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Abstract In this paper, we attempted to evaluate
the performance of an electromyography (EMG)-
controlled 5-DOF prosthetic hand on ten transradial
amputees. The proposed prosthesis is composed of
a five-fingered hand, a passive wrist, and a cus-
tomized socket for each subject. The EMG control
methods included both a commonly used pattern
recognition-based scheme (DD-SVM) and a novel
digital encoding strategy (double-channel template
matching (DCTM)). A virtual 3D hand platform was
developed for training the subjects and rapidly test-
ing the control methods. For each subject, the per-
formance of the EMG control methods was firstly
measured by off-line classification accuracy; then,
according to the accuracy, a particular control method
was selected and embedded in the EMG controller
for further validation on ordinary daily life activities.
Our experiments were conducted to test not only the
hand’s grasp ability but also other multifinger coop-
eration skills. The result indicated that the subjects of
rich control experience can accomplish several intu-
itive motion control over their hands. However, the
kinds of the motions and their relative recognition
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accuracy may depend on some individual differences,
such as the amputation level, the activity of the resid-
ual nerve-muscle system, and the richness of control
experience. Meanwhile, the proposed digital encod-
ing method, DCTM, which only utilized two channels
of EMG, was necessary for those amputees with few
available control signals. This paper suggested that the
EMG control method should be differently considered
according to the particular condition of each subject.

Keywords Prosthetic hand · EMG control · Pattern
recognition · Virtual reality
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1 Introduction

At present, most commercial prostheses possess only
one or two degrees of freedom (DOF), such as hand
close/open and wrist rotation. This lack of dexter-
ity largely impedes the hand’s rehabilitation efficacy,
making customers rarely use them during the activities
of daily living (ADLs) [1].

In order to better restore the hand function, many
multi-DOF prosthetic hands [2–8] have been devel-
oped. However, only a few of them are clinically
evaluated. One big obstacle of putting these hands
into practice is their control method. It becomes even
more difficult when the control source, electromyo-
graphy (EMG), is highly restricted on the stumps

mailto:jiangli01@hit.edu.cn


428 J Intell Robot Syst (2014) 76:427–441

of the amputees. Although the targeted muscle rein-
nervation (TMR) technology [9], which redirected
severed nerves to the muscles on the chest for provid-
ing sufficient EMG control signals, has been proved
useful through multisubject clinical experiments, the
complexity, and cost of this surgery are still rela-
tively high, which may lead to low acceptance by the
patients.

Commercial multi-DOF prosthetic hands, such as
Touch Bionics i-LIMB hand [10] and RSL Steeper
Bebionic hand [11], have been available since 2007.
These dexterous hand prostheses have superior anthro-
pomorphic features when compared with conventional
prosthetic grippers [12]; however, their functionality is
highly limited by using the current coding-type meth-
ods. This type of methods generally adopts the EMG
amplitude information for driving the hand. For exam-
ple, by using “0” to represent the low EMG amplitude
and using “1” to represent the high EMG amplitude,
the hand gesture can be switched from one to another
under a typical coding mechanism (that is, a serial
code consists of 0 and 1 mapping into the hand ges-
tures, such as “111”-hand open, “110”-hand close, like
the Morse code). This method may cost much time on
motion selection and thus largely reduces the response
speed of the hand. In addition, since the control dex-
terity of the hand is highly related to the number of the
coding patterns, the user generally needs more training
time when higher hand dexterity is needed.

During the last decade, several anthropomorphic
prosthetic hands (Harbin Institute of Technology-
German Aerospace Center (HIT-DLR) prosthetic
hand, prototypes I∼III) [13–15] have been developed
in our laboratory. These hands are all five-fingered;
each finger has three phalanxes. For the newest one
(prototype IV) [16], five DC motors are integrated in
the palm, making all fingers individually actuated. A
large variety of sensors for measuring the position and
torque of the fingers and a feedback channel of electri-
cal stimulus [17] are integrated in the hand. As to the
EMG control method, a refined control scheme [18]
is adopted based on the research of [19], in which the
support vector machine (SVM) is used as the classi-
fier. By carefully arranging six electrodes on particular
muscle groups and introducing a threshold for purify-
ing the EMG samples, it shows that at most 18 finger
motions (individual or jointed-DOF motions, accord-
ing to the 3-DOF configuration as digit I, digit II, and
digits III–V) can be precisely deciphered on healthy

people with accuracy of about 95 %. This method was
evaluated first on hand prototype III [15], in which the
DOF configuration of the motions was the same to the
mechanical hand.

For developing a prosthetic hand, sufficient exper-
iments on patients should be conducted to fully val-
idate the hand design. The motivations of this paper
were to provide a clinical evaluation for the newly
developed HIT-DLR prosthetic hand prototype IV
and to verify if the amputees, without any surgical
intervention, can operate the multi-DOF prosthetic
hand freely by means of their EMG signals. Two
different EMG control strategies, termed as double-
decision SVM (DD-SVM) and double-channel tem-
plate matching (DCTM), on the basis of pattern recog-
nition scheme and digital encoding, respectively, were
both used. In terms of classification accuracy, the
performance of these methods with respect to each
subject was quantified. Then, several daily life activ-
ities were performed to further evaluate the control
methods and the hand design. These results will help
to design appropriate prosthetic hand systems for indi-
viduals, which will provide increased hand dexterity
and will be efficiently controlled by EMG signals.

2 Materials and Methods

2.1 Subjects

Ten patients, seven men and three women, with fore-
arm amputation, two bilateral and eight unilateral,
were tested. Some major information of the subjects is
shown in Table 1.

For the subjects with bilateral amputation (PQT and
SCC), the dominant side was tested. The cause for
amputation included cold injury, car accident, elec-
tric strike, and machine injury. The subjects were
with different amputation conditions, such as stump
length and amputation history. The usage experience
of the prosthetic hand was also different: five were
already equipped with commercial EMG-controlled
hands, one wore a cosmetic hand, and the rest four had
no prosthetic hand yet. The commercial EMG hands
were traditional prostheses with 1-DOF (or 2, includ-
ing an active wrist) that is controlled by no more than
two channels of EMG signals.

Ahead of experiments, all subjects were given a
short description about the system configuration, the
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Table 1 Information of the subjects

Index Name Gender Age Height Weight Amputation Stump length Year of Prosthesis
(years) (cm) (kg) cause (cm) amputation in use

1 PQT Male 50 171 65 Electric shock 16.8/R 2001 2-DOF myohand

2 KXD Male 46 170 80 Machine 19.8/R 2007 2-DOF myohand

3 ZYQ Male 42 172 80 Machine 21.8/R 2011 1-DOF myohand

4 LB Male 40 173 65 Car accident 12.3/R 2011 2-DOF myohand

5 WXM Female 35 160 55 Machine 9.5/L 2009 1-DOF myohand

6 WTF Female 63 160 52 Machine 13.7/R 2002 None

7 CXY Female 42 162 60 Machine 13.3/R 1992 Cosmetic hand

8 ZQS Male 40 172 79 Machine 12.5/L 2006 None

9 SCC Male 39 180 90 Cold injury 21.5/R 2011 None

10 ZXZ Male 36 170 80 Machine 19.5/L 2000 None

For privacy consideration, the names of the subjects are not fully given. The length of the stump is measured from the extensor condyle
of the humerus to the end of the stump
R “right hand”; L “left hand”

EMG control methods, and the main experimental
procedure. All subjects voluntarily participated in the
experiments. All experiments were supervised by an
expert from a professional rehabilitation center and
were approved by the local ethics committee.

2.2 Hardware Configuration

2.2.1 The 5-DOF Prosthetic Hand

A total of ten hand prototypes (HIT-DLR prosthetic
hand IV), using the same hardware configuration,
were developed. The hand is 79 mm wide, 159 mm
long, and 21 mm thick, as shown in Fig. 1a. The hand
weighs about 420 g, including five motors and neces-
sary mechanical and electrical elements. The hand has
five fingers; each finger is actuated by a DC motor.
The motion of the rest two phalanxes of the finger is
kinematically coupled with the proximal joint (trans-
mission ratio nearly 1:1) through a four-bar linkage
[16]. These three phalanxes of the finger have superior

grasp adaptability with comparison to those of rigid
body. The hand can grasp a large variety of objects:
the minimum diameter of a sphere object the hand can
pinch is about 5 mm, while the maximum diameter of
a cylinder object the hand can hold is about 90 mm.
The designed output force on the fingertip is about
10 N.

A set of position and force sensors enabling low-
level control schemes is integrated in the finger, as
shown in Fig. 1b. Motor encoders are used in the base
joints of the thumb finger, index finger, and middle
finger for measuring the speed and turning direction
of the motors. Absolute angle sensors developed based
on giant magnetoresistance (GMR) are also integrated
in the base joints of the fingers. For getting knowledge
of the force applied on the object, a strain-based torque
sensor (1D) is built on the driving bar of the link-
age mechanism. The precision of the position and the
force sensor can reach to 0.04 rad and 0.2 N, respec-
tively, which meet the prosthesis usage. Integrated
circuits for signal modulation are totally embedded in

Fig. 1 The multi-DOF
prosthetic hand and finger
sensory system: a overview
of the prosthetic hand and b
sensory configuration of the
finger
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the finger knuckle. The signals are transferred via flex
PCB and then fed into the A/D modular of the motion
controller in the palm, which is constructed on a high-
speed digital signal processor (DSP, TMSF2810). The
on-chip controller area network (CAN) is adopted
for communicating with the EMG controller in the
socket (for acquiring top-level motion commands).
Only four wires are introduced from the hand: two for
CAN and the other two for power supply. The high-
speed DSP and its peripheral facilities (CPLD, sRAM,
H-Bridge, etc.; more information were presented in
[17]) provide the hand with a large variety of con-
trol schemes, such as proportional-integral-derivative
(PID) and impedance control.

2.2.2 Data Acquisition Configuration

A set of commercial EMG electrodes (Otto Bock,
13E200 = 50) [20] was adopted to measure the EMG
signals of the amputees. On account of the signal’s
sensitivity and stability, the Otto Bock electrode has
been widely accepted in the literature [13, 19, 21].
This type of electrode can directly output an envelope
signal of the raw EMG signal (after amplification, fil-
tering, and rectification). Most of the signal energy
is concentrated in a lower frequency band (0∼50 Hz)
with comparison to the raw EMG signal (0∼500 Hz).
The amplification factor of the electrodes was set to
grade 6 (the magnification factor is nearly 14,000),
and the output amplitude of the signal was within 5 V.

The electrodes were directly wired to an EMG
controller in the hand socket, which was constructed
based on a DSP TMSF2812. The EMG data acqui-
sition was accomplished using the on-chip A/D con-
version module (with 12-bit resolution). Besides the
prosthesis system, a computer-based virtual hand sys-
tem was developed for testing the control methods

in advance, in which a multifunctional A/D card
(ADlink, 9118HR, 16-bit resolution) was used for
sampling the EMG signal. The difference of the
data resolution between these two systems was found
bringing no significant variance in classification accu-
racy. The sampling frequency was set to 100 Hz on
both systems, which was suitable for our study.

2.2.3 The Socket Design

In the socket, there was an EMG controller running
various control methods. According to the variety
condition of the subjects, it was difficult to find a
universal control method. It was typical for the pat-
tern recognition-based methods, since the number
of controllable patterns and the electrodes may be
remarkably different. Instead of validating a control
method across all subjects, this paper intended to per-
form an overall validation of the hand. For doing
this, we tended to find the optimum EMG configu-
ration from all candidates for each subject and then
compared the hand performance across both subjects
and methods. Therefore, according to each subject,
not only the shape of the socket but also the con-
trol method embedded in the EMG controller was
separately considered.

The socket was designed according to the shape
of the stump and the subject’s body parameters. The
constitution of the socket included an inner socket,
an outer socket, an EMG controller, a rechargeable
lithium battery, and two LED lights, as shown in
Fig. 2a. The inner socket was used to hold the stump
and attach the EMG electrodes (Fig. 2b). The number
and position of the electrodes were determined after
evaluating the control method by using the computer-
based virtual hand system (detailed in the following
sections). A passive wrist joint was mounted on the

Fig. 2 The socket design: a
the EMG controller
integrated in the socket and
b the electrodes mounted on
the surface of the inner
socket (from inside)
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end of the outer socket for restoring the wrist rota-
tion. The EMG control algorithm was implemented in
the EMG controller. As referred before, the embed-
ded data acquisition was also accomplished in the
controller, which supported at most eight channels.
A large-capacity lithium battery (2,500 mAh, rated
voltage of 8.4 V, peak current of 5 A) supplied the
power of the hand system. A prior experiment showed
that the battery can support continuous operation for
nearly 3 h. The LED lights were used for indicating
the working status (training, suspending, or running)
of the hand.

2.3 Virtual Hand System

The virtual reality (VR), a computer-based environ-
ment that simulates the real physical sense, has been
widely used in the fields of medical therapy and reha-
bilitation training. It has been already shown that the
virtual hand system can help to train the patients
with different control methods [9]. Another study also
found that, with a long-term training, the virtual train-
ing system can even contribute to neural rehabilitation
[22]. In this paper, a 3D virtual hand was developed,
as shown in Fig. 3, for testing our algorithm and
training the patients in an efficient way. The simulated
prosthetic hand that appears on the screen is controlled
by algorithms realized with high-level languages
in the computer and provides an intuitive tool
for examining the control methods. It must also be
noted that such a simulation tool is an ideal solution
for training patients before deploying the real
prosthetic hand.

Fig. 3 The virtual hand control platform

The virtual reality model language (VRML) was
used to construct the emulated environment of the
hand. The 3D models of the hand presented in the Cor-
tona Viewer (Parallel Graphics) were integrated in the
LabVIEW’s front graphic panel though ActiveX. Each
proximal joint of the fingers had a property node that
can be adjusted in the program’s background panel.
Similar to the mechanical design, the remaining two
joints of the fingers were coupled. Position limitations
of the fingers were also considered. On the basis of the
software rendering method (Cortona Client), a frame
frequency of 100 Hz can be granted. It is sufficient for
an EMG control method with decision latency more
than 10 ms. A proper constant coefficient DEG (rad)
was defined to control the motion speed υ (rad/s) of
the finger:

υ = DEG × fc (1)

where f c (Hz) is the decision frequency of the
motion.

2.4 Algorithms

2.4.1 Double-Decision SVM

For a typical pattern recognition-based EMG control
method, it contains two procedures: feature extraction
and pattern classification (an overview can be found in
[23]). After extracting signal features in real time and
feeding them into a beforehand classifier trained off-
line, the algorithm can recognize the ongoing motion
pattern. In this paper, because the EMG electrodes
output DC-type signals, no extra feature extraction
method was used. Instead, the multichannel EMG
signals were directly sampled as time-domain (TD)
features. To collect proper samples for training the
classifier, a proper threshold was applied on the ampli-
tude of the EMG signals to extract the useful signals
from raw signals. When conducting online recogni-
tion, we adopted two decisions: one for the detection
of the motion onset (onset decision) and the other for
the recognition of the motion type (pattern decision).
This method collected the transient EMG signals and
steady-state EMG signals together for training a clas-
sifier that can better recognize the motion with high
accuracy and small latency [24].

For the classifier, there are many alternatives,
such as linear discrimination analysis (LDA) [9,
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25], artificial neural network (ANN) [26], Gaus-
sian mixture model (GMM) [27], hidden Markov
model (HMM) [28], and so on. Among them,
support vector machine (SVM) has a sturdy
theory background from statistical learning and
can achieve a superior generalization ability based
on insufficient number of learning samples. Our
previous study showed that the classifier has a supe-
rior ability in recognizing multiple (at least 18 types)
hand motions [15]. Other meaningful investigations
[19, 21, 29, 30] also verified the classifier’s effec-
tiveness on EMG pattern classification, especially
when integrating with TD EMG features, such as
root-mean-square (RMS) or maximum absolute value
(MAV). Also, since we used the Otto Bock EMG
electrode, which produces DC-type EMG potentials
that are similar to the signal’s TD feature, we finally
decided to adopt SVM to achieve a TD feature-SVM
configuration. For clarity, we hereafter name the
method consisting of the double decisions (onset deci-
sion and pattern decision) and support vector machine
as the DD-SVM.

In specific implementation, a standard SVM with
RBF kernel [31] and one-against-one scheme for mul-
ticlass problem [32] was adopted. For determination
of the parameters (penalty parameter C and kernel
parameter γ ) of the classifier, the grid search method
was adopted, in which a fourfold cross-validation was
performed on all training samples (typical value, C =
64, γ = 0.01).

Note that the classifier should be trained to carry
out further predictions. At first, a proper number
(200∼400) of EMG samples belonging to each motion
were collected. Then, a software package named LIB-
SVM [33, 34] was utilized to train the classifier both
in LabVIEW (version in 8.0) and Matlab (version in
R2012a) environments. In the embedded EMG con-
troller, the algorithm was implemented using standard
C language.

On the side of hand control, once a motion was
recognized, the motion-related fingers of the virtual
hand will move DEG degrees (1◦ or 2◦) to a prede-
fined position. Otherwise, the hand will move to its
predetermined neutral position. This control scheme
was also adopted for controlling the prosthetic hand,
with the EMG controller generating top-level motion
command (motion class) and the hand’s motion con-
troller realizing low-level motion control scheme (PID
control) .

2.4.2 Double-Channel Template Matching

In addition to the DD-SVM, another digital EMG
encoding method (DCTM) was proposed for the
amputees having limited EMG control sources. This
method was implemented both in the computer-based
and the embedded prosthesis system. It needed only
two electrodes separately placed on a pair of ago-
nist/antagonist muscles. By denoting the extensor
activity as “E” and denoting the flexor activity as “F,”
a sequential two-bit code can generate, as shown in
Table 2. It had four templates, or patterns, as “EE,”
“EF,” “FE,” and “FF.” We matched these templates to
four general hand motions as indexing motion (IM),
lateral pinching (LP), power grasping (PG), and tripod
grasping (TP), which covered many daily activities of
the hand. The long durations of flexor activity and
extensor activity, denoted as “F+” and “E+,” were
used for enabling and disabling the pattern, respec-
tively. Once a pattern was enabled, the extension (or
flexion) motion of related fingers can be controlled
proportionally via the activities of the extensor (or the
flexor). It was similar to the on/off control scheme
of a traditional 1-DOF prosthetic hand. This control
mode kept effective unless a disabling signal E+ was
activated. For motion transition, a trigger signal (E+)

for recalling the state of pattern selection was firstly
actuated; then, following the pattern selection signal
(EE, EF, FE, or FF), a trigger signal for activating
the selected pattern (F+) was required. This con-
trol method provided a supplemental method for the
DD-SVM method. The patient should be trained well
for understanding the algorithm and being skillful to
generate the control signals. In the experiments, this
procedure would last 2∼3 h.

2.5 Experimental Protocol

2.5.1 Virtual Hand Control

In this experiment, the subjects were requested to
control the virtual hand at first without wearing the
prosthesis. The subjects sat suitably beside a desk
with his/her arm lying on the desk. Their forearms
were degreased using 95 % medical alcohol and then
cleaned with warm water. Then, we attached the EMG
electrodes on the surface of the stump by using pieces
of medical adhesive tapes. The number of the elec-
trodes was determined based on the level of the muscle
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Table 2 The double-channel template matching (DCTM) method

Pattern Indexing motion (EE) Tripod pinching (EF)

Signal

LA LA
10ms<LA<100msEE

threshold

E
M

G
A

m
p

Time

extensor flexor

LA LB

10ms<LA<100ms
10ms<LB<100ms

EF

E
M

G
 A

m
p

Time

Function Index direction, operate a keyboard, click a button, etc Pinch a pill, cap, nut, earphone, etc

Pattern Lateral pinching (FE) Power grasping (FF)

Signal

LALB

10ms<LA<100ms
10ms<LB<100msFE

E
M

G
 A

m
p

Time

LBLB

10ms<LB<100msFF

E
M

G
 A

m
p

Time

Function Grasp a handle, lift a case, nip a key, credit card, etc Grasp a bottle, cup, ball, etc

Pattern Trigger signal for activating the selected pattern (F+) Trigger signal for recalling the pattern selection (E+)

Signal

LB

500ms  LB
F+

E
M

G
 A

m
p

Time

LA
1000ms  LAE+

E
M

G
 A

m
p

Time

Function After this signal, the motion of the hand, After this signal, the hand is on a standby state that

according to an activated pattern, is switched from of the pattern selection signals

controlled by the muscle extension and (EE, EF, FE, FF) to another.

flexion activities

The blue curve and red curve show the change of the EMG amplitude of the extensor and flexor, respectively. “LA” is the duration of
the extensor activity beyond the threshold. “LB” is the duration of the flexor activity beyond the threshold. The length of LA and LB
is different in “F+” pattern and “E+” patterns

activities, which are tested by an experienced expert.
Initially, the electrodes were evenly placed around the
stump. Then, after fine adjustment, they were relo-
cated on the most active muscles nearby. At most,
eight electrodes are used. For bilateral amputees, they
were requested to do their best to image the hand
motion along with the muscle contraction. Meanwhile,
for the unilateral amputees, intended motion should be
performed on both sides of the body at the same time.

The subjects were instructed to move his/her fin-
gers according to a given motion. The motion types
included hand close (HC), hand open (HO), thumb
extension (TE), thumb flexion (TF), index finger
extension (IE), index finger flexion (IF), middle fin-
ger extension (ME), middle finger flexion (MF), ring
finger extension (RE), ring finger flexion (RF), lit-
tle finger extension (LE), little finger flexion (LF),

extension of the digits III–V (R3E), flexion of the dig-
its III–V (R3F), extension of the digits II–V (R4E),
and flexion of the digits II–V (R4F). For the dura-
tion of each motion, a total of 400 EMG samples were
collected. Sometimes, it needed the subject to repeat
the motion several times. The threshold used for trig-
gering the collection was determined based on the
quality of the EMG signal. Typically, a threshold of
0.5 V for each channel was applicable, with response
latency less than 100 ms for the motion onset detec-
tion [24]. This data collection procedure would cost
several minutes.

The acquired data was split into two groups: one
for training the classifier and the other for validating
the classification accuracy, which was defined as the
percentage of the correctly classified samples on all
motions. An online virtual hand control experiment
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was conducted, while proper classification accuracy
was obtained. This online validation method was exe-
cuted on three subjects (PQT, KXD, and ZYQ), for
those who had been well trained and had plenty
experience on EMG control.

All subjects with exceptions of PQT and KXD eval-
uated the DVTM method. The subjects were asked to
attempt a functional signal (EE, EF, FE, or FF) several
times as fast as possible. The classification accuracy
was defined as the number of the correctly activated
patterns divided by the number of the total test trials
in percentage.

2.5.2 Prosthetic Hand Control

After virtual hand experiments, the suitable EMG con-
trol method (DD-SVM and DCTM), the number of
the motions, and the number of the electrodes were
found and customized for each subject. We marked
the position of the electrodes and transferred the sub-
ject to a local prosthesis center, where the shell of the
socket was fabricated. The manufacture procedure of
the sockets was similar to those of a traditional EMG-
controlled prosthetic hand, with special consideration
of the placement of the electrodes, battery, and the
EMG controller.

While using the multi-DOF hands, all subjects con-
ducted several daily tasks to further validate the pros-
thetic hand. Besides the motion control, operational
grasping control was also considered. A collective box
containing a set of daily life objects was provided, as
shown in Fig. 4a. The objects were of different sizes,
shapes, and textures, including a cylindrical cup, a
spherical ping-pong ball, a bottle of water, a slender
toothbrush, a key, a credit card, a cell phone, and so
on. The subjects were requested to grasp and move
the objects one by one, by using different hand control
strategies, from one box to another (Fig. 4b). A proper

distance between the two boxes was provided for mea-
suring the grasp stability of the objects. Once the
object was dropped on the way, it should be replaced
in the first box and transported over again. The com-
pleting time of all objects, as well as the drop times,
was recorded to examine the fast response and grasp
stability of the new prosthetic hand. For convenient
comparison, a normalized statistical index termed as
drop probability was used to quantify the grasp stabil-
ity, which was defined as the drop times divided by the
total transporting times in percentage.

The second part of the hand control experiment
was to test the fine operation ability of the hand, in
which the subjects were required to control their hands
to perform more complex tasks, such as mouse drag-
ging/clicking, tying, door-handle operation, lighter
operation, and so on. For the tasks the subjects can
achieve, the accomplishment time was recorded and
compared with the traditional prosthetic hand. On the
other hand, for the tasks the subjects cannot achieve,
an improved design scheme of the hand would be
given.

3 Results

3.1 Virtual Hand Control

The subjects had different feelings and control abil-
ities over their phantom fingers. For example, the
subject PQT felt the existence of the thumb, the ring,
and the little finger, while the subject KXD only per-
ceived the existence of the thumb finger and little
finger. It was a general phenomenon across all tested
patients. This diversity may originate from the dif-
ferent anatomic structures and atrophy levels of the
residual neural-muscular system. For endowing each
subject with suitable EMG method based on their

Fig. 4 The grasp-release
experiments: a a collection
of daily life objects and b
the prosthetic hand grasps
and relocates the objects
from one box to another
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control abilities, various EMG configurations were
tested. By using the EMG samples collected in the
experiment, the classification accuracy of the DD-
SVM method and the precision of the DCTM were
estimated, as shown in Table 3.

These preliminary results showed that the mus-
cle activities on the stumps remained relatively high
for the subjects who had plenty of EMG-controlled

experience, such as the PQT and KXD. Some sub-
jects (PQT, KXD, and ZYQ) claimed that they
had intensive control feelings about several finger
motions, such as the thumb flexion/extension and
hand close/open. On that condition, if a number of
electrodes (four to six) were used, a variety of fin-
ger motions (six to nine classes, multimode DD-SVM
method) could be classified at a high precision (nearly

Table 3 Accuracy of the DD-SVM and DCTM methods

No of electrodes Num. of patterns Types of motion Classification accuracy

Subject PQT

8 9 HO, HC, TE, TF, IE, IF, ME, MF, R 84.6 %

8 9 HO, HC, TE, TF, RE, RF, LE, LF, R 93.5 %

6 9 HO HC TE TF RE RF LE LFR 92.5 %

6 6 HO, HC, TF, IF, MF, R 89.4 %

6 5 HC, TF, IF, MF, R 95.5 %

4 7 HO, HC, TE, TF, R4E, R4F, R 92.6 %

4 5 HC, TF, IF, MF, R 93.5 %

Subject KXD

8 7 HO, HC, TE, TF, R4E, R4F, R 82.5 %

8 5 HO, HC, TF, R4F, R 93.5 %

6 7 HO, HC, TE, TF, R4E, R4F, R 80.2 %

6 5 HO HC TF R4F R 92.3 %

4 7 HO, HC, TE, TF, R4E, R4F, R 74.2 %

4 5 HO, HC, TF, R4F, R 82.5 %

Subject ZYQ

6 9 HO, HC, TE, TF, IE, IF, ME, MF, R 73.2 %

6 7 HO, HC, TE, TF, R4E, R4F, R 76.3 %

6 6 HO HC TF IF MF R 81.3 %

4 7 HO, HC, TE, TF, R4E, R4F, R 63.2 %

4 5 HO, HC, TF, R4F, R 77.5 %

2 4 IM, LP, PG, TP (DCTM) 95 %

Subject WXM

4 7 HO, HC, TE, TF, R4E, R4F, R 55.2 %

4 5 HO, HC, TF, R4F, R 74.5 %

2 4 IM LP PG TP (DCTM) 90 %

Subjects of LB, WTF, CXY, ZQS, SCC, ZXZ

4 7 HO, HC, TE, TF, R4E, R4F, R; LB: 48.2 % WTF: 50.3 % CXY: 60.7 %

ZQS: 54.3 % SCC: 44.3 % ZXZ: 54.3 %

4 5 HO, HC, TF, R4F, R; LB: 51.3 % WTF: 62.3 % CXY: 70.4 %

ZQS: 64.2 % SCC: 50.2 % ZXZ: 62.2 %

2 4 IM LP PG TP; (DCTM) LB:80 % WTF:85 % CXY:95 %

ZQS:95 % SCC:90 % ZXZ:85 %

The italicized rows are the final selection of the EMG configuration for the subject
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90 %). The subjects could control the finger (or fin-
gers) as they will, or could, drive their hands according
to a given motion as fast as they can (no obvious
control lag was found), which showed great control
intuitiveness. For example, for the subject PQT, in
total of nine motions (HO, HC, TE, TF, RE, RF, LE,
LF, R) can be well accomplished at a classification
accuracy of 92.5 %, using six electrodes. For sub-
jects KXD and ZYQ, a relatively low-grade (but still
usable) EMG configuration could be found, such as
six electrodes and seven patterns for KXD (HO, HC,
TE, TF, R4E, R4F, R, 80.2 %) and six electrodes and
six patterns for ZYQ (HO, HC, TF, IF, MF, R, 81.2 %).

There were also several subjects who claimed that
they could not perceive their lost hands anymore (in
other words, they had totally lost the feeling of their
hand). For these subjects, the pattern classification
accuracy was relatively low and unstable (70∼80 %).
This low accuracy may be caused by the similar sam-
ples within the motions which were unconsciously
introduced by the subject. It is not clear if the unavail-
able feelings can be restored by rehabilitation training
or some other surgical operations. In practice, accord-
ing to the importance of the fingers, some unimportant
finger motions were mapped into the other ones which
are more significant. For example, the motion of the
ring finger was mapped into the one of index finger,
and the motion of the little finger was mapped into
one of coupled middle-ring-little fingers. Since most
daily life activities can be accomplished by the thumb,
index, and middle fingers, this finger reconfiguration
may show a higher operation ability of the hand.

After receiving the classification accuracy of the
motions, the online control experiment was performed
to fully validate the control method. It was realized
by using the virtual hand platform referred above. The
subjects were informed to pay attention to the vir-
tual hand’s motion and were allowed to adjust his/her
EMG outputs according to the intended motion. It was
found that with the help of the virtual hand feedback,
the subject can somehow correct his/her EMG signals.
The longer time the subjects spent on the control, the
more effective was the interaction. After several train-
ing sessions, wrong motions tended to be reduced, and
the classification accuracy was improved. Thus, for
those subjects (like ZYQ) who had relatively active
residual stumps, the virtual hand system provided an
effective way for training them to recall their control
abilities over multi-DOF prosthetic hand.

The online control experiment also showed that
a large amount of misclassifications appeared in the
transition and beginning stages of some particular
hand motions, such as the flexion of the four dig-
its II∼V (R4F) or the extension of the rest three
digits III∼V (R3E). For achieving these motions,
generally, more than two fingers (multiple muscle
co-contractions) were involved. It is common that
a particular finger will move ahead of the others,
resulting in a number of pseudo-samples (crossover
samples) being collected within a specified movement
window and thus affecting the classification. On this
situation, a large threshold (0.5∼1 V) was preferred to
improve the purity of the training samples, introducing
a relative large detection delay (less than 300 ms).

It was also found that, for those subjects who had
long-term amputation and little rehabilitation training
experience, the classification accuracy was very low
even using more electrodes (40∼70 %). This may be
due to the fact that the subjects had rare feeling about
their fingers. As a supplement, the DCTM method
applied to these people, with the impedance control
method [35] integrated in the main hand control sys-
tem, showed an effective control performance. After
getting familiar with the DCTM method, the sub-
jects can give correct control signals as requested and
control the hand grasp/release according to a given
motion pattern. The overall accuracy after training
was around 90 % for all subjects. The activation sig-
nal consumed comparably longer time (300∼500 ms)
than the DD-SVM, with reducing some control effec-
tiveness of the hand. However, it should be noticed
that once after a pattern was activated, the action of
the hand was actually controlled by the real-time EMG
signal.

3.2 Prosthetic Hand Control

After determining the individual EMG configura-
tion, each subject was equipped with the multi-DOF
prosthetic hand, as shown in Fig. 5. High anthropo-
morphic appearance, i.e. the length, size, shape and
weight, without discomfort and allergic symptoms,
were found in the usage.

At last, the DD-SVM method was chosen for the
subjects PQT, KXD, and ZYQ; the DCTM method
was selected for the rest of the subjects. The time for
completing the object-grasping experiments with drop
possibility was recorded, as shown in Table 4. For
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Subject PQT Subject KXD Subject ZYQ Subject LB Subject WXM

Subject WTF Subject CXY Subject ZQS Subject SCC Subject ZXZ

Fig. 5 Hands equipped on the amputee subjects

the subject with available commercial prosthetic hand,
comparative results were also given.

The result showed that, by using the multi-DOF
prosthetic hand with the new EMG control methods,
the grasping rapidness and stability was significantly
improved. Under similar experimental condition, the
new prosthetic hand system can grasp objects quickly,
by saving time nearly 30 %. It was also found that
the dropping possibility, which was defined as the
number of dropping times divided by the total trans-
porting times, was considerably reduced. Low drop
possibility of multi-DOF hand may attribute to the
independency of the fingers and their unique envelop-
ing features. Nevertheless, since the subjects were

requested to move the objects as fast as possible, some
objects were early released before reaching to the
second box. The single-DOF hand with fixed-shape
fingers acted like a mechanical gripper; thus, it cannot
easily grasp the tiny, thin, or complex-shaped objects.
Some subjects (nos. 4, 6∼10) received high drop pos-
sibility because they were novices to the EMG-driven
multi-DOF prosthetic hand. Apparently, they still need
long-term training.

For examining the hand function on daily life
behaviors, several operational tasks were performed
by the subjects, with main results shown in Table 5.
Comparative results obtained by the traditional 1-DOF
hand are also presented in the table.

Table 4 Time and drop possibility for the object grasp/release experiment

Subject Time (s) Drop possibility (%)

Multi-DOF hand SingleDOF hand Multi-DOF hand SingleDOF hand

1 PQT 105 123 0 6.3

2 KXD 90 118 7.7 15.4

3 ZYQ 75 102 0 8.3

4 LB 91 135 13.3 20

5 WXM 89 115 7.1 14.3

6 WTF 136 N/A 11.8 N/A

7 CXY 83 N/A 21.4 N/A

8 ZQS 84 N/A 12.5 N/A

9 SCC 76 N/A 15.4 N/A

10 ZXZ 115 N/A 18.2 N/A

Note that the number and variety of the objects may be different for each subject
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Table 5 Results for complicated operational tasks

Tasks Description Multi-DOF hand 1-DOF hand Notes

1. Keyboard Typing the 26 letters arranged in The new hand can individually

alphabetical order as fast as operate the index finger thus a

possible. Retype the mistaken one. precise position can be achieved.

The amputee even attempted to

press the buttons using different

fingers of the hand.

2. Mouse Clicking and dragging 10 files The new hand can drag and click

into a given folder on the desktop

.

the mouse simultaneously; while,

the old hand can only drag the

electrical mouse.

3. Handle Grasping the door handle with proper The new hand can accomplish a better

gesture, and rotating it to open the door. enveloping quality. While, because this

operation is heavily wrist dependent,

the 2-DOF hand wins due to its power.

4. Gearlever Operating the gearlever of the car,

N/A

The new hand can hold the handle well

enveloping the handle and pressing and drag it with pressing the button;

the button. while, the old hand can hardly grasp

the gearlever.

5. Lighter Holding the lighter and pressing

N/A

The thumb finger cannot arrive at the
the button. button. Abduction motion is needed.

6. Shoe lace Cooperating with the healthy hand

N/A

Dexterous motion of the wrist is needed,

for knotting a knot. as well as the precise finger cooperation.

Note that it was just a preliminary study and concentrated on validating the hands functionality; best results of the subject were
presented instead of the general statistics

It can be seen from Table 5 that the multi-DOF hand
had relatively high operational abilities as the fingers
were being individually controlled. It had a superior

enveloping ability over objects with comparison to
those of 1-DOF hands. Special tasks involved multi-
ple finger collaborations, such as pinching, crushing,
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pressing, knocking, and holding, and can be eas-
ily accomplished. Besides, a large variety of hand
gestures can also be realized for nonverbal communi-
cation.

4 Discussions

The experimental results suggest that when compared
with traditional prosthetic hands, our five-fingered
multi-DOF prosthetic hand possesses superior fea-
tures with regard to its grasping ability, flexibility,
and dexterity. However, there are also some limita-
tions of the hand. First, the hand had no skin. The
rigid contact between the hand and the object largely
degraded the grasping stability. The little sliding fric-
tion of the contact interface between the fingertip and
the slippery object made the grasp hard to accomplish.
The subjects sometimes had to try many times to suc-
cessfully pick up the object. Second, the hand had
no sense of touch. It was difficult to detect whether
the hand was contacting with the target and how
much force was applied on the object. In our future
design, these problems could be solved by covering
an advanced artificial skin on the hand. The skin has
a human-like color, texture, and flexibility. As well,
it can sense the pressure force applied on its surface
[36].

A limitation was also found in the thumb
design: the finger had no abduction/adduction motion.
Instead, this motion was combined into the exten-
sion/flexion motion of the trapeziometacarpal joint
(TM), making the thumb grasp along a cone surface as
a natural one [16]. As found in the experiments, this
fixed motion trajectory cannot well accomplish some
hand operations, such as lateral pinch and hook grasp.
A passive degree of motion mounted on the base
joint of the thumb, as designed in i-LIMB hand and
Bebionic hand, can largely promote the grasp func-
tionality. Some patients also claimed that the thumb
finger was relatively too long when comparing with a
natural hand. This vision illusion can be relieved by
covering the hand with an anthropomorphic glove.

In the experiment, the feedback from the hand to
the user was highly limited. To accomplish a com-
plex operation, more information such as the contact
point and applied force should be provided to the user.
This information could be transferred by means of
mechanical vibration or electric stimulus on proper

sites of the user. Although the transmission rate is still
too low when comparing with human afferent nerves,
these surface feedback channels indeed play an impor-
tant role in the control scheme, especially for the user
with bad sight condition (a blind person) or in a dark
environment.

In the experiment, the classification accuracy was
found to be unstable during long-term usage (say,
2∼3 h). There were many factors, such as the
changes of temperature and humidity, sweating, skin
impedance, the electrochemistry interface between
the electrodes and the surface, and the fact that the
positions of the electrodes on the muscle might be
altered, modifying the electrodes’ signal quality. Even
the EMG signal, the control source of the prosthe-
sis, was a nonstationary signal that changes from time
to time. Influence of these factors became aggravated
when more electrodes were involved. Thus, an online,
self-adaptive procedure is a prerequisite for a success-
ful application of the multimode DD-SVM control
method. Meanwhile, accuracy degradation was not
found in DCTM method. It was not sensitive to slight
signal changes, which made it relatively more robust
than DD-SVM. This result shows consistency to the
study of [37], in which the authors suggest that a
multigrasp EMG control method needs only a single
calibration over a 1-month trial period.

5 Conclusions

A primary work on the clinical evaluation of a multi-
DOF prosthetic hand is presented. Ten amputees
equipped with the hand prototypes are tested. Two
distinct EMG control schemes, on the basis of pat-
tern recognition and digital encoding, respectively,
are examined. These two methods, termed as double-
decision SVM classification (DD-SVM) and double-
channel template matching (DCTM), are chosen
according to EMG control abilities of the subjects.
Experiments on virtual hand control and real pros-
thetic hand control show that the new hand system,
together with the EMG control methods, has superior
grasping ability and motion dexterousness than tradi-
tional gripper-type prosthetic hands. However, only a
small proportion of the patients who have relatively
more active residual muscles and full control expe-
riences is able to deploy the DD-SVM method. At
the same time, the DCTM method especially designed



440 J Intell Robot Syst (2014) 76:427–441

for patients with severe amputations and limited EMG
signals is still an indispensable alternative for control-
ling the multi-DOF prosthetic hand. Future work will
focus on ameliorating the design of the thumb, devel-
oping a tactile glove for the hand, and introducing
biological feedbacks, such as a mechanical vibration
device or electrical stimulation electrodes, for provid-
ing the real-time sensation (position and force) of the
hand to the users. Finally, stable EMG control meth-
ods for long-term usage of the prosthetic hand should
be also considered.
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