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Abstract Inertial Navigation Systems typically rely
on aiding-sensors such as GPS (Global Position-
ing System) to estimate the location of the system.
The navigational performance of the Inertial Navi-
gation System can be severely degraded when the
GPS measurements are inaccurate or unavailable.
Terrain-Aided Navigation is another method of local-
izing the platform by correlating the measured ter-
rain information with a Digital Terrain Model. This
paper presents an efficient Terrain-Aided Navigation
method of generating position measurements from the
visual appearance of the horizon profile (and hence
terrain) surrounding the platform. An optimization
process is used to align the measured horizon pro-
file to an off-line pre-generated terrain-aided reference
profile which allows for efficient position and atti-
tude estimation. Numerical simulations are presented
to evaluate the effectiveness of the proposed method.
These results show that precise real-time attitude and
position estimation is achievable using visual horizon
profile information.
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1 Introduction

Modern aircraft and Unmanned Aerial Vehicle (UAV)
navigation systems usually consist of a sensor-aided
Inertial Navigation System (INS) [1–3]. These sys-
tems integrate high-rate inertial measurements from
an Inertial Measurement Unit (IMU) with respect
to time to provide continuous position and attitude
estimates of the platform. These integrated inertial
estimates are accurate over small time intervals but
they are subject to inertial drift over the longer term.
This dead-reckoning or inertial error needs to be cor-
rected or constrained by fusing measurements from
an aiding sensor, hence sensor-aided INS. This fusion
process allows accurate navigation over the long term
operation of the system if the aiding measurements are
continuously fused.

GNSS (Global Navigation Satellite System) or GPS
(Global Positioning System) measurements are one
of the main aiding sensors used in commercial INS
units [1, 4–6]. However GNSS and GPS units require
external infrastructure and radio signals to gener-
ate the aiding measurements. These signals can be
jammed or spoofed in military applications when
exposed to Electronic Countermeasure (ECM) con-
ditions or they can be subject to multipath errors
or obstructions which are common in maneuvering
flight. The measurement precision can also be reduced
by the current visible satellite constellation geometry.
In such GPS-denied or limited situations, the navi-
gational precision of the navigation system can drop
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dramatically as it then depends upon the accuracy
of the inertial sensors which are subject to inertial
drift.

Terrain-Aided Navigation (TAN) or Terrain Ref-
erenced Navigation (TRN) [1, 3] is a method of
generating position aiding measurements which do
not rely on external signals being transmitted to
the aircraft, though it may depend on using active
sensors. These systems can be used to increase
the autonomy and reliability of the navigation sys-
tems. TAN systems use the concept of correlating
measured terrain information with a terrain spatial
database to provide position measurements. This is
particulary important to autonomous or covert aerial
operations.

This paper presents an efficient TAN method of
generating position measurements from the visual
appearance of the horizon profile. The use of visual
sensors (or other spectrums) means that the TAN
system is completely passive. The vision system pre-
sented in this paper assumes that the complete horizon
surrounding the platform is visible by combining mul-
tiple cameras together to form a complete 360◦ Field
of View (FOV). The use of the complete horizon
profile is a feasible assumption as multiple cam-
era and omnidirectional camera vision systems have
been shown to be effective for horizon based attitude
determination [7]. Correlating observed terrain fea-
tures with a terrain database can be computationally
expensive [8–15]. However, the method presented in
this paper achieves computational efficiency by using
an efficient method to generate the estimated hori-
zon profile for any position within the domain of the
terrain database. This is achieved by using off-line
pre-computed reference horizon profiles which can
be transformed and matched to the observed horizon
profile using an optimization process. Since the refer-
ence profiles can be pre-computed, this dramatically
decreases the computational burden as only a few hun-
dred profile reference points need to be transformed
to obtain the current profile; rather than rendering
the whole terrain map which could consist of mil-
lions of terrain points. Thus, real-time performance
can be realized without the need of specialized compu-
tational hardware such as Graphical Processing Units
(GPUs).

This paper is organized as follows; Section 2
reviews Terrain Referenced Navigation. Section 3
describes the proposed visual horizon TAN method.

Section 4 presents simulation results and discussion.
Finally, the conclusion and future work are described
in Section 5.

2 Terrain-Referenced Navigation

A mainstream implementation of TAN is Terrain Con-
tour Matching (TERCOM) which was initially applied
for cruise missile guidance [16]. The TERCOM sys-
tem correlates radar clearance measurements of the
terrain with a terrain map for position estimation. As
this system relies on radar measurements, it is an
active system which can be detected and jammed.
A similar TAN method is TERPROM (Terrain Pro-
file Matching). This system has been widely accepted
in the aerospace industry. The active sensors that
are typically used in TERPROM are infrared, opti-
cal, laser and millimeter wave radar [17]. The use of
active sensors means that TERCOM and TERPROM
cannot be fully utilized for military applications in
hostile environments without the risk of detection.
This risk is usually minimized by directing the energy
downwards towards the ground to limit the revealing
effect.

The use of visual measurements to recover the ter-
rain height information is currently an active area of
investigation [18–24]. Visual terrain elevation meth-
ods have advantages over radar-based methods of
being cheap and completely passive such that they
cannot be jammed or detected. These advantages are
of great importance to military applications as active
TAN sensors cannot be fully utilized in an hostile
environment. Typically, the visual terrain measure-
ments are made by feature correspondence in stereo
image pairs or from optical flow. This allows the
extrinsic properties of the terrain to be estimated from
known camera displacements. Once the visual ter-
rain elevation measurements have been made, the rest
of the position estimation process follows a similar
method to any other radar-based TAN system. Recent
work has been undertaken [25–27] to use modern
INS data-fusion techniques such as particle filtering
to increase the accuracy of the position estimation
process. The use of GPUs has also been investi-
gated in such systems to make the system real-time
realizable [28].

Terrain matching methods whether visual or radar
elevation based have difficulties at lower altitudes as
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the terrain region visible under the aircraft is quite
small. This makes it very difficult to correlate the
observed terrain with any accuracy to a terrain map.
However, at this low altitude condition, the horizon
profile can provide strong positional information. To
this end, the horizon profile has been investigated as
another feature for visual navigation [8–15, 29, 30].
The use of the horizon profile as a navigation feature
provides additional complications compared to direct
terrain elevation correlation; especially to the compu-
tational burden imposed on the system. The horizon
profile is heavily viewpoint dependent and contains no
range information, such that the scale is lost. However,
the horizon profile contains strong bearing informa-
tion. Compounding these problems is the complex
shape that the horizon profile can take and shear size
of the combinatorics of the matching and localization
problem [13].

A large amount of work in this area has been car-
ried out for planetary/lunar rovers [10], where terrain
data is available but where global positioning meth-
ods such as GPS are not. The work in this area has
largely focused on the drop-off problem, where a rover
is dropped off at an unknown location and it must
localize itself without any a priori positional informa-
tion. This is not as large a problem in the aeronautical
industry as some estimate of the aircraft position is
known at sometime during the flight. The main pur-
pose of TAN systems for aeronautical applications is
to keep the position or INS solution constrained rather
than undertaking a complete positional search at each
update step.

A feasibility study was presented in [29, 30], which
described a checkpoint system for aircraft naviga-
tion in which the observed horizon profile is com-
pared using the integral absolute differences to pre-
computed reference horizon profiles along the planned
flight path.

More generalized horizon localization methods
have been developed. Mountain peaks in the hori-
zon profile are the most common feature used in
these methods. The profile peaks are usually the
most informative part of the horizon and the most
viewpoint independent. The process used in [8–11]
was to detect peaks in the horizon profile and then
carry out an alignment process to align them to a
pre-computed peak map. Mountain peaks and rigid
lines from the entire image (not just the horizon out-
line) were also used in [14, 15] to help calculate

the view location. Other horizon-based methods use
a feature matching approach, which matches hori-
zon curve segments to a pre-computed spatial view
database. The horizon profile is split into characteriz-
able curves in [12, 13] and then pre-computed tables
can be searched to determine viewpoint positions
with similar curves and distributions. The complete
horizon profile was also used in different methods
for fine alignment [8] and validation [9, 11] of the
position estimate to increase accuracy and search
efficiency.

The complex nature of the horizon localization
problem means that the solution methods are com-
putationally expensive; which makes them difficult
to implement in a real-time system. The reported
computation time for the different peak matching
methods varies between 3 seconds [10] to 4 min-
utes [9, 11] when a priori position information
is used. The horizon navigation method of pre-
computing and characterizing horizon curve seg-
ments [13] allows for a decreased computation time
of approximately 1 minute without a priori posi-
tion information. The reported position accuracies for
these terrain-aided horizon navigation methods are
approximately between 100 meters [10, 14, 15] and
400 meters [9, 11]. The more recent work on hori-
zon profile matching undertaken in [31] reports a 3
minute computation time to estimate the attitude only
while using a GPU to accelerate the computations.
A recent combined position and attitude estimation
approach [32] reported a computational time of 10
seconds and an accuracy of 1 km without the use of a
GPU.

The method proposed in this paper treats the com-
plete horizon profile as the feature to be matched
rather than breaking the profile into peaks or curve
segments. This helps to improve the positional accu-
racy as the whole profile is used to localize the
platform rather than only using a subsection of the
observed horizon.

3 Efficient Terrain-Aided Visual Horizon Based
Localization

This proposed terrain-aided localization process takes
visual measurements of the observed horizon in the
image frame and aligns them to the terrain-aided
horizon profile in the horizon frame by optimizing
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the estimated attitude and position of the platform.
The generation of the terrain-aided horizon profile
for any given position can be very computationally
expensive and not suitable for a real-time optimiza-
tion process. To increase the efficiency of this process,
reference horizon profiles are generated off-line and
an efficient transformation process is developed to
shift the pre-generated horizon profile from the ref-
erence position to a nearby view location. Including
this transformation process inside the optimization
process allows for efficient terrain-aided horizon atti-
tude and position localization. This transformation
process also allows the analytical jacobians for each
optimization iteration to be calculated, increasing the
computational efficiency of the whole optimization
process.

The measured attitude and location then can be
fused with an INS to produce a terrain-aided INS
solution. These measurements may also be fused
with other sensors such as GPS using a data fusion
algorithm to provide extra measurements and redun-
dancies. The terrain aided localization measurements
could keep the solution constrained while operat-
ing in GPS denied areas when suitable terrain and
operating conditions are met. Even if the GPS is oper-
ating correctly, there is still added benefits of the
horizon based system as it provides direct, highly
accurate attitude measurements that can greatly reduce
the attitude error. Single antenna GPS systems can-
not measure the attitude directly and the accuracy
of the attitude solution is of critical importance
for guidance, navigation and control of aerospace
platforms.

The background theory and development of the
required processes for the optimization are described
in the Subsections 3.1 – 3.6 and then an overview
of the complete localization process is outlined in
Subsection 3.7.

3.1 Horizon Profile Representation

Let Hh
∣
∣P0 be the horizon profile expressed in the

horizon frame Fh and evaluated for a specific view-
point position P0. The horizon frame Fh is a polar
representation of the NED (North, East, Down) nav-
igational frame Fn, such that a horizon point Pn

in the navigational frame Fn (relative to the origin
at P0) can be expressed in the horizon frame Fh

using:
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where ψh, θh and Rh are the horizon bearing, horizon
pitch and horizon range respectively and Pn

x , Pn
y and

Pn
z are the individual axis components of Pn.

Let the horizon profile Hh
∣
∣P0 be parameterized

into m ordered, equally spaced bearing data points
ψhi

such that ψh1 < ψh2 < · · · < ψhm with
(ψhi+1 − ψhi

) = �ψh. The data set spans the com-
plete 360◦ horizon profile so ψh1 = −180◦ and
ψhm = 180◦−�ψh. Each data point contains the hori-
zon pitch θhi

and horizon range Rhi
for a point on the

horizon profile in the navigational frame Fn at the cor-
responding horizon bearing ψhi

. This horizon profile
data set Hh can be defined as:

Hh =
⎡

⎣

−180◦ −180◦ + �ψh . . . 180◦ − �ψh

θh1 θh2 . . . θhm

Rh1 Rh2 . . . Rhm

⎤

⎦

(2)

A linear interpolating function1 can be used on this
point data set to describe the horizon profile pitch for
any particular bearing ψh such that:

θh = Hh(ψh) (3)

θh = θhi
+ θhi+1 − θhi

�ψh

(ψh − ψhi
) (4)

where ψhi
< ψh < ψhi+1 . This interpolation func-

tion also allows the profile derivatives to be easily
calculated with:

∂θh

∂ψh

∣
∣
ψh

= θhi+1 − θhi

�ψh

(5)

∂θh

∂θhi

∣
∣
ψh

= 1 − ψh − ψhi

�ψh

(6)

∂θh

∂θhi+1

∣
∣
ψh

= ψh − ψhi

�ψh

(7)

1A higher order interpolation function or spline could be used,
however with a sufficiently small �ψh value the horizon shape
information can be fully captured.
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3.2 Generation of Horizon Profile from the Terrain
Map

The horizon profile Hh
∣
∣
P0

for a specific viewing
position P0 can be generated from a terrain map of
the surrounding area. Let the reference view posi-
tion expressed in the geodetic frame Fg be Pg

0 =
[ϕ0, λ0, h0]T where ϕ0, λ0 and h0 represents the view
latitude, longitude and altitude respectively. The ter-
rain map can be from a variety of sources, however
in its most basic form it usually contains terrain ele-
vation data for a range of grid latitude and longitude
locations. Let the terrain map Mg be a data set of
nt terrain points in geodetic frame coordinates Fg

such that:

Mg =
⎡

⎣

ϕ1 ϕ2 . . . ϕnt

λ1 λ2 . . . λnt

h1 h2 . . . hnt

⎤

⎦ (8)

The first step in the generation process is to convert
the terrain map Mg expressed in the geodetic frame Fg

to its corresponding terrain map Me expressed in the
ECEF (Earth-Centered Earth Fixed) frame Fe using
the point transformation:

⎡

⎣

xj

yj

zj

⎤

⎦ =
⎡

⎣

(N + hj ) cos ϕj cos λj

(N + hj ) cos ϕj sin λj[

N(1 − e2) + hj

]

sin ϕj

⎤

⎦ (9)

where N is the prime vertical radius of curvature and
e is the eccentricity of the Earth, which are parameters
that can be obtained from the WGS-84 model [33].
The terrain map data set Me can be expressed relative
to the view location P0 in the navigational frame Fn

using:

Pn
j = Rne

(

Pe
j − Pe

0

)

(10)

where Pe
0 is the view location expressed in the ECEF

frame and Pj is the j ∈ {1, . . . , nt } terrain point
expressed in the ECEF or NED navigation frames.
The transformation matrix Rne to transform the ECEF
frame Fe to the NED navigational frame Fn for a
specific Pg

0 view location is:

Rne =
⎡

⎣

− sin ϕ0 cos λ0 − sin ϕ0 sin λ0 cos ϕ0

− sin λ0 cos λ0 0
− cos ϕ0 cos λ0 − cos ϕ0 sin λ0 − sin ϕ0

⎤

⎦

(11)

This terrain data set in the navigational frame can
then be converted into the horizon profile data set as
described in Subsection 3.1 via various methods. The
simplest is to record the maximum terrain pitch for
each bearing using a 3D rendering process.

3.3 Horizon Profile Transformation

A transformation method that can transform the hori-
zon profile from the viewpoint position P0 to another
close by viewpoint position P is desired for two main
reasons: a) it is computationally more efficient than
regenerating the horizon profile from the terrain data
set for the viewpoint position P and b) it allows for
direct evaluation of the positional derivatives of the
horizon profile which can be used in the optimization
process and uncertainty estimation.

It can be seen that each pair of ordered, sequen-
tial horizon points in the horizon profile forms an
edge; so that the complete horizon profile describes
a 3D closed polygon in which each horizon point
is initially visible from the origin. If the origin of
this polygon is shifted, then there is not necessarily
a direct line of sight between the new origin and all
of the original horizon points. The edges of the poly-
gon can cause occlusions to block the line of sight
vectors. By describing the horizon profile as a 3D
horizon polygon, it allows the horizon profile to be
transformed efficiently using a ray casting method.
Line of sight rays are cast out from the new ori-
gin location at the required horizon profile bearings
and the ray intersections are calculated to obtain the
horizon profile values (θh, Rh) for each particular
bearing (Fig.1).

Let the current horizon profile Hh
∣
∣
P0

be evalu-
ated for the view location P0. The view point location
is to be transformed to P = P0 + �Pn where
�Pn = [�x, �y, �z]T is the viewpoint positional
shift expressed in the navigational frame Fn.

The original horizon profile Hh
∣
∣
P0

can be trans-
formed from the horizon frame Fh to the navigational
frame Fn and shifted by �Pn to form the shifted hori-
zon polygon Hn

∣
∣
P in the navigational frame Fn using:
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tan θhi
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⎤

⎦ (12)

A number of horizon polygon edge sets Ej

∣
∣
P can

be formed from the shifted horizon polygon points to
describe the complete transformed horizon polygon
using:

Ej

∣
∣
P =

{

Pn
j

∣
∣
P, Pn

j+1

∣
∣
P

}

(13)

where Pn
j is the j -th point in Hn

∣
∣
P, j ∈ {1, . . . , m}

with m being the total number of horizon points and
the horizon polygon is closed so that Pn

m+1

∣
∣
P = Pn

1

∣
∣
P.

Considering the single edge Ej shown in Fig. 2,
the polygon edge line segment Le and view ray Lr

form two lines and the intersection between the two
can be found. This ray casting approach allows the
shifted horizon polygon to be re-sampled to form the
transformed horizon profile. The two lines have the
equations:

Le (t2) = P1 + t2 (P2 − P1) (14)

Lr (t1) = t1

[

cos ψ

sin ψ

]

(15)

and the intersection of the two lines Le (t2) = Lr (t1)

can be found, resulting in the equations:

t1 = −P1y �P12x + P1x �P12y

�P12y cos ψ − �P12x sin ψ
(16)

P

t

1

RayEdge Line
e (E j )

Pint

2

1

P2

2

t1

L r ( )L

P1 P2,Ej =

Fig. 2 Horizon edge intercept

t2 = P1x sin ψ − P1y cos ψ

�P12y cos ψ − �P12x sin ψ
(17)

where �P12 = P2 − P1 and the conditions of t1 > 0
and 0 ≤ t2 < 1 must be satisfied for an intersec-
tion to occur. Once the intersection has been found,
the horizon pitch at the intersection can be recovered
using:

θh = − arctan

(
P1z + t2�P12z

t1

)

(18)

Testing every required bearing ray ψhi
with every

edge Ej where (i, j) ∈ {1, . . . , m} is faster than
generating the horizon profile from the terrain map;
however this ray casting process is still inefficient.
A single pass method can be developed based upon
knowing the required bearing distribution. The end
points of the edge segment define the angular bounds
ψ1 ≤ ψ < ψ2 of the segment; the segment only
needs to be processed if/when the current sample ray
falls into this bearing range. Using this ray tracing
method, the shifted horizon polygon can be efficiently
converted back into a horizon profile Hh

∣
∣
P using

Algorithm 1.
The analytical jacobian AH of this transformation

process with respect to the transformed position can
easily be found as part of the algorithm. This allows
for computational efficiency when the transformation
process is used in an optimization routine that requires
derivative information. A shift in �Pn is the same as
shifting the origin of the ray casting process. This is
also equivalent to negatively shifting both P1 and P2

by the same amount:
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∂θh

∂�Pn
= −

(
∂θh

∂P1
+ ∂θh

∂P2

)

(19)

Using the relationship above, it is possible to work out
the horizon pitch θh partial derivatives with respect to
the transformed position:

∂θh

∂�x
= ∂θh

∂t1

∂t1

∂�x
+ ∂θh

∂t2

∂t2

∂�x
(20)

∂θh

∂�y
= ∂θh

∂t1

∂t1

∂�y
+ ∂θh

∂t2

∂t2

∂�y
(21)

∂θh

∂�z
= 1

1
t1

[

P1z + t2�P12z

]2 + t1

(22)

where

∂θh

∂t1
= P1z + t2�P12z

[

P1z + t2�P12z

]2 + t2
1

(23)

∂θh

∂t2
= −�P12z

1
t1

[

P1z + t2�P12z

]2 + t1

(24)

∂t1

∂�x
= −�P12y

cos ψ�P12y − sin ψ�P12x

(25)

∂t1

∂�y
= �P12x

cos ψ�P12y − sin ψ�P12x

(26)

∂t2

∂�x
= − sin ψ

cos ψ�P12y − sin ψ�P12x

(27)

∂t2

∂�y
= cos ψ

cos ψ�P12y − sin ψ�P12x

(28)

These partial derivatives can be used to form the
horizon pitch jacobian AH of the transformation
process:

AH =

⎡

⎢
⎢
⎣

∂θh1
∂�x

∂θh1
∂�y

∂θh1
∂�z

...
...

...
∂θhm

∂�x

∂θhm

∂�y

∂θhm

∂�z

⎤

⎥
⎥
⎦

(29)

3.4 Image Pixel to Body Frame Horizon Vector
Mapping

A mapping procedure which transforms observed
horizon pixels in the image frame Fimage to unit vec-
tors in the body frame Fb is required so that the whole
optimization cost function can operate on these unit
vectors rather than the pixels in the image frame. The
advantage of this is that the horizon unit vectors in
the body frame are calibrated for the intrinsic camera
calibration properties and rotation offsets that allow
information from multiple cameras to be fused inside
the optimization process without having to deal with
different camera calibrations for each data set from
each camera.

Let pimage = [u, v, 1]T be a point on the hori-
zon inside the image frame Fimage, where u, v are
the x and y pixel coordinates in the image respec-
tively. This point can be transformed into a direction
vector pc in the camera frame Fc and normalized
using:

pc = K−1pimage (30)

p̂c = pc

‖pc‖ (31)

The intrinsic camera calibration matrix K is a general
pinhole camera projection model [34] that maps the
camera frame Fc to the image frame Fimage. This unit
vector v̂c

p in the camera frame Fc can be transformed
to the body frame Fb using:

p̂b = Rbcp̂c (32)

where Rbc is the inverse of the body frame Fb to cam-
era frame Fc rotation matrix that allows for camera
mounting body rotation offsets. The inverse body to
camera rotation matrix Rbc is given by:

Rbc = Rz(−ψo)Ry(−θo)Rx(−φo) (33)

where φo, θo and ψo are the body to camera mounting
offset Euler angles.

3.5 Body Frame to Horizon Frame Vector Mapping

As part of the optimization process, a mapping algo-
rithm is needed that takes the observed horizon vectors
p̂b in the body frame Fb and transforms them via the
given attitude � to the horizon frame Fh, so that the
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Algorithm 1 Horizon Profile Generation From Horizon Polygon
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observed horizon can be aligned to the terrain-aided
horizon in the horizon frame.

Let the navigational frame Fn to body frame Fb

attitude � be represented as Euler angles � =
[φ, θ, ψ]T where φ, θ , ψ are the bank, pitch and yaw
Euler angles respectively. The rotation matrix Rbn can
be calculated using:

Rbn = Rx(φ)Ry(θ)Rz(ψ) (34)

The body frame Fb unit horizon vectors p̂b can be
transformed to the navigational frame Fn using the
inverse rotation matrix Rnb such that:

p̂n = R−1
bn p̂b (35)

Then the vectors can be transform into the horizon
frame Fh using:

ψh = arctan

(

p̂n
y

p̂n
x

)

(36)

θh = − arcsin
(

p̂n
z

)

(37)

For simplicity, let this whole mapping process be
represented as functions:

ψh = ψ̃h

(

�, p̂b
)

(38)

θh = θ̃h

(

�, p̂b
)

(39)

where � is the Euler angle triplet of the platform (or
the current estimate) and p̂b be the unit horizon vector
in the body frame Fb.

The analytical partial derivatives of this process
are needed to generate the analytical jacobian for the
optimization process. These derivatives are simply
calculated using:

∂ψ̃h

∂�
= ∂ψ̃h

∂p̂n
x

∂p̂n
x

∂�
+ ∂ψ̃h

∂p̂n
y

∂p̂n
y

∂�
(40)

∂θ̃h

∂�
= ∂θ̃h

∂p̂n
z

∂p̂n
z

∂�
(41)

where the intermediate partial derivatives are:

∂ψ̃h

∂p̂n
x

= −p̂n
y

(

p̂n
x

)2 +
(

p̂n
y

)2
(42)

∂ψ̃h

∂p̂n
y

= p̂n
x

(

p̂n
x

)2 +
(

p̂n
y

)2
(43)

∂θ̃h

∂p̂n
z

= −1
√

1 − (

p̂n
z

)2
(44)

∂p̂n

∂�
= ∂Rnb

∂�
p̂b (45)

3.6 Horizon Profile Attitude and Position
Optimization

Using information developed in the above subsections,
it is now possible to describe a cost function that com-
pares the alignment of the horizon in the body frame
Fb to the terrain-aided horizon profile in the horizon
frame Fh. This problem can be expressed as an opti-
mization problem where the state vector x̃ is optimized
to minimize the cost function J , so the problem can be
expressed as:

min
x̃

∥
∥J

(

x̃
)∥
∥2 (46)

The state vector x̃ contains the estimated platform
attitude Euler angles 	̃ = [φ, θ, ψ]T and the esti-
mated navigational frame offset position �̃P

n =
[�x, �y, �z]T so that:

x̃ =
[

�̃

�̃P
n

]

(47)

The cost function J is:

J =
np
∑

k=1

wkJk(x̃, p̂b
k) (48)

where

Jk(x̃, p̂b
k) = Hh

∣
∣
P0+�̃P

(

ψ̃h(�̃, p̂b
k)

)

−θ̃h(�̃, p̂b
k) (49)

and Hh
∣
∣
P0+�̃P is the transformed horizon profile

calculated as in Subsection 3.3 that transforms the
reference horizon profile for the reference position
P0 with the current view position offset �̃P

n
. The

horizon function Hh(ψh) is the horizon profile pitch
function given by Eq. 4 and the mapping functions
ψ̃h(	, p̂b) and θ̃h(	, p̂b) are the body frame Fb to
horizon frame Fh mapping equations given by Eqs. 38
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and 39 respectively. The minimization algorithm opti-
mizes the cost function vector J over the complete
set of detected image horizon pixels mapped to the
body frame p̂b

k where k ∈ {1, 2, ..., np}. This pro-
cess aligns the observed horizon to the terrain-aided
horizon profile in the horizon frame Fh by minimiz-
ing the difference in the horizon pitch. To reduce
optimization errors resulting from horizon detection
and terrain map errors, a weighting function can be
used during the optimization process. A robust m-
estimator [35] can be used as the weighting function.
The m-estimator “fair” weighting function [36] is:

wk(Jk) = 1

1 + |Jk|/1.3998
(50)

where Jk is the current residual.
The cost function can be minimized using a

standard Gauss-Newton or Leveberg-Marquardt algo-
rithm [37], where the optimum x̃(f ) state from the
final iteration (f ) can be used to generate attitude
and position aiding measurements for fusion into an
external filter. The attitude 	̃ and position P̃e mea-
surements can be calculated using:

�̃ = �̃
(f )

(51)

P̃e = Pe
0 + R−1

ne �̃P
n(f )

(52)

where Pe
0 is the ECEF position of the reference

horizon profile and Rne is the ECEF frame Fe to
navigational frame Fn rotation matrix evaluated at Pg

0 .
The initial condition x̃(0) for the optimization pro-

cess can be found from the current INS attitude 	̃ and
position P̃e estimates where:

x̃(0) =
[

�̃

Rne

(

P̃e − Pe
0

)

]

(53)

The jacobian AJ that is required in the optimization
process is:

AJ =
⎡

⎢
⎣

AJ1
...

AJnp

⎤

⎥
⎦ (54)

The individual jacobians AJk
for each measurement

can be analytically evaluated using:

AJk
=

[
∂Jk

∂φ
∂Jk

∂θ
∂Jk

∂ψ
∂Jk

∂�x
∂Jk

∂�y
∂Jk

∂�z

]

(55)

∂Jk

∂φ
= ∂θh

∂ψh

∂ψ̃h

∂φ
− ∂θ̃h

∂φ
(56)

∂Jk

∂θ
= ∂θh

∂ψh

∂ψ̃h

∂θ
− ∂θ̃h

∂θ
(57)

∂Jk

∂ψ
= ∂θh

∂ψh

∂ψ̃h

∂ψ
− ∂θ̃h

∂ψ
(58)

∂Jk

∂�x
= ∂θh

∂θhi

∂θhi

∂�x
+ ∂θh

∂θhi+1

∂θhi+1

∂�x
(59)

∂Jk

∂�y
= ∂θh

∂θhi

∂θhi

∂�y
+ ∂θh

∂θhi+1

∂θhi+1

∂�y
(60)

∂Jk

∂�z
= ∂θh

∂θhi

∂θhi

∂�z
+ ∂θh

∂θhi+1

∂θhi+1

∂�z
(61)

where ∂θh

∂ψh
, ∂θh

∂θhi
and ∂θh

∂θhi+1
are given by Eqs. 5, 6

and 7 respectively in the horizon profile representa-

tion Subsection 3.1. Partial derivatives ∂ψ̃h

∂�
and ∂θ̃h

∂�
are

given by Eqs. 40 and 41 in the body frame to horizon

frame mapping Subsection 3.5 and lastly,
∂θhi

∂�P n and
∂θhi+1
∂�Pn are extracted from AH calculated in the horizon

transformation Subsection 3.3.
The jacobian AJ from the final iteration in the opti-

mization process can be used to estimate the final
attitude and position measurement uncertainty. Under
the ordinary least squares assumptions, the covariance
matrix 
x̃ can be calculated using:


x̃ = σ 2
x̃

(

AT
J AJ

)−1
(62)

where the solution variance σ 2
x̃ can be estimated from

the residual fit error and horizon detection measure-
ment uncertainty such that:

σ 2
x̃ = rT r

np − 6
+ σ 2

θh
(63)

where r is the un-weighted fit residual vector (un-
weighted J ) and σ 2

θh
is the horizon pitch uncertainty in

the detected horizon profile from the image processing
algorithm. The solution covariance matrix consists of:


x̃ =
[


�̃ 
�̃�̃P

�̃�̃P 


�̃P

]

(64)
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where 
�̃ can be using directly as the attitude
measurement uncertainty and the position mea-
surement uncertainty can be recovered using the
transformation:


P̃e = Ren
�̃PRne (65)

3.7 Proposed Localization Method Overview

The complete attitude and position localization proce-
dure to generate the aiding measurements is outlined
below:

1. First, reference horizon profiles are pre-computed
off-line for a series of gridded reference points
which make a 3D cube above the terrain. The
reference positions have a set �ϕ and �λ posi-
tion spacing, as well as a set �h altitude spacing.
The reference profiles can be computed using the
method in Subsection 3.2.

2. The first step in the real-time algorithm is to
select the closest reference horizon profile Hh

∣
∣
P0

from the database based on the Euclidean distance
between the current INS estimated platform posi-
tion P̃g and the reference horizon profile position
Pg

0 .
3. A horizon detection algorithm is run on the cur-

rent camera images and the detected horizon
image pixels are extracted pimage

k = [uk, vk, 1]T
where k ∈ {1, 2, ..., np}.

4. The detected horizon image pixels pimage
k are

mapped from the image frame Fimage to the body
frame Fb using the method in Subsection 3.4 to
produce the normalized body vectors p̂b

k where
k ∈ {1, 2, ..., np}.

5. The optimization procedure described in Subsec-
tion 3.6 is run using the detected horizon vectors
p̂b

k and reference horizon profile Hh
∣
∣
P0

to estimate

the current attitude �̃
(f )

and position P̃e(f ). The

initial conditions �̃
(0)

and �̃P
n(0)

for this opti-
mization process are calculated from the current
INS estimated attitude �̃ and position P̃g .

6. The estimated position P̃e and attitude 	̃ mea-
surement uncertainty 
P̃e and 
�̃ are calculated
from the final optimization jacobian AJ . The
optimized measurements and their corresponding
uncertainties then can be passed to a data fusion
process for INS aiding.

7. This whole real-time procedure (steps 2-7) is then
re-run for the next image frames in a recursive
process.

4 Simulations and Results

Results from a simulated flight sequence are pre-
sented in this section. This allows various parameters
and their effects on the optimization process to be
investigated and quantified.

A flight sequence of an aircraft flying along a val-
ley near Innsbruck was simulated. The location of the
simulation was selected for the extensive surrounding
mountainous terrain. The attitude sequence of the sim-
ulation is shown in Fig. 3 and the flight path along with
the terrain map are shown in Fig. 4. The aircraft flight
path is left to right along the white line in the figure.
An example terrain-aided horizon profile is shown
in Fig. 5 which was generated for the position high-
lighted in Fig. 4 by the white circle along the simulated
flight path. The horizon profile pitch and range clearly
shows the effect the valley’s shape has upon the pro-
file. The terrain surrounding the aircraft obscures the
distant horizon, resulting in the mountainous horizon
profile.

X-plane (a flight simulation program) was used to
generate the simulated imagery from a vision system
mounted on the aircraft. The vision system consisted
of four 90◦ FOV cameras mounted facing forwards,
backwards, left and right, to provide a simulated 360◦
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view of the horizon and surrounding terrain. The cam-
era properties for the simulated vision system are
shown in Table 1. The simulated camera imagery is
generated at 1 Hz. The proposed algorithm can operate
at higher speeds; however the change in the horizon
profile (due to the position change) at a higher frame
rate can be minimal and provides little extra informa-
tion for the analysis of the proposed method. It should
be noted however that there is a great benefit of run-
ning the attitude estimation process at a higher rate as
the rapid platform attitude response is critical for flight
control.

The horizon profile detection algorithm developed
in [38] was used to extract the horizon from each of the
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Fig. 5 Terrain-aided horizon profile

Table 1 Simulation properties

Parameter Value

Camera Frame Rate 1Hz

Camera FOV 90◦

Image Width 1024 pixels

Image Height 768 pixels

Camera 1 Attitude Offset [0◦, 0◦, 0◦]T
Camera 2 Attitude Offset [0◦, 0◦, 90◦]T
Camera 3 Attitude Offset [0◦, 0◦, 180◦]T
Camera 4 Attitude Offset [0◦, 0◦, −90◦]T

simulated camera images. The horizon detection pro-
cess operates by looking for a continuous sky/ground
interface edge which runs across the image. An exam-
ple camera image from the simulated vision system
is shown in Fig. 6 with the detected horizon profile
overlayed in black. The camera image was generated
for the example position along the flight path shown
in Fig. 4. The horizon detection algorithm extracts an
accurate representation of the visual horizon profile.

4.1 Implementation Timings

The execution timings for the different operations
used in the solution are presented in Table 2. The effi-
ciency of the proposed method is clearly visible. It
would take over 3600ms to generate a single terrain-

Fig. 6 Forward camera image and detected horizon profile
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Table 2 Timing results

Operation Timing1

Profile Generation (nt = 7782121 points) 3696 ms

Profile Transformation (m = 720 points) 3 ms

Optimization Iteration (np = 4096 pixels) 4 ms

Complete Optimization (Mean) 53 ms

Complete Optimization (Max, 15 iterations) 73 ms

Complete Optimization (Min) 25 ms

1Results for an intel core 2 duo 2.33GHz processor

aided horizon profile from the terrain map.2 However
this computation time is reduced to 3ms, one thou-
sandth of the original time by using a pre-computed
reference profile and the transformation algorithm
developed in Subsection 3.3. This efficient transfor-
mation process allows the optimization process to run
in real-time with a mean execution time of 53ms or at
19Hz. The obtained mean execution time is a fraction
of the 3 second execution time reported for the horizon
based peak matching localization method developed
in [10].

4.2 Storage Requirements

The computational efficiency in computational time
comes at the expense of data storage requirements. A
terrain database requires less storage space then the
reference horizon profile database. For comparison a
1 km square terrain map sampled at 90m increments
requires storage of 144 numbers. A reference horizon
profile database with a grid spacing of 1km sampled
in 0.5◦ bearings would require storage of 2880 num-
bers per reference altitude. This is approximately a 20
times increase in storage for a 1000 times increase in
speed. It should also be noted that it is not a require-
ment that the reference positions are evenly spaced, so
that these numbers are not the optimum.

Overall, the storage space requirements are not a
major problem as storage space is cheap. It is the exe-
cution timing that is critical for aerospace guidance
and control applications.

2This time could be reduced if a GPU was used.
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4.3 Accuracy

The optimization process is run for each measurement
from the simulated vision system. The errors between
the optimized position and attitude measurements and
the simulation truth are calculated. Initially, a database
reference profile spacing3 of 500m was used for �ϕ

and �λ which results in the raw error graphs shown
in Fig. 7 for the position error and in Fig. 8 for the
attitude error. The estimated 1σ error bounds from the
optimization jacobian are shown as the dashed lines in
these figures. The Circular Error Probable (CEP) for
the actual error sequence is shown in Fig 9.

The achieved accuracy in this simulation is highly
promising. The estimated position stays within 20
meters of the truth and the estimated attitude stays
tightly constrained within 0.2◦ of the simulated truth.
This achieved accuracy for this simulation and terrain
environment is higher than the typical accuracy results
reported in [10, 14, 15], however a direct compari-
son is not possible at this stage due to the different
systems and terrain used in the various papers. The
estimated variance of each position measurement from
the optimization process jacobian is fairly consistent
with the true error. This shows that the estimated vari-
ance is a reasonable approximation of the accuracy of
the measurements so it could be used in a probabilistic

3The 500m spacing was selected as it was observed that there
was insignificant increase in accuracy as the spacing decreased
in this simulation.
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data fusion process as the measurement uncertainty.
The error plot for the altitude show a sawtooth pat-
tern. The time that each jump occurs correspond to
the instant when the reference position updates to a
closer position in the profile database.4 This high-
lights how sensitive the altitude estimation process is
to errors. The altitude sensitivity to pixel discretization
of a single horizon pixel is approximately 10 meters.
This altitude bias is not as pronounced in the results
shown as it is not the altitude sensitivity to a single
horizon pixel but rather it is a least squares estimate
of all the horizon pixels sensitivities. This leads to
future work investigating the use of aiding sensor mea-
surements (such as from a barometer) to constrain the
optimization process, removing the altitude estimation
and hence sensitivities.

4.4 Horizon Detection

The pitch error graph shows a constant slope offset
trend over the sequence with the pitch error sloped
from positive to negative error. The CEP graph also
shows a number of outlier measurements in the North-
East section. Both of these erroneous results are due
to errors from the horizon detection process. The opti-
mization process is very sensitive to inconsistent

4The sawtooth pattern is not as pronounced during the begin-
ning of the sequence as it is a function of the local terrain
and how accurately it can be estimated via the horizon profile
transformation method.
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data, i.e. the mismatch between the detected horizon
and the terrain-aided horizon. The horizon detection
error (error between the detected profile and the true
terrain-aided horizon profile projected into the image)
is shown in Fig. 10. From this it can be seen that there
are larger horizon detection errors at the start and end
of the simulation. These times correspond to when
the larger attitude and position errors are reported and
are a direct result of the horizon detection error. The
M-estimator used in the optimization process helps
to reduce the sensitivity of the solution to these hori-
zon detection errors. The error would be an order of
magnitude larger without using a robust estimation
technique such as the M-estimator.
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The horizon detection process can only reliably
pick up the visible horizon and hence the visible ter-
rain. There can be cases when the distant terrain is
washed out and undetectable due to the view distances
involved or other weather effects such as haze or fog.
The terrain-aided horizon profile will still contain this
profile information whether it is detectable or not.
This can create inconsistent data in the optimization
process. This is the main cause of the horizon detec-
tion error in the simulation. At the start and end of the
simulation, the backwards and then the forwards fac-
ing camera respectively are aligned along the valley
facing the distant terrain (+40 km). In these situations
the horizon detection algorithm cannot detect the dis-
tant horizon, so the detected profile sits lower in the
image than where the distant terrain would be. This is
why the pitch error is positive at the beginning of the
simulation and then negative at the end of the simula-
tion. This corresponds to the times when the horizon
detection error is the greatest. The CEP accuracy for
the simulation sequence is 9.76 meters, this CEP accu-
racy increases to 2.09 meters if the horizon detection
process could accuracy select the true horizon profile
each measurement.

Infra-red cameras and horizon profile detection
fault detection processes could be investigated to help
improve the horizon measurements and remove hori-
zon detection errors. Additional weightings in the
optimization process based on the current view dis-
tance and terrain range could be investigated to min-
imise errors when the distant terrain is unobservable
in the image frame.

4.5 Grid Spacing

To investigate how the reference profile spacing
affects the accuracy, the simulation was run multi-
ple times with various reference profile spacings. The
standard deviations of the position errors are shown
Table 3 and the standard deviations of the attitude

Table 3 Reference profile spacing position error results

Spacing North (1σ ) East (1σ ) Down (1σ )

500m 6.541m 4.877m 3.535m

1000m 6.783m 4.847m 3.712m

1500m 6.939m 5.297m 4.164m

2000m 7.637m 6.095m 4.646m

Table 4 Reference profile spacing attitude error results

Spacing Bank (1σ ) Pitch (1σ ) Yaw (1σ )

500m 0.0247◦ 0.0662◦ 0.0240◦

1000m 0.0246◦ 0.0663◦ 0.0245◦

1500m 0.0255◦ 0.0667◦ 0.0269◦

2000m 0.0243◦ 0.0683◦ 0.0299◦

errors are shown in Table 4 for various grid densities.
There is little change in the accuracy of the solution
as the spacings are increased. This highlights one of
the advantages of using reference profiles, most of the
positional horizon information can be contained when
using a fairly coarse grid. The CEP results for the var-
ious spacings are shown in Table 5. The CEP is very
similar between 500 meter and 1500 meter spacings.
At a 2000 meter spacing, the CEP starts to increase.
The last two results shown in this table are for when
the true horizon profile (rather then the one from the
horizon detection process) is used. In these two cases,
the CEP is quite small with little difference between
500 meter and 2000 meter results. This shows that rea-
sonable spacings can be used and most of the error
will come from the horizon detection process rather
than the terrain model and transformation algorithm in
the optimization process. There is also no requirement
that the reference profiles need to be generated with a
uniform grid spacing. There is scope for future work to
use an adaptive spacing algorithm to change the grid
spacing based on the local terrain shape, thus reduc-
ing the number of reference profiles required without
significantly affecting the accuracy of the method.

Table 5 Reference profile spacing CEP results

Profile spacing Circular error probable

500m 9.73m

1000m 9.64m

1500m 9.94m

2000m 11.15m

500m1 2.09m

2000m1 3.07m

1Simulation was run using the true horizon profile in the image,
thus removing any horizon detection error effects
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4.6 Field of View

The use of the complete 360◦ FOV provides the algo-
rithm with the best chance of observing distinct terrain
that would allow the algorithm to accurate localize the
platform. The complete FOV is not a prerequisite of
the method, however a smaller FOV would increase
the likelihood that the optimization process becomes
degraded as the lateral direction translation becomes
unobservable. This could be counteracted by con-
straining the optimization with a priori information or
measurements from other sensors (such as a magne-
tometer). Future investigations need to be undertaken
to determine the impact of a limited FOV.

4.7 Terrain

It is difficult to assess the impact that the shape of the
terrain has on the positional accuracy of the process. It
is obvious that the terrain and horizon profile require
a certain level of roughness and variation so that it
contains positional information. Monte-Carlo simula-
tions were run with increasing altitude offsets to gauge
the affect that the terrain shape has on the positional
accuracy. As the altitude increases, the amount of ter-
rain contained in the horizon profile reduces, until
the extreme case where the horizon profile is flat and
contains no positional dependance. Figure 11 shows
how the horizon profile variance affects the positional
accuracy of the algorithm for this test environment.
As the altitude offset increases the horizon profile
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Fig. 11 Terrain variance impact on localization error

variance drops and the localization accuracy quickly
degrades.

As with all terrain-aided methods, dynamically
changing terrain or terrain database errors will affect
the accuracy of the measurements. The robust estima-
tor used in the optimization process helps to mitigate
these effects to some extent as the whole horizon pro-
file is used. The simulations presented here assume
that the terrain is perfectly known and it is only the
horizon detection process that introduces the error into
process.

5 Conclusion

The numerical simulations presented show that pre-
cise real-time attitude and position measurements can
be made using the information contained in the visual
horizon profile. The accuracy of the proposed method
still needs to be verified on flight test data with vary-
ing terrain profiles. A number of studies also need
to be carried out to investigate how the amount of
terrain information contained in the horizon profile
will affect the positional accuracies and how a lim-
ited FOV would affect the estimation process. There is
also future scope to use Infra-Red spectrum cameras
to improve the horizon detection accuracy and opera-
tional range. The storage requirements of the approach
could be improved by investigating a dynamic profile
spacing in the reference profile database to encode the
maximum amount of information without the loss of
positional accuracy.

The development of a precise real-time visual
horizon based localization and attitude determination
method is a key step towards the development of a pas-
sive visual sensor scheme for navigation and control
of small aeronautical platforms. The process allevi-
ates the dependance on GPS for navigation which can
increase the autonomy and robustness of unmanned
aerial vehicles and manned flight navigation systems.
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32. Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large scale
visual geo-localization of images in mountainous terrain.
In: Computer Vision–ECCV 2012, pp. 517–530. Springer
(2012)

33. Imagery, N., Agency, M.: Department of defense world
geodetic system 1984: its definition and relationships with
local geodetic systems. Tech. Rep. TR8350.2, National
Imagery and Mapping Agency (2000)

34. Forsyth, D., Ponce, J.: Computer Vision: A Modern
Approach. Prentice Hall (2011)

35. Holland, P.W., Welsch, R.E.: Robust regression using iter-
atively reweighted least-squares. Commun. Stat. Theory
Methods 6(9), 813–827 (1977)

36. Rey, W.: Introduction to robust and quasi-robust statistical
methods. Springer-Verlag (1983)

37. Marquardt, D.: An algorithm for least-squares estimation of
nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–
441 (1963)

38. Dumble, S., Gibbens, P.: Horizon profile detection for atti-
tude determination. J. Intell. Robot. Syst. 68, 339–357
(2012)


	Efficient Terrain-Aided Visual Horizon Based Attitude Estimation and Localization
	Abstract
	Introduction
	Terrain-Referenced Navigation
	Efficient Terrain-Aided Visual Horizon Based Localization
	Horizon Profile Representation
	Generation of Horizon Profile from the Terrain Map
	Horizon Profile Transformation
	Image Pixel to Body Frame Horizon Vector Mapping
	Body Frame to Horizon Frame Vector Mapping
	Horizon Profile Attitude and Position Optimization
	Proposed Localization Method Overview

	Simulations and Results
	Implementation Timings
	Storage Requirements
	Accuracy
	Horizon Detection
	Grid Spacing
	Field of View
	Terrain

	Conclusion
	References


