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Abstract A fleet of unmanned aerial vehicles
(UAVs) supported by logistics infrastructure,
such as automated service stations, may be capa-
ble of long-term persistent operations. Typically,
two key stages in the deployment of such a sys-
tem are resource selection and scheduling. Here,
we endeavor to conduct both of these phases in
concert for persistent UAV operations. We de-
velop a mixed integer linear program (MILP) to
formally describe this joint design and scheduling
problem. The MILP allows UAVs to replenish
their energy resources, and then return to ser-
vice, using any of a number of candidate service
station locations distributed throughout the field.
The UAVs provide service to known determin-
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istic customer space-time trajectories. There may
be many of these customer missions occurring
simultaneously in the time horizon. A customer
mission may be served by several UAVs, each
of which prosecutes a different segment of the
customer mission. Multiple tasks may be con-
ducted by each UAV between visits to the service
stations. The MILP jointly determines the num-
ber and locations of resources (design) and their
schedules to provide service to the customers.
We address the computational complexity of the
MILP formulation via two methods. We develop
a branch and bound algorithm that guarantees
an optimal solution and is faster than solving the
MILP directly via CPLEX. This method exploits
numerous properties of the problem to reduce the
search space. We also develop a modified receding
horizon task assignment heuristic that includes
the design problem (RHTAd). This method may
not find an optimal solution, but can find feasible
solutions to problems for which the other meth-
ods fail. Numerical experiments are conducted to
assess the performance of the RHTAd and branch
and bound methods relative to the MILP solved
via CPLEX. For the experiments conducted, the
branch and bound algorithm and RHTAd are
about 500 and 25,000 times faster than the MILP
solved via CPLEX, respectively. While the branch
and bound algorithm obtains the same optimal
value as CPLEX, RHTAd sacrifices about 5.5 %
optimality on average.
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1 Introduction

Systems of unmanned aerial vehicles (UAVs)
have the potential to serve in many roles such as
border patrol and security escort. However, long
term persistent operations require both UAVs
and logistics resources, such as automated ser-
vice stations. Guided by orchestration algorithms,
UAVs may return to the field after replenishing
their consumables at automated service stations
distributed throughout the field. We envision that
future UAV systems will operate in this manner
and provide indefinite service to their customers.

To deploy a complex system of UAVs, lo-
gistics resources and management software en-
tails numerous stages of development. Two key
stages are system design and resource schedul-
ing. The system design stage determines the num-
ber and location of physical resources, such as
UAVs and service stations. The resource schedul-
ing stage orchestrates the operations of these re-
sources to achieve the mission objectives. Tradi-
tionally, these stages are conducted sequentially.
However, there is inherent loss of efficiency as-

sociated with this hierarchical approach. We se-
lect the resources and schedules in concert via a
mixed integer linear program (MILP), branch and
bound algorithm and receding horizon task assign-
ment heuristic in the context of persistent UAV
operations.

Figure 1 depicts an example system. There are
three service station candidates, four UAV can-
didates and three tasks. The missions are to fol-
low three objects along their deterministic known
time-space trajectories without interruption. Ob-
jects 2 and 3 are stationary. The candidate service
stations are geographically distributed; they can
be used by any UAV. Both the stations and UAVs
are resources that may or may not be selected for
use. One feasible solution is for UAV 1 to start
its first flight from station 1 to observe object 2
and return to station 2 for replenishment. After
replenishment, it flies to object 3 and then returns
to station 2. Object 1’s path duration is longer than
a UAV’s maximum travel time. UAV 2 serves
object 1 and then hands off the duty to UAV 3,
who completes the mission. UAV 4 and station
3 are not required and need not be included as
resources in the system.

In general, we will consider N UAV candidates
(each with different capabilities), M refueling sta-
tion candidates and J trajectories. There may be
many customer missions prosecuted simultane-
ously. Each mission may be served by several

Fig. 1 A system of three
service station candidates,
four UAV candidates and
three tasks
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UAVs. The UAVs can conduct multiple tasks
between visits to the stations. For such a complex
problem as optimally selecting the resources to
employ and obtaining a schedule for them, one
requires a formal approach.

Note that UAV technologies, such as battery
replacement systems (c.f., [1–3]), have been devel-
oped to support persistent operation.

1.1 Literature on System Design

Resource selection (system design) methods for
UAVs have been developed to minimize cost and
ensure a desired service level. The placement of
recharge stations for capacitated UAVs was inves-
tigated in [4, 5]. In [4], the authors seek to locate
a fixed number of service stations on an n by n
grid by solving the p-median problem. There is no
consideration of flight path. Determining station
locations while considering the UAV flight path
was studied in [5]. Their objective was to observe
all discrete sections of a given region. First, algo-
rithms were developed to efficiently observe the
area without consideration of UAV flight dura-
tion. Then, service stations were placed every d
units of distance along these paths. The area may
also be segregated into disjoint areas and served
separately. Time constraints on the missions are
not considered and the UAVs are identical. A
Petri net to find the number of UAVs and service
stations to maintain a desired number of UAVs
in flight was developed in [2]. In [6], an analytic
approach to determine the number of identical
automated guided vehicles (AGVs) was proposed.
The AGVs deliver cargo between two points with
a target service level.

1.2 Literature on UAV Scheduling

Many authors have addressed UAV scheduling.
For example, the authors in [7] studied schedul-
ing methods for UAVs without fuel limitations.
A mathematical model was developed to direct
multiple UAVs for cooperative engagement of
moving ground targets. A genetic algorithm was
used to obtain feasible solutions.

Research on capacitated UAVs with finite
flight capability was investigated in [8–12]. When

their fuel is exhausted, the UAVs must return to
base and stay there; they do not return to the
field. A nonlinear mathematical model to allocate
capacitated UAV resources to the battlefield was
developed in [8]. A MILP based on the vehicle
routing problem for capacitated UAVs, including
time windows for the jobs, was investigated in [9].
Kim et al. [10] developed a MILP to assign m
identical UAVs, with a flight capacity q each, to n
tasks. UAVs should return to where they departed
from. They consider MILP models for two cases:
no UAV return and UAV return. Simplified, sub-
optimal, MILP models are considered for compu-
tational tractability. A MILP with fewer variables
and constraints based on [10] was introduced in
[11]. Shetty et al. [12] used a MILP to assign
UAVs to tasks with the goal of maximal target
coverage. They consider payload, maximum range
and service level. Alidaee et al. [13] improved the
tractability of the MILP from [12].

Persistent operations using service stations
were investigated in [3, 14, 15]. There, the ser-
vice stations were not geographically distributed
(there is a single multiport station). An indoor
system prototype was implemented and tested in
[3, 14, 15]. In [16], scheduling for persistent oper-
ations with geographically distributed service sta-
tions was considered. Their MILP assumed a fixed
initial configuration of resources. Song et al. [17]
reduced the number of variables and constraints
for the MILP in [16].

1.3 Contribution and Organization

Scheduling methods for UAVs assume a fixed
number of UAVs and fixed numbers/locations
of stations. It is our purpose to jointly address
the UAV scheduling and system design problems.
A few efforts have considered UAV system de-
sign. However, these do not address the persistent
UAV problem with generic missions possessing
time constraints.

Here, we develop methods to simultaneously
select the resources, their locations and schedules.
We consider persistent operation with a fleet of
UAVs supported by shared service stations which
are geographically distributed. Multiple missions
occur at the same time. Each one can be served
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by different UAVs. UAVs can be assigned sev-
eral tasks between visits to the stations. To our
knowledge, this is the first such effort to jointly
optimize UAV system design and schedule with
persistence.

The contributions are as follows. For what is to
our knowledge the first time, we:

• Develop a MILP to optimally select resources
(UAVs, service stations and their locations)
and schedules in the persistent context. Ca-
pacitated UAVs are allowed to return to ser-
vice after a visit to any of the shared service
stations distributed across the field. For each
of the given time-space trajectories, one UAV
must be assigned at all times.

• Develop a modified receding horizon task as-
signment heuristic to address the computa-
tional complexity of the MILP.

• Develop a branch and bound algorithm that
reduces the computational time relative to the
MILP via CPLEX while guaranteeing an opti-
mal solution.

Despite that we hope to improve the efficiency
of the overall system by jointly determining the
system resources and their schedules, there are
concerns associated with this approach. First, the
combined problem is significantly more compu-
tationally complex than either optimization when
conducted independently. However, as will be
demonstrated, effective heuristics can be devel-
oped to significantly reduce the computation re-
quired. Second, we assume known deterministic
mission paths. As such, the proposed approach
will be best for highly structured customer mis-
sions, e.g., border patrol. Our MILP formulation
is appropriate for these deterministic assumptions.
However, in the presence of real world uncertain-
ties, a Markov Decision Process (MDP) formula-
tion may be more appropriate. It would explicitly
model randomness. Practically, a MILP could be
used for real time control by taking a rolling
horizon perspective and allowing arbitrary system
state for the initial condition. Our MILP would
have to be extended to allow such arbitrary initial
condition. (Naturally, real time use would assume
a fixed design.) The RHTAd with fixed design can
be used for real time task allocation. However, it

would be very interesting to investigate explicit
methods to address this problem with probabilistic
customer demands.

The rest of the paper is organized as follows.
In Section 2, we develop the MILP. Section 3 de-
velops the modified receding horizon task assign-
ment heuristic. The branch and bound algorithm
is provided in Section 4. Our numerical studies
are discussed in Section 5. We provide concluding
remarks and future directions in Section 6.

2 MILP for UAV Scheduling and Design

We develop a MILP to select resources for
and schedule a fleet of capacitated UAVs. The
UAVs must provide persistent uninterrupted ser-
vice across the field to deterministic missions as
in [17].

We discretize the time-space trajectories (mis-
sions) into segments called “split jobs”; refer to
Fig. 2. Since the trajectories are deterministic,
each split job has known start/end times and loca-
tions. Each split job has a start and end coordinate
denoted as (xs,ys) and (xe,ye), respectively. These
depend on how the trajectories are discretized.
Thus the number of split jobs and their loca-
tions/times are determined up front and are given
as input data for the MILP. If many split jobs are
used, the MILP’s optimal value may be improved
at the cost of increased computational complexity.

Let i and j be the index for split jobs, s the
index for replenishment stations, k the index for
UAVs, NJ the number of split jobs, NUAV the
number of UAV candidates in the system, NSTA

the number of service station candidates, NR the
maximum number of flights per UAV during the
time horizon and M a sufficiently large number.
During service, the UAVs take off from a station
and enter the field to process split jobs. After
serving its designated split jobs, it returns to any of
the stations. This “station to split jobs to station”
travel is defined as one UAV flight. UAVs can
have multiple flights during the horizon. We use
r to index a UAV’s rth flight.

Let Dij be the travel distance from the end point
of split job i or station i to the start point of split
job j or station j. We use the standard Euclidean
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Fig. 2 Split jobs for a
moving target or
patrol path

distance between points. Note that Dij need not
equal Dji. We use Pi to denote the process time
of split job i or replenishing time at station i. The
UAV replenishing time at a station is constant.
Let Ei be the start time of split job i (and thus
the end time is Ei + Pi), qk the maximum flight
time of UAV k, Sok the initial station location of
UAV k, TSk the travel speed of UAV k, Ck the
purchase cost of UAV k, Cs the purchase cost of
station s and Wd the cost of UAV travel per unit
distance.

Assume that all UAVs start with no fuel and
immediately replenish at their initial station (this
is convenient for our model). UAVs expend no
fuel when waiting (it can stand by on the ground).
All input parameters such as NJ, NUAV, NSTA,
NR, Dij, Pi, Ei, qk, Ck, Cs, Wd, Sok and TSk are
deterministic. The candidate station locations are
all given and fixed.

The notation for indices is given as follows:

• UAV flight index: r in R = {1, . . . , NR};
• UAV index: k in K = {1, . . . , NUAV};
• Split job index: i, j in �J = {1, . . . , NJ};
• Set of UAV flight start recharge stations:

�SS = {NJ+1, NJ + 3, . . . , NJ + 2 · NSTA − 1};
• Set of UAV flight end recharge stations:

�SE = {NJ + 2, NJ + 4, . . . , NJ + 2 · NSTA};
• Set of all job and recharge stations: �A = (�J

U �SS U �SE) = {1,. . . , NJ + 2 · NSTA}.

The decision variables are as follows:

• Xijkr = 1 if UAV k serves split job j or replen-
ishes at station j after processing split job i or
replenishing at station i during the rth flight; 0,
otherwise.

• Cikr is job i’s start time by UAV k during its rth

flight or UAV k’s replenishment start time at
station i; otherwise its value is 0.

• UUAV
k = 1 if UAV candidate k is selected to

be used; 0, otherwise.
• USTA

s = 1 if station candidate s is selected to
be used; 0, otherwise.

It is convenient to allocate two indices to each
station. Station s is assigned indices NJ + 2s − 1 and
NJ + 2s. The first is the start station index in �SS; it
is used when a UAV starts its flight from station
s. The second is the end station index in �SE; it is
used when a UAV ends its flight at station s.

We adopt the MILP from [17] for the schedul-
ing component, modify their objective function
and add constraints (22), (23) and (24). Our MILP
is provided in Appendix 1.

The objective function (9) seeks to minimize
the total costs: UAV travel costs, UAV purchase
costs and station purchase costs. Constraint (10)
guarantees that all UAVs start their first flight
from their initial station. Constraints (11)–(14) are
service station constraints. Constraint (11) ensures
that UAV k flies to split job j in �J U �SE from
a station every flight. Constraint (12) guarantees
that UAV k finishes its flight at one and only one
service station per flight. Constraint (13) ensures
that UAV k’s end station on its rth flight and
start station on its (r + 1)th flight are identical.
Constraint (14) implies that the finish time of a
UAV’s rth flight is equal to the start time of a
UAV’s (r + 1)th flight at that same station. Con-
straints (15)–(17) are split job assignment con-
straints. Constraint (15) guarantees that all split
jobs in �J receive service. Constraint (16) ensures
that a UAV not finish its flight at a split job.
Constraint (17) prevents each UAV from finishing
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a flight at a start station s with index in �SS. (This
is just a notational issue related to each station
having two indices.)

Constraint (18) gives the relationship between
the start time of split job i or station i and the start
time of its successor served by UAV k during its
rth flight. Constraints (19)–(20) ensure that every
split job in �J is served at its pre-determined start
time. Constraint (21) forces UAVs to return to
a station before their fuel is depleted. Constraint
(22) ensures that only selected (purchased) UAVs
serve split jobs. Constraints (23) and (24) ensure
that only selected (purchased) stations are used.
Constraints (25) and (26) define the ranges of the
decision variables. If we set NR = 1 (the maximum
number of flights allowed), constraints (13) and
(14) should be deleted.

3 Modified Receding Horizon Task Assignment

We employ a modified receding horizon task as-
signment (RHTA) heuristic to address the com-
putational complexity inherent in the MILP. The
RHTA was first developed in [18]. We pursue
an RHTA approach because it is commonly em-
ployed in other contexts and has been used suc-
cessfully for UAVS. For persistent UAV opera-
tions, it was first extended in [10]. Their formula-
tion allows for only a single (possibly multiport)
service station. There is no consideration of the
resource selection problem.

RHTA is an iterative method that breaks a
large problem into smaller parts. A reduced com-
plexity IP is used in the smaller parts. For a given
instant in time, let rF(k) be the remaining flight
time of UAV k, at(k) the available time of UAV
k (when it will be finished its current assignment),
P the maximum petal size, Mk the split job and sta-
tion sequence that is visited by UAV k, uUAV(k)
the usage of UAV candidate k, uSTA(s) the usage
of station candidate s and W the split job list to
be assigned. A petal is a sequence of split jobs to
be served by a UAV. For example, the petal {3,
4, 5} indicates that a UAV will serve split jobs 3,
4 and 5 in that order. Petal {4, 3, 5} is different.
Since our RHTA includes system design as well
as scheduling, we call it RHTAd. The detailed
pseudo-code is provided in Appendix 2.

The overall procedure follows:

• STEP 1. Enumerate all feasible petals for each
UAV k and calculate the required travel dis-
tance for each. A petal can contain up to P
split jobs. A petal is feasible for UAV k if
it can serve the sequence of split jobs and
return to a service station. (Lines 5–14 in
Appendix 2.)

• STEP 2. Solve a single IP for all UAVs to
minimize the travel and resource costs. The IP
selects up to one petal per UAV. (Line 15 in
Appendix 2; see Eqs. 1–5 below.)

• STEP 3. For all UAV k, assign the first split
job of the selected petal to UAV k’s Mk.
Update assigned UAV k’s remaining fuel and
next available time. Remove the assigned split
job from W. (Lines 16–25 in Appendix 2.)

• STEP 4. Send UAVs that do not have any
feasible petals to a service station; update
their fuel and next available times. Return to
STEP 1 if W is not empty. (Lines 26–32 in
Appendix 2.)

• STEP 5. Assign any UAVs not located
at a station to a station. (Lines 33–36 in
Appendix 2.)

STEP 2 requires an IP. Let p be the petal index,
Skp the required travel distance of petal p by UAV
k and Nkp the total number of feasible petals of
UAV k. Akjp indicates whether split job j is in
petal p of UAV k. Akjp = 1, if split job j is in
petal p of UAV k; 0, otherwise. Decision variable
Xkp = 1, if UAV k selects petal p; 0, otherwise.
The remaining notation is as before.

The IP for Step 2 follows:

Min Wd ·
NUAV∑

k=1

Nkp∑

p=1

SkpXkp +
NUAV∑

k=1

CkUU AV
k

+
NSTA∑

s=1

CsU ST A
s (1)

subject to

NUAV∑

k=1

Nkp∑

p=1

Akip Xkp ≤ 1(i ∈ W) (2)
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∑

i∈W

NUAV∑

k=1

Nkp∑

p=1

Akip Xkp ≥ P (3)

Nkp∑

p=1

Xkp = UU AV
k (k = 1, ..., NU AV) (4)

U ST A
sok

≥ UU AV
k (k = 1, ..., NU AV) (5)

The objective function (1) is to minimize the total
system cost. Constraint (2) ensures that split job i
in W is selected at most one time in all petals and
UAVs. Constraint (3) requires that at least P split
jobs be selected. Constraints (4) and (5) ensure
that only selected (purchased) UAVs and selected
(purchased) stations provide service. Constraint
(5) states that only selected stations can serve as
initial UAV locations.

4 Branch and Bound Method

We develop a branch and bound (B&B) algorithm
that reduces the computation time of the MILP
model while guaranteeing an optimal solution.
In the worst case, the B&B explores all feasible
nodes to obtain a solution. Several properties of
the problem are exploited to reduce the search
space. The B&B seeks to solve the exact same
problem as the MILP model. Our B&B uses a
breadth first search approach because the proper-
ties we exploit to reduce the search space compare
and eliminate nodes at the same level of the B&B
tree. The detailed pseudo code of the B&B algo-
rithm is provided in Appendix 3; the properties
that it exploits are detailed in this section.

4.1 Basic Notation

Node Na is an NJ × 2 matrix, with elements de-
noted as nij. Here ni1 indicates the UAV ID as-
signed for split job i immediately after that UAV
replenishes at station ni2. ni1 ∈ {0,1,. . . ,NUAV} and
ni2 ∈ {0,NJ + 1,. . . , NJ + NSTA + 1}. (Note that we
only require and use a single index for each station
here.) If ni2 is NJ + NSTA + 1, the UAV is assigned
split job i without replenishment immediate prior
to serving job i. The case ni2 = 0 is an initial
value that will be removed after the algorithm is

complete. We use ni1(a) and ni2(a) as the value of
the ni1 and ni2 elements of node (matrix) Na. N0 is
the initial node of the B&B tree, and is the matrix
of 0 elements. These 0’s indicate that no UAV is
assigned for any split job. In this node, all UAVs
are located at their initial station. There are NJ + 1
levels in the B&B tree. One split job is assigned
when passing from one level to the next. At level
L, L split jobs have been assigned.

Note that node Na contains information only
on the assigned split jobs, assigned UAVs and
previously visited stations. It excludes the decision
variable Cikr of the MILP model. The entries in
each node are integer valued. As a consequence,
the number of nodes will be finite.

To illustrate the notation, consider an example.

Example 1 We consider a system with two sta-
tions, one UAV and three split jobs. Table 1
provides the split job data. Stations 1 and 2 are
located at coordinates (50, 50) and (160, 50), re-
spectively. The UAV’s maximum flight time is
8 min, maximum flight speed is 80 m/min and fuel
replenishment at a station requires 1 min. The
candidate UAV is initially located at station 1. Wd,
Ck and Cs are $1/m, $50 and $40, respectively.

Figure 3 shows a subset of the nodes that will be
generated in the B&B tree for Example 1. Nodes
Na, Nb and Nc are child nodes of N0. Nd, Ne and
Nf are child nodes of Nb.

It will be convenient to consider slightly
different notation for the set of split jobs and
stations. As before, we will use �J = {1, 2, . . ., NJ}
as the set of split job indices. Let UJ(a) be the set
of split job indices for jobs that have not yet been
assigned in node Na. That is,

UJ (a) = {l ∈ �J|nl1 (a) = 0} .

Table 1 Split job information for example

Split Start End Process time Split job
job point point (min) start time

(min)

1 50,130 100,130 3 1
2 210,130 260,130 8 1
3 260,130 310,130 9 1
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Fig. 3 Subset of nodes for the B&B tree in Example 1

For our B&B method, we will use a single label for
each station. Let �S = {NJ + 1, . . ., NJ + NSTA} be
the set of these station indices.

Every node in the B&B tree has attributes
associated with it. When creating the B&B tree,
new nodes are generated from existing nodes. The
new nodes are referred to as child nodes; the node
from which they derive is called the parent node.
The attributes of the children (as well as their
feasibility) are determined based on the attributes
of their parents.

4.2 Node Attributes

To each node we associate several attributes:

• the objective function value,
• remaining flight time for each UAV,
• location of each UAV,
• available time for each UAV, and
• ST (the sequence of split jobs and stations

visited by all UAVs) for each UAV.

These attributes can be obtained from the at-
tributes of the parent node via simple calculations
and based on the UAV allocated to the split job
selected in that node.

As will be discussed in detail in Section 4.3, the
next level of the B&B tree is created by generating
child nodes for each node at the lowest level of
the tree (these are called the parent nodes to
those child nodes). We require some notation. We

use Na′ to denote a child of node Na. Each child
node is generated by assigning a UAV to a split
job which was not assigned in its parent node.
Excepting the row associated with this new split
job assignment, Na is identical to Na′ . The new
row in Na′ , we call it the jth row (corresponding
to the new assignment of split job j), has elements
nj1(a’) = k’ and nj2(a’) = s’ (for k’ a UAV and s’ a
station).

Let tavail(k,a) be the available time of UAV k to
begin its next travel to a split job or station in Na.
Let ttra(k,a,b) be the travel time of UAV k from
location a to location b, a’ be the index of a child
node of node Na, loca(k,a) be the location of UAV
k after serving a split job or replenishing in node
Na and rF(k,a) be the remaining flight time of
UAV k in Na. Let obj(a) be the objective function
value of node Na. Let S(a) denote the collection
of stations that have been opened (purchased for
service) in node Na. That is, S(a) is the set of sta-
tion indices s such that ni2(a) = s, for some i. For
example, in node Nf of Fig. 3, S(f) = {4,5} (since 0
is not a station). (Note that, in that example, the
index 6 is also not a station.). Similarly, K(a) is
the set of UAV indices k such that ni1(a) = k, for
some i. cSTA(a’) = Cs′ if s’/∈ S(a); 0, otherwise.
cUAV(a’) = Ck′ , if k’/∈ K(a); 0, otherwise. The
sequence of split jobs and stations that are visited
by all UAVs are recorded as the attribute STk(a).
It is the sequence of split job and station indices
visited by UAV k from N0 to Na. Table 2 provides
the STk of node Nf.

Consider any child of node Na, call it Na′ , the
calculations to determine its attributes are given
in Appendix 4. When the station s’ in Na′ does not
appear in Na (there is no i for which ni2(a) = s’),
that station is newly purchased in child node Na′ .
Similarly, for UAV k’.

Example 1 revisited Consider Example 1. Some
attributes of the nodes in Fig. 3 are provided in
Table 3. For example, the obj(b) and rF(1,b) is
170 and 6, respectively. The obj(d) is calculated
by adding additional costs to obj(b). That is, we

Table 2 STk(f)

UAV Sequence of tasks

1 4,1,5,2
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Table 3 Attributes of nodes

Node Obj. value rF Feasibility

N0 0 0 Y
Na N/A N/A N
Nb 170 6 Y
Nc N/A N/A N
Nd 280 3.625 Y
Ne 443 4.7625 Y
Nf 404 5.825 Y

add the travel distance from split job 1 to split job
2 which is 110m. (Dummy station 6 has no cost.)
rF(1,d) is calculated by subtracting the additional
fuel consumption from rF(1,b). This consumption
is due to travel from split job 1 to split job 2 and
the processing time of split job 2.

4.3 Generation of Child Nodes

Starting from node N0, child nodes are generated
as follows. The child node of node Na, call it Na′ , is
constructed by replacing some row j of Na with the
property that nj1(a) = 0 and nj2(a) = 0. Otherwise
all rows are identical in Na and Na′ . The new row
of Na′ has some value nj1(a’) = k’ and nj2(a’) = s’
(for some UAV k’ and some station s’).

Child nodes generated from their parent node
should satisfy two tests (based on their attributes)
to be considered feasible and included in the tree:
a start time constraint and a remaining fuel con-
straint. Let s*(j) be the index of the station closest
to the end point of split job j. (Any one will do
if there are ties, as we only use it to check for
sufficient fuel and not to assign the next station.)

The start time constraint of node Na′ is satisfied
if either of the following conditions is satisfied:

• Condition 1 (C1): s’ = NJ + NSTA + 1 and
tavail(k’,a) + ttra(k’,loca(k’,a),j) ≤ Ej, or

• Condition 2 (C2): NJ + 1 ≤ s’ ≤ NJ + NSTA

and tavail(k’,a) + ttra(k’,loca(k’,a),s’) + P(s’) +
ttra(k’, s’, j) ≤ Ej.

The fuel constraint is satisfied if either of the
following conditions is satisfied:

• Condition 3 (C3): s’ = NJ + NSTA + 1
and rF(k’,a) − ttra(k’,loca(k’,a),j) − P(j) −
ttra(k’,j,s*(j)) ≥ 0, or

• Condition 4 (C4): NJ +1 ≤ s’ ≤ NJ + NSTA,
rF(k’,a) − ttra(k’,loca(k’,a),s’) ≥ 0 and q(k’) −
ttra(k’, s’, j) − P(j) − ttra(k’,j,s*(j)) ≥ 0.

If Na′ does not satisfy conditions 1 or 2, every
descendant of Na′ , at the last level of the B&B
tree, is infeasible for the MILP. This immediately
follows since the newly assigned split job j has start
time E(j) and UAV k’ is not available in time to
serve it. Further, split job j will never be assigned
to another UAV as the B&B process proceeds.

If Na′ does not satisfy conditions 3 or 4, every
descendant of Na′ , at the last level of the B&B
tree, is infeasible for the MILP. This immediately
follows since rF(k’,a’) < ttra(k’,j,s*(j)); the UAV
does not possess sufficient fuel to reach any sta-
tion from the end point of split job j. Further, the
remaining B&B process will not correct this.

We refer to an intermediate node (prior to the
last level NJ), as level-feasible if it satisfies the
start time constraint (either C1 or C2) and the
fuel constraint (C3 or C4). In the last level of the
B& B tree, if a node satisfies these constraints we
call it MILP-feasible. Since each UAV can be sent
to a station, MILP-feasible nodes provide feasible
solutions to the MILP formulation. (The optimal
assignment of UAVs to stations after all split jobs
have been assigned is conducted at the end of the
B&B algorithm).

4.4 Structural Properties to Reduce the Search
Space

Here we develop several properties that help
to reduce the computation via reduction of the
search space. Let Cb−a be the cost of stations that
are opened at node Na and not opened at node
Nb. For example, if stations 2, 4 and 5 are opened
in node Na and stations 3 and 4 are opened in node
Nb, then Cb−a is C2 + C5 (not including C3).

Definition 1 For a given level in the B&B tree, we
say that node Na is dominated by node Nb if

ni1(a) = ni1(b), ∀i ∈ {1, ..., NJ} , (6)

rF(k, a) ≤ rF(k, b), ∀k ∈ {1, ..., NUAV} , (7)
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ob j(a) ≥ ob j(b) + Cb−a. (8)

Node Nb is said to dominate node Na.

Lemma 1 If Na is dominated by Nb , then every
feasible child of Na is dominated by some feasible
child of Nb .

Proof Consider any level-feasible child of node
Na, call it Na′ . Let j be the split job that is assigned
in Na′ but not Na (the new split job assigned when
creating the child). For this split job j (row j), let
nj1(a’) = k’ and nj2(a’) = s’. There is also a child
of Nb, call it Nb’, with nj1(a’) = k’ and nj2(a’) = s’
(since split job j is unassigned in Nb by Eq. 6 and
the child generation stage exhaustively creates all
possible remaining split job assignments; Lines
11–20 in Appendix 3). Thus, since ni1(a) = ni1(b)
for all i by Eq. 6 and nj1(a’) = nj1(b’) = k’, we have
ni1(a’) = ni1(b’) for all i. That is, Eq. 6 is true for
Na′ and Nb′ .

That the child Nb′ is level-feasible (it sat-
isfies the start time and fuel constraints) can be
readily shown since tavail(k’,a) = tavail(k’,b) and
loca(k’,a) = loca(k’,b) by Eq. 6, nj1(b’) = nj1(a’) =
k’, nj2(b’) = nj2(a’) = s’ and rF(k’,a) ≤ rF(k’,b) by
Eq. 7.

We now show Eq. 7 for the children. Since
rF(k’,a) ≤ rF(k’,b) by Eq. 7, loca(k’,a) = loca(k’,b)
by Eq. 6, nj1(b’) = nj1(a’) = k’ and nj2(b’) =
nj2(a’) = s’, and using the definition of the child
node attributes, we have rF(k’,a’) ≤ rF(k’,b’).
Since UAV k’ was the only one assigned when
passing from node Na (Nb) to Na′ (Nb′), all other
UAVs’ fuel levels do not change, so that rF(k,a’)
≤ rF(k,b’) by Eq. 7 for all k�=k’. Therefore,
rF(k,a’) ≤ rF(k,b’) for all k.

We prove Eq. 8 for the children. There are five
cases and for all cases cUAV(a’) = cUAV(b’) by
Eq. 6 and nj1(a’) = nj2(b’) = k’.

• Case I: nj2(a’) = nj2(b’) = s’ = NJ + NSTA + 1.
Since loca(k’,a) = loca(k’,b) by Eqs. 6, 8 and
Cb′−a′ = Cb−a, we have obj(a) + Dloca(k′,a),j =
obj(a’) ≥ obj(b’) + Cb′−a′ = obj(b) + Cb−a +
Dloca(k′,b),j.

• Case II: NJ + 1 ≤ nj2(a’) = nj2(b’) = s’ ≤ NJ+
NSTA, s’∈S(a) and s’∈S(b). Since loca(k’,a) =
loca(k’,b) by Eqs. 6, 8, nj2(b’) = nj2(a’) =

s’ and Cb′−a′ = Cb−a, we have obj(a) +
Dloca(k′,a),nj2(a′)+ Dnj2(a′),j = obj(a’) ≥ obj(b’) +
Cb′−a′ = obj(b) + Cb−a + Dloca(k′,b),nj2(b′)+
Dnj2(b′),j.

• Case III: NJ + 1 ≤ nj2(a’) = nj2(b’) =
s’ ≤ NJ + NSTA,s’/∈S(a) and s’/∈S(b).
Since loca(k’,a) = loca(k’,b) by Eqs. 6, 8,
nj2(b’) = nj2(a’) and Cb′−a′ = Cb−a, we have
obj(a) + Dloca(k′,a),nj2(a′)+ Dnj2(a′),j + Cnj2(a′) =
obj(a’) ≥ obj(b’) + Cb′−a′ = obj(b) + Cb−a +
Dloca(k′,b),nj2(b′)+ Dnj2(b′),j + Cnj2(b′).

• Case IV: NJ +1 ≤ nj2(a’) = nj2(b’) =
s’≤ NJ + NSTA, s’/∈S(a) and s’∈S(b). Since
loca(k’,a) = loca(k’,b) by Eqs. 6, 8, nj2(b’) =
nj2(a’), Cnj2(a′) ≥ 0 and Cb′−a′= Cb−a, we have
obj(a) + Dloca(k′,a),nj2(a′)+ Dnj2(a′),j + Cnj2(a′) =
obj(a’) ≥ obj(b’) + Cb′−a′ = obj(b) + Cb−a +
Dloca(k′,b),nj2(b′) + Dnj2(b′),j.

• Case V: NJ + 1 ≤ nj2(a’) = nj2(b’) = s’ ≤ NJ +
NSTA, s’∈S(a) and s’/∈S(b). Since loca(k’,a) =
loca(k’,b) by Eqs. 6, 8, nj2(b’) = nj2(a’) and
Cb′−a′ = Cb−a−Cnj2(b′), we have obj(a) +
Dloca(k′,a),nj2(a′)+ Dnj2(a′),j = obj(a’) ≥ obj(b’) +
Cb′−a′ = obj(b) + Cb−a + Dloca(k′,b),nj2(b′)+
Dnj2(b′),j + Cnj2(b′). �	

Proposition 1 Consider a dominated node and
suppose it has a MILP-feasible descendant. Then,
there is a MILP-feasible descendant of the domi-
nating node with at least as good objective function
value.

As a consequence, we can ignore dominated
nodes when proceeding to the next level of the
B&B tree.

Proof Applying Lemma 1 recursively, any level-
feasible descendant of a dominated node is guar-
anteed to be dominated by some level-feasible
descendant of the dominating node (at the same
level of the B&B tree). As such, at the bottom of
the tree, when all jobs have been assigned, if the
dominated node generated a MILP-feasible solu-
tion, the dominating node will also have generated
one with at least as good objective function value.

�	

Definition 2 UAV A and B are said to be identi-
cal, if their initial location, maximum travel speed
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Table 4 The example of STk of Na

UAV Sequence of tasks

1 7,1,8 2
2 7,3,4
3 8,5
4 8,6

and maximum flight time are the same. UAVs A
and B are said to be in the same UAV class.

The UAV classes partition the set of UAVs
{1, 2, . . . , NUAV}. Let Nclass ≤ NUAV denote the
number of such UAV classes. Label these classes
from 1 to Nclass and use ωm to denote the mth

UAV class (it is a set of UAV indices, where all of
those UAVs are identical). Consider some node
Na, let �m(a) be the set of STk(a), where k ∈
ωm. Consider the example STk(a) task sequences
given in Table 4. Suppose that UAVs 1 and 2 are
in a UAV class and UAVs 3 and 4 are in another
UAV class and there are 6 split jobs (with indices
1, 2, 3, 4, 5 and 6) and 2 stations (with indices 7
and 8). We thus have Nclass = 2, ω1 = {1,2} , ω2 =
{3,4} ,�1(a) = { (7,1,8 2) , (7,3,4)} and �2(b) = {
(8,5), (8,6)}.

Proposition 2 For nodes Na and Nb at the same
level, If �m(a) = �m(b) for all m, then node Na

is dominated by node Nb .

Proof Since �m(a) = �m(b) for all m, there is a
UAV k* in node Nb which is identical with k in
node Na and STk(a) = STk∗(b). Since k and k*
are identical and all attributes of k in Na and k* in
Nb are the same (since �m(a) = �m(b) for all m),
exchanging the index of k and k* in Na without
changing STk(a) provides an equivalent schedule
and design solution as in Na. We thus have

ni1(a) = ni1(b) ∀i ∈ {1, ..., NJ}
rF(k, a) = rF(k, b) ∀k ∈ {1, ..., NUAV}

ob j(a) = ob j(b) and Cb−a = 0.

Thus, conditions (6), (7) and (8) hold. �	

Since these nodes are dominated, we can ignore
them by Proposition 1.

4.5 Algorithmic Methods to Reduce the Search
Space

We now turn our attention to the pruning of nodes
based on the comparison with an upper bound
on the objective function value obtained from a
MILP-feasible solution of the problem.

The RHTAd heuristic may be able to generate
such a MILP-feasible solution. Let UB denote
the objective function value of the MILP-feasible
solution obtained from the RHTAd; set UB = ∞,
if no such feasible solution is obtained.

Proposition 3 If a level-feasible node Na has ob-
jective function value obj(a) > UB, the objective
function value of any MILP-feasible f inal descen-
dant of Na , call it Na′′ , will satisfy obj(a”) > UB.

This follows immediately from the properties of
child nodes. As such, we can prune node Na and
all of its descendants from further consideration.

Further pruning is possible based on the com-
parison of the RHTAd UB value with a lower
bound on the objective function value of any
MILP-feasible descendant of a level-feasible node
Na. This lower bound will be obtained by the
consideration of the unassigned split jobs in
node Na.

Recall that �J, UJ(a) and �S are the sets of split
job indices, remaining split job indices at node Na

and station indices, respectively. For level-feasible
node Na, let

L(a) := ob j(a) + wd

× max

⎧
⎨

⎩
∑

i∈U J(a)

�1(i),
∑

i∈U J(a)

�2(i)

⎫
⎬

⎭ ,

where we define the function �1(i) :=
min j∈�J

⋃
�ST A\{i} Dij and define the function

�2 (i) := min j∈�J
⋃

�ST A\{i} D ji. As we will show,
L(a) is a lower bound on the objective function
value for any MILP-feasible descendant of Na.
Here, �1(i) is the minimum distance a UAV
will travel starting from the end point of split
job i to to the start location of any next possible
job/station. Similarly, �2(i) is the minimum
distance a UAV will travel starting from the end
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location of any possible job/station to the start
location of split job i.

Proposition 4 If a level-feasible node Na has
L(a) > UB, the objective function value of any
MILP-feasible f inal descendant of Na, call it Na′′ ,
will satisfy obj(a”) > UB.

Proof The objective function value of any MILP-
feasible descendent of Na is obj(a) plus the cost
of additional stations opened and UAVs used in
branching to Na” plus the cost of travel distance
required to complete the remaining split jobs with
index in UJ(a). Ignoring the new station and new
UAV costs gives the bound obj(a”) ≥ obj(a) +
the cost of travel distance required to serve the re-
maining split jobs. This travel distance is at least as
great as max

{∑
i∈U J(a) �1 (i),

∑
i∈U J(a) �2 (i)

}
Mul-

tiplying by the unit cost of travel gives the result.
�	

As such, we can prune Na and all its descen-
dants from the B&B tree.

Note that that it is possible to obtain a
tighter bound on obj(Na”). There are at least
two ways. First, �1(i) can be increased (thereby
tightening the lower bound) by restricting to j ∈
UJ (a)

⋃
�ST A \ {i}. Second, it is possible to de-

termine in some cases when a new station will
be opened (we drop the new station costs in the
proof of Proposition 4). However, these improved
bounds are only helpful in the B&B method if they
reduce the overall computation required. Based
on our studies, these tightened bounds—while al-
lowing slightly improved pruning—in fact require
more computation overall.

4.6 Bounds on the Number of Nodes

Typically, the more nodes there are in the B&B
tree, the greater the computational time required
to obtain an optimal solution. As such, the number
of nodes is a measure of computational complex-
ity. We next obtain a bound on the number of
nodes in the B&B tree as a function of number of
split jobs, UAV candidates and station candidates.

Proposition 5 The number of level-feasible nodes
(including MILP-feasible nodes at the f inal level

of the B&B tree) is less than or equal to∑NJ
L=1 NL

node + 1. Here NL
node is the maximum pos-

sible number of nodes in level L and is calcu-
lated as NL

node = NL−1
node × (NJ − L + 1) × NU AV ×

(NST A + 1); N0
node = 1.

Proof In level 0 there is one node, N0
node = 1. For

any level L, the B&B algorithm in Appendix 3
exhaustively generates no more than one node
for each UAV, station (including the direct flight
option) and remaining split job. Thus, there are
no more than NUAV·(NSTA + 1)·(NJ−L + 1) child
nodes generated from each node in level L. The
result follows. �	

In order to determine the dominant nodes of
Proposition 1, the B&B algorithm compares the
attributes in Eqs. 7 and 8 for nodes pairwise
at a given level of the B&B tree. We next ob-
tain a bound on the number of these attribute
comparisons.

Proposition 6 Counting each of the pairwise com-
parisons in Eqs. 7 and 8 as one comparison, the
number of attribute comparisons conducted in our
B&B algorithm when testing the dominance of
Proposition 1 is less than or equal to

2·
∑NJ

L=1

(
(NST A+1)L · L!

2

)
·
(

NJ

L

)
· (NU AV)L.

Proof Proposition 1 compares nodes satisfying
Eq. 6, that is nodes Na and Nb with ni1(a) =
ni2(b) for all i. For a level L, there are at most(

NJ

L

)
× (NUAV)L sets of nodes that satisfy this

property. (So each set comprises all nodes satis-
fying Eq. 6 for particular fixed values of ni1, i =
1, . . . , NJ. These sets all have the same number of
nodes in them.) In each of these sets, there are no
more than (NSTA + 1)L·L! nodes. This is because,
each of the L rows that have been assigned can
have any of NSTA + 1 values for their station. In
addition, there are L! ways to reach such a node.
For example, if split jobs 1, 3 and 6 have been
assigned in a node, there are 3! orders in which
these assignments could have been made. That
is, the split jobs could have been assigned in the
order 1, 3, 6 (1 in level 1, 3 in level 2, 6 in level 3)
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or 1, 6, 3 or 3, 1, 6, etc. Inside each of these sets,
we then must compare two attributes (Eqs. 7 and
8) for the nodes pairwise. �	

Note that Proposition 6 only bounds the num-
ber of attribute comparisons and does not con-
sider the effort required to identify the sets of
nodes that satisfy Eq. 6.

5 Numerical Study

We next conduct numerical tests of our MILP,
B&B and RHTAd. We study various cost values
and models. We increase the number of resource
candidates to explore the limitations of each ap-
proach. All tests were implemented on a per-
sonal computer with Intel(R) Core(TM)2 Quad
CPU Q8400, 2.66 GHz and 4.00 GB RAM. We
used ILOG CPLEX 12.4 to solve the MILP in
Section 3 and solve the IP inside RHTAd. We im-
plement RHTAd and B&B using NetBeans IDE
7.1.2 and JDK 1.6.

Figure 4 depicts the paths for our study. There
are six moving persons on the KAIST campus.
Persons 1, 2, 3, 4, 5 and 6 move from S1 to E1
(Task 1), S2 to E2 (Task 2), S3 to E3 (Task 3),
S4 to E4 (Task 4), S5 to E5 (Task 5) and S6
to E6 (Task 6), respectively. We want to select
resources (design) and schedule the system. The
persons walk at a constant 4 km/hour. Person 1,

Table 5 Split job information for persons 1 and 2

Split Start End Process time Split job
job point point (min) start time

(min)

1 596,167 432,94 3 5
2 432,94 262,74 3 8
3 262,74 142,186 3 11
4 142,186 6,266 3 14
5 458,64 565,15 3 8

2, 3, 4, 5 and 6 start to travel at time 5, 8, 17,
20, 9 and 30 min and finish their travel at time
17, 11, 20, 24, 14 and 33 min, respectively. They
should be observed during their travel by a UAV.
We assume that each candidate service station
initially has two candidate UAVs. The time to
refresh a UAV at a station is 1 min. Each UAV
has a maximum travel time of 8 min and maximum
speed of 160 m/min. First, we consider persons 1
and 2. We create 5 split jobs from the tasks for
person 1 and 2. Split jobs 1–4 and 5 are for persons
1 and 2, respectively. Each is 3 min in duration; see
Table 5.

We initially set Wd = $10/m, Ck = $400 (UAV
cost) and Cs = $100 (station cost). Later, we will
consider a range of values for Cs. Three station
candidates are located at coordinates (400 m,
150 m), (200 m, 50 m), (0 m, 200 m). Each has two
UAV candidates. These candidate resources can
be purchased for use or not. The MILP provides

Fig. 4 Six moving objects
in a field of operations
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Table 6 Optimal resources and schedule (Cs = $100)

UAV Split job Start End
served station station

1 1,2 1 2
2 5 1 1
3 None N/A N/A
4 3,4 2 3
5 None N/A N/A
6 None N/A N/A
Selected UAVs = 1,2,4 / Selected stations = 1,2,3
Travel distance = 691 m

Obj. value = 8,410

the following optimal solution with cost $8410.
UAV 1 departs from station 1 to serve split jobs
1 and 2; the UAV then returns to station 2. UAV
2 departs from station 1 to serve split job 5. It then
returns to station 1. Split jobs 3 and 4 are served
by UAV 4; this UAV starts and ends at station 2
and station 3, respectively. UAVs 3, 5 and 6 are
not used (we do not purchase them). See Table 6.

We consider the performance with an increased
number of resource candidates. We use Ck = $400
for all k, Wd = $10/m and Cs = $100 for all s.

Note that a B&B which allows more resource
candidates (in the given locations) automatically
considers all cases with fewer resources. It can
simply decide to ignore the extra resources. As
such, a B&B that allows more candidate resources
(at given locations) will have at least as good an
objective function value. As such, it may provide
better solutions to the overall design and schedul-
ing problem. Refer to Table 7.

We consider numerous cases by varying the
number of customers, the number of stations and
Cs values. Table 8 shows the input parameters

Table 7 Sensitivity of the methods to the number of re-
source candidates (Wd = 10, Cs = $100, Ck = $400)

# of station # of UAV Obj. value

3 6 8,410
6 12 4,450
9 18 4,450
12 24 4,450
15 30 4,450
18 36 4,430
21 42 4,270
24 48 4,260

Table 8 The input parameters for our study

# of customers # of stations Cs

2 3 $100
3 6 $400
4 9 $2000
5 12
6 15

18
21
24

for our numerical study. We compare the MILP,
B&B and RHTAd. We fix the UAV cost at Ck =
$400 for all k and set Wd = $10/meter and p = 5.

Varying parameters, we consider 120 test cases.
The B&B method and MILP via CPLEX obtain
optimal solutions in 56 and 34 cases, respectively.
Otherwise, they return an “out of memory” error.
The B&B method solves all cases solved by the
MILP via CPLEX. The RHTAd obtains feasible
solutions in all 120 test cases studied. For cases
solved by the MILP via CPLEX, the average com-
putational times and objective function value from
the RHTAd, B&B method and the MILP for each
Cs value are provided in Table 9.

The B&B method provides much faster compu-
tational time compared to the MILP via CPLEX
and also guarantees an optimal solution. The B&B
method is 767, 999 and 221 times faster than the
MILP via CPLEX for Cs = $100, $400 and $2000,
respectively. The RHTAd a is further 61, 46 and 23
times faster than the B&B method for these cases,
respectively.

The average percent gap between the objective
function value provided by the RHTAd and the
optimal solution value for Cs = $100, $400 and
$2000 is 3.88 %, 3.42 % and 10.18 %, respectively.
The detailed results for cases that B&B was able
to solve are provided in Appendix 5.

Table 9 Average computational time of the methods

Cs Objective function value Computational time

RHTAd B&B MILP RHTAd B&B MILP

100 7535.3 7242.7 7242.7 0.11 6.68 2158.22
400 8930 8624.6 8624.6 0.07 3.20 3195.50
2000 15585 13998.3 13998.3 0.09 2.07 458.11
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6 Concluding Remarks

A system consisting of a fleet of UAVs and au-
tomated service stations can enable the persistent
pursuit of multiple missions across a field of oper-
ations. The number/location of stations, the num-
ber of UAVs and their schedules will determine
system performance and cost.

Here, we develop a mixed integer linear pro-
gram (MILP) for concerted resource selection
(system design) and scheduling. The MILP seeks
to minimize the total system cost (travel and re-
sources) while ensuring that every mission is pro-
vided at least one UAV at all times. The missions
are time-space trajectories that must be observed.
UAVs may return to the field after replenishing
themselves at geographically distributed service
stations. Multiple customer missions can occur
simultaneously. Each mission can be prosecuted
by several UAVs as required. UAVs are able
to conduct multiple tasks between visits to the
stations. The MILP uses the concept of a split job
to discretize the mission paths.

The concerted resource selection and schedul-
ing approach appears to be the first of its kind
in the persistent UAV literature. It promises to
provide significant improvement in overall cost
when compared to solving either problem inde-
pendently. However, the computation required
for concerted optimization is greater than either
problem alone.

To address the complexity inherent in the
MILP formulation, we developed a modified re-
ceding horizon task assignment (RHTA) heuristic
for our problem called RHTAd. It iteratively
breaks the problem into smaller optimizations.
We developed a branch and bound method
(B&B) that reduces the computational time and
guarantees an optimal solution (given sufficient
computational capacity). Numerous structural
and algorithmic properties are developed to prune
inferior nodes.

We conducted a numerical study to compare
the performance of the MILP, B&B method and
RHTAd. The B&B method is about 500 times
faster than the MILP via CPLEX (and provides an
optimal solution). The RHTAd is about a further
50 times faster than the B&B method, however, it
may sacrifice optimality.

It may be wise to consider capacitated service
stations that can serve a limited number of UAVs
at one time. Our deterministic mission assump-
tions should be relaxed to allow stochastic models.

Appendix

A1 MILP Model

Min Wd

∑

k∈K

∑

r∈R

∑

i∈�A

∑

j∈�A

Dij · Xijkr

+
∑

k∈K

Ck · UU AV
k +

∑

s∈�SS

Cs · U ST A
s , (9)

subject to
∑

j∈�J∪�SE

Xsok, jk1 = 1 (k ∈ K), (10)

∑

s∈�SS

∑

j∈�J∪�SE

Xsjkr = 1 (k ∈ K, r ∈ R), (11)

∑

s∈�SE

∑

i∈�J∪�SS

Xiskr = 1 (k ∈ K, r ∈ R), (12)

∑

i∈�J∪�SS

Xiskr

=
∑

i∈�J∪�SE

Xs−1,ikr+1(k∈ K, r=1...NR−1, s∈�SE),

(13)

Cskr =Cs−1,kr+1 (k∈ K, r=1...NR−1, s∈�SE),

(14)

∑

k∈K

∑

r∈R

∑

i∈�A

Xijkr = 1 ( j ∈ �J), (15)

∑

j∈�A

Xijkr −
∑

j∈�A

X jikr =0 (i∈�J , k∈ K, r∈R), (16)

∑

i∈�J∪�SS

Xiskr = 0 (k ∈ K, r ∈ R, s ∈ �SS), (17)

Cikr + Pi + Dij/TSk − C jkr ≤ M(1 − Xijkr)

(i∈�J ∪ �SS, j∈�J ∪�SE, k∈ K, r ∈ R), (18)
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M ·
∑

j∈�J∪�SE

Xijkr

≥ Cikr(i ∈ �J ∪ �SS, k ∈ K, r ∈ R), (19)

∑

k∈K

∑

r∈R

Cikr = Ei (i ∈ �J), (20)

∑

i∈�A

∑

j∈�A

Dij/TSk · Xijkr +
∑

i∈�J

∑

j∈�A

Pi · Xijkr

≤ qk(k ∈ K, r ∈ R), (21)

(
1−UU AV

k

)≤ Xsok,sok+1,kr (k∈ K, r∈ R), (22)

U ST A
sok

≥ UU AV
k (k ∈ K), (23)

U ST A
s ≥ Xiskr (s∈�SE, i∈�J, k∈ K, r∈ R), (24)

Cikr ≥ 0 (k ∈ K, r ∈ R, i ∈ �A), (25)

UU AV
k , U ST A

s ,

Xijkr ∈{0, 1} (k∈ K, r∈ R, i∈�A, j∈�A), (26)

A2 Detailed Pseudo Code of RHTAd
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A3 Detailed Pseudo Code of B&B
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A4 Attribute Calculations for Child Nodes

Remaining fuel :

rF
(
k′, a′) =

{
rF

(
k′, a

) − ttra
(
k′, loca

(
k′, a

)
, j

) − P ( j) , i f s′ = NJ + NST A + 1,

q
(
k′) − ttra

(
k′s′, j

) − P ( j) , i f NJ + 1 ≤ s′ ≤ NJ + NST A.

UAV′s available time :
tavail

(
k′, a′) = E ( j) + P ( j)

Sequence of tasks :

ST
(
k′, a′) =

{ {
ST

(
k′, a

)
, j

}
, i f s′ = NJ + NST A + 1,

{
ST

(
k′, a

)
, s′, j

}
, i f NJ + 1 ≤ s′ ≤ NJ + NST A.

Location of UAV :
loca

(
k′, a′) = j

Objective value :

ob j
(
a′) =

{
ob j (a) + Dloca(k′,a), j + cU AV(a′), i f s′ = NJ + NST A + 1

ob j (a) + Dloca(k′,a),s′ + Ds′, j + cU AV
(
a′) + cST A

(
a′) , i f NJ + 1 ≤ s′ ≤ NJ + NST A.

A5 Experiment Result

Cs # of # of # of RHTAd B&B MILP*
customer station UAV Comp. Obj. Comp. Obj. Comp. Obj.

time value time value time value
100 2 3 6 0.343 8410 0.047 8410 4.49 8410

2 6 12 0.047 4450 0.015 4450 14.58 4450
2 9 18 0.063 4450 0.125 4450 41.87 4450
2 12 24 0.063 4450 0.514 4450 274.14 4450
2 15 30 0.094 4450 1.373 4450 293.21 4450
2 18 36 0.109 4430 5.008 4430 2324.69 4430
2 21 42 0.125 4270 19.282 4270 2440.01 4270
2 24 48 0.109 4260 62.01 4260 N/A N/A
3 3 6 0.031 10440 0.031 10040 17.23 10040
3 9 18 0.062 6020 1.123 5620 137.95 5620
3 12 24 0.078 6020 5.476 5620 575.12 5620
3 15 30 0.109 6020 19.063 5620 N/A N/A
3 18 36 0.125 5610 61.73 5210 N/A N/A
3 21 42 0.141 5450 306.275 5050 N/A N/A
3 24 48 0.109 5440 1260.361 5040 N/A N/A
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4 3 6 0.046 13120 0.219 12740 33.25 12740
4 6 12 0.125 9090 5.304 8130 110.1 8130
4 9 18 0.062 9050 59.078 8130 3983 8130
4 12 24 0.109 8300 861.215 7900 N/A N/A
5 3 6 0.437 18360 2.371 17830 22084 17830
5 6 12 0.078 11390 55.505 10440 N/A N/A
6 3 6 0.125 20330 16.645 18340 N/A N/A

Average for cases solved by MILP 0.114 7535.333 6.677 7242.667 2158.219 7242.667
400 2 3 6 0.124 9310 0.032 9310 4.24 9310

2 6 12 0.046 5650 0.047 5650 17.34 5650
2 9 18 0.063 5650 0.218 5650 172.78 5650
2 15 30 0.094 5650 2.309 5650 2837.91 5650
2 18 36 0.125 5630 8.018 5630 5284.76 5630
2 21 42 0.141 5470 27.159 5470 N/A N/A
2 24 48 0.109 5470 83.476 5470 N/A N/A
3 3 6 0.015 11340 0.032 10940 21.41 10940
3 6 12 0.046 7520 0.344 7120 47.61 7120
3 9 18 0.063 7520 2.277 7120 820.75 7120
3 12 24 0.078 7520 11.466 7120 4450.31 7120
3 15 30 0.094 7520 41.449 7120 7 N/A N/A
3 18 36 0.125 7110 130.728 6710 N/A N/A
3 21 42 0.156 6950 597.029 6550 N/A N/A
3 24 48 0.14 6950 2342.391 6550 N/A N/A
4 3 6 0.016 14020 0.234 13620 68.44 13620
4 6 12 0.078 11370 13.494 9930 1200.76 9930
5 3 6 0.047 19260 2.231 18730 25631.36 18730
6 3 6 0.047 21230 16.677 19240 N/A N/A

Average for cases solved by MILP 0.067 8930.000 3.196 8624.615 3195.502 8624.615
2000 2 3 6 0.219 14110 0.078 14110 15.27 14110

2 6 12 0.109 12690 0.281 11230 108.4 11230
2 9 18 0.093 12690 1.872 11230 1760.54 11230
2 12 24 0.109 12110 6.802 11010 N/A N/A
2 15 30 0.125 12110 25.771 10450 N/A N/A
2 18 36 0.156 12640 170.243 10450 N/A N/A
2 21 42 0.172 12830 819.313 10450 N/A N/A
2 24 48 0.156 12830 2579.028 10450 N/A N/A
3 3 6 0.031 16140 0.047 15740 26.53 15740
3 6 12 0.063 19060 9.828 13260 704.49 13260
4 3 6 0.031 18820 0.328 18420 133.45 18420
5 3 6 0.156 24060 2.761 22180 N/A N/A
6 3 6 0.141 26030 18.923 24040 N/A N/A

Average for cases solved by MILP 0.091 15585.000 2.072 13998.333 458.113 13998.333

* N/A indicates that CPLEX did not return a solution
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