
J Intell Robot Syst (2014) 73:573–588
DOI 10.1007/s10846-013-9921-8

Robust Fault Diagnosis for Quadrotor UAVs Using
Adaptive Thau Observer

Zhaohui Cen · Hassan Noura · Tri Bagus Susilo ·
Younes Al Younes

Received: 3 September 2013 / Accepted: 12 September 2013 / Published online: 23 October 2013
© Springer Science+Business Media Dordrecht 2013

Abstract A robust Fault Diagnosis (FD) scheme
for a real quadrotor Unmanned Aerial Vehicle
(UAV) is proposed in this paper. Firstly, a novel
Adaptive Thau observer (ATO) is developed to
estimate the quadrotor system states and build a
set of offset residuals to indicate actuators’ faults.
Based on these residuals, some rules of Fault
Diagnosis (FD) are designed to detect and isolate
the faults as well as estimate the fault offset para-
meters. Secondly, a synthetic robust optimization
scheme is presented to improve Fault Estimation
(FE) accuracies, three key issues include modeling
uncertainties, and magnitude order unbalances as
well as noises are addressed. Finally, a typical fault
of rotors is simulated and injected into one of four
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rotors of the quadrotor, and experiments for the
FD scheme have been carried out. Unlike former
research works on the FD schemes for quadrotors,
our proposed FD scheme based on the ATO can
not only detect and isolate the failed actuators,
but also estimate the fault severities. Regardless
of roughness of the real flying data, the FD results
still have sufficient FE accuracies.

Keywords Adaptive Thau observer · Quadrotor ·
Fault detection · Isolation and estimation ·
Robustness

1 Introduction

Small unmanned aerial vehicle (UAV) quadrotors
are designed to easily move in different envi-
ronments while following specific tasks and pro-
viding a good performance as well as a great
autonomy [1–3]. As an example of UAV sys-
tems, the quadrotor helicopter is fairly an easy,
affordable and easy-to-fly system [4, 5]. There-
fore, it has been widely used to develop, imple-
ment and test-fly methods in control [6, 7], object
tracking [8–10], fault diagnosis [1], fault tolerant
control as well as multi-agent based techniques
in formation flight [11], remote monitoring, and
communications.

Affected by aerodynamic forces, the quadro-
tor dynamics is nonlinear, multivariable, and is
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subject to component failures and external dis-
turbances with different severities. In turn, some
necessary safety measures for the quadrotor are
required, corresponding to different safety level
requirement. First of all, the quadrotor flight con-
trol system should be at least fault-tolerant under
some failures. Secondly, more active and effective
Fault Tolerant Control (FTC) should be designed
for high-efficiency safety maintenances. Finally, as
a precondition of the active FTC, fault estimation
coping with fault detection and isolation needs to
be addressed for the effectiveness of active FTC.

Studies on Fault Diagnosis (FD) and FTC
of quadrotor UAVs increased rapidly in recent
years in order to make UAVs fly safely. Gen-
erally, FTC can be classified as passive FTC
and active FTC. Currently, a lot of works intro-
duce FTC of quadrotors, especially passive FTC
[12–14]. The passive FTC has the advantage that
the knowledge about fault is not required, but
the fault-tolerant capacity is limited [15]. Com-
pared with the passive FTC, the active FTC has
better fault-tolerant capacity and provide neces-
sary Condition-Based Maintains for object system
[16]. Therefore, the active FTC has attracted more
attentions and become a hotspot problem in the
current research field of FTC. Actually, because
FD is an essential precondition for active FTC,
many researches on Active FTC will suppose the
FD result has been given or some researches
only address the FD problem as their principal
contributions.

Freddi et al. [1–3] proposed a model-observer
based FD scheme, it can detect sensor and actu-
ator faults based on a set of observer residuals,
but the residuals are inaccurate and not applicable
for fault isolation and estimation. Moreover, the
model-observer based FD method is only applica-
ble for quadrotor models but not real quadrotors.
Although the former research works make some
contributions on FD and FTC, most of them sup-
posed that the FD results have been given, or
are only validated for quadrotor models, and few
researches on FD for real quadrotors is proposed
and also validated based on the flying data of
real quadrotors. Zhang at el. has done a lot of
works on FD methods for the active FTC for
quadrotors [17–19]. Ma and Zhang also proposed
another FE method for quadrotors based on Two

Stage Extended Kalman Filter (TSEKF) and Dual
Unscented Kalman Filter (DUKF) [20–22], which
can estimate the system states and parameters at
the same time. But, the EKF-based FD method
has an inherit drawback on linearization for non-
linear object system. Also, the EKF-based FD
method are not robust for noise and have rough
FD results if the transfer matrices in EKF are
not sufficient accurate. Ranjbaran and Khorasani
[23] proposed an adaptive observer to estimate
the fault parameter in actuators, where the active
FTC based on model reference control can com-
pensate for the fault. However, the works men-
tioned above are simulated but not implemented
on real quadrotors. A FE scheme using ATO for a
real quadrotor is initially proposed in our former
work [24], but the FE results were inaccurate and
rough due to the presence of uncertainties, distur-
bances, and noises during flight tests of the real
quadrotor.

The contribution of this work consists of
proposing a novel ATO based FD scheme for a
real quadrotor faults. And also a synthetic robust
optimization FE scheme is presented to obtain
a better FE. The problems such as unmodeled
nonlinearities, magnitude order unbalances and
disturbances, which are subject to rotor faults,
are well solved. Compared with the latest work
on FD for quadrotors using thau observers [1–3],
the original thau observer is improved to be ap-
plicable for FE. Unlike former research works on
FD for quadrotors, our FD scheme is applicable
for real flight data, but it still has sufficient ac-
curacies of FD. Compared to our former work in
[24, 25], the uncertain elements in real experiment
are considered, a novel optimization FE scheme
is proposed to solve these problems. And the FE
result is obviously improved.

This paper is organized as follows. In Section
2, the quadrotor model and robust FD problems
are presented. The proposed FD scheme based on
nonlinear Thau observer is described in Section 3.
The proposed robust FE scheme based on ATO
and three optimization measures are presented in
Section 4. Section 5 is devoted to the presentation
of the experiment results obtained for the fault
scenarios when the proposed scheme is applied to
the quadrotor. Finally, conclusions are presented
in Section 6.
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2 Quadrotor and Problem Formulation

2.1 Quadrotor Kinematic and Dynamics

The dynamic model of light-weight aircraft sys-
tems includes the gyroscopic effects resulting from
both the rigid body rotation in space, and the
four propeller’s rotation. The model is derived
from the Euler-Lagrange formalism. A body-fixed
frame B and the earth-fixed frame E are assumed
to be at the center of gravity of the quadrotor
UAV, where the z-axis is pointing upwards, as
seen in Fig. 1.

The position of the quadrotor UAV in earth
frames is given by a vector (x, y, z). The orienta-
tion of a quadrotor UAV that referred to as roll,
pitch, and yaw is given by a vector (φ, θ, ψ) which
is measured with respect to the earth coordinate
frame E [2].

The vectors transformation from frame B to
frame E can be calculated based on Euler angles
and the rotation matrix REB.

REB

=
⎡
⎣

CψCθ −SψCφ + Cψ Sθ Sφ Sψ Sφ + Cψ SθCφ

SψCθ CψCφ + Sψ Sθ Sφ −CψSφ + SψSθCφ

−Sθ Cθ Sφ CφCθ

⎤
⎦

(1)

Fig. 1 The quadrotor in different frames

Where S(·)and C(·) have been denoted as sin(·)
and cos(·), respectively. It should be noted that
REB = RT

BE.
The thrust force from rotor i, i = 1, 2, 3, 4 is

Fi = bω2
i . Where b is the thrust factor and ωi is

the rotor speed. In the body-fixed frame B, the
outside forces are defined as follows:

FB =
⎡
⎣

FxB

FyB

FzB

⎤
⎦ =

⎡
⎢⎣

0
0∑4

i=1
Fi

⎤
⎥⎦ (2)

The forces in the earth-fixed frame can be denoted
as:
⎡
⎣

Fx

Fy

Fz

⎤
⎦ = REB.FB

=
(∑4

j=1
F j

)⎡
⎣

Sψ Sφ + CψSθCφ

−Cψ Sφ + Sψ SθCφ

CφCθ

⎤
⎦ (3)

Therefore, the motion equation in the earth fixed
frame can be represented as:

m

⎡
⎣

ẍ
ÿ
z̈

⎤
⎦ =

⎡
⎣

Fx − K1ẋ
Fy − K2 ẏ

Fz − mg − K3ż

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

∑4

j=1
F j

(
CψSθCφ + Sψ Sφ

) − K1ẋ
∑4

j=1
F j

(
Sψ SθCφ − Cψ Sφ

) − K2 ẏ
∑4

j=1
F jCθCφ − mg − K3ż

⎤
⎥⎥⎥⎥⎦

(4)

where Ki (i = 1, 2, 3) is the drag coefficient of cor-
responding axis. Note that these coefficients can
be negligible at low speed.

The dynamic model of quadrotors also contains
the gyroscopic effect resulting from the rigid body
rotation, the gyroscopic effect resulting from the
propeller rotation coupled with the body rotation,
the actuators action and finally the drag effects.
Using the Lagrangian method, quadrotor rota-
tional dynamic model is as follows [26]:

φ̈ = (θ̇ ψ̇(Iy − Ix)− Jθ̇ω + lU1)/Ix − K4φ̇

θ̈ = (φ̇ψ̇(Iz − Ix)+ Jφ̇ω + lU2)/Iy − K5θ̇

ψ̈ = (φ̇θ̇ (Ix − Iy)+ U3)/Iz − K6ψ̇

(5)
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Where Ki is the drag coefficient, and the system’s
inputs U1, U2, U3, U4 are defined as follows:

U1 = b
(
ω2

4 − ω2
3

) = F4 − F3

U2 = b
(
ω2

2 − ω2
1

) = F2 − F1

U3 = d
(
ω2

1 + ω2
2 − ω2

3 − ω2
4

)

U4 = b
(
ω2

1 + ω2
2 + ω2

3 + ω2
4

) =
∑4

i=1
Fi (6)

Where b and d are the thrust and drag factor
respectively, and ω = ω4 + ω3 − ω2 − ω1 is consid-
ered as a disturbance.

The relationship between system’s inputs and
rotors’ speed can be described as follows:

⎡
⎢⎢⎣

U1

U2

U3

U4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 −b b
−b b 0 0
d d −d −d
b b b b

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ω2
1
ω2

2
ω2

3
ω2

4

⎤
⎥⎥⎦ = �

⎡
⎢⎢⎣

ω2
1
ω2

2
ω2

3
ω2

4

⎤
⎥⎥⎦

(7)

Since � is nonsingular, for each U1 we can find
appropriate ω2

j, j = 1, . . . , 4 while the other inputs
Uk, k �= i do not change.

2.2 Problem Formulation

2.2.1 Fault Diagnosis and Fault Estimation

In order to simulate the fault effect under real
scenarios while the quadrotor cannot be damaged,
a partial loss of rotor effectiveness is generally
simulated and injected into the test bed. The fault
scenario is to inject fault into one of the four
rotors, and the gain of the corresponding rotor
driver command signal decreases instead of a real
performance decrease.

Defining x = (
φ, θ, ψ, φ̇, θ̇, ψ̇

)
as the state vec-

tor, u = [
Uφ Uθ Uψ

]
as the input vector and

y = [
φ θ ψ

]T
as the output vector, the system

described by Eq. 5 can be rewritten in the state-
space form ẋ = f (x, u) as:

{
ẋ (t) = Ax (t)+ Bu (t)+ H (x (t) , u (t))
y (t) = Cx (t)

(8)

Where H (x, u) = [
0 0 0 h (x, u)T

]T
and

h (x, u) =

⎡
⎢⎢⎣
ψ̇ θ̇

(
Iy − Iz

/
Ix

) − Jθ̇ω
/

Ix

φ̇ψ̇
(
Iz − Ix

/
Iy

) + Jφ̇ω
/

Iy

θ̇ φ̇
(
Ix − Iy

/
Iz

)

⎤
⎥⎥⎦ (9)

When an actuator fault occurs, the faulty system
can be given by Eq. 10, which is derived from
Eq. 8:
⎧⎪⎨
⎪⎩

ẋ (t) = Ax (t)+ Bu (t)

+H (x (t) , u (t))+ F f (t)

y (t) = Cx (t)

(10)

Where F is known as the fault entry matrix, which
represents the effect of faults on the system. The
objective is to detect, isolate and even estimate
the fault severity. So, in order to design and im-
plement an active FTC approach for quadrotors,
it is essential to propose a solution to detect and
estimate the fault magnitude f in Eq. 10.

2.2.2 Uncertainties with Ef fects on FE

Equations 8–10 describe the dynamic behavior in
the format of state-space equations, but it does not
match with the real quadrotor behaviors during
experiments, because the real quadrotor has more
uncertainties such as complex couple dynamics
and unknown inputs. Affected by these uncertain-
ties, the FE residuals are very rough when the
original ATO is used to estimate the actuator fault
of the real quadrotor. Generally, the residuals are
used to indicate whether a fault occurs or does
not occur. In other words, the values of residuals
should be theoretically zero in case of faults, but
actually it is not zero because of the influence
from the uncertainties which include model uncer-
tainties, magnitude order unbalance, and noise.

Firstly, the modeling uncertainties come from
the unmatched dynamics and nonlinearities be-
tween the model used in the ATO and the dynam-
ics of a real quadrotor system. Generally, the atti-
tude control model given in Eq. 5 is used to model
the quadrotor. But, the terms K4φ̇, K5θ̇ and K6ψ̇

are omitted in model observer design because,
in quadrotor model simulations, these terms are
often neglected or considered as constant. If this
state observer is used again to estimate the states
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Fig. 2 Fault offset value comparison

of the real quadrotor, these terms should be added
into the observer and the parameters should be
identified.

Secondly, the magnitude order unbalance
means the torque values of the roll and pitch have
different orders of magnitude from the one of the
yaw. That is because the rotor faults have different
effect on roll, pitch and yaw controls. As can be
seen from Fig. 2, the value of U2 (roll) and U3
(pitch) are around 10e-2, while the value of U4
(pitch) is around 10e-3. The different magnitude
orders of the three torques value will result in that
the observer estimation errors follow the larger
magnitude order 10e-2 because of its inherent
estimation error for adaptive update law.

Thirdly, as a result of low-efficiency of sensors,
the measurement values provided by the sensors
are affected by noise. And also the noise in resid-
uals comes from the noise in control inputs U1–U4
and the noise in sensors φ, θ , ϕ.

Based on the problems stated above, it is essen-
tial to analyze the FE and its robust optimization
approach for high-accurate FD and effective ac-
tive FTC.

3 FD Based on Nonlinear Observer

3.1 Fault Detection Based on Thau Observer

With reference to Eq. 10, the following conditions
must be satisfied for the observer design:

C1 the pair(C,A) is observable;

C2 the nonlinear function h(x, u) must be con-
tinuously differentiable and locally Lipschitz
with constantρ, i.e.

‖h (x1 (t) , u (t))− h (x2 (t) , u (t))‖ ≤ ρ ‖(x1 − x2)‖
(11)

If these two conditions hold, a nonlinear thau
observer can be constructed as:
⎧⎪⎨
⎪⎩

˙̂x (t) = Ax̂ (t)+ Bu (t)+ H
(
x̂ (t) , u (t)

)

+K
(
y (t)− ŷ (t)

)

ŷ (t) = Cx̂ (t)

(12)

Where K is the thau observer gain matrix, and is
obtained based on Lemma 1.

Lemma 1 If the gain matrix in Eq. 12 satisf ies [2]:

K = P−1
θ CT (13)

And matrix Pθ is the solution to the Lyapunov
equation

AT Pθ + Pθ A − CT C + θCT Pθ = 0 (14)

Where θ is a positive parameter which is chosen
such that Eq. 14 has a positive def inite solution,
then the state of Eq. 12 is an asymptotic estimation
of the system state described by Eq. 8, that is,

lim
t→∞ e (t) = lim

t→∞
(
x (t)− x̂ (t)

) = 0 (15)

In this case of study the pair (C,A) is observable
and the first condition is easy to be satisfied. Since
h(x(t),u(t)) is a function with only multiplications
and divisions. it is continuously differentiable and
thus the condition C2 holds if u is properly chosen.
The parameter θ can be chosen in order to maxi-
mize the fault effect on the residuals while keeping
the FD time small.

3.2 FD Based on Adaptive Thau Observer

In order to isolate the fault, the thau observer
is improved to estimate the offset residual of ac-
tuator faults. Based on the fault detection result
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from thau observer, an adaptive thau observer
is proposed to estimate the fault severity. With
reference to Eq. 10, a novel thau observer can be
constructed as:

⎧⎪⎨
⎪⎩

˙̂x (t) = Ax̂ (t)+ Bu (t)+ H
(
x̂ (t) , u (t)

)

+F1 f̂ (t)+ K
(
y (t)− ŷ (t)

)

ŷ (t) = Cx̂ (t)

(16)

Where x̂ (t) ∈ Rn is the observer state vector,
ŷ (t) ∈ Rp is the observer output vector and f̂ (t)
is an estimation of f (t). K ∈ Rn×p is the observer
gain.

Denote the estimation error as ex (t) = x (t)−
x̂ (t), the estimation error dynamics is described by

ėx (t) = (A − KC) ex (t)+ [
H (x)− H

(
x̂
)]

+Fe f (t) (17)

Where the fault estimation error is denoted as
e f (t) = f (t)− f̂ (t).

The purpose of the proposed adaptive thau
observer is not only to detect faults, but also to
estimate the fault parameters, which can be used
for active FTC.

Theorem 1 For the available observer gain K in
Theorem 1 and a given matrix Q(n×n) > 0 and a
positive parameter γ , if there exist two matrices
Pn×n and Gr×p, such that

P (A − KC)+ (A − KC)T P + γ PP + γ I = −Q

(18)

PB = CT GT (19)

Then the observer is described by Eq. 16 and
the following adaptive fault estimation algorithm
[27, 28]

˙̂f (t) = 
G
(
y (t)− ŷ (t)

) − σ
 f̂ (t) (20)

can realize lim
t→∞ ex (t) = 0 and lim

t→∞ e f (t) = 0, where


 = 
T > 0, and σ is positive constant factor satis-
fying σ − λmax

(

−1

)
> 0, λmax (·) is the maximum

eigenvalue of the corresponding matrix.

Proof From e f (t) = f (t)− f̂ (t), the derivative of
e f (t) can be given by

ė f = ḟ − 
Gey + σ
 f − σ
e f (21)

Consider the following Lyapunov function

V (t) = eT
x Pex + eT

f 

−1e f (22)

Then its derivative is

V̇ = eT
x

[
(A − LC)T P + P (A − LC)

]
ex

+ 2eT
x P

[
H (x)− H

(
x̂
)]

+ 2eT
f 


−1 ḟ + 2σeT
f f − 2σeT

f e f

≤ eT
x

[
(A −LC)T P +P(A −LC)+γ PP+γ I

]
ex

+ λmax
(

−1

) ·
[∥∥e f

∥∥2 + f 2
1

]

+ σ
[∥∥e f

∥∥2 + f 2
0

]
− 2σ

∥∥e f
∥∥2

≤ − λmin (Q) · ‖ex‖2 − [
σ − λmax

(

−1)] · ∥∥e f

∥∥2

+ λmax
(

−1) · f 2

1 + σ f 2
0

= −λmin (Q) · ‖ex‖2−[
σ−λmax(


−1)
]·∥∥e f

∥∥2+β
(23)

Where β = λmax(

−1) · f 2

1 + σ f 2
0 ;λmin(·) is the min-

imum eigenvalue of the corresponding matrix. If
the appropriate parameters are chosen such that

σ − λmax
(

−1

)
> 0 (24)

Then V̇ can be written as

V̇ ≤ − min
[
λmin (Q) , σ − λmax

(

−1)]

·
(
‖ex‖2 + ∥∥e f

∥∥2
)

+ β (25)

Where min(.) denotes the minimum value of
a set of numbers. Again, from V (t) = eT

x Pex +
eT

f 

−1e f it can be obtained:

V ≤ max
[
λmax (P) , λmax

(

−1

)] ·
(
‖ex‖2 + ∥∥e f

∥∥2
)

(26)

Where max(.) denotes the maximum one of a set.
Thus

V̇ ≤ −αV + β (27)
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Where α = min[λmin(Q),σ−λmax(
−1)]
max[λmax(P),λmax(
−1)] . The differential

inequality (27) satisfies 0 ≤ V (t) ≤ β

α
+ [V (0)−

β

α

]
e−αt, so as t → ∞, V(t) is bounded. Therefore,

the proposed ATO is asymptotically stable; e f

is also ultimately bounded. The ultimate norm
bound of e f can be easily calculated out:

∥∥e f
∥∥ ≤

√
β

αλmin
(

−1

) (28)

This completes the proof. �	

Remark 1 Theorem 1 is suitable for all faults with
different time-varying natures theoretically. How-
ever, it should be pointed that the estimation con-
vergence speed depends both on the fault time-
varying natures and the specified parameters of
ATO. Hereby as can be seen from Eq. 21, a
suitable values of 
 and σ should be set for bet-
ter estimation performance subject to faults with
different time-varying natures.

3.3 Fault Isolation and Fault Estimation Rules

In a real implementation, disturbances and un-
known inputs may affect the fault estimation f̂ (t)
which may not be accurate. The FD procedure
for a real implementation is depicted in Fig. 3.
The fault detection based on thau observer firstly
activates the ATO under a fault situation; The
ATO will get the estimation for the fault offset
value. Depending on the estimation accuracy, FD
includes isolation and even estimation is given.

Thau observer
residuals

Adaptive Thau
observer residuals

Fault detection

Fault isolation

Fault
estimation

accuracy

good

Fault diagnosis
result

detection
result

isolation
result

estimation
result

Y N

bad

>0

Fig. 3 FD procedure plot of engineering implement for
quadrotor faults

4 Robust FE Using Optimized ATO

Based on the three uncertainties about model-
ing uncertainties, data unbalance and noise, the
original ATO is improved and optimized by a
synthetic approach with three steps. The first step
is compensating for the uncertainties based on
parameters identification; the second step is am-
plifying and reducing the magnitude orders to
avoid magnitude order unbalance; the third step is
filtering the noise using a specified low-pass filter.

4.1 Modeling Uncertainties Analysis and
Parameter Identification

It should be pointed that the nonlinearity terms
h(x,u) in ATO should be in the format of Eq. 29
for a better estimation.

h (x, u) =

⎡
⎢⎢⎣
ψ̇ θ̇

(
Iy − Iz

/
Ix

) − Jθ̇ω
/

Ix − K4φ̇

φ̇ψ̇
(
Iz − Ix

/
Iy

) + Jφ̇ω
/

Iy − K5θ̇

θ̇ φ̇
(
Ix − Iy

/
Iz

) − K6ψ̇

⎤
⎥⎥⎦

(29)

But it is generally simplified in practice as stated in
Eq. 9 because the drag terms K4φ̇, K5θ̇ , K6ψ̇ and
the coupling terms Jθ̇ω

/
Ix, Jφ̇ω

/
Iy can be com-

pensated by the observer feedback gain and then
omitted. However, for real quadrotor flight data,
these terms cannot be omitted and the nonlinear
terms of h(x,u) in ATO should be in the format of
Eq. 29 instead of Eq. 9.

The coupling terms Jθ̇ω
/

Ix and Jφ̇ω
/

Iy are
easy to be augmented because the parameters Ix,
Iy and J can be obtained experimentally. But the
drag terms K4, K5 and K6 are unknown and their
values depend on test flight conditions.

Based on this issue, a parameter identification
scheme is designed as below.

K̂[4,5,6] = ident < e f ,
[
φ̇, θ̇, ψ̇

]
> (30)

where a linear regression is utilized to identify
the parameters, and the identification parameters
K̂[4,5,6] are substituted in Eq. 29 instead of the real
parameters K[4,5,6].
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4.2 Data Adjustment Based on Amplifying
and Reducing

As can be seen from Fig. 2, the thrust of yaw has
a smaller magnitude order 10−3 compared to the
thrusts of roll and pitch. The FE for yaw has a
relatively large error, although the error is same
as the ones for roll and pitch because the conver-
gence nature of the ATO. In order to overcome
the problem of magnitude order unbalance, an
improvement on the ATO using amplifying and
reducing is proposed below.

Based on Eq. 5, the input vector u =[
uφ uθ uψ

]T
, can be obtained from the

transformation calculation of the measurable
outputs of the controller. This input vector u is
sent into the ATO to estimate the fault offset
f = [

fφ fθ fψ
]T

. In order to make the data
magnitude of the three channels varying in the
same range and keep the balance, the system
input u is modified as follows:

u = [
uφ uθ guψ

]T
(31)

Where g is an adjustment gain factor to make guψ
have the same magnitude order with uφ and uθ .
As a result of the change for the input of yaw,
the parameters of the observer feedback gain and
adaptive law for yaw control should be updated to
keep its convergence of yaw control. So Theorem
2 is proposed for the new estimation.

Theorem 2 If a new estimation f̂ new
ψ can be ob-

tained based on the ATO while fφ and fθ are
same as before and the former FE of yaw control
is def ined as f̂ψ , it should be followed as below
according to the analytical relationship in Eq. 5:

f̂ new
ψ = g f̂ψ (32)

Proof The result above can be deducted as below.
The dynamics of the ATO is described as

˙̂x (t) = Ax̂ (t)+ Bu (t)+ H
(
x̂ (t) , u (t)

)

+ F1 f̂ (t)+ K
(
y (t)− ŷ (t)

)
(33)

If the observer converges and the system is
stable, then that the following is satisfied: ˙̂x (t) =

0, x̂ (t) = 0 and y (t)− ŷ (t) = 0. So the fault esti-
mation f̂ is such that:

Bu (t)+ H
(
x̂ (t) , u (t)

) + F1 f̂ (t) = 0 (34)

For the yaw control, the dynamics can be denoted
as

uψ + θ̇ φ̇
(
Ix − Iy

/
Iz

) − K6ψ̇ + f̂ = 0 (35)

Since the terms θ̇ φ̇
(
Ix − Iy

/
Iz

)
and −K6ψ̇ should

be zero under small-angle flying or stable condi-
tions, it can be obtained as:

uψ = − f̂ (36)

So if unew
ψ = guψ , and then f̂ new

ψ = g f̂ψ .
After the new estimation is obtained from the

new ATO, the desired real FE value can be ob-
tained by reducing the estimation with same gain
as below:

f̂ψ = f̂ new
ψ

/
g (37)

�	

Remark 2 Theoretically, this improvement based
on amplifying and reducing does not change the
analytical relationship for the observer estimation.
But it is useful to reduce the magnitude orders of
errors and decrease the estimation errors, which
can be demonstrated by the experiment compari-
son in Section 5.

4.3 Noise Filtering

The noises for FE are mainly issued from mea-
surement noises and random disturbances, which
take effects on both actuator control inputs and
sensor measurement outputs.

Based on statistical characters of the signal in
frequency spectrum and for the sake of simplicity
of the digital signal processing filter structure, a
low-pass IIR filter is utilized to filter the noise
and decrease the complexity of the digital signal
processing, which is shown in Fig. 4.

As can be seen from Fig. 4, six channel signals
are sent into the IIR filters before being sent into
the ATO for FE. Because the six channel signals
have different frequency spectrum, it is necessary
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Fig. 4 Filtering process for monitoring data

to specify different filter parameters to get the
best denoising result.

5 Experiment

In order to show the performance and the
efficiency of the fault detection and fault esti-
mation, the proposed ATO approach and robust
optimization method in the real quadrotor test
bed environment is tested.

5.1 Test Bed Setup and Parameters Specification

With consideration for research objective and
safe-flying, a quadrotor test bed is developed in
the control lab of UAEU shown in Fig. 5. From
a PC and through a USB port link, the firmware
compiled by Matlab/Simluink RTW can be down-
loaded into the quadrotor microcontroller, and
then the remote control is operated to switch
from the manual control mode into the automatic
control mode. During the flight of the quadrotor,
the control measurement and sensor data are sent
to PC through a zigbee wireless communication
link. All the work procedures above are depicted
in Fig. 6.

The quadrotor model, which parameters are
identified from a real quadrotor is used in this

Fig. 5 The quadrotor test bed

paper. The parameters of the quadrotor are
below:

m = 1 kg,

Ixx = 8.1 × 10−3 N.m/rad/s2,

Iyy = 8.1 × 10−3 N.m/rad/s2,

Izz = 14.2 × 10−3 N.m/rad/s2,

g = 9.81 m/s2,

J = 104 × 10−6 N.m/rad/s2.

Retmote 
control

Quadrotor testbed

PC workstation

After take off

Step2

download firmware 
compiled from simulink

by Usb port

Zigbee wireless
comunication

Before take off

Step4Step3
Switch from manual 
to automatic control

1:
Fault injection

Step

Fig. 6 Fault injection and flying test flowchart
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A =
[

06×6 I6×6

06×6 06×6

]
,

B =
[

09×1 09×3

03×1 I3×3

]
,

C = [
I6×6 06×6

]
,

The parameters of the observers are below:

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.1 0 0
0 1.1 0
0 0 1.1

0.3205 0 0
0 0.3205 0
0 0 0.3205

⎤
⎥⎥⎥⎥⎥⎥⎦

G =
⎡
⎣

5.38 0 0
0 5.38 0
0 0 5.38

⎤
⎦


 = I4 × 10−8 σ = 2 × 108.

The classical PID control law for attitude and
altitude control is introduced to control the
quadrotor to a specified operating point. Fig-
ure 6 shows the control trajectory of the at-
titude with the set operating point [φ, θ, ϕ]o =[
0rad, 0rad, π

/
4rad

]
and the initial position

[φ, θ, ϕ]i = [
0rad, 0rad, 0rad

]
A Partial Loss of Effectiveness(LOE) by 30 %

is injected into rotor F1, the offset value of ro-
tors resulting from the fault is shown in Fig. 7.
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Comparisons between the controller output U1–
U4 with fault and the ones without fault are shown
in Fig. 8. As can be seen from Fig. 7, only rotor
thrust F1 decreases while the other three rotors’
thrusts keep zero. As can be seen from Fig. 8,
U1, U3, U4 changes because all the three control
output are linked to F1.

5.2 Fault Diagnosis Result

The attitude angles during the flight are shown in
Fig. 9. Comparisons among the control output U
before the fault- Ubf, the estimation of controller
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Fig. 9 The attitude angles
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Fig. 10 Comparisons
among roll, pitch and yaw

0 10 20 30 40 50 60 70 80 90 100
−0.1

0

0.1

R
ol

l [
N

.m
]

0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

P
itc

h 
[N

.m
]

0 10 20 30 40 50 60 70 80 90 100
−4

−2

0

2
x 10−3

t(s)

Y
aw

 [N
.m

]

Beforefault
Estimation
offset by fault

output offset by fault-Ue, and the control output
offset by the fault-Uoffset are shown in Fig. 10.

The ATO observer theoretically can make Ue

converge to Uoffset. From Fig. 10 we can see that it
follows for pitch and yaw control, but Ue does not
converge to Uoffset for roll control, and converge to
Ubf while Ubf is not equal to zero. .So it means that
the outside disturbance exists in the roll control.

The fault estimation for F1–F4 offset is shown
in Fig. 11 and the comparison between the real
value and its estimation for F1 offset by the fault
is shown in Fig. 12.

As can be seen from Fig. 11, the estimations of
F2, F3 and F4 are influenced by the disturbances.
The estimations of F2, F3, F4 should be zero but
they are not, and they sould be with a range

between −0.1 and 0.1 because of the disturbances.
Although the result is not accurate, it is sufficient
to isolate the faulty rotor.

As can be seen from the comparison between
the real value of the fault offset F1 and its estima-
tion by the ATO in Fig. 12, the ATO can estimate
the fault offset value with a high accuracy.

5.3 Optimized Robust FE Result

5.3.1 Unmodeled Optimization Result

The unmodeled optimization result for roll con-
trol is shown in Fig. 13. The offset value (green
line) is zero, means that the fault injection into

Fig. 11 Fault estimation
for F1–F4 with F1 fault
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Fig. 12 Fault estimation
based on the ATO
method
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Estimation

F1 doesn’t affect the roll control. The control
input of roll without fault (blue line) indicates a
disturbance above zero but is not equal to zero.
As can be seen from our former FE for the fault
offset of roll control (red line), it can track this
disturbance closely. So it means that the distur-
bance derives from the unmodeled factor instead
of the fault effect. In order to compensate for this
disturbance, the unmodeled factor is analyzed and
the corresponding model terms are added to the
observer model (named as M1). So, the optimized
FE result for the fault offset of roll control (pur-
ple line) indicates to be nearly zero. It can be
concluded that the unmodeled disturbance is well
compensated for by the proposed optimization
method.

5.3.2 Magnitude Order Unbalance Optimization
Result

The magnitude order unbalance optimization
result is shown in Fig. 14. The offset value of yaw
(green line) peaks at the fault instant (t = 20 s),
it means that the fault injection into the rotor 1
takes effects on the yaw control. The control input
for yaw without fault (blue line) also peaks at t =
20 s which follows the offset value. As a result of
magnitude order unbalances, our former FE for
the fault offset of roll control (red line) cannot
estimate the offset value correctly because it is not
sensitive to the fault. With the proposed optimiza-
tion data adjustment method (M2), it can track
the offset value closely as can be seen from the

Fig. 13 Optimization for
unmodelling in roll
control by M1
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Fig. 14 Optimization for
unmodelling errors in yaw
control by M2
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Fig. 15 Optimization FE
results for roll, pitch and
yaw control by M1 and
M2
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Fig. 16 Optimization FE
results for 4 rotors F1–F4
by M1 and M2
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Fig. 17 Frequency spectrum of the defined IIR filter

optimized FE for the fault offset of yaw control
(purple line).

The optimization FE for roll, pitch, yaw con-
trols by M1 and M2 is shown in Fig. 15 and the
optimization FE for four rotors by M1 and M2 is
shown in Fig. 16.

As can be seen from Fig. 16, the uncertain-
ties are well compensated for by the proposed
optimization method M1 and M2. Also, the FE
for pitch can still track the fault offset value al-
though the optimization is introduced. Comparing
the optimized FE for 4 rotors shown in Fig. 16
with the former FE result shown in Fig. 11, it
can be seen that the residuals for F2–F4 are well
improved.

Fig. 18 Optimization FE
results for roll, pitch and
yaw control by M3
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Fig. 19 Optimization FE
results for the four rotors
F1–F4 by M3
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5.3.3 Denoising Optimization Result

In order to filter noises in the residuals, IIR
low-pass filters with the pass frequencies 0.001–
0.005 (normalized frequency) are used to filter
the control input U1–U4(named as M3).The pass
frequencies from 0.001 to 0.5 are tested. Based on
the analysis of test result, the range (0.001–0.005)
is more effective for the control signal and the
IIR filter can respond faster because of its simple
structure. The IIR filters frequencies spectrum
character is shown in Fig. 17.

The optimized FE result for roll, pitch, yaw
controls by M3 is shown in Fig. 18 and the op-
timized FE result for the four rotors using M3 is
shown in Fig. 19.

As depicted in Fig. 18, if the filter is used to
decrease the noise of pitch and roll control inputs,
the optimized FE by M3 can track the filtered
fault offset more closely. As shown from Fig. 19,
the noises in the residuals (F1–F4) are filtered and
the residuals F2–F4 are improved.

6 Conclusion

This paper proposed a robust FD scheme based
on a novel ATO and optimization method for
quadrotor faults with a real implementation on
the real quadrotor. The proposed FD scheme can
detect and isolate the fault. Also, based on a
systemic robust optimization approach, faults can
be estimated with an acceptable accuracy. Unlike
former research work on FD for quadrotors, the
proposed FD scheme based on the ATO can not
only detect fault actuators, but also estimate the
fault severity based on the real flight data. The
experiment demonstrates effectiveness of the pro-
posed method. Future work will consider AFTC
control strategy based on FE result.
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