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Abstract It has become standard in the helicopter
UAV control literature to use the main and tail
rotor thrusts, and the main rotor flapping angles
as inputs. However, the physically-controllable
inputs are servomotors which actuate the main
rotor cyclic and collective pitch, and the tail rotor
collective pitch. Precise treatments of the heli-
copter model exist which study the physical inputs.
However, these models remain intractable for
practical implementation motivating researchers
to use rough approximations such as simple gain
relationships between thrust and collective. We
propose and identify a physical input model which
retains the accuracy of a general model but is
algebraically simple enough for its use in control
design. As a result of experimental validation, the
vehicle’s velocity is incorporated into the model to
improve its accuracy.
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1 Introduction

Small helicopters are uniquely suited to many
applications such as monitoring crop conditions
or inspecting infrastructure. Industrial-scale small
helicopters provide increased payload and en-
durance as compared to other aircraft with similar
flight capabilities (see [11] for a survey of rotor-
craft). Therefore, helicopter research is relevant
and includes topics such as navigation, control,
and modelling.

A helicopter is actuated by four independent
inputs: the main and tail rotor thrusts, and the
main rotor flapping angles. These inputs are con-
venient for studying the helicopter control prob-
lem. However, these inputs cannot be directly
controlled. Instead, servo motors are used to con-
trol the main and tail rotor collective pitch, and
the main rotor cyclic pitch. Therefore, it might
seem natural to design a control based on a model
which includes the physical inputs. This type of
modelling is well established in the literature [2,
4, 7, 15]. However, due to complexity it renders
the control problem intractable. This complexity
motivates experimental control work such as [14]
where simple mappings are taken. Following work
in [1, 2, 6, 14, 16, 18] we expect models which
use thrust and flapping angles as inputs to be
useful for control design. However, different than
existing work we use experimental flight data to
justify the reduction of models which are based
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on physics to obtain invertible relationships for
the physical inputs which are simple enough for
implementation.

The organization of this paper is as follows.
In Section 2 we present the dynamic model of
the helicopter using the thrust and flapping in-
puts. The physical input models are derived in
Section 3. Conclusions and future work are given
in Section 4.

2 Modelling for Control Design

The helicopter model which is commonly used
for control design is well established in the litera-
ture [6, 13, 17]. However, as mentioned above this
model assumes direct control of the rotor thrusts
and the main rotor flapping angles. Therefore,
in order to use this model for control design it
is necessary to map these control inputs to the
physical inputs.

In addition to modelling the relationship be-
tween the control inputs and the physical servo in-
puts, there are many other effects which influence
the helicopter dynamics. These effects include sta-
bilizer fins, restorative moments due to the hin-
geless rotor, and stabilizing effects of the flybar.
In particular, the flybar dynamics is a subject
of wide interest since it is unique to small heli-
copters [3, 15]. However, this dynamics is inher-
ently stable and therefore not required in the con-
trol design. Additionally, many small helicopters
are now flybarless which implies these dynamics
will become less relevant in the future. The gen-
eral approach taken here is to ignore most of these
effects and focus on aspects of the input models
which can be shown to be practically significant.

In order to motivate the modelling work per-
formed in the sequel, the generally-accepted
model used for control design is presented here.
For further details see [9]. The orientation of
the helicopter is described using two coordinate
frames: a navigation frame N with the ortho-
normal basis {e1, e2, e3}, and a body-fixed frame
with basis {e′

1, e′
2, e′

3}. The origin of N is fixed
to the surface of the earth and its axes are ori-
ented north, east, and down respectively. The
body-fixed frame B has its origin fixed to the
helicopter’s center of mass and its axes oriented

forward, right and down respectively. The heli-
copter dynamics are

ṗn = vn (1a)

mv̇n = mgRT(η)e3 + R(η)

⎛
⎝

−TMa
TMb − TT

−TM

⎞
⎠ (1b)

η̇ = W(η)ω (1c)

Jω̇ = −ω × Jω +
⎛
⎝

zMTMb
zMTMa

xT TT − QM

⎞
⎠ (1d)

where pn and vn are position and velocity in N ;
m is mass; η = (φ, θ, ψ)T is the orientation ex-
pressed using roll-pitch-yaw Euler angles; R ∈
SO(3) is the rotation matrix parametrized by η;
W is the transformation between the body-fixed
angular velocity ω and the derivatives of the Euler
angles; J is the inertia matrix; TM and TT are
the main and tail rotor thrusts; a and b are the
longitudinal and lateral flapping angles; QM is the
main rotor countertorque; and zM and xT are the
main and tail rotor hub offsets in the e′

3 and e′
1

directions respectively. In order to obtain Eq. 1 we
have neglected the tail rotor countertorque. Ad-
ditionally, based on the helicopter’s geometry we
make the practical assumption J = diag(Jx, Jy, Jz)

is diagonal. We remark that the coupling of the
rotational inputs into the translational dynamics
evident in Eq. 1b is a fundamental nonlinearity
of the helicopter model. This effect renders the
model non-minimum phase and therefore must be
neglected to apply input-output linearization [13].
Indeed, a focus of our work elsewhere has been
to incorporate these effects into the control de-
sign [8].

3 Physical Input Modelling and Identification

A straightforward approach to design a stabiliz-
ing control based on the above model assumes
TM, TT , a, and b are inputs and QM is (at least
approximately) known. In practice the helicopter
is controlled using servomotor pulse widths as
inputs. We denote the main and tail collective
pitch servo pulse widths by δM and δT . The cyclic
inputs are denoted δr and δp. The values of δr
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and δp are normalized in order to remove the
helicopter’s calibration from the input mapping.
Since the pilot often adjusts the cyclic trims as
a result of changing environmental conditions or
payload configuration, as a part of our regular pre-
flight setup we read the calibration for the cyclic
servos from the pilot’s radio [10].

We must now establish relationships between
the physical inputs δM, δT , δr, δp and the inputs
used for control TM, TT , a, b . Our objective is to
derive expressions of minimal complexity which
retain sufficient accuracy to be practically useful.
The experimental results presented in this section
were collected using the Applied Nonlinear Con-
trol Laboratory (ANCL) helicopter UAV plat-
form described in [9, 10].

3.1 Mapping from Main Rotor Thrust to
Collective Pitch Servo

We begin our model simplification with the main
rotor thrust. Expressions for this thrust are typi-
cally derived using first principles and in addition
to collective pitch they depend on velocities as
well as derivatives of flapping and coning an-
gles [4, 15]. Many of these quantities are likely
to be insignificant for the computation of thrust.
For instance, the flapping angles are neglected
in [7] for the thrust expression. For most practi-
cal trajectories, angular velocity only appears in
transient and is therefore also unlikely to have a
significant effect on thrust. As an initial approxi-
mation of the model we will assume a hover flight
condition where all velocities are zero to simplify
the general expression of the thrust model. We
will show this model becomes inaccurate during
vertical flight experiments. We rederive a sim-
plified expression which includes vertical flight
dependence and show it has improved accuracy.

A general model of thrust as given in [3, p. 162]
is

TM = ρaMcM RM Nb

24

{(
4(RM	M)

2 + 6(u2 + v2)
)

M

+ 6RM	M (w − vi − va + ub)

− 3RM

(
u(p + ḃ )+ v(q + ȧ)

)}
(2)

where 
M is the main rotor collective pitch; u, v,
and w are the velocities in the e′

1, e′
2, and e′

3 direc-
tions respectively; p, q, and r are the components
of the body-fixed angular velocity;	M is the main
rotor speed; ρ is the air density; RM is the radius
of the main rotor disk; Nb is the number of blades;
aM is the main rotor lift curve slope; cM is the main
rotor blade chord length; we have neglected the
rotor coning angle; and vi is the induced velocity

vi = TM

2ρπR2
M

√
(V cosα)2 + (V sin α + vi)2

(3)

where V is the air flow speed and α is the angle
of the airstream with respect to the rotor disk.
Values for the parameters are given in Table 1.
Based on the mechanical design of the helicopter
we expect the main rotor thrust to depend on
collective pitch and rotor speed. For example, by
ignoring all of the terms in Eq. 2 except the one
containing
M and	M we obtain the thrust model
used in [14]. The caveat to this approach is it
ignores the effect of the induced velocity. In [3]
the alternative model

TM = 	2
M

(
CM
M + D2

M

4πρR2
M

− DM√
2πρRM

√
CM
M + D2

M

8ρπR2
M

)
(4a)

CM = ρaMcM R3
M Nb

6
(4b)

DM = 2CM

3RM
(4c)

is derived which assumes no vehicle velocity. We
attempted to validate this model by applying step
inputs to the collective pitch using the pilot’s ra-
dio. The results of this experiment are shown in
Fig. 1 where the measured thrust is computed

Table 1 Main rotor
parameters

RM 0.89 m
Nb 2
aM 6.6
cM 0.066 m
CD 0.005
αM −3490 μs/rad
βM 1860 μs
kp 0.10 rad
kr 0.013 rad
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Fig. 1 Results of the hover model validation experiment.
The solid line shows the thrust predicted by Eq. 4 and the
measured values are denoted by ×

by differentiating the velocity. Except at hover
(roughly 6◦ collective pitch), the model does not
match the measured values. Figure 2 shows a typ-
ical response when a step input is applied. Rather
than the constant acceleration we expected to
measure based on Eq. 4, we observe that the
vertical velocity quickly saturates. Therefore, we
propose the inclusion of vertical velocity depen-
dence in our thrust model. To proceed we simplify
Eq. 2 by assuming u = v = p = q = 0 and obtain

TM = CM	
2
M
M + DM	M(w − vi). (5)

Fig. 2 Typical step response showing velocity saturation

Then taking either of the special cases α = π
2 and

V = −w for climb, or α = −π
2 and V = w for

descent we obtain the same simplification of Eq. 3

v2
i −wvi − TM

2ρπR2
M

= 0

which can be solved to obtain

vi = w

2
±
√
w2

4
+ TM

2ρπR2
M

. (6)

Combining Eq. 6 with Eq. 5 and by enforcing

M = 0 when TM = 0 we obtain


M = 1

CM	
2
M

(
TM − DM	Mw

2

+ DM	M√
2ρπRM

√
TM + ρπw2 R2

M

2

)
sgnw.

However, for our current purpose we desire the
inverse relationship which gives main rotor thrust
in terms of collective

TM = CM	
2
M
M + D2

M	
2
M

4ρπR2
M

+ DM	Mw

2

− DM	M√
2ρπRM

(
CM	

2
M
M + D2

M	
2
M

8ρπR2
M

+ DM	Mw

2
+ ρπw2 R2

M

2

) 1
2

. (7)

Remark that when w = 0 we obtain Eq. 4a.
Figure 3 shows the measured thrust as well as

the output of models (4) and (7). The thrust model
which includes vertical velocity (7) captures the
saturation behaviour observed at times 38 s and
48 s evidenced by a transient net acceleration.
However, the hover model (4a) predicts a steady-
state net acceleration which is not supported by
the data. Between 80 s and 90 s both models devi-
ate from the measured values. This error is likely
the result of a wind gust which caused additional
lift. When a wind gust causes the helicopter to
rise, the pilot reacts by decreasing collective to
maintain altitude. Since neither model accounts
for the wind, the measured decrease in collective
causes both models to predict a decrease in thrust.

With our simplified relationship between thrust
and collective complete, it remains to establish
a mapping between the collective pitch and its
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Fig. 3 Comparison of thrust models Eq. 7 (solid line) and
Eq. 4a (dashed line), and the measured force (dotted line)

corresponding servo pulse width. This mapping
will depend on the configuration of the helicopter
as well as the particular servo used. The mea-
surements for the ANCL Helicopter are shown
in Fig. 4. The servo was found to exhibit a hys-
teresis resulting in different measurements if the
pitch was sequentially increased or decreased.
However, this difference is not expected to be
significant in practice and so we fit the line

δM = αM
M + βM (8)

to the entire data set. The parameter values are
given in Table 1.

3.2 Mapping from Flapping Angles
to Normalized Cyclic Inputs

Strictly speaking the flapping angles are con-
trolled directly by the cyclic inputs but they are

Fig. 4 Identified mapping from collective pitch to servo
pulse width. The circles ◦ show measurements made while
the pitch was being decreased, while the × show increasing
pitch. The solid line shows the least squares fit

influenced by a stabilizing effect from the fly-
bar [3, 4, 12, 15]. In addition, the hingeless rotor
creates a restorative moment which influences the
net torque on the aircraft [13, 17]. Since our goal is
a simplified model which allows us to focus on the
fundamental coupling present in the helicopter
dynamics, we choose to ignore the additional dy-
namics. Indeed, the flybar dynamics are fast and
stable. We therefore take a first-order, steady-
state approximation of the mapping between the
flapping angles and the cyclic inputs by using flight
data where the pilot forced the rotational dynam-
ics using a sinusoidal input to the cyclics. The data
collected during this experiment is shown in Fig. 5.
We expand the rotational dynamics in the roll and
pitch directions as

Jx ṗ = qr(Jy − Jz)+ zMTMb

Jyq̇ = pr(Jz − Jx)+ zMTMa

and since r = 0 during this flight, we are able to
isolate the flapping angles as

b = Jx ṗ
zMTM

a = Jyq̇
zMTM

which results in the plots shown in Fig. 6. The
parameter values are given in Table 2. We used

Fig. 5 Cyclic input identification data. The pilot inputs are
normalized and therefore dimensionless



214 J Intell Robot Syst (2014) 73:209–217

(a)

(b)

Fig. 6 Identification results for cyclic input to flapping
angle mapping

a linear fit to approximate the mapping by the
identified functions

a = kpδp (9a)

b = krδr (9b)

where the values of the gains are given in Table 1.
We remark that the gains differ by an order of
magnitude.

Table 2 ANCL
Helicopter parameters

Jx 0.36 kg m2

Jy 1.48 kg m2

Jz 1.21 kg m2

m 15.5 kg
ρ 1.2 kg/m3

zM 0.32 m
xT 1.06 m
g 9.81 m/s2

Table 3 Tail rotor
parameters

RT 0.175 m
aT 6.4
cT 0.0325 m
αT −1590 μs/rad
βT 1570 μs

3.3 Tail Rotor Thrust and Main Rotor
Countertorque

The tail rotor thrust model is found using a hover
assumption from [3]. However, different than [3]
we include negative collective pitch. Ignoring neg-
ative collective is reasonable for the main rotor
since it is not practically relevant for non-inverted
flight. The negative collective pitch is included by
defining TT as

TT = 	2
T

(
CT |
T | + D2

T

4πρR2
T

− DT√
2πρRT

√
CT |
T | + D2

T

8ρπR2
T

)
sgn
T

(10a)

CT = ρaT cT R3
T Nb

6
(10b)

DT = 2CT

3RT
(10c)

where 	T is rotor speed, 
T is collective pitch, aT

is blade lift curve slope, cT is blade chord length,
and RT is rotor disk radius. The parameter values
are given in Table 3. Figure 7 shows TT plotted
over a practically relevant range of 
T . In the

Fig. 7 Graph of TT versus 
T
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absence of rolling and pitching motion the yaw
dynamics are

Jzṙ = xT TT − QM (11)

where the parameter values are given in Table 2.
From Eq. 11 we remark that measuring ṙ will
not isolate the tail rotor thrust. Thus, we must
consider the tail rotor thrust and the main rotor
countertorque models simultaneously. We begin
by using the countertorque model given in [3,
Eq. 5.40]

QM = CQ
M
(TM)

	M

(3/2)

+ DQ
M	

2
M (12a)

CQ
M = 1√

2ρπRM
(12b)

DQ
M = ρcM R4

MCD Nb

8
(12c)

where CD is the drag coefficient. When 	M is
assumed constant, Eq. 12 is the model used in [13].

As is widely discussed in the literature (see for
instance [5]), it is common practice for a pilot
to control the heading of a helicopter by provid-
ing a velocity reference to a gyro which controls
the collective pitch of the tail rotor. If this gyro
remains in the loop during autopilot control, its
dynamics must be identified and typically inverted
to perform collective control [5, 15, 18]. Here, we
have chosen a configuration where the gyro is only
used during manual flight. Thus, we only require
a mapping from 
T to δT (which is analogous to
Eq. 8 for the main rotor)

δT = αT
T + βT (13)

Fig. 8 Identified mapping between tail rotor collective
pitch and servo pulse width. The circles ◦ show measure-
ments made while the pitch was being decreased, while the
× denote increasing pitch. The solid line shows the least
squares fit

which is found by fitting data measured directly
from the ANCL Helicopter and shown in Fig. 8.
The parameter values are given in Table 3.

In Fig. 9 the thrust model (10) and counter-
torque model (12) are plotted using flight data
where the pilot hovered the helicopter at a con-
stant altitude in order to keep QM constant while
varying TT . The measured torque is computed by
differentiating the heading. In order to calibrate
QM for the period of constant heading, CD was
decreased from 0.016 as given in [3] to 0.005. At
approximately 55 s there is a difference between
the measured torque and the torque due to TT .
This abrupt increase in TT is caused by an increase

Fig. 9 Tail thrust model validation data showing a hover
flight with fast large amplitude yaw motion. In the bot-
tom plot the dotted line shows the measured net torque
while the solid line shows the difference between the pre-
dicted torque due to the tail rotor and the main rotor
countertorque
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in 
T . Since we do not measure any resulting
motion, this variation in tail thrust is likely due to
a wind gust being rejected by the gyro. Without
removing the gyro it is impossible to perform an
experiment where TT remains constant. However,
we use a vertical climb flight which provides a
variation in QM but no variation in heading. Since
there is no variation in heading, we know the net
torque should be zero. As shown in Fig. 10, the
results using Eq. 12 provided a poor prediction of
the countertorque during the climb.

As we did for TM, we return to the general
model of QM in [3] and preserve the vertical ve-
locity terms while removing the effects of the lat-

Fig. 10 Tail thrust and main rotor countertorque model
validation data showing large variation in QM during fast
vertical climb. In the bottom two plots the solid line uses
the countertorque model with velocity dependence and the
dashed line uses the hover model. In the bottom plot the
dotted line shows the measured net torque

Fig. 11 Family of curves showing how QM depends on TM
for constant w. Units of w are m/s

eral and angular velocities, as well as the flapping
and coning angles. The resulting expression is

QM = −ρaMcM R2
M Nb (w − vi)

2

4

−ρaMcM R3
M Nb	M(w − vi)

6

M

+ρcM R4
MCD Nb	

2
M

8

which when combined with Eqs. 5 and 6 gives

QM =
(

−w
2

+
√
w2

4
+ TM

2ρπR2
M

)
TM

	M
+ DQ

M	
2
M.

(14)

Figure 10 shows that this model provides a much
better fit for the climb data while reducing to
Eq. 12 when w = 0 (as is the case for the flight
shown in Fig. 9). Figure 11 shows how QM de-
pends on TM for a practically relevant set of con-
stant w.

4 Conclusions and Future Work

In order to apply a model-based control law it
is beneficial to have a model which includes the
physically-controllable inputs. However, precise
treatments of this model are impractical for imple-
mentation of the control. Therefore, we propose
a simplification of the thrust and countertorque
models which is based on general modelling work
in order to preserve structure derived from the
physics. Different than previous work, we test the
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modelling in experiment and identify large dis-
crepancies during vertical flight which we address
by rederiving the model including vertical velocity
dependence. Despite the added complexity due to
this added dependence, these expressions can be
inverted explicitly. It is expected this work will
prove useful for nonlinear model-based helicopter
control. Future work includes investigating the
practical effects of horizontal velocities on the
thrust and countertorque models.
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