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Abstract This paper applies two Neural Network
(NN)-based image features Zhao et al. (2012) to solve
the problem of decoupling the rotational velocities
around x and y axes of camera frame in robotic visual
servoing systems. Based on these two image features
and the other four image features used in previous
work Chaumette (IEEE Trans. Robot. 20(4):713–723
2004), the interaction matrix has a maximal decou-
pled structure and thus the singularity of interac-
tion matrix is avoided in Image-Based Visual Servo-
ing (IBVS). The analytical form of depth is given
by using classical geometrical primitives and image
moment invariants. The IBVS Proportional Derivative
(PD) controller is then designed and the stability of
the controller is proved by using Lyapunov method.
The tracking performance is thus enhanced for a
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6 degree-of-freedom (DOF) robotic system. Experi-
mental results on the robotic system are provided to
illustrate the effectiveness of the proposed method.

Keywords IBVS · Robotic systems · Image moment
invariants · Interaction matrix · Neural network

1 Introduction

“Visual Servoing” has been widely used to make
robotic systems increasingly dexterous and fast to
work in its surrounding environment in the past
two decades. Based on the error signal definition,
visual servoing is classified into two major categories:
Position-Based Visual Servoing (PBVS) and Image-
Based Visual Servoing (IBVS) [3, 4]. In IBVS, one of
the open questions is to determine a set of image fea-
tures in control scheme so that the decoupled behavior
of the system is obtained [5]. Generally speaking, the
image features used as input of control scheme are the
coordinates of points, or the parameters describing the
configuration of image segments such as straight lines
and ellipses. In the recent years, the researchers in
visual servoing adopted image moments, which have
been commonly used for pattern-recognition in com-
puter vision [6–8], for control scheme design. The
main reason of using image moments for visual ser-
voing is that they provide a generic representation of

mailto:wfxie@encs.concordia.ca
mailto:ymnzhao@yahoo.com
mailto:siningliu@live.ca
mailto:wtt 624@163.com


240 J Intell Robot Syst (2015) 78:239–256

any object, with simple or complex shape [2]. Fur-
thermore, image moments can be computed easily
from binary or segmented image or from a set of
extracted points of interest, disregarding the object
shape complexity. In addition, the judicious combi-
nation of image moments is invariant to some trans-
formations such as 2D translation, 2D rotation and
scale. This property is of great value in visual servoing
[5]. The main question in choosing the image fea-
tures for visual servoing is that how to combine those
image features to obtain adequate form of interaction
matrix for visual servoing systems. The basic strategy
is just stacking [3]. However, the inappropriate com-
binations of image features may cause some potential
convergence problems, such as local minimum and
coupled image features that lead to inadequate robot
trajectories [9].

Some researchers have tried to use different image
features to solve this problem [2, 5, 10, 11]. In [2],
six independent image features are adapted such that
the corresponding interaction matrix has a maximal
decoupled structure and thus the robustness and the
numerical stability of robotic systems are improved
remarkably [12, 13]. In [14, 15], laser points are used
as image features to track the objects without enough
detectable geometric features. In [10], the 2-D features
and 3-D features are combined to decouple the rota-
tion form the translation, and also to ensure the visibil-
ity of the object in the field of view (FOV) of camera.
The global stability of the system is achieved by only
using the measurement information from the current
and desired images. In [16], the authors selected sub-
sets of image features most relevant for determining
robot pose variations along each of six degrees of free-
dom of camera by using a statistical measurement of
variable interdependence.

The desired behaviors for visual serving systems
can be obtained by determining the image moment
invariants to translational velocity and rotational
velocity around axes of the camera frame. In [2], the
image moment invariants to 2-D translation, to 2-D
rotation and to scale are exploited to decouple ωx

and ωy (the rotational velocities around axes x and
y of camera frame respectively) from other DOFs. In
[5], the combinations of the image moment invari-
ants are proposed and two of them are selected as
image features to control ωx and ωy . It is noticed that
the values of Lωxand Lωy in the interaction matrix
J|| = [

0 0 0 Lωx Lωy 0
]

[2, 5] are zero for centered

symmetrical shape object, which causes singularity
problem of interaction matrix. In fact, this problem
occurs in almost all of Hu’s invariants. Hence how
to choose two new image features for the objects
with both centered symmetrical and non-symmetrical
shapes to decouple ωx andωy remains a major chal-
lenge in visual servoing. Furthermore, in the previous
researches [2, 5, 17], the depth of target object is
assumed to be constant [17] or is calculated from the
planar object equation expressed in desired position
[2, 5]. This assumption simplifies the mathematical
development and such an approximation is generally
accurate enough in practice because of the robust-
ness of the visual servoing scheme to modeling errors
[2]. However, for large displacement visual servoing,
this assumption will cause remarkable error of interac-
tion matrix and singularity problem of visual servoing.
Therefore, an accurate estimation of depth online is
an important issue for large displacement IBVS. It is
known that NN has very strong ability of approaching
generalization and has been widely applied in func-
tion approximation and data compression, prediction,
nonlinearities compensation, etc. [16, 18–21].

In this paper, two neural network-based image fea-
tures [1] are adopted to decouple ωx and ωy in a
6 DOF robotic visual servoing system. In addition,
the accurate estimation of depth online for planar
object is achieved. Therefore, the interaction matrices
related to the chosen image features can be accurately
determined based on the proposed scheme. Hence the
visual servoing performance is enhanced significantly.
In our previous research [1], the simulation has been
carried out to validate the algorithm on tracking the
rectangle and whale shape objects. In this paper, we
have conducted experiment to validate the proposed
algorithm on tracking the star and whale shape objects
in a 6-DOF robotic system. In addition, the stability of
the proposed controller is proved by using Lyapunov
method.

This paper is organized as follows. In Section 2,
six image features based on image moments are intro-
duced. In Section 3, the NN is designed to map the
relationship between the image moment invariants and
the rotational angles around axes x and y of cam-
era frame with respect to the desired position. The
depth estimation of planar object is given in Section 4.
The IBVS controller is designed and stability analy-
sis is given in Section 5. The experimental results are
given in Section 6 to validate the proposed method.
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Finally, the conclusion and future work are presented
in Section 7.

2 IBVS Using Image Moments

In this section, the development of IBVS using image
moment features is introduced for 6-DOF robot sys-
tems. The eye-in-hand robotic system configuration is
composed of a 6-DOF robot and a camera mounted
on the robot end-effector as shown in Fig. 1, where
H denotes the transformation matrix between two ref-
erence frames. From the images, the image moments
are computed so that image features are extracted.
The proposed visual servoing control block diagram is
shown in Fig. 2, where sdand s present the desired and
current image features respectively and u is the con-
trol signal sent to robot controller. In our method, the
off-line trained neural network can estimate the rota-
tional angles around x and y axes of camera frame at
the desired position. Based on the image features and
estimated rotational angles, the depth can be estimated
on- line. The errors of image feature are sent to image-
based controller. The generated control signal drives
the robot end-effector to approach the desired pose.

To accomplish IBVS for such a robotic system, six
image features are chosen for control scheme design.
The derivation of interaction matrix based on the
image features is given as follows.

2.1 Interaction Matrix of Image Moments

To understand the proposed algorithm, some back-
ground knowledge on the image moments [2] is

Fig. 1 Robotic eye-in-hand system configuration

presented in the following. For a dense object in the
image, its two-dimensional momentsmij and central
moments μij of order i + j are defined by

mij =
∫ ∫

R(t)

xiyj dxdy (1)

μij =
∫ ∫

R(t)

(x − xg)
i(y − yg)

j dxdy (2)

where R(t) represents the part of object projection
in the image plane and (xg, yg) are the centroid
coordinates in image plane (xg = m10/m00, yg =
m01/m00). In the case of planar object, the equation
of object surface in camera frame F : X − Y − Z at
instant t is given by

Z = k1X + k2Y + Z0

where k1, k2are coefficients and Z0 is the coordinate
of the intersection point of the object plane and camera
optical axis. In visual servoing [2], one has

1

Z
= Ax + By + C (3)

where A = − k1
Z0

, B = − k2
Z0

, C = − 1
Z0

, and x, y are
the coordinates of point in image plane corresponding
to 3D point(X, Y, Z) in camera frame. From Eq. 1, it
is known that onlyR(t)relates to the timet in mij . By
taking derivative of Eq. 1 with time and using the def-
inition of “Contour integration” [2], the relationship
between the velocities of x = (x, y)in image plane
and the velocity screw of camera is obtained

ṁij = Jmij ṙ (4)

where the velocity screw of the camera is ṙ =
[
vx vy vz ωx ωy ωz

]T
, the interaction matrix is

Jmij = [
mvx mvy mvz mωx mωy mωz

]
(5)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

mvx =−i(Amij + Bmi−1,j + Cmi−1,j+1) − Amij

mvy =−j (Ami+1,j−1 + Bmij + Cmi,j−1) − Bmij

mvz =(i+j+3)(Ami+1,j +Bmi,j+1+Cmij )−Cmij

mωx =(i + j + 3)mi,j+1 + jmi,j−1

mωy =−(i + j + 3)mi+1,j − imi−1,j

mωz = imi−1,j+1 − jmi+1,j−1

Similarly for the central moments μij , one obtains

μ̇ij = Jμij ṙ (6)

where the interaction matrix is

Jμij = [
μvx μvy μvz μωx μωy μωz

]
(7)
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Fig. 2 Block diagram of
control system

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μvx = −(i + 1)Aμij − iBμi−1,j+1

μvy = −jAμi+1,j−1 − (j + 1)Bμij

μvz = −Aμωy + Bμωx + (i + j + 2)Cμij

μωx = (i + j + 3)μi,j+1 + ixgμi−1,j+1

+ (i + 2j + 3)ygμi,j − 4i
(

m11
m00

− xgyg

)
μi−1,j

− 4j
(

m02
m00

− y2
g

)
μi,j−1

μωy = −(i + j + 3)μi+1,j − iygμi+1,j−1

+ (2i + j + 3)xgμi,j + 4i
(

m20
m00

− x2
g

)
μi−1,j

+ 4j
(

m11
m00

− xgyg

)
μi,j−1

μωz = iμi−1,j+1 − jμi+1,j−1

In conventional IBVS, A, B and C are treated as
constants during visual servoing and this assumption
is applicable in the vicinity of the desired position.
Whereas, A, B and C will change due to the cam-
era motion. The calculation of A, B and C will be
discussed in Section 4.

2.2 Choice of Image Features

Although the normalized features proposed in [5]
allow obtaining the better decoupling results on three
translational motions, the improvement on the overall
decoupling performance is not as significant as those
related to the rotational motions. Three image features
related to the translational motions and one feature
related to orientation angle are selected as the same as
those in [2] due to their less computational demand.
Two Neural Network (NN)-based image features are
expected to provide the decoupled rotational velocities
around x and y axes of camera frame and to remedy
the performance of using those non-normalized fea-
tures. The four image features are selected as: a =
m00 the area of the image, xg, yg the coordinates

of centroid, and α the orientation angle. As shown
in Fig. 3, the orientation angle α is defined [7] as

α = 1
2 arctan

(
2μ11

μ20−μ02

)
. The details on the interac-

tion matrix related to four image features are referred
to [2].

The other two image features are determined such
that the interaction matrix has maximal decoupled
structure and minimal nonlinearities [5]. In fact, the
interaction matrices would have such form as

Jmx = [
0 0 0 cx 0 0

]
(8)

Jmx = [
0 0 0 0 cy 0

]
(9)

where cx and cy are constant. To address this chal-
lenge, it is assumed that there exist two image moment
invariants (to 2D translation, to 2D rotation and to
scale), which are referred to as virtual image moments
and denoted as mx and my respectively. It is also
assumed thatmxand myhave such form as follows

mx = fx(β) = cxβ (10)

my = fy(γ ) = cyγ (11)

where β, γ are the rotational angles around x and y

axes of the desired camera frame respectively. If β and

),( gg yx

Fig. 3 Orientation of an object defined as the orientation of the
ellipse
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γ are available, mx and my can be easily calculated
during visual servoing. Hence the problem is how to
estimate β and γ based on the image, which will be
given in Section 3.

2.3 Interaction Matrices Related to Six Image
Features

The rotational matrix from camera current frame to its
desired frame is expressed as

Rxyz = Rz(α)Ry(γ )Rx(β)

=
⎡

⎣
cγ cα (sβsγ cα−cβsα) (cβsγ cα+sβsα)

cγ sα (sβsγ sα+cβcα) (cβsγ sα−sβcα)

−sγ sβcγ cβcγ

⎤

⎦

where β, γ , αare Euler angles around x, y, z of the
camera desired frame. The rotation order is x → y →
z, which coincides with the neural network training
procedure in Section 3. It is known that

[
dβ/dt
dγ /dt
dα/dt

]

=
[

cγ cα (sβsγ cα − cβsα) (cβsγ cα + sβsα)
cγ sα (sβsγ sα + cβcα) (cβsγ sα − sβcα)
−sγ sβcγ cβcγ

]

×
[

ωx

ωy

ωz

]

where
[
ωx ωy ωz

]T
is an angular velocity vector

expressed in camera current frame.
When mx and my are chosen as image features, the

interaction matrix can be computed by taking the time
derivatives of mxand my :

dmx

dt
= cx

dβ

dt
= ωxcγ cα + ωy(sβsγ cα − cβsα)

+ωz(cβsγ cα + sβsα) (12)

dmy

dt
= cy

dγ

dt
= ωxcγ sα + ωy(sβsγ sα + cβcα)

+ωz(cβsγ sα − sβcα) (13)

where cαis shorthand for cos α, sα for sin α, and
so on; α is rotational angle around z axis of cam-
era desired frame. ωx , ωy , ωz are angular velocities
around x, y, z axes of camera current frame.

The interaction matrices related to the two image
features mx and my are

Jmx = [0 0 0 cxcγ cα cx(cβsγ sα − sβcα)

cx(cβsγ cα + sβsα)] (14)

Jmy = [
0 0 0 cycγ sα cy(sβsγ sα + cβcα)

cy(cβsγ sα − sβcα)
]

(15)

It is clear that in the vicinity of camera desired position
(α = β = γ = 0), the interaction matrices can be
approximated as follows:

Jmx = [
0 0 0 cx 0 0

]
(16)

Jmx = [
0 0 0 0 cy 0

]
(17)

Hence the interaction matrices related to the two
image features have the same forms as Eqs. 8 and 9 in
the vicinity of camera desired position. From [5], the
interaction matrices related to image features a, xg, yg

and α are as follows

Jxg = [−1/Zg 0 xgvz xgωx xgωy yg

]

Jxg = [
0 −1/Zg ygvz ygωx ygωy −xg

]

Jxg = [−aA −aB a(3/Zg − C) 3ayg −3axg 0
]

Jα = [
αvx αvy αvz αωx αωy −1

]

The definitions of the variables xgvz, xgωx , xgωy , ygvz,
ygωx , ygωy , αvx , αvy , αvz, αωx , αωy , αωz are referred
to [5]. By stacking the interaction matrices related
toa, xg, yg, mx, my and α, one obtains the overall
interaction matrix of six image features at camera
current position as follows

Jimage =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

−1/Zg 0 xgvz xgωx xgωy yg

0 −1/Zg ygvz ygωx ygωy −xg

−aA −aB a(3/Zg − C) 3ayg −3axg 0
0 0 0 cxcγ cα cx(sβsγ cα − cβsα) cx(cβsγ cα + sβsα)

0 0 0 cycγ sα cy(sβsγ sα + cβcα) cy(cβsγ sα − sβcα)

αvx αvy αvz αωx αωy −1

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

(18)
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The overall interaction matrix of six image features at
camera desired position (β = γ = 0) is

Jimage =

⎡

⎢⎢⎢⎢⎢⎢
⎣

−1/Zg 0 xgvz xgωx xgωy yg

0 −1/Zg ygvz ygωx ygωy −xg

−aA −aB a(3/Zg − C) 3ayg −3axg 0
0 0 0 cx 0 0
0 0 0 0 cy 0

αvx αvy αvz αωx αωy −1

⎤

⎥⎥⎥⎥⎥⎥
⎦

(19)

3 Estimation of Rotational Angles Around x and y
Axe of Camera Frame

3.1 Neural Network Estimation

It is noticed that the following image moments are the
invariants to 2D translation, to 2D rotation [5]

I1, I2, I3, I4, I5, I6, I7, I9, I13I14, I15 (20)

The analytical forms of I1, I2, I3, I4, I5, I6, I7, I9,
I13I14, I15 are given in the Appendix of [5]. On the
other hand, several combinations of the image moment
invariants in Eq. 19 are presented in order to normalize
the image moment invariant for the same shape object,
which are given as follows

c1 = I1

I2
, c2 = I3

I4
, c3 = I6

I6
, c4 = I7

I6
,

c6 = I9

I6
, c9 = I13

I15
, c10 = I14

I15
, (21)

where c1, c2, c3, c4, c6, c9, c10 are invariant to 2D
translation, to 2D rotation, and to scale, i.e., c1, c2, c3,
c4, c6, c9, c10 are only the functions of β, γ when pla-
nar object is parallel to the image plane of camera at
the desired position. However, we found out thatc1, c2,
c3 and c4 has nonlinear relationship with β, γ . In this
paper, NN is used to map the nonlinear relationship
between c1, c2, c3, c4 and β, γ , i.e.,
β = fNNX(c1, c2, c3, c4) and γ = fNNY (c1, c2, c3, c4)

If β, γ are available, the virtual image moments can
be calculated by Eqs. 10 and 11. To estimate β, γ

from c1, c2, c3, c4, NN needs to be trained in advance.
As shown in Fig. 4, the object plane is parallel to the
image plane of camera at the desired position, i.e.,
β = γ = 0. To acquire the data sets to train NN
easily, the origin of camera frame is fixed and β, γ

the rotational angles around axes x and y of the cam-
era desired frame are changing. The images of the

0X

0Y

0Z

planar object

camera

1Z

dZ

O
cX

cY

Fig. 4 Acquisition of data sets for training NN

planar object are taken at each specific β, γ and then
image moment invariants c1, c2, c3, c4 as well as the
image area ad,βγ are calculated over the certain range
of β, γ . After being trained by using the acquired data
sets, the NN is used to map the relationship between
image moment invariants c1, c2, c3, c4 and β, γ . In
Fig. 4, F0 : X0 −Y0 −Z0 andFi : Xc −Yc −Zc are the
camera desired frame (i.e., β = γ = 0) and the cam-
era current frame (i.e., β �= 0 or γ �= 0) respectively.
Zd is the depth at the desired position.

As shown in Fig. 5, the NN of a multi-layer per-
ceptron (MLP) [24] is used to map the nonlinear
relationship of c1, c2, c3, c4 and β, γ . The MLP struc-
ture is composed of one input layer, one hidden layer
with m hidden neurons, and one output layer. The
inputs of NN are the image moment invariant c1, c2,
c3, c4 and the outputs of NN are β̂, γ̂ which are the
estimated values of rotational angles around axes x

and y of camera desired frame respectively.
The nonlinear functions mapped by NN are denoted

as follows

β̂ = f2

⎛

⎝
m∑

i=1

wo
i,1f1

⎛

⎝
m∑

l=1

4∑

j=1

wh
j,lcj

⎞

⎠

⎞

⎠

=
m∑

i=1

wo
i,1f1

⎛

⎝
m∑

l=1

4∑

j=1

wh
j,lcj

⎞

⎠

γ̂ = f2

⎛

⎝
m∑

i=1

wo
i,2f1

⎛

⎝
m∑

l=1

4∑

j=1

wh
j,lcj

⎞

⎠

⎞

⎠

=
m∑

i=1

wo
i,2f1

⎛

⎝
m∑

l=1

4∑

j=1

wh
j,lcj

⎞

⎠ (22)



J Intell Robot Syst (2015) 78:239–256 245

1

2

3

m-1

m

1

2

1

2
1c

2c

3c

4c

input

hidden

output

4

hw 1,1

hw 2,1

h
mw ,4

ow 1,1

o
mw 1,

ow 1,2

o
mw 11),1(

h
mw )1(,4

Fig. 5 NN for estimating β and γ

where wo
i,1, wo

i,2andwh
j,l are the synopsis weights of

NN, f1(•) is the activation function for hidden layer
nodes, f2(•) is the activation function for the output
layer.

In this paper, the NN is trained by using Mat-
lab2008a Neural Networks Toolbox. It is noted that if
the NN is trained for a certain shape planar object, it
can be reused to estimate the rotational angles for the
similar shape objects in visual servoing.

3.2 NN Generalization and Verification

One of the major advantages of NN is its ability of
generalization. The generalization of NN stands for
the ability to have the outputs of the network when
the inputs are not in the training set. In this paper,
once the NN has been trained, it can be used as
an estimator of rotational angles around axes x and
y of camera desired frame within the training area.
The experiments had been carried out to validate NN
in estimating rotational angles around axes x and
y of camera desired frame by using image moment
invariants.

4 Depth Estimation

The depth estimation is a crucial step to obtain
the accurate interaction matrix. In this section, the
detailed derivations of depth estimation and the equa-
tion of planar object in the current camera frame are
given. The camera frames for depth estimation are
defined in Fig. 6. In this figure, Fo : Xo − Yo − Zo

is the camera desired frame and F
′
c : X

′
c − Y

′
c − Z

′
c is

the camera current frame. F
′
o : X

′
o − Y

′
o − Z

′
o is a sub-

sidiary frame which is parallel to frameFo. We define
β = γ = 0 at camera desired frame, where the pla-
nar object is both centered and parallel to the image
plane of camera. In addition, two subsidiary camera
frames are defined in convenience when describing
the motion of camera mounted on robot end-effector.
Xc −Yc −Zc is the camera current frame which is par-
allel to X

′
c − Y

′
c − Z

′
c and the origin of Xc − Yc − Zc

coincides with that of X0 − Y0 − Z0. Similarly, X
′
o −

Y
′
o − Z

′
o the camera desired frame which is parallel

to X0 − Y0 − Z0 and their origins coincide. In case
of binary image, ad,00 indicate the image areas at the
desired position. Hence ac,00 indicates the image area
for the parallel case with camera desired frame and
ac,βγ for the non-parallel case respectively. It is well
known that ac,00 is invariant to all cameras’ motions
except the translation along the optical axis of cam-
era, i.e., ac,00 only varies with translation along optical
axis of camera frame). If Ar is the area of the object,
we have the following equation when the object and
image planes are parallel:

Ar = ad,00

Z2
d

= ac,00

Z2
i

i.e.,Zi = Zd

√
ac,00

ad,00

Assuming ac,βγ can be used as the approximate
value of ac,00, we obtain:

Zi = Zd

√
ac,βγ

ad,00

Since ac,βγ = m′
00,βγ can be directly measured from

the current image, such that the current depth can be
estimated as:

Zi = Zd

√
ac,βγ

ad,00
(23)

The equation of planar object is expressed in the
current camera frame F

′
c:

Z
′
c = A

′
X

′
c + B

′
Y

′
c + Z

′
i (24)

On the other hand, Z
′
c can be expressed as a contin-

uous function of its image coordinates x and y [2]

1

Z
′
c

= Ax + By + C (25)

From Eqs. 23 and 24, one obtains

A = −A
′

Z
′
i

, B = −B
′

Z
′
i

, C = 1

Z
′
i

(26)
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Fig. 6 Depth estimation
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It is noticed that the equation of the planar object
expressed in frame F

′
0 is given by Z

′
0 = Zi. Mean-

while, the rotation matrix from F
′
c to F

′
0 is denoted

as

Rxyz = Rz(α)Ry(γ )Rx(β)

=
[

cγ cα (sβsγ cα−cβsα) (cβsγ cα+sβsα)
cγ sα (sβsγ sα+cβcα) (cβsγ sα−sβcα)
−sγ sβcγ cβcγ

]

where cαis shorthand forcos α, sαforsin α, and so
on. Suppose that S is a point on planar object and

S
(
X

′
0, Y

′
0, Z

′
0

)
and S(Xc, Yc, Zc) are the coordinates

expressed in frameF
′
0 and current camera frame F

′
c

respectively. One has

⎡

⎣
X

′
0

Y
′
0

Z
′
0

⎤

⎦ =
[

cγ cα (sβsγ cα − cβsα) (cβsγ cα + sβsα)
cγ sα (sβsγ sα + cβcα) (cβsγ sα − sβcα)
−sγ sβcγ cβcγ

] ⎡

⎣
X

′
c

Y
′
c

Z
′
c

⎤

⎦

Because of the fact thatZ
′
0 = Zi , one obtains

Z
′
0 = Zi = −sγX

′
c + sβcγ Y

′
c + cβcγZ

′
c

Z
′
c = sγ

cβcγ
X

′
c − sβ

cβ
Y

′
c + Zi

cβcγ
(27)

From Eqs. 23 and 27, one has

A
′ = sγ

cβcγ
, B

′ = − sβ

cβ
, Z

′
i = Zi

cβcγ
(28)

From Eqs. 25 and 27, one obtains

A = − sγ

Zi

, B = sβcγ

Zi

, C = cβcγ

Zi

A, B and Care used to calculate the interaction matrix.

5 IBVS Controller and Stability Analysis

5.1 IBVS Controller

As mentioned in Section 2, the image features are
chosen as follows

s = [
xg yg a mx my α

]T

Based on chosen image features, a proportional con-
trol law is given by

u = −KĴ−1
image�s (29)

where u is the camera screw velocity sent to robot
controller, K is the proportional gain or error conver-
gence rate (K>0), �sis the error of image features
and Ĵimage is the estimated interaction matrix. The
desired image features are denoted as

sd = [
xgd ygd ad mxd myd αd

]T

Thus the errors of image features are �s = s − sd .

5.2 Stability Analysis

Define V = 1
2�sT �s as a Lyapunov function candi-

date, where �sis the error vector of image features.
The time derivative of the Lyapunov function is

V̇ = �sT �̇s = �sT(−KJimageĴ
−1
image)�s =

−K�sT (JimageĴ
−1
image)�s (30)
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Fig. 7 PUMA 260 hardware components and connections of controller unit

where Jimage is interaction matrix; Ĵimage is estimated
interaction matrix based on the proposed algorithm.
Since the interaction matrix related to the chosen
image features is accurate, it is reasonable to assume
Jimage

∼= Ĵimage. Hence we have JimageĴ
−1
image

∼= I ,
which is an identity matrix (a positive definite matrix).
Thus, we have V̇ ≤ 0. By using Lyapunov stability
theorem, we can infer that the system is stable and
the local convergence is guaranteed when we have
accurate enough.

5.3 Summary of the Proposed Algorithm

• Acquisition of data sets for training NN In the
training area, the images of the object are taken
at each integer β, γ and then the image moment
invariantsc1, c2, c3, c4 and the image area ad,βγ

are computed. At this stage, six desired image
features sd at position (β = γ = 0) are also
obtained.

• NNtraining At this stage, based on the data sets
in the first stage, the NN with input of image
moment invariantsc1, c2, c3, c4 is trained as shown
in Fig. 2.

• System integration The trained NN can be inte-
grated into the robotic control system and IBVS

control signal is calculated by Eq. 23. It is noticed
that β̂, γ̂ (the output of NN in Fig. 2) are used
to compute two virtual image moments mx, my as
well as to estimate the parameters A, B and C in
Section 4. This implies that the equation of planar
object can be obtained on-line and thus the overall
interaction matrix is updated during visual servo-
ing. As a result, the control performance of visual
servoing is improved.

6 Experimental Results

The proposed algorithm has been validated on the
robotic visual servoing system consisting of a 6 DOF
robot and a camera installed on the end effector. The
robot is PUMA 260 [22], which has been retrofitted
with motion controller unit shown in Fig. 7. And the
camera is JAI CM-030 GE [23]. The image process-
ing, image moment calculation and IBVS controller
are implemented in Labview environment in the server
computer. In the following experiments, the sampling
time is set as 50 ms, and the convergence rate K is
tuned as 0.6 by trial and error method. The desired
position and two initial positions of camera are shown
in Fig. 8. Two objects are tested: a simple centered

Fig. 8 Desired position and
two initial position: a
Desired position of camera
b Initial position 1 of
camera c Initial position 2
of camera

(a) (b) (c)
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Table 1 Data set used
for training NN Angles(◦) Image moment invariant

β γ c1 c2 c3 c4

−40 −40 −2.51 8.64 0.86 378.76

−40 −20 −2.44 9.89 0.76 42.12

−40 0 −1.94 6.83 1.79 18.34

−40 20 −204 7.58 1.35 110.89

−40 40 −2.21 9.64 0.96 218.23

−30 −40 −1.78 2.31 1.28 16.55

−30 −20 −2.03 6.33 5.28 33.54

−30 0 −1.83 5.67 3.31 56.79

−30 20 −1.93 4.31 1.17 127.66

−30 40 −38.07 42.36 26.86 308.41

−20 −40 −1.67 1.86 1.09 95.81

−20 −20 −1.84 5.07 1.27 65.21

−20 0 −2.19 9.25 4.16 10.76

−20 20 −2.04 7.41 1.56 42.42

−20 40 −1.56 4.32 1.15 13.01

−10 −40 −1.67 2.38 1.19 15.31

−10 −20 −1.43 2.35 1.17 15.55

−10 0 −1.78 2.31 1.28 16.55

−10 20 −2.03 6.33 5.28 13.54

−10 40 −1.72 2.04 1.11 14.57

0 −40 −1.471 1.14 1.26 40.11

0 −20 −1.60 1.59 1.41 41.28

0 0 −1.98 11.51 19.93 70.01

0 20 −1.76 1.42 1.36 43.28

0 40 −1.52 1.03 1.14 43.01

10 −40 −1.66 2.37 1.15 15.11

10 −20 −1.44 2.45 1.16 15.57

10 0 −1.76 2.37 1.25 16.65

10 20 −2.08 6.43 5.56 13.63

10 40 −1.75 2.12 1.14 14.65

20 −40 −1.65 1.89 1.12 95.86

20 −20 −1.86 5.69 1.21 65.19

20 0 −2.25 9.31 4.31 10.76

20 20 −2.12 7.37 1.78 42.48

20 40 −1.58 4.38 1.17 13.06

30 −40 −1.76 2.40 1.31 16.57

30 −20 −2.11 6.36 5.29 33.58

30 0 −1.88 5.69 3.35 56.78

30 20 −1.99 4.35 1.23 127.58

30 40 −38.11 42.39 26.87 308.67

40 −40 −2.58 8.69 0.87 378.74

40 −20 −2.46 9.87 0.79 42.18

40 0 −1.93 6.82 1.75 18.38

40 20 −210 7.59 1.38 110.81

40 40 −2.18 9.67 0.93 218.56
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Table 2 Neural network estimation results

Desired angles (◦) Image moment invariant Estimated NN (◦) Errors (◦)

β γ c1 c2 c3 c4 β̂ γ̂ �β �γ

40.5 −40.5 −2.31 9.54 0.97 406.71 −40.52 −40.51 0.02 0.01

−40.5 −20.5 −2.21 9.34 0.92 203.86 −40.62 −20.52 0.12 0.02

−40.5 0.5 −1.94 6.83 1.79 18.34 −40.49 0.62 −0.01 −0.12

−40.5 20.5 −2.24 9.04 0.94 401.65 −40.53 20.49 0.03 0.01

−40.5 40.5 −2.27 9.09 0.96 408.83 −40.70 40.49 0.20 0.01

−30.5 −40.5 −16.23 3.36 12.11 16.57 −30.49 −40.47 −0.01 −0.04

−30.5 −20.5 −2.24 4.78 5.64 30.54 −30.52 −20.42 0.02 −0.08

−30.5 0.5 −2.03 6.33 5.28 33.54 −30.42 −0.52 −0.08 0.02

−30.5 20.5 −1.93 4.31 1.17 27.66 −30.49 20.51 −0.01 −0.01

−30.5 40.5 −32.07 28.36 26.86 308.41 −30.44 40.50 −0.06 0

−20.5 −40.5 −1.77 1.86 1.09 90.81 −20.56 −40.34 0.06 −0.16

−20.5 −20.5 −1.84 5.07 1.27 65.21 −20.44 −20.52 −0.06 0.02

−20.5 0.5 −2.19 9.25 4.16 10.76 −20.43 0.50 −0.07 0

−20.5 20.5 −2.04 7.41 1.56 42.42 −20.41 20.51 −0.09 −0.01

−20.5 40.5 −1.56 4.32 1.15 93.01 −20.50 40.51 0 −0.01

−10.5 −40.5 −1.65 2.35 146 17.42 −10.49 −40.51 −0.01 0.01

−10.5 −20.5 −15.9 2.49 1.41 15.89 −10.53 −20.52 0.03 0.02

−10.5 0.5 −1.78 2.31 1.25 16.55 −10.56 −0.47 0.06 −0.03

−10.5 20.5 −2.03 2.33 328 33.54 −10.54 20.57 0.04 0.07

−10.5 40.5 −1.78 2.31 1.28 16.55 −10.49 40.51 −0.01 −0.01

0.5 −40.5 −1.46 1.11 1.34 40.18 0.34 −40.49 0.16 −0.01

0.5 −20.5 −1.76 1.42 1.36 41.28 0.46 −20.47 0.04 −0.03

0.5 0.5 −1.98 11.51 19.93 47.03 0.51 0.52 −0.01 −0.02

0.5 20.5 −1.66 1.47 1.28 43.23 0.49 20.51 0.01 −0.01

0.5 40.5 −1.51 1.07 1.11 43.09 0.51 40.51 −0.01 −0.01
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Fig. 9 Neural network estimation error a for β b for γ
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(a) (b)

Fig. 10 Desired image (a) and initial image (b) of Task 1

symmetrical planar object (with star shape) and a
complex nonsymmetrical planar object (with whale
shape). The design of NN mapping the relationship
between moment invariantsc1, c2, c3, c4 and β, γ is a
key step. The number of hidden neurons in the hidden
layer is set as 40. The activation function f1(•)used
for hidden layer nodes is hyperbolic tangent sigmoid,
and the activation function f2(•)used for the output
layer is linear function.

The acquisition system configuration of data sets
for training NN is shown in Fig. 4, which consists
of a camera JAI CM-030 GE and a planar object. At
the desired position, the object plane is parallel to
the image plane (i.e., β = γ = 0), and the depth
of object centroid Zd = 100 (mm). The ranges of
rotational angles βand γ around the camera desired
frame are ±40ºrespectively. The training area is
divided into small grids by (1º×1º) in β and
γ directions. The images of the two shapes of pla-
nar objects are taken at each integer βandγ within
the training area. Then the data sets for training NN
are computed. Table 1 shows the portion of data sets

10 20 30 40 50 60 70 80 90 100
0
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200

250

300

350

Iteration

Zi

(mm)

Real depth
Estimated depth

Fig. 11 Depth estimation result of Task 1

for training NN, and Table 2 shows the estimation
results of the rotational angles around axesx and y of
camera desired frame by the trained NN. In Table 2,
�β = β − β̂ and �γ = γ − γ̂ represent the esti-
mation errors of β and γ respectively. Figs. 9–10
demonstrate the estimation errors of β andγ in the
training area respectively. From Figs. 9a and b, it is
clear that the maximal absolute errors of estimation
are|�βmax| = 0.2◦ |�γmax| = 0.16◦. In order to
validate the proposed scheme, the tasks with two dif-
ferent initial camera positions are carried out. In the
following experiments, we choosecx = cy = 1.

The camera desired position and two initial posi-
tions in the world reference frame are given as

Td =
⎡

⎢
⎣

1 0 0 0.45
0 −1 0 0
0 0 −1 0.1
0 0 0 1

⎤

⎥
⎦ Ti1 =

⎡

⎢
⎣

0.6860 −0.2359 0.0027 0.2481
−0.1276 −0.7430 0.2926 −0.3491
0.1024 0.3878 −0.6562 0.6183

0 0 0 1

⎤

⎥
⎦

Ti2 =
⎡

⎢
⎣

0.7754 0.2311 0.2234 0.3354
0.1056 −0.6712 0.310 0.2241
0.2571 −0.2051 −0.7607 0.3145

0 0 0 1

⎤

⎥
⎦

Table 3 Initial values and
desired values of image
features for star shape
object in Tasks 1 and 2

Image Desired Initial value Errors of Initial value Errors of

features value for Task 1 Task 1 for Task 2 Task 2

xg (pixel) 0 −152 −152 156 156

yg (pixel) 0 275 275 −164 −164

a(pixel2) 10138 495 −9643 235 −9903

mx(deg) 0 −30 −30 38 38

my(deg) 0 36 36 −36 −36

α(deg) 0 −43.6 −43.6 −70.4 −70.7

c4[5] −0.0656 0.0034 0.069 0.0018 0.0674

c6[5] 0.0236 0.0526 0.029 −0.0443 −0.0679
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Fig. 12 Experimental results of image feature errors in Task 1: a with the proposed algorithm b with the constant depth c with the
algorithm in [5]

Fig. 13 Camera trajectories
in 3D robot base frame

(a) (b) (c) (d)

Fig. 14 Initial image (a) and desired image (b) of Task 2, c and d the images when object gets out of the field of view of camera
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Fig. 15 Depth estimation result of Task 2

As expected, at the desired position,A = B = 0,
C = − 1

Zg
, the interaction matrix is rewritten as

Jimage =

⎡

⎢
⎢⎢
⎢
⎣

−1/Zg 0 xgvz xgωx xgωy yg

0 −1/Zg ygvz ygωx ygωy −xg

0 0 2a/Zg 3ayg −3axg 0
0 0 0 cx 0 0
0 0 0 0 cy 0
0 0 0 0 0 −1

⎤

⎥
⎥⎥
⎥
⎦
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Fig. 16 Experimental results of image feature errors in Task 2: a with the proposed algorithm b with the constant depth c with the
algorithm in [5]

Fig. 17 Camera trajectories
in 3D robot base frame

Table 4 The initial and the desired values of image features for whale shape object in Tasks 3 and 4

Image features Desired value Initial value for Task 3 Errors of Task 3 Initial value for Task 4 Errors of Task 4

xg (pixel) 0 −147 −147 154 154

yg (pixel) 0 267 267 −164 -164

a(pixel2) 16655 1148 −15507 558 −16097

mx(deg) 0 −30 −30 38 38

my(deg) 0 36 36 −36 −36

α(deg) 0 45.7 45.7 −49 −49

c9[5] 0.0514 −0.1346 −0.186 0.0225 −0.0289

c10[5] 0.1059 0.0374 −0.0685 0.0584 −0.0475

(a) (b)

Fig. 18 Desired image (a) and initial image (b) of Task 3
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Fig. 19 Depth estimation result of Task 3

6.1 Star Shape Object

Two tasks with different camera initial positions for
the star shape object have been carried out. The ini-
tial values and the desired values of image features are
shown in Table 3. The experimental results are shown
in Figs. 10–17. The interaction matrix at the desired
position is given by

γ =

⎡

⎢
⎢⎢
⎢
⎢⎢
⎣

−0.131 0 0 0 −1.41 0
0 −0.615 0 0.22 0 0
0 0 0.098 0.0033 0.051 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎤

⎥
⎥⎥
⎥
⎥⎥
⎦

It is noticed that its condition number is 1.612, which
is very satisfactory. The condition number is a mea-
sure of stability or sensitivity of a matrix (or the linear
system it represents) to numerical operations [25].
Normally, the best condition number is 1. Therefore if
the condition number is too big, we may not be able to
trust the results of inversion of an ill-conditioned inter-
action matrix which may lead to bad performance or
the failure of visual servoing.

In Task 1, Fig. 10a and b show the desired and
initial images respectively. Fig. 11 shows the depth
estimation result. Fig. 12a shows the image feature
errors by using the proposed algorithm. It is shown
that the proposed algorithm obtains pure exponential
decrease of image feature errors. The good conver-
gence performance attributes to the fact that the accu-
rate interaction matrix is used in the control scheme.
Fig. 12b shows the experimental results by using
the proposed algorithm with constant depth. Fig. 12c
shows the experimental results by using the algo-
rithm of [5]. The camera trajectories in 3D robot
base frame are shown in Fig. 13. As expected, the
camera trajectory in 3D robot base frame by the pro-
posed algorithm is a straight line. Whereas, the pro-
posed algorithm with constant depth leads to a curved
camera trajectory, and the algorithm of [5] leads a
complex curved camera trajectory in 3D robot base
frame.

The large displacement from camera initial to
desired position is set in Task 2. Fig. 14a and b
show the desired and initial images respectively. Figs.
15–17 show the experimental results of the pro-
posed algorithm. It is shown in Fig. 16a that the
proposed algorithm obtains exponential decrease of
image feature errors due to the fact that the accu-
rate interaction matrix is used in the control scheme.
Fig. 16b shows the experimental results achieved by
using the proposed algorithm with constant depth.
It is demonstrated that the trajectories of the ver-
tices of the star object in image plane get out of the
FOV of camera and thus leads to the failure of visual
servoing. Fig. 16c shows the experimental results
achieved by using the algorithm of [5], which also
leads to the failure of visual servoing in the case of
large displacement. Fig. 14c and d show the image
that the star object gets out of the FOV of cam-
era. The camera trajectories in 3D robot base frame
are shown in Fig. 17. The proposed algorithm with

Fig. 20 Experimental
results of image feature
errors in Task 3: a with the
proposed algorithm b with
the constant depth c with
the algorithm in [5]
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Fig. 21 Camera trajectories
in 3D robot base frame

Fig. 22 Initial image (a)
and desired image (b) of
Task 4, c and d the images
when the object gets out of
the view of camera

(a)                       (b)                                             (c)                                          (d)

Fig. 23 Depth estimation
result of Task 4
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Fig. 24 Experimental
results of image feature
errors in Task 3: a with the
proposed algorithm b with
the constant depth c with
the algorithm in [5]
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Fig. 25 Camera trajectories
in 3D robot base frame

constant depth and the algorithm of [5] fail to drive the
camera to approach the desired position in 3D robot
base frame.

6.2 Whale Shape Object

Two tasks with different camera initial positions for
the whale shape object have been carried out. The
initial values and the desired values of image features
are shown in Table 4. The experimental results are
shown in Figs. 18–25. The interaction matrix at the
desired position is given by

γ =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

−0.56 0 0 0 −0.55 0
0 −0.38 0 0.65 0 0
0 0 0.75 −0.22 −1.15 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

It is noticed that its condition number is 1.98, which is
satisfactory.

In Task 3, Figs. 18a and b show the desired and
initial images respectively. Fig. 19 shows the depth
estimation result. Fig. 20a shows that the proposed
algorithm obtains exponential decrease of image fea-
ture errors since the accurate interaction matrix is
used in the control scheme. Fig. 20b shows the
experimental results of the proposed algorithm with
constant depth and of the algorithm of [5]. The cam-
era trajectories in 3D robot base frame are shown
in Fig. 21. The camera trajectory in 3D robot base
frame by the proposed algorithm is a straight line.

The proposed algorithm with constant depth leads to
curved camera trajectory, and the algorithm of [5]
leads to complex curved camera in 3D robot base
frame.

In Task 4, Fig. 22a and b show the initial and
desired images respectively. Fig. 23 shows the depth
estimation result. Fig. 24a shows that the proposed
algorithm obtains exponential decrease of image fea-
ture errors since accurate interaction matrix is used in
the control scheme. Fig. 24b and c shows the experi-
mental results of the proposed algorithm with constant
depth and of the algorithm in [5] respectively. The
camera trajectories in 3D robot base frame are shown
in Fig. 25. As expected, the camera trajectory of
the proposed algorithm in 3D robot base frame is a
straight line. Both the proposed algorithm with con-
stant depth and the algorithm of [5] lead to the failure
of visual servoing.

The experimental results show that the proposed
algorithm can achieve exponential decrease of image
feature errors for different shape planar objects and
from different camera initial positions. The errors of
image features approach to zero exponentially during
visual servoing and the camera reaches the desired
position from different initial positions by using the
proposed algorithm. The experimental results also
demonstrate that the proposed algorithm outperforms
the proposed algorithm by setting depth constant,
which implies that accurate depth estimation online
plays key role in visual servoing. Since the proposed
scheme can provide the accurate interaction matrix
with decoupled form, the proposed scheme achieves
better performance in visual servoing compared with
the other two algorithms in this paper.
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7 Conclusion and Future Work

This paper presents a new scheme to solve the prob-
lem of decoupling the rotational velocities around x

and y axes of camera frame in robotic visual servo-
ing systems. Based on the proposed scheme, the depth
of target object is estimated online, which results in
the accurate interaction matrix. Meanwhile, the pro-
posed scheme provides the interaction matrix with
particular decoupled form. As result, the singularity
is avoided and the local stability of visual servoing
system is improved remarkably. The robustness with
respect to calibration errors, the global stability anal-
ysis, and the visibility constraints on controller design
of visual servoing systems will be studied in the future
work.
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