normal cloud model employs expectation Ex,
entropy En, and super entropy He to represent a qual-
itative concept. Ex determines the center of the cloud.
En measures the uncertainty of the concept. He is
the uncertainty measurement of the entropy, reflecting
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cloud drops’ dispersive degree. For example, a nor-
mal cloud (0, 1/3, 0.03) representing linguistic term
“about zero” is shown in Fig. 7.

3.3 Knowledge Representation Based on Cloud
Model

This part describes how to represent human knowl-
edge about location of the guide fields based on
cloud model. If-then rules composed of linguistic vari-
ables provide a scientific formalism for implementing
human knowledge. Therefore, we attempt to extract
human knowledge in the form of if-then rules. Each
rule is of the form “If A1 and A2 and . . . An, then
B”, where A1, A2,. . . , An, and B are linguistic vari-
ables modeled by normal clouds, and n is the number
of input reasoning parameters. Multiple if-then rules
form a rule base, established as follows.

According to formula (6), it can be concluded that
the major factors that affect detecting probability are
lethality of the detecting radar and RCS of the UAV.
Moreover, mission requirement can also affect the
value of safe distance, the more important the mis-
sion is, the shorter the path should be to ensure that
the UAV reaches the destination in a shorter time.
To obtain a safe distance adaptively, input reasoning
parameters are chosen as:

(1) Lethality of the detecting radar.
For each type of radar, its detecting efficiency

is different from each other, and poses different
lethality to the UAV. Values of radar parameters
for various models of radars can be collected
and estimated by sensor network. We can share
and receive these values from the ground con-
trol station, other mobile device users in the
network, or the sensors in the network through

communication network [37]. Threat lethality
can be provided by threat assessment and nor-
malized to [0, 10]. In this research, linguistic
terms “Very Low” (VL), “Low” (L), “Moderate”
(M), “High” (H), and “Very High” (VH) are
employed to represent lethality of the detecting
radar. As Fig. 8 displays, these linguistic terms
are transformed into normal clouds (1, 0.5,

0.06), (3, 0.5, 0.05), (5, 0.5, 0.05), (7, 0.5, 0.05)

and (9, 0.5, 0.06), respectively.
(2) RCS of the UAV

Radar cross section (RCS) of an UAV is a
measure of the UAV’s ability to reflect radar
signals, and depends on factors such as mate-
rial of which the UAV is made and size of the
UAV. According to current open literature, RCSs
of UAVs range from 0 to 8 or much bigger
[38, 39]. Linguistic terms “Very Small” (VS),
“Small” (S), “Medium”(M), “Large” (L), and
“Very Large”(VL) are used for rating RCS of the
UAV.

(3) Importance of the mission
Relative importance of the mission is estab-

lished by human operator based on his judg-
ment of mission requirement. It takes value in
[0, 10] and is divided into five scales, which are
“Very Unimportant” (VU), “Medium Unimpor-
tant” (MU), “Important” (I), “Medium Impor-
tant” (MI), and “Very Important” (VI).

Output linguistic variables describing safe
distance ranging from 0 to 10 are also dis-
tinguished by five labels: “Very Near” (VN),
“Near” (N), “Medium” (M), “Far” (F), and
“Quite Far” (QF).

Similarly, linguistic words describing RCS of
the UAV, importance of the mission, and safe dis-
tance are all transformed into their corresponding

Fig. 7 Membership cloud
for linguistic term “about
zero”. The membership
degree at x′, u(x′),is a
random number with a
probability distribution
illustrated on the right of
the figure. ymcis the cloud
expectation curve
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Fig. 8 Normal clouds for
describing lethality of the
detecting radar

synonyms in Fig. 8. For example, linguistic terms
“Large”, “Medium Important”, and “Far” are all
represented by normal cloud (7, 0.5, 0.05).

The typical inference rule that expresses
human knowledge is of the form “If DT and DR
and DM, then DB”. For instance, a specific infer-
ence rule is: “If DT3 and DR4 and DM5, then
DB3”, interpreted as: if lethality of the threat is
moderate, UAV’s RCS is small, and the mission
is very important, then the guide field is near
to threat circle. Based on experience and knowl-
edge of human experts, a knowledge rule base
can be made. Partially typical rules are listed in
Table 1.

3.4 Online Uncertainty Reasoning Based on Cloud
Model

In this part, the cloud theory based uncertainty rea-
soning is introduced to generate instant guide field,
which is more consistency with human thinking than
the traditional fuzzy reasoning [20]. In the coopera-
tive path planning process, the uncertainty reasoning
engine [36, 40] evaluates the rules, and generates an
appropriate conclusion (safe distance d) based on the

Table 1 Fuzzy reasoning rules

Input Output

variable variable

DT1 (VH) DU1 (VS) DM1 (VU) DB1 (VF)

DT1 (VH) DU1 (VS) DM2 (MU) DB1 (VF)

DT1 (VH) DU1 (VS) DM3 (I) DB2 (F)

DT1 (VH) DU1 (VS) DM4 (MI) DB3 (M)

DT1 (VH) DU1 (VS) DM5 (VI) DB4 (N)

. . . . . . . . . . . . . . . . . . . . . .

DT5 (VL) DU5 (VL) DM5 (VI) DB5 (QN)

required input situational battlefield data (xa, xb, xc),
described as:

d = �(xa, xb, xc) (15)

where xa , xb, and xc represent lethality of the threat,
RCS of the UAV, and importance of the mission in
the situational battlefield environment, respectively.
With safe distance d, position of the guide field can
be determined according to Fig. 6. Meanwhile, guide
radius is provided by backward cloud generator [41],
quantitatively revealing uncertainty about location of
the guide point, which is a different way from fuzzy
reasoning.

4 Experimental Results

In this section, we tested the proposed method in
various scenarios to show its feasibility and effective-
ness. We also compared performance of the proposed
method with automated A* planner, and the human-
machine cooperative path planning strategy by using
operator-specified guide points.

The algorithm was implemented in a C++ and
Qt 4.6.3 based software simulation environment on PC
with Intel Core2 Duo E7400 CPU running Windows
XP. A DTEM with resolution 90m×90m per pixel and
different sets of simulative threat data were tested.
In the following pictures, flag and triangle represent
start position and destination position. Path solutions
obtained from the planer were smoothed by using cir-
cular arcs. There are three dots on each arc of the final
flyable path. The first and third dots represent the start
point and the end point of the turning arc. The second
dot is the intersection point between two adjacent path
segments.

Unless otherwise specifed, the following param-
eters were adopted. αmax = 30◦, rmin = 3.4 Km,
σ = 2.1 m2, ω1 = ω2 = ω3 = ω4 = 0.25. Human’s
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judgment on the importance of the mission was set to
5, lethality degrees of threats were all set to 6.

4.1 Cooperative Path Planning Process

In this part, we performed an experiment to deeply
demonstrate effectiveness of the human-in-the-loop
path planning process. In this experiment, we sup-
posed that lethality degrees of threat 1 and threat 3
were 6.6 and 8, respectively.

As shown in Fig. 9a, there was a warning alert and
a selection box appeared for the human to specify a
coarse pass azimuth relative to threat 1. Based on his
global perception of the battlefield situation, the oper-
ator made the on-line decision of specifying the coarse
pass azimuth.

Assume that the human operator pressed the selec-
tion box of “turn left”. Under these battlefield circum-
stances, the cloud theory based uncertainty reasoning
automatically generated a reasonable guide field with
a distance of 6.10 Km away from threat circle 1
(shown as Fig. 9b). The guide radius is 5.74 Km, quan-
titatively revealing human’s uncertainty about location
of the guide point. Then the DGA* planner effectively
exploited the heuristic information provided by this
guide field to seek path going through it, and therefore,
threat 1 was circumvented along a reasonable direc-
tion and the problem of getting trapped in dead-ends
was avoided.

The DGA* search process continued till threat 3
was passed through by the heuristic path. Using the
same strategy, another guide field with a distance of
10.11 Km away from threat circle 3 was produced.
The picture in the bottom left of Fig. 9c shows the
partial enlarged details of the geometric relationships
between threat 1 and its associated guide field, while

the picture in the top right of Fig. 9c illustrates the
partial enlarged details of the geometric relationships
between threat 3 and its associated guide field.

From the two reasoning results, it can be observed
that the more dangerous the threat, the further away
the guide field from the threat circle, emulating
knowledge-based reasoning process of human in spec-
ifying a guide field realistically and reflecting the
battlefield situation accurately. This process went on
until a whole path incorporating human intelligence
and reflecting mission situations was planned.

4.2 Experimental Results Comparison and Analysis

To validate the feasibility and effectiveness of our
cloud model based DGA* (CDGA*) planner, we com-
pared it with automated A* planner, and the human-
machine cooperative path planning strategy recently
proposed in [12, 13], where guide points for the DGA*
planner were manually set by human operator. 16 par-
ticipants consisted of 10 graduate students from our
research group and 6 researchers from our coopera-
tion partner participated in the experiments, and they
were trained for the path planning tasks befrore exper-
iments. The 16 participants consisted of 11 men and
5 women and none of them had served in the mili-
tary. Ages of the participants range from 22 to 36 with
an average of 28 and a stand deviation of 2.48. In the
follwing experiments, the time that the operatr spent
on the planning tasks is the average time that these
participants spent.

Fig. 10a shows the path returned by automated A*
planner. At the beginning of the search process, A*
planner expanded nodes along a straight line toward
the destination, as the search process propagating, it
searched large numbers of useless nodes near the first

a b c

Fig. 9 Human-machine cooperation in the planning process: a human specified a coarse pass azimuth; b a guide field was provided
by cloud model based online reasoning; c the final computed path directed by guide points
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a b c

Fig. 10 Comparison of results produced by A*, DGA*, and CDGA* planners: a path planned by automated A* planner; b path
planned by DGA* planner using operator-specified guide points; c path planned by CDGA* planner

threat before it found the feasible path avoiding threat
1, taking 110.26 seconds to find the final path. Sizes of
Open list and Close list were 10746 entries and 3210
entries, respectively.

As mentioned before, intermediate waypoints were
usually specified by human operator or located with a
pre-determined distance around threats zones [13, 35].
As shown in Fig. 10b, the two small circles near threat
1 and threat 3 are guide fields specified by human
operator during DGA* search process, which took this
human operator 6.70 seconds (The time that human
operator spent in the path planning tasks depended on
his proficiency in using the planning system. Opera-
tor’s proficiency in using the system is measured by
his/her frequency in map use and video-game expe-
riences. Numbers of experiments demonstrated that
there were there were no significant differences in
time consumptions based on military experiences, and
there were differences in time consumptions between
experienced and inexperienced users [16, 42]) to spec-
ify. With heuristic information provided by guide
points, search engine was directed to guide fields,
thus, threats were circumvented. However, the resul-
tant path as well as time and memory consumptions
depend on locations of guide points, which require
human operators’ efficiency in map-use and could
not implement human knowledge that are associated

with uncertainty and imprecision effectively. What is
more, specifications of guide points increased opera-
tor workload, and in some cases mistakes took place.

On the contrary, as Fig. 10c shows, with the pro-
posed CDGA* planner, human knowledge is embed-
ded into the cooperative strategy, and human operator
took the role of mission manager response for strate-
gic guidance. Once a “warning state” arouse, what
the human should do was choose a pass azimuth.
Based on real-time battlefield situation, a guide field
automatically produced by cloud model based uncer-
tainty reasoning was located at the proper position,
effectively implementing human knowledge to guide
CDGA* planner to avoid map dead-ends and plan a
path satisfying mission objectives.

Table 2 shows performance comparisons of these
three methods. The second and third columns of
Table 2 represent the overall time consumption and
the time that the human operator spent in creating the
path, respectively. The second line represents the aver-
age results of the 16 participants in the path planning
tasks. Path cost errors were calculated by normal-
izing a path cost to the cost of the path returned
by automated A* planner. It can be observed that
there are no significant differences among total costs
of these paths, and the proposed method can sig-
nificantly reduce time and resource consumptions

Table 2 Performance comparisons of the three methods

Algorithm Time (s) HTime (s) Size Size Path Cost Jlength Jsmmoth Workload

(open) (close) cost error (Km) (Utilization)

A* 110.26 0.00 10746 3210 126.58 1.00 355.52 0.89 0.00%

DGA* 11.47 6.30 2074 112 129.69 1.02 359.77 1.00 54.93%

CDGA* 7.34 3.25 1756 94 129.07 1.01 357.35 1.02 44.28%
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compared to automated A* planner. Compared with
the human-machine cooperative strategy by using
operator-specified guide points, the CDGA* planner
can not only allow humans to express their decisions
more freely and adequately, but also reduce operator
workload and enhance operator situational awareness.

To validate the performance of the proposed
method in large and complicated environments, three
comparative experiments with automated A* planner
were conducted. In all these cases representative of
most likely scenarios, the map sizes are 4000 × 4000
or bigger.

The first case was to test the influences of human’s
preferences on the resultant paths, and Fig. 11a dis-
plays the path solutions. Path A2 was planned by
automated A* planner. Path A1 was produced with the
preferred turn of left, while path A3 was computed
with the preferred turn of right in the CDGA* planning
process. With the CDGA* planner, there can be a cer-
tain safe distance determined by real-time battlefield
situations away from the threat zone, bringing path A1

a higher dynamic threat avoidance performance than
path A2. Note that the automated A* planner found
the resultant path A2 in an area populated by high-
lethality threat zones, though it’s the minimal cost
path, in human operator’s opinion, it may not be appli-
cable in some specific mission scenarios and is not
the satisfying path. Although cost of path A3 is a little
more than A1, it is in a less hazardous threat envi-
ronment, thus it can be a better choice than path A1

in some cases. Therefore, one of the advantages of
the proposed method is that it can effectively imple-
ment human knowledge and produce good solutions
suitable for real applications.

The second test case was of scattered threat zones
located complexly between the start and destination

positions. The map and paths traced by the two plan-
ners are given in Fig. 11b. In this case as well, the
CDGA* planner could smoothly find paths towards
the destination, and effectively avoid threat zones
under the guidance of human’s high-level knowledge.
In this figure, the three lines A1, A2 and A4 were pro-
vided by the CDGA* planner under different human
preferences, while path A3 was produced by the auto-
mated A* planner.

Table 3 presents comparisons of the two methods.
The third and fourth column of Table 3 represent the
overall time consumption and the time human spent,
respectively. Similarly, the three lines of the third row
depict characteristics of the three paths produced by
CDGA* planner of case 2.

Table 3 indicates that CDGA* planner is much
faster than automated A* planner and there are no sig-
nificant differences among costs of the paths returned
by these two planners. For the reason that the CDGA*
planner can effectively exploit the heuristic informa-
tion provided by guide points to judge search direction
and circumvent threat zones at proper positions, and
the trouble that the search engine get trapped in local
dead-end areas is avoided. The time human the opera-
tor spent accounted for a small part of the overall time
consumption of each path, enabling human operator to
effectively supervise the search process and promote
situation awareness. But what should be noted is that
cost of the path planned by automated A* planner is
smaller than the path provided by our method, since
it’s the global optimal solution. In the CDGA* plan-
ning method, feasible search space may be pruned by
guide fields, and the resultant path is not the global
optimal.

It should be noted that in combat environments,
definition of optimal is a constantly changing concept.

Fig. 11 Comparison of
results produced by
automated A* planner and
CDGA* planner: a results
on case 1; b results on case 2

a b



16 J Intell Robot Syst (2015) 79:3–19

Table 3 Performance comparisons of two methods on the three cases

Ca-se Time Time HTime Jlength Jlength Cost Cost Cost error Jsmmoth Jsmmoth

(A*) (CDGA*) (CDGA*) (A*) (CDGA*) (A*) (CDGA*) (CDGA*) (A*) (CDGA*)

1 167.76 17.57 3.01 417.96 415.54 172.63 173.89 1.01 2.59 2.04

20.37 2.82 431.80 179.65 1.03 2.81

2 259.93 37.39 5.27 494.51 529.38 164.83 173.07 1.05 3.58 3.89

48.60 6.71 517.47 168.13 1.02 4.10

39.57 7.68 510.87 169.27 1.03 3.24

3 186.53 14.45 3.41 383.26 384.74 129.89 131.51 1.01 1.53 1.45

Particularly in situations with uncertainty, having a
solution good enough and quickly reached is gener-
ally preferable to one that requires extended periods
of time. Compared with automated A* planer, the pro-
posed method can significantly reduce computational
time and produce solutions better reflecting mission
scenarios and personal preferences, and therefore, the
new algorithm has better search ability, robustness and
proved computational efficiency without compromis-
ing path performance.

To validate performance of CDGA* planner in
expressing uncertainty and human knowledge imple-
mentation, we compared it with the fuzzy logic based
DGA* planner (FDGA*). In this experiment, lethal-
ity degree of threat 1 is 6.8. Lethality degrees of threat
2, threat 3 and threat 4 are 7.5. We tried to con-
trol parameter settings and reduce the effects induced
by different parameters. In the FDGA* method, the
Gaussian membership functions have the same param-
eters as the normal clouds in the CDGA* method,
and the same rule base is adopted. Fig. 12 shows the
linguistic terms (VL, L, M, H, VH) for represent-
ing threat degree and their corresponding membership
functions.

Compared Fig. 12 with Fig. 8, we can observe
that fuzzy sets can not describe randomness associated
with membership grade. Normal clouds integrate the
fuzziness and randomness of qualitative concepts to
represent the knowledge, and the super entropy He of
a normal cloud expresses the randomness of the mem-
bership degree. In the fuzzy reasoning process of
FDGA* method, the multiplication operator is used to
obtain strength of the rule [18], the minimum opera-
tor is used for implication, the maximum operator is
used for aggregation, and the center of gravity defuzzi-
fication method is adopted to obtain a safety distance
[43]. These operators and defuzzification method are
widely used in the literature [43, 44].

According to the different principles of the cloud
model and fuzzy theory, safety distance of the fuzzy
reasoning corresponding to the same input is always
the same without randomness. Therefore, FDGA*
planner ignores the randomness existing in the causal-
ity of the human reasoning. Safety distance to threat 1
is 6.35 Km, and safety distance to threat 2 is 8.43 Km
provided by fuzzy reasoning. As shown in Fig. 13a,
path B1 was produced by the automated A* planner,
while the three lines B2, B3 and B4 were provided by

Fig. 12 Linguistic words
representing threat degree
and their corresponding
membership functions
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Fig. 13 Comparison of
results produced by
automated A* planner,
FDGA* planner, and
CDGA* planner: a results
produced by automated A*
planner and FDGA*
planner; b results produced
by automated A* planner
and CDGA* planner

a b

the FDGA* planner (in this experiment, guide radius
associated with each guide point produced by fuzzy
reasoning was set to 90 m). As shown in Fig. 13b,
safety distance to threat 1 is 6.50 Km, and safety
distance to threat 2 is 8.60 Km produced by cloud
model based uncertainty reasoning. Path A1 was pro-
duced by the automated A* planner, while the three
lines A2, A3 and A4 were provided by CDGA* plan-
ner. It can be observed that there are few differences
between these safety distances provided by these two
different reasoning strategies. However, uncertainty
reasoning based on cloud model considers both fuzzi-
ness of the traditional fuzzy logic and randomness
of probability reasoning. The parameter He can reflect
the uncertain reasoning process of the driving factors
to the location of guide point. Reasoning results of the
uncertainty reasoning strategy are random, effectively
reflecting human’s uncertainty about locations of the
guide points, and therefore, they are more reasonable
and consistency with human thinking. The fuzzy rea-
soning strategy could be treated as an approximation
to the uncertainty reasoning strategy, and the latter can
achieve high levels of simplicity and robustness [20].
Table 4 presents comparisons of A* planner, FDGA*
planner and CDGA* planner.

From Table 4, we can observe that costs of the paths
provided by CDGA* planner are smaller than the
corresponding paths provided by the FDGA* planner,
and the CDGA* planner can be faster than FDGA*
planner. The CDGA* planner can provide a bigger
search space and costs of its resultant path solution
could be lower. With respect to the reason for the
CDGA* planner could be faster than FDGA*, one rea-
son may be that generating a path passing through a
predefined midcourse waypoints in obstacle rich envi-
ronments may requires more time than generating a
path passing through guide fields due to turn angle
constraint. Therefore, the CDGA* method can pro-
duce a more robust search space. It provides a better
way in implementing human knowledge and is more
effective than the FDGA* method.

4.3 Discussions

The proposed method can also work well in the pres-
ence of static, pop-up, and dynamic obstacles and
threats. It has been pointed out that SAS path planner
works very well in dynamic environments [4, 27].
The DGA* planner is based on SAS path planner,
and dynamic interactions with human operator is well

Table 4 Performance comparisons of three methods

Algorithm Time(s) HTime(s) Size (open) Size (close) Path cost Cost error Jlength (Km) Jsmmoth

A* 145.45 0.00 13454 4327 228.62 1.00 523.28 2.46

FDGA* 35.17 3.10 9952 496 233.21 1.02 524.73 2.64

58.89 06.24 12710 725 240.07 1.05 553.37 3.44

42.56 6.10 10537 533 238.72 1.05 548.62 3.46

CDGA* 29.20 3.04 5162 339 230.28 1.01 522.05 2.30

44.02 6.26 11401 634 238.81 1.05 544.27 3.01

33.54 6.15 8198 518 236.93 1.04 543.59 3.27
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admissible. Therefore, the proposed method is suitable
for real time path planning in dynamic environments.

5 Conclusion

This paper develops an effective human-in-the-loop
path planning strategy combining human’s intelli-
gence with optimization algorithm’s computational
speed, and proposes a DGA* path planner based on
cloud model. The developed DGA* planner can effec-
tively utilize the heuristic information provided by
guide points to judge search direction, and return
the optimal path passing through guide fields. Using
online reasoning based on cloud model to generate
instant guide fields, human’s judgments, experience,
and high level knowledge are effectively implemented
to guide the DGA* planner to avoid map dead-ends,
fulfilling the real-time requirements of path planning
and providing a new idea in the research of path
planning.

As comparative experiments demonstrate, the pro-
posed method is much more effective than the auto-
mated A* planner, and it can obtain good solu-
tions reflecting mission scenarios. Compared with
the human-machine cooperative strategy by using
operator-specified guide points, the proposed method
can implement human knowledge more effectively,
and require less human workload. Most crucially,
paths generated by the proposed method under dif-
ferent complex battlefield circumstances can real-
ize dynamic threat avoidance and reflect personal
preferences.

As for future research, a possible direction could
be further study of the analytic form of the hybrid
process. Design of the human-machine cooperative
path planning system also has many issues to resolve:
how much human-in-the-loop interactions should be
required or permitted, and how intelligently to intro-
duce human intelligence to reduce risks caused by
human mistakes. Moreover, how to make computer
algorithms have intuitive decision making ability as
humans do should also be further studied, may be
some research can be done on machine learning or so
to solve such problems.
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