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Abstract In this manuscript, we propose an on-
line trajectory-tracking algorithm for nonholonomic
Differential-Drive Mobile Robots (DDMRs) in the
presence of possibly large parametric and measure-
ment uncertainties. Most mobile robot tracking tech-
niques that depend on reference RF beacons rely on
approximating line-of-sight (LOS) distances between
these beacons and the robot. The approximation of
LOS is mostly performed using Received Signal
Strength (RSS) measurements of signals propagat-
ing between the robot and RF beacons. However, an
accurate mapping between RSS measurements and
LOS distance remains a significant challenge and is
almost impossible to achieve in an indoor reverberant
environment. This paper contributes to the develop-
ment of a neighboring optimal control strategy where
the two major control tasks, trajectory tracking and
point stabilization, are solved and treated as a unified
manner using RSS measurements emitted from Radio
Frequency IDentification (RFID) tags. The proposed
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control scheme is divided into two cascaded phases.
The first phase provides the robot’s nominal control
inputs (speeds) and its trajectory using full-state feed-
back. In the second phase, we design the neighboring
optimal controller, where RSS measurements are used
to better estimate the robot’s pose by employing an
optimal filter. Simulation and experimental results
are presented to demonstrate the performance of the
proposed optimal feedback controller for solving the
stabilization and trajectory tracking problems using a
DDMR.

Keywords Mobile robot navigation · RFID
systems · Optimal control · Trajectory tracking ·
Robot stabilization · Nonholonomic systems

Frequently Used Symbols
K(t) Feedback control gain at time t

HK Hamiltonian’s gradient with respect
to K

s Number of RFID tags in the
environment

ψ Costate variable (Lagrange multiplier)
q(t), qd(t) Robot’s actual and desired pose at

time t

qj
t ∈ R

3 j th tag position in 3D space
t0, tf Initial and final time instants
I ≡ [t0, tf ] Time interval
T r[·] Trace of matrix [·]
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u(t) Robot’s control input vector at time t

ξ(t) Robot’s actuator noise at time t

ζ (t) Measurement noise vector at time t

(·)o , (·)ε , (·)ad Optimal, perturb, admissible value
of (·)

L Lebesgue measurable function
space

νT dJ (·) Gateaux (directional) derivative of
J in direction ν

1 Introduction

Feedback control design problem for tracking a pre-
defined trajectory or stabilizing to a fixed point
using a nonholonomic mobile robot are quite chal-
lenging tasks. In particular, Brockett’s theorem [6]
proves the nonexistence of smooth state-feedbacks for
the asymptotic stabilization of fixed configurations.
As such, practical alternative control solutions that
guarantee acceptable tracking and stabilization per-
formance for systems with non-integrable kinematic
constraints are well motivated. In this manuscript,
the proposed control strategy treats both tracking
and point stabilization problems as a unified manner,
where solving the point stabilization problem becomes
an special case of the trajectory tracking problem.
Hence, we focus on the design of neighboring optimal
control scheme for solving trajectory tracking prob-
lem using a nonholonomic differential drive mobile
robot.

Tracking problems have been addressed in a vari-
ety of robotic platforms [4, 13, 38, 39, 54, 56]
using intelligent control laws coupled with adapta-
tion. For wheeled mobile robots, conventional control
laws have been applied for solving tracking problems
[1, 20, 27, 29, 40, 46, 55] and stabilization problems
[3, 7, 15, 48, 51]. For example, see [11, 12, 25,
26, 36, 45] for backstepping methods, [10, 21, 50]
for sliding mode control, [8, 16, 31] for mov-
ing horizon H∞ tracking control coupled with
disturbance effect, and [44] for transverse func-
tion approach. A vector-field orientation feedback
control method for a differentially driven wheeled
vehicle has been demonstrated in [43]. This tech-
nique solves both the trajectory tracking and the
point stabilization problems as in our current work.
The dynamic effects of the vehicle and the noisy

feedback signal may affect the vehicle to stabi-
lize on a fixed configuration. Several contributions
have been made to the design of non-conventional
control laws (fuzzy logic control, for instance) for
mobile robot with a particular focus on trajec-
tory tracking, see [24, 34] and some references
therein, for example. In [37], a fuzzy logic con-
trol law is designed for a car-like mobile robot
for autonomous garage-parking and parallel-parking
capability by using real-time image processing tech-
nique. In the literature, less attention is paid
towards solving tracking problems since it is simpler
than point stabilization problem for nonholonomic
systems [40].

RFID technology drew the attention of a large
body of research on mobile robot localization owing
to its wide availability, contactless recognition abil-
ity, and affordability [9, 18, 33, 47]. In most cases,
RFID systems are deployed for solving localization
problem (not stabilization or tracking problems) of
mobile robots in a particular environment [19, 28,
32, 41]. A sliding mode controller in cooperation
with RFID system is proposed in [35] to track
a desired trajectory, where RFID tags are placed
on the floor in a triangular pattern to estimate the
position of the mobile robot. This technique, how-
ever, is not suitable if the operating environment
is dynamically changed. Besides trajectory tracking,
some researchers contributed to develop pose esti-
mation techniques using vision technology [22, 23,
52]. Yet, they are based on known noise statistics
and require complex image processing techniques.
In 2008, Gueaieb and Miah pioneered a navigation
algorithm, where the phase difference of RFID sig-
nals is exploited to navigate a mobile robot in an
indoor environment [17]. The navigation system is,
however, based on a customized RFID reader (not
RFID tag) architecture and the navigation perfor-
mance is evaluated using computer simulations. More-
over, the robot’s trajectory tracking and stabilization
problems were not explicitly solved in our previous
work.

Despite aforementioned contributions on mobile
robotics, the stabilization and tracking problems in
a dynamic environment still face some significant
technical challenges that must be overcome. Hence,
our effort is devoted to solve these two main control
tasks of a DDMR in two phases. In the first phase,
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a nominal full-state feedback controller is designed
to provide nominal speeds and its corresponding tra-
jectory, where the process and measurement noise
(external disturbances) are not considered. In the sec-
ond phase, the nominal control and trajectory are
employed to design the on-line neighboring opti-
mal control inputs which are applied to the robot’s
actuators. Note that the robot’s actuators’ noise and
RSS measurement noise are taken into considera-
tion in this phase. RSS measurements emitted from
RFID tags are used to better estimate the robot’s
pose by incorporating an optimal filter. It is impor-
tant to mention, however, that the proposed optimal
feedback controller is different from many alike con-
trollers suggested in the literature in that we optimize
a general feedback control gain which eventually
provides optimal control inputs to the robot’s actu-
ator. Unlike many other controllers, the proposed
control method does not require the linearization of
the robot model. Hence, this novel work of opti-
mizing the feedback control gain opens the door
for solving problems of a general class of nonlin-
ear dynamical systems. The work described herein is
pioneered by using a DDMR operating in an indoor
office environment where RFID tags are placed at
3-D positions. It is worth mentioning that the con-
troller proposed in this manuscript does not represent
an all-case alternative to vision-based navigation sys-
tems. Rather, it can serve as a substitute for such
systems in environments of variable or limited lighting
conditions.

The rest of the paper is outlined as follows. Some
mathematical preliminaries are given in Section 2.
Section 3 illustrates the high level architecture of
the proposed mobile robot trajectory tracking sys-
tem along with the robot’s kinematic model and its
feedback system using RSS measurements. The nom-
inal optimal control and its corresponding nominal
optimal trajectory are computed using the smooth
state feedback control as detailed in Section 4.
Section 5 describes the robot’s on-line neighbor-
ing optimal control strategy, where RSS measure-
ments from RFID system are used for its optimal
pose estimation. A thorough evaluation of the cur-
rent work with some numerical simulation results
is presented in Section 6 followed by experimental
results in Section 7. Finally, conclusions are drawn in
Section 8.

2 Preliminaries

In the rest of the paper, small and capital bold letters
will be used to denote vectors and matrices, respec-
tively. Scalars will be denoted by non-bold letters. The
2-norm and scalar product are defined by

‖x‖ ≡
[

n∑
i=1

|xi |2
]1/2

and (x · y) ≡ xT y ≡
n∑

i=1

xiyi,

respectively, for vectors x, y ∈ R
n and positive n. For

matrices X,Y ∈ R
m×n, these quantities are given by

‖X‖ ≡
⎡
⎣ m∑

i=1

n∑
j=1

∣∣xi,j

∣∣2
⎤
⎦
1/2

and

(X · Y) ≡ T r
[
XT Y

]
≡ T r

[
XYT

]
,

respectively, where T r [·] denotes the trace of matrix
[·]. Clearly, T r

[
XT X

] = ‖X‖2.
If the function J : R

n → R is differentiable at
x ∈ R

n, then for any ν ∈ R
n, νT dJ (x) denotes the

Gateaux (directional) derivative in the direction of ν,
which is given by

νT dJ (x) = lim
ε→0

J (x + εν) − J (x)
ε

.

However, if J : R
m×n → R, then for any X,V ∈

R
m×n, the directional derivative in the direction of V

is defined by

T r[VT dJ (X)] = lim
ε→0

J (X + εV) − J (X)

ε
.

For any bounded interval I ≡ [t0, tf ], C(I ,Rn)

denotes the class of all continuous functions on I
taking values in R

n. Let p ∈ [1, ∞) and any finite
time interval I , we use Lp(I ,Rn) to denote the
set of Lebesgue measurable functions {f} defined on
the measurable set I and taking values in R

n whose
norms are p-th power integrable [30, 49] i.e.,

Lp(f) =
(∫ tf

t0

‖f‖pdt

)1/p

< ∞,

where Lp(f) denotes the p-th norm of the function
f. For p = ∞, L∞(I , Rn) denotes the space of
Lebesgue measurable functions {f} defined on I and
taking values in R

n satisfying ess-sup{‖f(t)‖, t ∈
I } < ∞.
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Fig. 1 High level system architecture of the proposed tracking system

3 System Overview

3.1 System Architecture

A high level setup of the proposed tracking system
with four RFID tags, Tag1, Tag2, Tag3, and Tag4,
attached to the ceiling of an indoor space (office, for
instance), is depicted in Fig. 1. In this configuration,
the robot’s desired trajectory on the ground is defined
in continuous time, qd(t)with qd(t0) and qd(tf ) being
the initial and final poses, respectively. For instance,
if a mobile robot is provided with the list of 16-bit tag
IDs, 0xFFF9, 0xFFF2, 0xFFF5, and 0xFFF4, then it is
supposed to continuously read these tag IDs and their
corresponding RSS values through an RFID reader
mounted on it [42]. Based on the tags’ RSS measure-
ments, optimal control actions are then generated for
its actuators to track the desired trajectory, qd(t). In
the following, we provide a detailed description of
how these optimal control actions are generated for the
robot to track its desired trajectory.

3.2 Robot’s Feedback Model Using RSS

Let (x, y) and θ be the position and the heading
angle of a robot with respect to a ground-fixed iner-
tial reference frame X-Y. The rotational velocities of
the robot’s left and right wheels are characterized by
the sole (scalar) axis angular velocities uL and uR ,
respectively. The robot’s position is the midpoint of
the wheelbase of length l connecting the two lateral

wheels along their axis. The mobile robot1 used in
this study is pictured in Fig. 2a and its corresponding
kinematic model is shown in Fig. 2b.

Consider t0 and tf be the initial and final time to
complete the robot’s mission, respectively, and I ≡
[t0, tf ] denotes the time interval. At any time t ∈ I ,
the robot kinematic model is given by

q̇(t) = f[q(t),u(t)] = r

2
B[q(t)]u(t) , (1)

where the robot’s configuration q(t) ≡ [x(t) y(t) θ

(t)]T ∈ Q ⊂ R
2 × S

1, its control input vec-
tor u(t) ≡ [uR(t) uL(t)]T ∈ U ⊂ R

2, θ(t) ∈
[−π, +π),

B[q(t)] =
⎡
⎣cos θ(t) cos θ(t)

sin θ(t) sin θ(t)
2
l

− 2
l

⎤
⎦ ,

and r is the radius of each wheel. Since the robot itself
is subject to the noisy speed, the model (1) can be
rewritten as

q̇(t) = f[q(t),u(t), ξ(t)], (2)

where ξ(t) is the noise associated with control input
u(t). For simplicity, assume that ξ : [0, ∞) → R

2, is
any measurable stochastic process taking values from

the closed (Euclidean) ball Bu

(
ξ̄ , r

′
1

)
defined by

Bu

(
ξ̄ , r

′
1

)
=
{
ξ(t) ∈ R

2 : ‖ξ(t) − ξ̄‖ ≤ r
′
1

}
,

1The photo of this mobile robot is taken from www.drrobot.com

www.drrobot.com
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(a) (b)
Fig. 2 a Sputnik mobile robot and b its kinematic model

where r
′
1 > 0 is the radius of the noise associated with

the robot’s speed and ξ̄ is the mean of ξ(t), for t ∈ I .
However, due to the speed limits of the wheels, the

inputs are constrained as

|uL(t)| ≤ umax
L and |uR(t)| ≤ umax

R , t ∈ I . (3)

In other words, u(t) must be chosen from a set of
admissible speeds, Uad , i.e., u(t) ∈ Uad . Note that a
DDMR is a nonholonomic system with the nonholo-
nomic constraint given by

ẋ sin θ − ẏ cos θ = 0, (4)

which ensures the wheel’s non-slip movement in the
lateral direction.

Let us model the robot’s RSS measurements as

z(t) = ĥ[q(t)] + ζ (t), (5)

where z(t) ∈ R
s is the RSS measurement vector (in

dBm) from s RFID tags in the environment and the
noise ζ : [0, ∞) → R

s , is defined such that

Bm

(
ζ̄ , r

′
2

)
=
{
ζ (t) ∈ R

s : ‖ζ (t) − ζ̄‖ ≤ r
′
2

}
,

where r
′
2 > 0 is the radius of the noise associated with

the RSS measurements and ζ̄ is the mean of ζ (t), for

t ∈ I . The nonlinear measurement function

ĥ[q(t)] =
[
ĥ1[q(t)] . . . ĥs[q(t)]

]T
of Eq. (5) is given by h : R2 × S

1 → R
s with

ĥj [q(t)] = αeβd̂j , for j = 1, . . . , s, (6)

where α and β are the parameters which are obviously
dependent on the operating environment. Hence, these
parameters can be optimized using the nonlinear least
square method. d̂j of Eq. (6) is simply the Euclidean
distance between the robot’s current position (x, y)

and j -th RFID tag position qj
t . If q

j
t =

[
x

j
t y

j
t z

j
t

]T
represents the 3D position of the j -th tag, then

d̂j =
√(

x − x
j
t

)2 +
(
y − y

j
t

)2 +
(
z
j
t

)2
, for j = 1, . . . , s.

We now define the robot’s control input u(t) as the
feedback model defined as

u(t) = χ[z(t)] (7)

subject to Eq. (3), where χ [·], is a function that
takes RSS measurements as the feedback informa-
tion. Clearly, the model (2) is underactuated (i.e., two
inputs but three state-variables to control). Hence, the
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challenge is to design the feedback function χ[·] of the
model (7), which we tackle using the feedback gain
(see Section 4) coupled with RSS measurements from
RFID tags (see Section 5, for details).

Substituting Eq. (7) in Eq. (1), we can formulate the
robot’s measurement-feedback system as

q̇(t) = r

2
B[q(t)]χ [z(t)]. (8)

3.3 Problem Formulation

Let qd(t) = [xd(t) yd(t) θd(t)]T be the desired
trajectory that the robot is supposed to track and

e(t) =
√

[xd(t) − x(t)]2 + [yd(t) − y(t)]2

denote its position tracking error, for t ∈ I . The
objective is to find the optimal control input u(t) ∈
Uad that generates the trajectory q(t) ∈ Q while min-
imizing the total position tracking error, E , given by

E =
∫ tf

t0

e(t)dt. (9)

Given the robot’s kinematic model (1), its non-
holonimic constraint (4), and for any ξ(t) ∈
Bu

(
ξ̄ , r

′
1

)
, ζ (t) ∈ Bm

(
ζ̄ , r

′
2

)
, the problem can be

stated as follows:

inf
{q∈Q, u∈Uad }

[E ]. (10)

Although not explicitly stated, this goal implic-
itly imposes the optimization of the robot orientation
θ(t) since it is coupled with the robot position (see
model (1)). This point will be clearer in the next
section.

4 Nominal Pose and Control Generation

In order to determine the robot’s nominal optimal pose
and its corresponding control input, assume that the
process noise ξ(t) = 0 and also define the robot’s
feedback control model (7) as the full-state feedback
control:

u(t) = K(t)q(t), (11)

subject to Eq. (3), where K(t) 
= 0 is the feedback
control gain for the robot model (1). Since the sets U
and Q are convex,K(t) must be chosen from a convex

set K ⊂ R
2×3. Furthermore, due to the constraint

on the wheel speeds, K(t) has to be chosen from the
admissible matrix space Kad ⊂ K .

Substituting Eq. (11) in Eq. (1), yields the follow-
ing full-state feedback system:

q̇(t) = r

2
B[q(t)]K(t)q(t) = f̂[q(t),K(t)], q(t0) = q0,

(12)

where the robot’s initial pose q0 
= 0 since model (12)
is a nonlinear homogeneous equation (drift-free sys-
tem). The actual trajectory of the robot can be
described by

q(t) = q(t0) + r

2

∫ t

t0

{B[q(τ )]K(τ )q(τ )} dτ, (13)

for t ∈ I . Since feedback control gain K(t)

in Eq. (11) needs to be optimized in order to determine
nominal optimal control uo(t), the full-state feed-
back control problem boils down to the optimization
problem.

For the robot to find the nominal optimal trajectory
qo(t), define the cost functional as

J (K) = φ[tf ,q(tf )] +
∫ tf

t0

	[t,q(t)]dt, (14)

with

φ[tf , q(tf )] = 1

2
[q(tf ) − qd (tf )]T P(tf )[q(tf ) − qd(tf )]

	[t, q(t)] = 1

2
[q(t) − qd (t)]T Q(t)[q(t) − qd (t)],

where P(tf ),Q(t) ∈ R
3×3 are symmetric positive def-

inite matrices that indicate the relative importance of
the error components along R

2 × S
1. If the robot’s

purpose is to stabilize on a fixed point in its environ-
ment, then the weight matrix P(tf ) must be higher
than Q(t). However, the opposite is true for the robot
to track a desired trajectory. The performance index
J (K) in Eq. (14) depends on the feedback control gain
matrix K(t) through the state variable q(t) as it is
clear from the feedback system (12). The nominal tra-
jectory and control (qo(t),uo(t)) can be obtained by
minimizing J (K) subject to Eqs. (1), (3), and (4).

Assume that the feedback gain K ⊂ R
2×3 is a

closed bounded convex set and

Kad ≡
{
K(t) ∈ L 	oc∞ ([0, ∞),R2×3) : K(t) ∈ K

}
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where L 	oc
p ([0, ∞),R2×3) are locally convex topo-

logical function spaces of p-th power locally inte-
grable functions containing the spaces Lp(I ,R2×3).

To solve for the nominal optimal trajectory using
the feedback system (12) that minimizes the objec-
tive functional (14), we need to derive the necessary
conditions of optimality. These necessary conditions
are most readily found if the integrand of the cost
functional (14) is recast in terms of Hamiltonian

H : I × R
2 × S

1 × R
3 × R

2×3 �−→ R,

which is given by

H [t, q(t), ψ(t),K(t)] = ψT f̂[q(t),K(t)] + 	[t, q(t)],
(15)

where ψ(t) ∈ R
3, t ∈ I , is a vector of Lagrange

multipliers whose elements are the costates. We now
derive the necessary conditions of optimality for the
feedback model (12).

Theorem 1 (Necessary Conditions of Optimal-
ity) The optimal trajectory qo(t) for the feedback
model (12) can be obtained if there exists an opti-
mal feedback control gain Ko(t) ∈ Kad and an
optimal multiplier ψo(t) ∈ C(I ,R3) such that the
triple {qo, ψo,Ko} satisfies the following necessary
conditions:

H [t, qo(t), ψo(t),K(t)] ≥ H [t, qo(t), ψo(t),Ko(t)],
K(t) ∈ K , t ∈ I ,

(16)

q̇o = ∂H

∂ψ
[t, qo(t), ψo(t),Ko(t)], qo(t0) = q0, t ∈ I ,

(17)

ψ̇
o = −∂H

∂q
[t, qo(t), ψo(t),Ko(t), ψo(tf )

= ∂φ

∂q
[tf , q(tf )].

(18)

Theorem 1 states that there exists a feedback con-
trol gain Ko(t) ∈ Kad for the robot to determine
nominal optimal control inputs for its actuator. Its
proof is given in Appendix A.1. In order to solve for

Ko(t), we determine the gradient of the Hamiltonian
defined in Eq. (15) and set it to zero,

HK ≡ ∂H

∂K
= r

2
BT [q(t)]ψ(t)qT (t) = 0. (19)

Note that the expression in Eq. (19) is independent of
the gain matrix K(t). Hence, the problem boils down
to findingK(t) t ∈ I , such that the robot’s actual tra-
jectory (13) and the costate trajectory from Eq. (18)
satisfy Eq. (19). The optimal feedback control gain
Ko(t) can be determined by satisfying the Hamil-
tonian inequality (16). In other words, K(t) is to
be adaptively tuned to minimize the robot’s tracking
error.

Corollary 1 (Adapting the gain K) Consider the
robot’s feedback system (12) defined over the time
horizon I . Adapting the gain K according to the
following offline update rule

Knew = Kold − εHK, for 0 < ε < 1 (20)

satisfies the Hamiltonian inequality (16) and, hence,
guarantees the converge of the robot’s trajectory
towards its target.

In the following, we numerically solve for the gain
K such that Eq. (19) is satisfied, aggregating the
components described earlier.

Let Ki ≡ Ki (t), t ∈ I , be the gain at the i-th
iteration of the optimization procedure.

Step 0 (initialization): Subdivide the time inter-
val I ≡ [

t0, tf
]
into N subintervals. Assume a

piecewise-constant Ki(t) = Ki(tk), t ∈ [
tk, tk+1

]
,

for k = 0, . . . , N − 1.
Find the optimal gain Ko by repeating Steps 1–5
until the stopping criterion in Step 5 is met.
Step 1: Integrate the robot’s feedback system (12)
as in Eq. (13) with K ≡ Ki(t), t ∈ I .
Step 2: Solve the costate equation (18) backward
for ψ i .
Step 3: Define the Hamiltonian H (t,qi , ψ i ,Ki )

as in Eq. (15).
Step 4: Compute the cost function J (Ki )

using Eq. (14), the gradients of the Hamiltonian
HK in Eq. (19), and its corresponding intergrated
norm

∫ tf
t0

‖HK‖2dt.

Step 5: If J (Ki ) ≤ δ1 or
∫ tf
t0

‖HK‖2dt ≤ δ2,
for pre-defined small positive tolerance constants
δ1 and δ2, then Ki is regarded close enough to
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its nominal optimal value, and so the algorithm is
halted.
Otherwise, use the following update rule to

adjust the piecewise-constant feedback control
gain:

Ki+1(tk) = Ki (tk) − ε HK(tk) + λ Ki (tk)

Ki (tk) = Ki (tk) − Ki−1(tk)

for k = 0, . . . , N − 1, where ε and λ are the step
size and the momentum constant (for faster conver-
gence), respectively.

We now have the optimal feedback gain,Ko. Using
the robot’s initial pose qo(t) = q(t0) = q0, it’s
nominal-optimal control can thus be computed by

uo(t) = Ko(t)qo(t), (21)

with the corresponding nominal-optimal state model

q̇o(t) = f[qo(t),uo(t)]. (22)

Models (21) and (22) will be employed to solve for
the robot’s actual optimal control inputs and its cor-
responding state trajectory which are illustrated in the
next section.

5 Robot’s Optimal Trajectory

For the robot to operate in real-time, it is conceivable
that the exact optimal control could be updated con-
tinuously to provide the instantaneous control input to
the robot’s actuator. A practical method of doing so
is to partition the robot’s actual trajectory and control
into: a) nominal and b) neighboring parts, where the
former represents the off-line deterministic solution
(nominal) which is illustrated in Section 4 (no external
disturbances were considered) and the later represents
the on-line (real-time) solution [53]. Note that the
robot’s actuator noise and RSS measurement noise
from RFID tags are taken into account for determining
its neighboring optimal control inputs.

5.1 Neighboring Optimal Control

In order to compute the robot’s neighboring optimal
control input, let us rewrite the cost functional (14) as

J (q) = φ[tf ,q(tf )] +
∫ tf

t0

	[t,q(t),u(t)]dt, (23)

where

φ[tf , q(tf )] =1

2
[q(tf ) − qo(tf )]T P(tf )[q(tf ) − qo(tf )]

	[t, q(t), u(t)] =1

2
[q(t) − qo(t)]T Q(t)[q(t) − qo(t)]

+ 1

2
[u(t) − uo(t)]T R̂(t)[u(t) − uo(t)]

with R̂(t) ∈ R
2×2 being a symmetric positive defi-

nite matrix (i.e., R̂(t) 
= 0). Defining the perturbations
from the nominal optimal solutions as

q(t) = q(t) − qo(t), u(t) = u(t) − uo(t), t ∈ I ,

(24)

the robot’s model (1) can be expanded as the Taylor
series

q̇o(t) + q̇(t) =f
[
qo(t), uo(t)

]+ ∂f
∂q

[
qo(t), uo(t)

]
q(t)

+ ∂f
∂u

[
qo(t), uo(t)

]
u(t) + O[q, u],

where O[q, u] is the higher order terms of q(t)

and u(t). Using the robot’s nominal state model (22)
and assuming the perturbation variables to be “small”,
the above expression can be truncated to the first
degree, yielding the robot’s linear kinematic constraint

q̇(t) = F(t)q(t) + G(t)u(t), q(t0) = q0,

(25)

where

F(t) = ∂f
∂q

[
qo(t),uo(t)

]
, G(t) = ∂f

∂u

[
qo(t),uo(t)

]
.

The cost function (23) can be expanded as

J [qo + q] ∼= J [qo] + J [q] + 2J [q].
However, the optimality guarantees that the first vari-
ation of J [·] (i.e., J [q(t)]) is zero [53], yielding
the above expression as

J [qo + q] ∼= J [qo] + 2J [q],
where the second variation of J [·] can be expressed as

2J [q] = 1

2
qT (tf )φqq(tf )q(tf )+

1

2

∫ tf

t0

{[
qT (t) uT (t)

] [	qq 	qu
	uq 	uu

] [
q(t)

u(t)

]}
dt,

(26)

subject to Eq. (25).
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Let us rewrite the expression (26) as:

2J [q] � J = 1

2
qT (tf )P(tf )q(tf ) + 1

2∫ tf

t0

{[
qT (t) uT (t)

] [ Q(t) M(t)

MT (t) R(t)

] [
q(t)

u(t)

]}
dt,

(27)

where

P(tf ) ≡ φqq(tf ) ≡ ∂2φ

∂q2
[
tf ,qo(tf )

]
Q(t) ≡ 	qq ≡ ∂2	

∂q2
[
t,qo(t),uo(t)

]
,

M(t) ≡ 	qu ≡ ∂2	

∂q∂u

[
t,qo(t),uo(t)

]
, and

R(t) ≡ 	uu ≡ ∂2	

∂u2
[
t,qo(t),uo(t)

]
.

SinceM(t) = 0, it follows from Eq. (27) that

J = 1

2
qT (tf )P(tf )q(tf ) + 1

2∫ tf

t0

{[
qT (t) uT (t)

] [Q(t) 0
0 R(t)

] [
q(t)

u(t)

]}
dt,

(28)

which is a quadratic cost functional.

Theorem 2 (Adapted from [53]) Consider the
robot’s linear kinematic model (25) and its quadratic
cost functional given by Eq. (28). The optimal linear-
quadratic state feedback control law is given by

uo(t) = −R−1(t)GT (t)P(t)q(t) = −C(t)q(t),

(29)

where C(t) is the (2× 3) neighboring-optimal control
gain matrix given by

C(t) = R−1(t)GT (t)P(t) (30)

and P(t) is the solution of the differential matrix
Riccati equation

Ṗ = −FT (t)P(t) − Q(t) − P(t)F(t)+
P(t)G(t)R−1(t)GT (t)P(t), P(tf ) = Pf .

(31)

It is interesting to note that the solution for P(t) and,
therefore, forC(t) is independent of q(t). Variations
in q(t0) or q(tf ) have no effect on C(t), although
the linear-optimal control history obviously is affected
by state perturbations [53].

It is clear from Theorem 2 that once the solution of
the differential matrix Riccati equation (31) is avail-
able, the feedback control law given by Eq. (29) can
be formally constructed. From the perturbation (24),
the total control is formed as the sum of the nominal
and the perturbation optimal controls as stated in the
chapter introduction:

u(t) = uo(t) + uo(t) = uo(t) − C(t)[q̂(t) − qo(t)],
(32)

where q̂(t) is the robot’s estimated pose which will be
determined in Section 5.2.

Substituting perturbed optimal control (29) in
Eq. (25) yields the perturbed stated feedback system

q̇(t) =
[
F(t) − G(t)R−1(t)GT (t)P(t)

]
q(t),

≡ A(t)q(t), q(t0) = q0 
= 0,

(33)

with A(t) ≡ [
F(t) − G(t)R−1(t)GT (t)P(t)

]
and the

corresponding state trajectory can then be described
by

q(t) = �(t, t0)q(t0),

where �(t, t0) = etA(t) is the state transition matrix.
The feedback model (33) with the quadratic cost

functional (28) is similar to the optimal linear
quadratic regulator problem, which is stable in the
Lyapunov sense [2]. In other words, the optimality
leads to stability.

Theorem 3 (Optimality to stability) The feedback
system given by Eq. (33) is

(i) stable if Q(t) is a real, symmetric, positive semi-
definite matrix and

(ii) asymptotically stable if Q(t) is a real, symmetric,
positive definite matrix.

The proof of this Theorem is given in Appendix A.2.
We now focus on estimating the robot’s pose based
on partial noisy RSS measurements from RFID tags
placed in its operating environment.

5.2 Optimal Pose Estimation

The DDMR employed in the current work is subjected
to actuator noise. As can be seen form Fig. 1, the robot
receives RSS measurements from RFID tags. In an
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indoor reverberant environment, these RSS measure-
ments can be highly contaminated by ambient noise.
In this section, we take into account the robot’s actu-
ator noise and RSS measurement noise from RFID
tags. Noisy RSS measurements are used as feedback
information for estimating the robot’s state, which is
eventually form the measurement feedback model (8).
The estimated state is then used to find the total opti-
mal control input as in Eq. (32). In the following,
an optimal filter is presented to “filter out” the noisy
RSS measurements as well as actuator signals for
estimating the robot’s pose.

The Taylor series expansion of Eq. (2) neglecting
the higher order terms yields

q̇(t) = F(t)q(t) + G(t)u(t) + L(t)ξ(t), where

L(t) = ∂f
∂ξ

[
qo(t), uo(t), ξo(t)

]
, andξ(t) = ξ(t)−ξo(t),

with q(t0) = q0. Note that ξo(t) = 0 because the
deterministic solution of Eq. (22) has no process noise.
The expected values of the initial state and covariance
are

E[q(t0)] = q̂0, E

{
[q(t0) − q̂0][q(t0) − q̂0]T

}
= S0.

(34)

For simplicity, assume that the robot’s input and
measurement noise are a white, zero-mean Gaussian
random process. If WC and NC are spectral density
matrices of the robot’s input and measurement noise,
respectively, the following expression holds:

E
[
ξT (t) ζ T (t)

] =
[
ξ̄

T
ζ̄

T
]
E

{[
ξ(τ )

ζ (τ )

] [
ξT (t) ζ T (t)

]}

=
[
WC(t 0
0 NC(t)

]
δ(t − τ),

(35)

where δ(·) is the dirac delta function. The robot’s a
priori state estimate is described by

q̂(t) = q̂0 +
∫ t

t0

f[q̂(t),u(t)]dt. (36)

From measurement model (5), the matrix H(t) is
determined along the a priori estimate q̂(t) found
in Eq. (36) as

H(t) = ∂h
∂q

[q̂(t)].

The optimal filter gain can then be computed as

KC = S(t)HT (t)N−1
C (t), (37)

where the state covariance matrix S(t) is the solution
of the differential matrix Riccati equation

Ṡ(t) =F(t)S(t) + S(t)FT (t) + L(t)WC(t)LT (t)

− S(t)HT (t)N−1
C (t)H(t)S(t), S(t0) = S0.

(38)

Using the current RSS measurement, z(t) given
in Eq. (5), the robot’s a posteriori state estimate is
determined by solving the following state model:

˙̂q(t) = f[q̂(t), u(t)] + KC

{
z(t) − h[q̂(t)]} , q̂(t0) = q̂0.

(39)

Hence, finding the robot’s optimal trajectory con-
trains four parts:

1. compute robot’s nominal-optimal control and tra-
jectory as given in Eqs. (21) and (22),

2. computation of neighboring-optimal control gain
matrix:

(a) specify the cost function as given in Eq. (28)
subject to the robot’s linear kinematic con-
straint (25).

(b) define the Hamiltonian for the neighboring-
optimal trajectory and control.

(c) solve the differential matrix Riccati equa-
tion (31) that results from minimizing the
Hamiltonian to obtain the adjoint covariance
matrix, P(t), from tf to t0.

(d) compute the neighboring-optimal gain
matrix, C(t) as given in Eq. (30).

3. optimal estimation of the robot’s pose:

(a) initialize estimated pose and state error
covariance matrix as in Eq. (34).

(b) use Eq. (35) to compute error covariance
matrices, WC and NC .

(c) integrate the differential matrix Riccati equa-
tion (38).

(d) compute the filter gain, KC , as in Eq. (37).
(e) optimal pose is estimated using Eq. (39).

4. actual optimal control and trajectory generation:

(a) compute the robot’s actual optimal control
by Eq. (32).

(b) robot’s actual trajectory is then the solution
of Eq. (39).
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The above steps can be used in conjunction
with simulation or real-time control to generate
robot’s actual optimal trajectories corresponding to its
cost function (28), kinematic contraint (1), and
measurements (5). Figure 3 shows the schematic
diagram of the keys steps of the proposed trajec-
tory tracking system for a DDMR. Having com-
puted the filter gain KC and neighboring optimal
control gain matrix C(t), the linear stochastic con-
troller is seen to be driven by the nonlinear RSS
measurements, z(t). Its output is summed with the
nominal-optimal control, uo(t); the nominal-optimal
state, qo(t), is used to derive the total pose esti-
mate q̂(t).

6 Simulation Results

We now illustrate the performance of the proposed
neighboring optimal controller using the continuous-
time model of a mobile robot, which is expected to
follow a reference trajectory over the time horizon of
I ≡ [0, 60] s. The robot employed in this work is a
circular shaped differential drive virtual mobile robot
with the wheel base of l = 30 cm and the radius
of each wheel r = 8.25 cm. Its wheel speeds are
constrained as

|uR(t)| ≤ umax
R = 10 rad · s−1,

|uL(t)| ≤ umax
L = 10 rad · s−1.

The performance metrics adopted in the current
work are the robot’s pose (position and orientation)
tracking error given by

q(t) − qd(t) = qe(t) =
⎡
⎣xe(t)

ye(t)

θe(t)

⎤
⎦ =

⎡
⎣x(t) − xd(t)

y(t) − yd(t)

θ(t) − θd(t)

⎤
⎦

and the average cumulative position error defined
in Eq. (9) over the time interval of I ≡ [0, 60] s,
which allow us to make quantitative assessment of the
proposed neighboring optimal controller. The dimen-
sion of the virtual test area is about 16 × 16 × 3 m3,
where 25 RFID tags (s = 25) are uniformly placed
on the ceiling of the workspace (denoted by x’s in the
Figs. 6a and 7a). In order to find the nominal solu-
tion as described in Section 4, the initial the feedback
control gain K(t) is chosen as

K(t) = 10−6
[
1 1 1
1 1 1

]
,

which is then optimized to find the nominal con-
trol uo(t) and its corresponding nominal trajec-
tory qo(t), t ∈ I , using Eqs. (21) and (22). The
sampling time period for the simulation is set to 0.1 s.
The weighting matrices of the cost function (14) are
chosen as P(tf ) = diag(0.5, 0.5, 1) and Q(t) =
diag(1, 1, 2), ∀ t ∈ I . Hence, trajectory tracking is
regarded twice as important as just stabilizing on a
fixed configuration. The mean and standard deviation
of the robot’s actuator noise, ξ(t), are chosen to be 0
and 0.8 rad · s−1, respectively.

Fig. 3 Schematic of the robot’s stochastic neighboring-optimal control law in continuous time
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6.1 Modelling RSS Measurements and Noise

To make the controller’s simulation as realistic as pos-
sible, the RSS signals were experimentally measured
by emulating the RFID system using an XBee Pro
RF module and a MakeController board (Fig. 4) [42].
The experiment was conducted by placing the XBee
Pro RF module (emulating the tag) at (9, 8, 3) m and
mounting the MakeController board (emulating the
reader) on top of the robot which was initially placed
at the origin with an orientation of 45◦. The robot was
programmed to travel along a straight line for 60 s dur-
ing which the XBee Pro module’s RSS values were
measured and logged by the MakeController board at
a sampling period of 0.6 s. Since the experiment was
conducted in an open space with no obstacles, rever-
berations and noise were neglected and the collected
data was used to model the ideal (clean) RSS values
in terms of distance, i.e., model (6). This yielded the

parameter values α = −35.5 and β = 0.1071. To
articulate the performance of the proposed controller
in a highly reverberant environment, an exaggerated
noise model is adopted by adding a noise ζ(t) with
a mean ζ̄ = −30 dBm and a standard deviation
of 50 dBm. This yielded a signal-to-noise ratio of
−179.45 dBm. Figure 5 shows the resultant “noise-
free” and noisy RSS signals obtained. The parameter
values of the noisy RSS signal were found to be α =
−60 and β = 0.2. This noisy signal was used in the
following controller’s simulations.

6.2 Robot Stabilization on a Fixed Configuration

In this section, we present the robot’s ability to sta-
bilize on a fixed configuration regardless of its ini-
tial position and orientation. The stabilization perfor-
mance of the proposed control scheme is evaluated by
choosing the weight matrices as P(tf ) = diag(2, 2, 2)

(a) (b)

Fig. 4 aMakeController board, and b XBee Pro RF module
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Fig. 5 Noise model considered for the simulation

and Q(t) = diag(0.01, 0.01, 0.01), ∀ t ∈ I . Hence,
the stabilization at the target point is regarded 20
times more important than guiding the robot towards
the target. The robot’s goal is to stabilize itself at
(x, y) = (3, 8) m with an orientation of 90◦. The
initial position and orientation of the robot are set to
(0, 0) m and 28.6◦, respectively. Figure 6a shows the
simulation results, where the hollow and solid arrows
represent the initial and final poses, respectively. The
dashed path represents the robot’s actual trajectory
while the x’s depict the 2-D projections of the RFID
tags mounted on the ceiling. The distance between the
robot and its target is shown in Fig. 6b. It reveals how
fast the robot is approaching towards the target. The
robot reached its target in about 20 s. Then, after some
zigzagging, it could stabilize itself eventually with a
position error of practically nil. This was achieved
despite the excessively noisy RSS signals transmit-
ted by the tags and the noisy actuator signals of the
robot. The zigzagging behavior is expected due to the
complexity of this task, especially for nonholonomic
robots. Figure 6c reveals the corresponding control
inputs, u(t), computed by the model (32). Since the

robot has to stabilize itself in 60 s, the zigzagging
behavior on the corresponding control inputs was
expected as it is clear from Fig. 6c, but eventually the
robot stopped (speed is zero) at tf = 60 s.

6.3 Tracking a Curvilinear Trajectory

The purpose of this test is to study the robot’s track-
ing ability along a complex trajectory. To do that, we
define a desired trajectory as xd(t) = 3 sin(πt/30),
yd(t) = 3 sin(πt/15), and θd(t) = tan−1

(
ẏd/ẋd

)
,

for t ∈ I . The robot is initially placed at (0.5, 0) m
with an initial orientation of 0◦. Figure 7 summarizes
the performance of the proposed neighboring optimal
controller. The tracking error is plotted in Fig. 7b.
Starting off its desired path, the robot converges in
less than 3 s while keeping the left and right wheel
rotational speeds within their limits (maximum of
10 rad · s−1). See Fig. 7c for wheel speeds at time
instant t ∈ [0, 60] s. It is noticed from Fig. 7a that
the robot looses track of its trajectory momentarily
at a few sharp turns before converging back to
it. The average tracking error throughout the whole



390 J Intell Robot Syst (2015) 78:377–399

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

x [m]

y 
[m

]

 

 

target position
robot trajectory
RFID tag

(a)

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

time [s]

e
rr

o
r,

 e
(t

) 
[m

]

(b)

0 10 20 30 40 50 60
−4

−2

0

2

4

6

8

Time [sec]

A
n
g
u
la

r 
sp

e
e
d
 [
ra

d
/s

]

 

 
u

R

u
L

(c)

Fig. 6 Controller’s performance in stabilizing on a fixed con-
figuration a optimal trajectory, b error, and c control inputs
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trajectory (E /60 of Eq. 9) is 0.1 m. This is a very
small error taking into account the total traveled dis-
tance of 30.8 m, the wheel speed constraints, and the
excessive noise associated with the RF signals trans-
mitted by the RFID tags. It is important to articulate
that this error is non-cumulative. It is rather affected
by the signal-to-noise ratio of the RF signals, but not
by the traveled distance or navigation time. On the
same figure, the percentile plot (whose x-axis is on
top of the figure) shows that the tracking error is kept
less than the average value (0.1 m) for about 75 %
of the time, and less than 0.22 m for 90 % of the
time. Once again, taking into account the aforemen-
tioned constraints, which are quite typical in any real-
world robotic system, these values are considered very
satisfactory.

The differential drive mobile robot’s real-time
motion and control performance are illustrated
through a supplementary multimedia material
enclosed with this paper. The material includes three
short Matlab videos (1 min. each) showing the robot’s
capability in stabilizing itself on a fixed configuration
(DDMR-stabilization.avi), in tracking an eight-shaped
trajectory (DDMR-eight-tracking.avi), and in tracking
a straight line segment (DDMR-line-tracking.avi).

7 Experimental Results

This section presents the results demonstrating the
real-time performance of the proposed neighboring
optimal controller. For that, the kinematic model (1)
is realized by the Sputnik robot platform as pictured
in Fig. 2a. The Sputnik is a two-wheel differential
drive mobile robot whose kinematic model is derived
by the conventional geometric model of a unicycle
robot. The details of the low-level components, such
as the torque-speed characteristics and interfacing
mechanisms, were not disclosed by the robot manu-
facturer and have to be dealt with appropriately by
the controller. Some of the robot’s nominal relevant
parameters as documented by its manufaturer are as
follows: weight = 6.1 kg, diamater ≡ l = 26 cm,
height = 47 cm, maximum linear speed = 1 m · s−1,
radius of each driving wheel ≡ r = 8.25 cm, maxi-
mum motor torque = 22kg · cm.

The MakeController board (emulating the RFID
reader) mounted on the robot is connected to a lap-
top computer using an USB cable which allows

the robot to receive the RSS measurements com-
ing from the XBee modules (emulating RFID tags).
Note that the laptop computer and the robot is wire-
lessly connected through an wireless router in the
robot’s workspace. The experiment is conducted in
the MIRaM laboratory of dimension about 10 ×
9 × 3 m at the University of Ottawa. The top-
view of the workspace floor plan is depicted in
Fig. 8.

The robot is supposed to follow the U-shaped
rectilinear trajectory of length 16.5 m which is
divided into three unequal segments A, B, and C.
The four XBee modules in this case are located
at positions (1.7, 5.0, 0.7) m, (−1.5, 4.9, 0.7) m,
(−1.5, 2.1, 0.7) m, and (1.0, 2.6, 0.7) m and their cor-
responding 16-bit IDs are 0x5001, 0x5002, 0x5003,
and 0x5004, respectively. The robot’s real-time trajec-
tory tracking performance is revealed in Fig. 9a, where
the hollow and solid arrows indicate the robot’s initial
and final poses, respectively. The corresponding posi-
tion tracking error, e(t), is reported in Fig. 9b. The ini-
tial error spike is due to the uncertainty associated with
the robot’s initial pose but it rapidly went back to track
the trajectory. Since the robot receives the RSS mea-
surements from four XBee modules in the segment A,
it’s navigation performance is quite satisfactory in the
sense that the tracking errors are less than 10 cm in
almost everywhere in A. In addition, the error spikes
at times t ≈ 25 s and at t ≈ 39 s are due to the turning
points at the end of segments A and B of the trajectory.
It is quite interesting to see that, unlike conventional
odometric tracking algorithms, tracking errors are not
cumulative as the robot travels over longer trajec-
tory as it is clear from segments B and C, where
the tracking errors are also less than 10 cm almost
everywhere in these segments. The robot’s tracking
performance over the whole trajectory is quite satis-
factory in the sense that 90 % of the time the error
is less than 10 cm, as shown in the percentile plot of
Fig. 9b.

The snapshots of this experiment while the robot
is navigating along the U-shaped trajectory are sum-
marized in Fig. 10. The robot is initially placed
at the beginning of the segment A (see Fig. 10a).
Figure 10a–g reveal the navigation performance of
the segment A. After that, the robot had to turn at
the first sharp corner to follow the segment B (see
Fig. 10h). Note that the robot is no longer in line-
of-sight with the XBee modules which shows the
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power of RFID systems in navigating a mobile robot
in indoor environment. When the robot is in seg-
ment C, it is completely out of line-of-sight from
the XBee modules since the workstations are placed
in between the segments B and C. As can be seen
from Figs. 10m–p, the robot is still able to track
this line segment with the tracking error of about
8 cm. It is important to articulate the fact that the
main purpose of this experiment was to track the
desired trajectory rather than stabilizing on a fixed
point. Hence, the robot has stopped at about 5 cm
away from the desired end point of segment C (see
Fig. 10p).

Note that this controller is also able to stabilize
the robot at a fixed configuration by simply tuning
the weight matrices (P(tf ) and Q(t)) of the cost
function (14). This is in contrast to many recent RFID-
based techniques which usually tackle the localization
problem only [5, 14, 47]. The localization accuracy

reported there in is in the range of 0.1–0.5 m, despite
neglecting the effect of reverberations and low signal-
to-noise ratios. Moreover, the RFID-based robot navi-
gation techniques presented in those papers are mostly
based on simulations, see [14], for example, and some
references therein.

8 Conclusion

In this paper, a neighboring optimal control strategy
for solving trajectory tracking and point stabiliza-
tion problems is proposed. It relies on dividing the
whole control process into two sub-processes: find-
ing nominal and neighboring optimal control inputs.
The nominal trajectory is computed off-line which is
deterministic. The neighboring trajectory is computed
on-line. It requires an optimal filter for estimating the
robots pose taking into account the noise associated
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Fig. 10 Robot’s real-time performance for tracking a rectilinear trajectory using neighboring optimal control

with the RSS measurements from the RFID tags and
the robot’s wheel speeds. The actual control actions
are then computed by the sum of the nominal and
the neighboring control inputs which lead the robot

to track its pre-defined desired trajectory. Numerical
results demonstrate the robot’s ability to stabilize on
a fixed configuration and to guide itself along a pre-
defined trajectory with a satisfactory tracking error.
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Moreover, the proposed control technique is mod-
ular in the sense that it is applicable to a broader
class of nonlinear dynamic systems with process and
measurement uncertainties.

Appendix

A.1 Proof of Theorem 1

Let q(t) ≡ q[t,K(t)] be the solution of the feed-
back system (12), with the cost functional (14) for
any choice of K(t) ∈ Kad . Since Ko(t) is optimal
with the associated trajectory qo(t), it is clear that
J (Ko ≤ J (K), ∀ K ∈ Kad . Suppressing the variable
t for clarity and for any ε ∈ [0, 1], we define Kε =
Ko+ε(K − Ko). SinceK is a closed convex set,Kad

is also a closed convex subset of L∞(I ,R2×3) and
therefore Kε ∈ Kad . Thus J (Ko) ≤ J (Kε), which
follows that

T r
[(
K − Ko

)T
dJ (Ko)

]
≥ 0, (40)

where dJ (Ko) denotes the Gateaux (directional)
derivative of J evaluated at K = Ko in the direction
of (K − Ko).

Let qε be the solution of the feedback system (12)
corresponding to the gain Kε with the same initial
state qε(t0) = q0. It is easy to very that

lim
ε→0

Kε(t) = Ko(t), and lim
ε→0

qε(t) = qo(t).

Using q̇ε = f̂(qε,Kε) and q̇o = f̂(qo,Ko) with
qε(t0) = qo(t0) = q0 which, yield the following
equation

q̇ε−q̇o = f̂(qε,Ko)−f̂(qo,Ko)+εf̂(qε,K−Ko). (41)

Dividing by ε and denoting

η(t) ≡ lim
ε→0

(
qε(t) − qo(t)

ε

)
it follows from the expression (41) that η(t) must
satisfy the following initial value problem

η̇ = ∂ f̂
∂q

(qo,Ko)η + f̂(qo,K − Ko), η(t0) = 0. (42)

Equation (42) is a linear non-homogeneous equa-
tion with f̂(qo,K − Ko) being the driving force. As a
result, it has a continuous solution η(t) ∈ C(I ,R3),
which is continuously dependent on f̂(qo,K − Ko).

By definition of Gateaux (directional) derivative we
can derive the following expression

T r
[(
K − Ko

)T
dJ (Ko)

]
= lim

ε→0

J [Ko+ε(K−Ko)]−J (Ko)

ε

= ηT (t)
∂φ

∂q
[tf , q(tf )] +

∫ tf

t0

ηT (t)
∂	

∂q
[t, q(t)]dt.

Hence, inequality (40) yields

ηT (t)
∂φ

∂q
[tf ,q(tf )] +

∫ tf

t0

ηT (t)
∂	

∂q
[t,q(t)]dt ≥ 0.

(43)

Since η(t) of the variational equation (42) is con-
tinuously dependent on f̂(qo,K − Ko), the map

f̂(qo,K − Ko) �−→ η(t), t ∈ I

is continuous from L1(I ,R3) to C(I ,R3)
[2, p. 260]. Hence, the map

η(t) �−→ ηT (t)
∂φ

∂q
[tf , q(tf )] +

∫ tf

t0

ηT (t)
∂	

∂q
[t, q(t)]dt

is a continuous linear functional on C(I ,R3). Thus,
the composition map

f̂(qo,K − Ko) �−→ ηT (t)
∂φ

∂q
[tf ,q(tf )]

+
∫ tf

t0

ηT (t)
∂	

∂q
[t,q(t)]dt

is a continuous linear functional on L1(I ,R3),
where f̂(qo,K − Ko) ∈ L1(I ,R3). Therefore, by
the Riesz representation theorem or by the duality
between L1(I ,R3) and L∞(I ,R3), we may con-
clude that there exists an element ψo ∈ L∞(I ,R3)

such that

T r
[(
K − Ko

)T
dJ (Ko)

]
= ηT (t)

∂φ

∂q
[tf , q(tf )+∫ tf

t0

ηT (t)
∂	

∂q
[t, q(t)] dt =

∫ tf

t0

(
ψo
)T f̂(qo,K − Ko)dt.

(44)

It follows from inequality (43) that

∫ tf

t0

(
ψo
)T f̂(qo,K − Ko)dt ≥ 0, ∀ K ∈ Kad . (45)
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Using the variational equation (42), it follows from the
second identity of Eq. (44) that

ηT (t)
∂φ

∂q
[tf ,q(tf )] +

∫ tf

t0

ηT (t)
∂	

∂q
[t,q(t)]dt =

∫ tf

t0

{(
ψo
)T [

η̇ − ∂ f̂
∂q

(qo,Ko)

]
η(t)

}
dt.

(46)

Integrating by parts and since η(t0) = 0,

∫ tf

t0

(
ψo
)T [

η̇(t) − ∂ f̂
∂q

(qo,Ko)

]
η(t)dt =

ηT (tf )ψo(tf ) +
∫ tf

t0

ηT (t)

⎛
⎝−ψ̇ −

[
∂ f̂
∂q

(qo,Ko)

]T

ψo

⎞
⎠dt.

Expression (46) can now be written as

ηT (t)
∂φ

∂q
[tf , q(tf )] +

∫ tf

t0

ηT (t)
∂	

∂q
[t, q(t)]dt =

ηT (tf )ψo(tf ) +
∫ tf

t0

ηT

⎧⎨
⎩−ψ̇

o −
[

∂ f̂
∂q

(qo,Ko)

]T

ψo

⎫⎬
⎭ dt

(47)

It is clear from Eq. (47) that

ψ̇
o = −

[
∂ f̂
∂q

(qo,Ko)

]T

ψo − ∂	

∂q
[t,qo(t)] and

ψo(tf ) = ∂φ

∂q
[tf ,q(tf )].

(48)

The costate dynamics (48) is linear along the optimal
trajectories. Thus, the necessary conditions of opti-
mality is given by the integral inequality (45), the
costate dynamics (48), and the state equation (12). In
other words, the choice of K ∈ Kad determines the
optimality conditions (45), (48), and (12).

Consider the optimality condition (45) and rewrit-
ing it as follows

∫ tf

t0

(
ψo
)T f̂(qo,K)dt ≥

∫ tf

t0

(
ψo
)T f̂(qo,Ko)dt,

∀ K ∈ Kad .

(49)

Using the integral inequality (49), it is easy to derive
the point-wise inequality [2](
ψo
)T f̂(qo,K) ≥ (

ψo
)T f̂(qo,Ko), ∀ K ∈ Kad .

(50)

Now adding the term 	[t,qo(t)] in both sides
of Eq. (50) yields(
ψo
)T f̂(qo,K) + 	[t,qo(t)] ≥ (

ψo
)T f̂(qo,Ko)

+ 	[t,qo(t)],
which gives the Hamiltonian inequality

H [t, qo(t), ψo(t),K(t)] ≥ H [t, qo(t), ψo(t),Ko(t)].
This is the same as inequality (16) stated in the the-
orem. Differentiating H with respect to the costate
variable ψ , we get

∂H

∂ψ
[t,qo(t), ψo(t),Ko(t)] = f̂[qo(t),Ko(t)],

which leads to the state equation

q̇o = ∂H

∂ψ

o

[t,qo(t), ψo(t),Ko(t)], qo(t0) = q0,

as defined in Eq. (17).
Differentiating H with respect to the state variable

q yields

∂H

∂q
[t, qo(t), ψo(t),Ko(t)] =

[
∂ f̂
∂q

(qo, Ko)

]T

ψo

+ ∂	

∂q
[t, qo(t)] = −ψ̇

o
,

Hence, the costate dynamics (48) can be expressed in
terms of Hamiltonian as

ψ̇
o = −∂H

∂q

o

[t,qo(t), ψo(t),Ko(t)], and

ψo(tf ) = ∂φ

∂q
[tf ,q(tf )],

which is the condition (18).

A.2 Proof of Theorem 3

Consider V : [0, ∞) × R
3 → R is a Lyapunov-

candidate-function and is given by

V [t, q(t)] = 1

2
qT (t)P(t)q(t) (51)

and P(t), which is the solution of Eq. (31), is a
real, symmetric, positive semi-definite matrix. We
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first proof that Eq. (51) satisfies the Lyapunov basic
properties.

Clearly, from Eq. (51), V [t, 0] = 0, and ∂V
∂q

[t, q(t)] = P(t)q(t) ∈ C1(I ,R3). Following
[53, Ch. 3], let us define

φ(t) = qT (t)P(t)q(t) = qT ψ(t), t ∈ I .

(52)

It is known that

φ(tf )=qT(tf )ψ(tf )=qT(tf )P(tf )q(tf )≥0.

Differentiating (52) with respect to t and dropping the
variable (t) for clarity, we get

φ̇ = −qT Qq − uT Ru ≤ 0. (53)

Now integrating and using the above expression, we
find that

φ(t)=qT (tf )P(tf )q(tf )+
∫ tf

t

[qT (τ )Q(τ )q(τ )+
uT (τ )R(τ )u(τ )]dτ ≥ 0, ∀ t ∈ I ,

since P(t) ≥ 0, Q(t) ≥ 0, R(t) > 0, and all are sym-
metric matrices. Hence, the solution of the differential
matrix Riccati equation (31) has to be real, sym-
metric, and at least positive semi-definite matrix for
V [t, q(t)] = (1/2)φ(t) ≥ 0. Thus, V [t, q(t)]
in Eq. (51) satisfies the Lyapunov basic properties.

By taking the time-derivative of the Lyapunov func-
tion (51) and using the expression (53), it follows
that

V̇ = 1

2
φ̇ = 1

2

{
−qT Qq − uT Ru

}
≤ 0.

(54)

(i) It is certain from Eq. (54) that if Q(t) is a real,
symmetric, positive semi-definite matrix, then
V̇ [t, q(t)] = (1/2)φ̇ ≤ 0. Hence, the feed-
back system (33) is stable in the Lyapunov sense
with respect to the Lyapunov function (51).

(ii) Since R is positive definite and if Q(t) is also
positive definite, the expression (54) yields V̇ <

0. Therefore, the feedback system (33) is asymp-
totically stable.
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