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Abstract In this paper, we developed a novel
Cross-Entropy Optimization (CEO)-based Fuzzy
Logic Controller (FLC) for Fail-Safe UAV to
expand its collision avoidance capabilities in
the GPS-denied environments using Monocular
Visual-Inertial SLAM-based strategy. The func-
tion of this FLC aims to control the heading of
Fail-Safe UAV to avoid the obstacle, e.g. wall,
bridge, tree line et al, using its real-time and
accurate localization information. In the Matlab
Simulink-based training framework, the Scaling
Factor (SF) is adjusted according to the collision
avoidance task firstly, and then the Membership
Function (MF) is tuned based on the optimized
Scaling Factor to further improve the control per-
formances. After obtained the optimal SF and
MF, 64 % of rules has been reduced (from 125
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rules to 45 rules), and a large number of real
see-and-avoid tests with a quadcopter have done.
The simulation and experiment results show that
this new proposed FLC can precisely navigates
the Fail-Safe UAV to avoid the obstacle, ob-
taining better performances compared to only SF
optimization-based FLC. To our best knowledge,
this is the first work to present the optimized FLC
using Cross-Entropy method in both SF and MF
optimization, and apply it in the UAV.

Keywords Monocular visual-inertial SLAM ·
Collision avoidance · Fuzzy Logic Controller
(FLC) · Cross Entropy Optimization (CEO) ·
Unmanned Aerial Vehicle (UAV)

1 Introduction

The uncertainty, inaccuracy, approximation and
incompleteness problems widely exist in real con-
trolling techniques. However, the Fuzzy Logic
Controller (FLC) as one of the most active and
fruitful soft computing methods can well dealt
with these issues. In addition, this model-free
control approach often has the good robustness
and adaptability in the highly nonlinear, dynamic,
complex and time varying robot systems, e.g.
Unmanned Aerial Vehicle (UAV).

The FLC is based on the fuzzy logic [45] that
imitates human thinking and decision making with
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natural language. Its essential part is a set of lin-
guistic control rules, as shown in Tables 1, 2, 3, 4
and 5, related by the dual concepts of fuzzy im-
plication and the compositional rule of inference.
In other words, FLC provides an algorithm which
can convert the linguistic control strategy based
on expert knowledge into an automatic control
method. It mainly consists of three different types
of parameters: (I) Scaling Factor (SF), which is
defined as the gains for inputs and outputs. Its
adjustment causes macroscopic effects to the be-
havior of the FLC, i.e. affecting the whole rule
tables; (II) Membership Function (MF), typically,
it is the triangle-shaped function, as shown in
Figs. 6–9, and its modification leads to medium-
size changes, i.e. changing one row/column of the
rule tables; (III) Rule Weight (RW), it is also
known as the certainty grade of each rule, its
regulation brings microscopic modifications for
the FLC, i.e. modifying one unit of the rule ta-
bles. Zheng [47] presents a practical guide to
tune FLC, which points out that the FLC can be
manually tuned from macroscopic to microscopic
effects, i.e. SF adjustment, MF modification and
RW regulation.

The Cross-Entropy (CE) method derives its
name from the Cross-Entropy (or Kullback–
Leibler) distance, which is a fundamental concept
of modern information theory. The method was
motivated by an adaptive algorithm for estimating
probabilities of rare events in complex stochastic
networks, which involves variance minimization.
In a nutshell, the CE method involves an iterative
procedure where each iteration can be broken
down into two phases. In the first stage, a random
data sample (e.g. SF or MF of FLC) is generated
according to a specified mechanism. Then, the
parameters of the random mechanism are updated
based on the data in order to produce a better
sample in the next iteration. The CE method
provides a unifying approach to simulation and
optimization [40].

The localization techniques for UAV have
obtained many promising performances, which
use Global Positioning System (GPS), Motion
Capture System (MCS), laser, camera, kinect
(RGB-D Sensor) et al. However, considering
the cost, size, power consumption, weight and
surrounding information different sensors can

obtained steadily, camera is the best onboard
option. It can achieve the Visual Odometry (VO)
[42] to estimate the 6D pose of UAV. Monocular
and stereo methods as the main camera-based
approach are widely used in UAV, especially in
quadrotor helicopters. But the stereo camera has
its limitation when the baseline is much smaller
than the distance between UAV and the target,
and its cost, weight and power comsumption are
higher (more heavy) compared to monocular cam-
era. Thus, monocular camera is more popular
and has been always researched recently, espe-
cially, many related works are presented using the
advanced monocular Simultaneous Localization
and Mapping (SLAM) [10] algorithms, they also
overcame the drawback of monocular SLAM to
estimate the real absolute scale to environments
by fusing other sensors, e.g. Inertial Measure-
ment Unit (IMU), in order to navigate the UAV
accurately.

Collision avoidance (also referred to sense-and-
avoid) problem has been identified as one of the
most significant challenges facing the integration
of aircraft into the airspace. Here, the term sense
relates to the use of sensor information to auto-
matically detect possible aircraft conflicts, whilst
the term avoid relates to the automated con-
trol actions used to avoid any detected/predicted
collisions [3]. The onboard single or multiple sen-
sors can provide the sense-and-avoid capability
for flying aircraft. However, as what has been
mentioned above, the camera sensor is the best
onboard candidate for UAV, which can be used in
collision avoidance applications. Especially, Fail-
Safe UAV requires this collision avoidance ability
in the event of failures, e.g. GPS has dropped out,
INS generated the drift, pilot sent the wrong con-
trol commands, the software/hardware of UAV
has the faults suddenly et al.

Nonetheless, the main contribution of this
paper are:

(I) Developing the Robot Operating System
(ROS)1-based FLC, which is a node provid-
ing three inputs and one output.

(II) Presenting the FLC training framework
integrating with CE in Matlab Simulink,

1http://www.ros.org/

http://www.ros.org/
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Table 1 Rules based on the Zero in the third input (integral of the error), before CE optimization

Dot error/error Big Left Left Zero Right Big Right

Big Negative Great Left Big Left Left Little Left Zero
Negative Big Left Left Little Left Zero Little Right
Zero Left Little Left Zero Little Right Right
Positive Little Left Zero Little Right Right Big Right
Big Positive Zero Little Right Right Big Right Great Right

Table 2 Rules based on the Negative in the third input (integral of the error), before CE optimization

Dot error/error Big Left Left Zero Right Big Right

Big Negative Big Left Left Little Left Zero Little Right
Negative Left Little Left Zero Little Right Right
Zero Little Left Zero Little Right Right Big Right
Positive Zero Little Right Right Big Right Great Right
Big Positive Little Right Right Big Right Great Right Great Right

Table 3 Rules based on the Big Negative in the third input (integral of the error), before CE optimization

Dot error/error Big Left Left Zero Right Big Right

Big Negative Left Little Left Zero Little Right Right
Negative Little Left Zero Little Right Right Big Right
Zero Zero Little Right Right Big Right Great Right
Positive Little Right Right Big Right Great Right Great Right
Big Positive Right Big Right Great Right Great Right Great Right

Table 4 Rules based on the Positive in the third input (integral of the error), before CE optimization

Dot error/error Big Left Left Zero Right Big Right

Big Negative Great Left Great Left Big Left Left Little Left
Negative Great Left Big Left Left Little Left Zero
Zero Big Left Left Little Left Zero Little Right
Positive Left Little Left Zero Little Right Right
Big Positive Little Left Zero Little Right Right Big Right

Table 5 Rules based on the Big Positive in the third input (integral of the error), before CE optimization

Dot error/error Big Left Left Zero Right Big Right

Big Negative Great Left Great Left Great Left Big Left Left
Negative Great Left Great Left Big Left Left Little Left
Zero Great Left Big Left Left Little Left Zero
Positive Big Left Left Little Left Zero Little Right
Big Positive Left Little Left Zero Little Right Right
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which can be used as the lazy method to
obtain the optimal SF and MF parameters
of FLC.

(III) Applying this framework to solve a chal-
lenging task: collision avoidance for Fail-
Safe UAV.

(IV) Designing a FLC-based Fail-Safe UAV
with a monocular SLAM system.

(V) Optimizing two different kind of FLCs:
(1) only SF is optimized in FLC (called
SF-FLC) [33, 35]; (2) both SF and MF
are optimized in FLC (named SFMF-FLC),
and comparing their control performances
in Fail-Safe UAV.

(VI) Summarizing the state-of-art works related
to FLC optimization, UAV localization and
its Collision Avoidance.

The outline of the paper is organized as fol-
lows: Section 2 introduced the related works.
The monocular visual-inertial SLAM-based colli-
sion avoidance strategy is described in Section 3.
Section 4 designed the FLC with its initial SFs,
MFs and rule base. Then, the Cross-Entropy the-
ory and its optimization method for FLC are in-
troduced in Section 5. In Section 6, the UAV
training framework and the optimized results are
shown. In Section 7, the real flight results have
been given and discussed. Finally, the concluding
remarks and future work are presented in the
Section 8.

2 Related Works

Fuzzy Logic Controller (FLC) as the promis-
ing controller for UAV has been researched in
many literatures recently. The design process
of a fuzzy logic based controller for a coaxial
micro helicopter is presented in [22]. Doitsidis
et al. [8] proposed a FLC for Unmanned Aerial
Vehicle (UAV) to fly through specified way-
points in a 3D environment repeatedly, perform
trajectory tracking, and duplicate/follow another
vehicle’s trajectory. Coza and Macnab [7] pro-
vides a new method to design the adaptive-fuzzy
controller to achieve stabilization of a quadro-
tor helicopter in the presence of sinusoidal wind
disturbance. Santos et al. [41] also implemented

a fuzzy controller to control the quadrotor. And
[19] proved its FLC can obtain the expected per-
formances in the UAV control and navigation
tasks. However, all these FLCs are mainly de-
signed and tested in the simulation softwares,
e.g. Matlab, FlightGear Flight Simulator, GMS
aircraft instrument.

Many FLCs have been developed and applied
in the UAV real flights, [34] presents a FLC for
UAV in a landing application. Olivares-Mendez
et al. [32] proposes an implementation of two
FLCs working parallelly for a pan-tilt camera plat-
form on an UAV, but in these works, the para-
meters of FLC are manually adjusted in a huge
amount of tests, this kind of regulation method for
FLC not only requires the rich expert knowledge
(exprience) and time, but also increases the risks
in operating UAV.

Therefore, autonomous tuning/lazy methods
for FLC are more competitive. A robustness com-
parison between model-based with self-tunable
fuzzy inference system (STFIS) has been studied
to control a drone in presence of disturbances in
[18]. Kadmiry and Driankov [16] designed an gain
scheduler-based FLC for an unmanned helicopter
to achieve stable and robust aggressive maneuver-
ability. An adaptive neuro-fuzzy inference system
(ANFIS) based controller for UAV was devel-
oped to adjust its altitude, the heading and the
speed together in [20]. The classical and multi-
objective genetic algorithm (GA) based fuzzy-
genetic autopilot are also designed and used for
UAV in [4], which validated the time response
characteristics, the robustness and the adapta-
tion of fuzzy controller with respect to the large
commands.

In [11], Haber et al. have proved that the Cross-
Entropy (CE) is the best optimization technique
for FLC, they use CE to tune the Scaling Factor
(SF) of a PD fuzzy controller for cutting force
regulation in a drilling process. And our previous
works [33, 35] presented a CE-based optimization
for SF in a PID fuzzy controller to command the
UAV for avoiding a small obstacle with special
color. Nonetheless, the CE in these works was
limited to only optimizing the SF of FLC.

The UAV localization is a well studied problem
in the robot community and has many practical
applications. However, Global Positioning System
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(GPS)-based flight [1] can not fly in the indoor
environments and closely to the ground or urban
canyons, where there is no/unstable GPS service.
Motion Capture System (MCS)-based flying [39]
just work in the indoor and local space where
many expensive cameras with high speed are con-
structed. Laser Range Finder (LRF)-based flight
[9] can not work in the open and broad places be-
cause of its limited detection distance. And Kinect
(RGB-D Sensor)-based flying only works well
in the room-sized indoor spaces [43]. Thus, with
the improvement of performance/price in camera,
many researchers are concentrating on vision-
based localization, [6] presents the homography-
based algorithms to compute the UAV relative
translation and rotation by means of the im-
ages gathered by an onboard camera. Nemra
and Aouf [29] proposed a robust airborne 3D
Visual Simultaneous Localization and Mapping
(VSLAM) solution based on a stereovision sys-
tem. Bonak et al. [5] implemented a method to
hold a quadcopter aircraft in a stable hovering
position using artificial marker-based visual infor-
mation and inertial measurement. But the monoc-
ular Simultaneous Localization and Mapping
(SLAM) techniques are more popular recently,
they has been researched in differnt UAV plat-
forms, e.g. AscTec Products,2 AR.Drone Parrot3

et al., to incrementally build the consistent maps
of their environments while simultaneously de-
termining their location within these maps. Many
UAV control and navigation works in Au-
tonomous Systems Lab (ASL)4 have presented
different approaches to help monocular SLAM to
estimate the real absolute scale to environments,
e.g. Inertial Measurement Unit (IMU) as the pro-
prioceptive measurement is used in monocular
SLAM (exteroceptive information) by Weiss et al.
[44]. Engel et al. [12] also proposed an method
that enables a low-cost quadcopter, i.e. AR.Drone
Parrot, to accurately fly various figures using
visual and inertial information.

The civil and military applications for UAVs
require the ability to plan collision-free trajec-

2http://www.asctec.de/
3http://ardrone2.parrot.com/
4http://www.asl.ethz.ch/

tories to avoid the stationary obstacles, such as
buildings, trees or unlevel ground. A survey of the
collision avoidance approaches those deployed
for unmanned aerial vehicles is presented in [2].
Merz and Kendoul [26] designed a LIDAR-based
perception and guidance system that enables
a helicopter to perform obstacle detection and
avoidance, terrain following, and close-range in-
spection. A vision-based autonomous flight with
a quadrotor type UAV is proposed and tested
in the Google Earth virtual environment [13].
Lenz et al. [21] uses a single image captured from
the onboard camera as input, produce obstacle
classifications, and use them to select an evasive
maneuver. Mejias and Campoy [23] presents a
collision avoidance approach based on omnidirec-
tional cameras that does not require the estima-
tion of range between two platforms to resolve a
collision encounter. Hrabar [15] presents a goal-
directed 3D reactive obstacle avoidance algorithm
for RUAVs to fly point-to-point type trajecto-
ries. He et al. [14] present a vision-based obstacle
avoidance method using motion field information.
Vision-based 3D geometry estimation for static
obstacles has been proposed in [37] to control the
UAV flying in the urban environments. Recchia
et al. [38] have developed the optical flow-based
approach to obtain the image depth to avoid the
obstacles for UAV. Zufferey and Floreano [48]
developed the autonomous micro-flyers capable
of navigating within houses or small built envi-
ronments. Especially, the Fail-Safe UAV systems,
e.g. [30], often require the ablility of collision
avoidance in the emergency situations with no
crashes, or at least a minimum of damages caused
by accidents.

3 Monocular Visual-Inertial SLAM-Based
Collision Avoidance Strategy

3.1 Collison Avoidance Strategy

Many typical civil tasks, such as forest fire mon-
itoring [25] in tree lines, fault inspection for
buildings or bridges [28] in cluttered urban, are
carrying out by UAV currently, and a field study
after Hurricane Katrina [36] concluded one of the
most important recommendations for autonomy

http://www.asctec.de/
http://ardrone2.parrot.com/
http://www.asl.ethz.ch/
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Fig. 1 Fail-Safe UAV is sensing its surrounding en-
vironment using monocular visual-inertial SLAM-based
method. This real-time and accurate localization approach

allows to expand the Fail-Safe UAV’s collision avoidance
capabilities in the event of failures. The details are de-
scribed in Section 3

UAV is that the minimum emergent standoff dis-
tance from inspected structures is 2–5 m. This
paper aims to discuss and research how to prevent
crashes by UAV itself when UAV fly into this rec-
ommended distance based on the former working
distance, i.e. Fail-Safe UAV avoids the collision in
its (local) surrounding environment.

Considering a flying Fail-Safe UAV, e.g. AR.
Drone Parrot, moving forwardly with a constant
flight speed to an obstacle, e.g. wall, (Fig. 1)
where, the heading of quadrotor helicopter is par-
allel to the normal vector of the obstacle. The con-

Fig. 2 2D description for collision avoidance task

trol goal is to command it to avoid the obstacle,
at least making it flying parallelly to the obstacle
with a safe distance. Figure 2 shows the collision
avoidance strategy, we divided the whole area into
three parts:

(I) Dangerous Alarm Area (DAA): it is set
based on our quadcopter size (52.5 ×
51.5 cm) and its inertance, as shown in the
Fig. 3, this area is 1 meter in length;

Fig. 3 Real-time 3D synchronization map, where, the scale
of each big grid in white is equal to 1 meter in reality
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(II) Safe Avoiding Area (SAA): it is designed
for avoidance, which is based on the recom-
mended distance from 1 meter to 4 meters
in length;

(III) Normal Fly Area (NFA): it is the safe
working area, the Start Point (S) can be set
on any place in the NFA.

Therefore, for Fail-Safe UAV, once it flies into
the SAA, the emergency control is enabled to pre-
vent crash. And different constant flight speeds
and sizes of SAA will be tested and evaluated in
the simulations and real flights.

3.2 Monocular Visual-Inertial SLAM-Based
Control

The real-time and accurate 6D pose estimations
can provide the comprehensive and reliable infor-
mation for Fail-Safe UAV during collision avoid-
ance tasks, in the literatures, one single monocular
camera and IMU sensor can be used to obtain
this localization information. However, fusion of
vision and IMU can be classified into 3 different
categories [31]. The first section is named
Correction, where it use the results from one kind
of sensor to correct or verify the data from an-
other sensor. The second category is Colligation,
where one uses some variables resulting from the
inertial data together with variables from the vi-
sual data. The third category is called Fusion and
is by far the most popular method to efficiently
combine inertial and visual data to improve pose
estimation.

Fig. 4 FLC-based Fail-Safe UAV during automation ini-
tilization stage, where, the orange-yellow line stands for the
tracked keypoint (FAST corners) movement from the first
keyframe to current frame

Fig. 5 FLC-based Fail-Safe UAV during visual fuzzy ser-
voing stage, where, the dot represents the localization of
keypoint. And the colors correspond to which pyramid-
level the keypoint is measured in

Thus, in this paper, the fusion method is ap-
plied in monocular visual-inertial SLAM-based
control for Fail-Safe UAV. For monocular vi-
sion, several visual odometry and visual SLAM
frameworks have been launched in recent years.
But the keyframe-based Parallel Tracking and
Mapping (PTAM) [17] is more robust than filter-
based SLAM, and it has the parallel processing
threads and fast response performance. Besides,
it is more suitable for common scenarios. It can
provide 6 Degree of Freedom (DOF) estimation.
For Inertial Measurement Unit (IMU), it is a 3D
acceleration and rotation estimator.

As introduced in Section 2, Weiss et al. [44] pre-
sented that the Inertial Measurement Unit (IMU)
as proprioceptive measurement can be used in
monocular SLAM (exteroceptive information) to
estimate the absolute scale, thereby navigating
UAV precisely.5 Engel et al. [12] has presented
an Visual-Inertial SLAM system to enable UAV
to precisely fly with different trajectories.6 Both
of them has published their works as the open
sources in the Robot Operating System (ROS).
Considering the UAV in our real flight tests, and
the precise 6D pose estimation in the latter work,
we developed a Fuzzy Logic Controller (FLC)-
based Monocular Visual-Inertial SLAM system
using his parts of codes, and all the parameters in
this new system have been optimized. Figures 4
and 5 show the automation initialization of PTAM

5http://www.ros.org/wiki/asctec_mav_framework
6http://www.ros.org/wiki/tum_ardrone

http://www.ros.org/wiki/asctec_mav_framework
http://www.ros.org/wiki/tum_ardrone
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Fig. 6 Membership functions for the first input (yaw error),
without CE optimization

and real-time image processing, which are fusing
visual pose estimation with IMU measurement.

4 Fuzzy Logic Controller

Fuzzy Logic Controller (FLC) has the good ro-
bustness and adaptability in the highly nonlinear,
dynamic, complex and time varying Fail-Safe
UAV, thus, a FLC is designed to control its orien-
tation. As previously developed FLCs in [33, 35],
this FLC is developed in ROS based on the MOFS
(Miguel Olivares’ Fuzzy Software).

This FLC is a PID-like controller, which pro-
vides three inputs and one output. The first input
is the angle error estimation in degrees between
the angle reference (e.g. 90◦) and the heading of
Fail-Safe UAV. Other two inputs are the derivate
and the integral values of this estimated angle
error. The output is the command in degrees per
seconds to change Fail-Safe UAV’s heading. The
initial Scaling Factors without CE optimization
have the default value, which are equal to one.
Since the collision avoidance task is identical for
right or left side avoiding, and the Fail-Safe UAV
has a symmetric design with the same behavior for
left and right heading movements, this FLC has

Fig. 7 Membership functions for the second input (deriva-
tive of yaw error), without CE optimization

Fig. 8 Membership functions for the third input (integral
of yaw error), without CE optimization

the symmetric definitions in the inputs, output and
the rule base.

Figures 6, 7, 8 and 9 show the initial definition
for the Membership Functions in the inputs
and output before Cross-Entropy (CE) Optimiza-
tion. Each input has 5 sets, and the output has
9 sets. The symmetry of the FLC implies that
any modification of the left side of each variable
(input and output) can be applied to the right side
directly.

The rule base was designed using the heuris-
tic information based on expert knowledge. Each
rule without CE optimization has a default weight,
which is also equal to one. In other words, each
rule has the same importance and effect to the
FLC behavior. As shown in the definition of MFs,
the three inputs in this FLC imply that the rule
base has a cube construction, which is 5 × 5 × 5
dimension. In this paper, 5 tables in 5 × 5 dimen-
sion are presented in order to show the rule base
clearly. Each table is related to one of the 5 lin-
guistic values of the third variable (i.e. the integral
of error). Table 1 shows the rule base slide for
the Zero value. Table 2 shows the slide for the
Negative value. Table 3 shows the slide for the
Big Negative value. Table 4 shows the slide for
the Positive value. Finally, Table 5 shows the slide
for the Big Positive value.

Fig. 9 Membership functions for the output (yaw com-
mand), without CE optimization
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The product t-norm is used for rules conjunc-
tion, and the defuzzification method used in this
paper is a modification of the Height Weight
method. Equation 1 shows the defuzzification
method.

y =
∑M

l=1 yl ∏N
i=1

(
μxl

i
(xi)

)

∑M
l=1

∏N
i=1

(
μxl

i
(xi)

) (1)

where, N and M represent the number of inputs
variables and total number of rules, respectively.
μxl

i
denotes the merbership function of the lth rule

for the ith input variable. yl represents the output
of the lth rule.

5 Cross-Entropy Optimization

5.1 Optimization Principle

The CE method involves an iterative procedure
where a random data sample (x1, . . . , xN) in the
χ space is generated according to a specified ran-
dom mechanism. A probability density function
(pdf), such as the normal distribution, is used
to update the data in order to produce a better
sample in the next iteration. Let g(−, v) be a
family of probability density functions in χ , which
is parameterized by a real value vector v ∈ �:
g(x, v). Let φ be a real function on χ , so the
aim of the CE method is to find the minimum
(as this paper proposed) or maximum of φ over
χ , and the corresponding states x∗ satisfying this
minimum/maximum: γ ∗ = φ(x∗) = minx∈χφ(x).

In each iteration, the CE method generates
a sequence of (x1, . . . , xN) and γ1, . . . , γN levels,
such that γ converges to γ ∗ and x to x∗. Estimat-
ing the probability l(γ ) of an event Ev = {x ∈ χ |
φ(x) ≥ γ }, γ ∈ � is concerned.

A collection of functions for x ∈ χ, γ ∈ � are
defined:

Iv(x, γ ) = I{χ(xi)>γ } =
{

1 i f φ(x) ≤ γ

0 i f φ(x) > γ
(2)

l(γ ) = Pv(χ(x) ≥ γ ) = Ev · Iv(x, v) (3)

where, Ev denotes the corresponding expectation
operator.

In this manner, Eq. 3 transforms the optimiza-
tion problem into an stochastic problem with very
small probability. The variance minimization tech-
nique of importance sampling is used, in which the
random sample is generated based on a pdf h. The
sample x1, . . . , xN from an importance sampling
density h on φ is evaluated by:

l̂ = 1

N
·

N∑

i=1

I{χ(xi)>γ } · W(xi) (4)

where, l̂ is the importance sampling and W(x) =
g(x,v)

l is the likelihood ratio. The search for the
sampling density h∗(x) is not an easy task, because
the estimation of h∗(x) requires that l should be
known h∗(x) = I{χ(xi)>γ } · g(x,v)

l . So the referenced
parameter v∗ must be selected in the situation
that the distance between h∗ and g(x, v) is min-
imal, therefore, the problem is simplified to a
scalar case. The method used to measure the dis-
tance between these two densities is the Kullback–
Leibler, also known as Cross-Entropy:

D(g, h) =
∫

g(x) · ln g(x)dx −
∫

g(x) · ln h(x)dx

(5)

The minimization of D(g(x, v), h∗) is equiv-
alent to maximize

∫
h∗ln[g(x, v)]dx, which im-

plies maxv D(v) = maxv Ep
(
I{χ(xi)>γ } · ln g(x, v)

)
,

in terms of importance sampling, it can be rewrit-
ten as:

maxv D̂(v) = max
1

N

N∑

i=1

I{χ(xi)>γ }

· px(x)

h(xi)
· ln g(xi, v) (6)

where, h is still unknown, therefore, the CE algo-
rithm will try to overcome this problem by con-
structing an adaptive sequence of the parameters
(γt | t ≥ 1) and (vt | t ≥ 1).

5.2 FLC Optimization Description

The Cross-Entropy method generates N FLCs:
xi = (xi1, xi2, . . . , xih), where, i = 1, 2, .., N, h rep-
resents the number of optimization objects. The
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probability density functions: g(x, v) = (g(x1, v),

g(x2, v), . . . , g(xh, v)) are also generated from CE
method. Then, the objective function values are
calculated for each FLC. The optimization ob-
jects: xi1, xi2, . . . , xih in the first optimization stage
correspond to SFs, i.e. Kp, Kd and Ki, and then
they represent the position and size of the mem-
bership function sets in the second stage. After
all the generated controllers are tested in one
iteration, the g(x, v) is updated using a set of best
FLCs (i.e. elite FLCs). The number of elite FLCs
used to update the pdf is denoted as Nelite. Then,
new N FLCs are generated, which are tested in
the next iteration. When the maximum number
of iteration is reached, the optimization process
is over. A generic version of the optimization
process for FLCs is presented in the Algorithm 1.

Algorithm 1 Cross-Entropy Algorithm for Fuzzy
controller optimization
1. Initialize t = 0 and v(t) = v(0)

2. Generate N FLCs: (xi(t))1≤i≤N) from g(x, v(t)),
being each xi = (xi1, xi2, . . . , xih)

3. Compute φ(xi(t)) and order φ1, φ2, . . . , φN

from smallest ( j = 1) to biggest ( j = N).
Get the Nelite first controllers γ (t) = χ[Nelite].

4. Update v(t) with v(t + 1)=argvmin 1
Nelite

∑Nelite

j=1
I{χ(xi(t))≥γ (t)} · ln g(x j(t), v(t))

5. Repeat from step 2 until convergence or end-
ing criterion.

6. Assume that convergence is reached at t = t∗,
an optimal value for φ can be obtained from
g(., v(t)∗).

In these two optimization processes, the
gaussian distribution function was used. The mean
μ and the variance σ of h parameters are calcu-
lated for each iteration as μ̃th = ∑Nelite

j=1
x jh

Nelite , σ̃th =
∑Nelite

j=1
(x jh−μ jh)2

Nelite . The mean vector ¯̃μ should con-

verge to γ ∗ and the standard deviation ¯̃σ to zero,
where, Nelite = 5 .

In order to obtain the smooth updates for the
mean and variance in iterations, a set of parame-
ters, i.e. α, η, β in Eq. 7, have been applied, where
α is a constant value used for the mean, η is a
variable value, which is applied to the variance to
avert the occurrences of 0s and 1s in the parameter

vectors, and β is a constant value, which changes
the value of η(t).

η(t) = β − β ·
(

1 − 1

t

)q

μ̂(t) = α · μ̃(t) + (1 − α) · μ̂(t − 1)

σ̂ (t) = η(t) · σ̃ (t) + (1 − η(t)) · σ̂ (t − 1) (7)

where, μ̂(t − 1) and σ̂ (t − 1) are the previous val-
ues of μ̂(t) and σ̂ (t). The values of the smooth up-
date parameters are set: 0.4 ≤ α ≤ 0.9, 0.6 ≤ β ≤
0.9 and 2 ≤ q ≤ 7. In order to get an optimized
controller, the objective function named Integral
Time of Square Error (ITSE) is selected.

6 Training Framework and Optimized Results

6.1 Training Framework

The training framework developed in Matlab
Simulink is presented in this section, which is
used to optimize the FLC to change Fail-UAV’s
heading. In this framework, the optimization will
be processed by itself, and each controller gener-
ated by the Cross-Entropy method is tested. The
main simulink blocks include UAV model, virtual
camera, obstacle and FLC.

6.1.1 UAV Model

This UAV Model block is designed for AR. Drone
Parrot, Asctec Pelican and LinkQuad7 in CVG-
UPM8 according to [24] and [27], as shown in the
Fig. 10. This block has four different types of input
commands, however, the presented avoiding task
only require to control the orientation of Fail-Safe
UAV, and it will move forwardly with a constant
flight speed to an obstacle, thus, the pitch and
yaw commands are only to be controlled, i.e. roll
and altitude commands were set to 0. For the
UAV pitch commands, different constant speeds
were sent in all the tests in order to improve the
generalization performance of FLC. For the yaw

7http://www.uastech.com/
8http://www.vision4uav.com

http://www.uastech.com/
http://www.vision4uav.com
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Fig. 10 UAV model block in Matlab Simulink, where, it is suitable for different quadcopter platforms

commands, they are generated by the optimizing
FLCs. The outputs of this block are the current
6D pose of the quadcopter.

6.1.2 Obstacle

The Obstacle block is implemented for Fail-Safe
UAV to avoid, as shown in the Fig. 11. This block
contains six inputs: the initial positions, i.e. x, y,
z of obstacle, linear speed, angular speed and
the orientation. In the collision avoidance task,
the obstacle, e.g. wall, is static, thus, the speed
commands are set to 0. In the other hand, the
heading of UAV is parallel to the normal vector
of the obstacle at the beginning of task, therefore,
the orientation is also given to 0. The x position
of obstacle is set according to the minimum emer-
gent standoff distance mentioned in [36], in our
work, it is equal to 5. Additionally, the control
goal is to command the Fail-Safe UAV to avoid
the obstacle and fly parallelly to the obstacle, thus,
the boundary of obstacle is set to a big number,
e.g. 106.

6.1.3 Virtual Camera

The virtual camera block is constructed to sim-
ulate the onboard forward camera in Fail-Safe
UAV, which is used to detect the target (i.e. obsta-
cle) and provide the angle reference information
to the FLC. The Fig. 12 shows the onboard virtual
camera block implemented in Matlab Simulink.
The inputs of this block includes the current po-
sitions of the target and the quadcopter. The
output is the horizontal angle, which is equal to
90◦ according to the above parameters set for
obstacle.

6.1.4 Fuzzy Logic Controller

Figure 13 is the Fuzzy Logic Controller (FLC)
block for controlling the heading of Fail-Safe
UAV. It has 3 inputs and 1 output. The three
inputs are the yaw error, its derivate and integral
values. And the initial membership functions and
rule base are set to it based on the Tables 1–5 and
Figs. 6–9. And the initial scaling factors are set

Fig. 11 Obstacle block in Matlab Simulink, where, the wall as the obstacle is tested



524 J Intell Robot Syst (2014) 73:513–533

Fig. 12 Virtual camera block in Matlab Simulink, where, the AR. Drone Parrot is used as the Fail-Safe UAV

Fig. 13 Fuzzy Logic Controller (FLC) block in Matlab Simulink. It is applied to control Fail-Safe UAV’s heading

Fig. 14 Flowchart of Cross-Entropy optimization for Scaling Factors and Membership Functions in FLCs

Fig. 15 Cross-Entropy
optimization for Scaling
Factors in FLC
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to 1. This FLC generates the yaw command to the
Fail-Safe UAV to avoid the collision.

6.2 Optimized Results

In the literatures, although CE has been used to
optimized many FLCs in different systems, their
optimized parameters are only limited to Scaling
Factors. In this paper, an new application of this
method was presented for optimizing both Scaling
Factor (SF) and Membership Function (MF) in
the FLC as mentioned above, i.e. a Macroscopic
and Medium-size optimization are presented.

The initial parameters for Cross-Entropy
method were set based on [11, 33] and [46].
Figure 14 shows the whole training process.

6.2.1 Scaling Factors Optimization Results

Figure 15 shows the control loop during the scal-
ing factors, i.e. Kp, Kd, Ki, optimization stage.
The evolution can be shown with mean and sigma
values associated with each scaling factor. Both
values can be used to represent the Probability
Density Function (PDF) in each iteration.

Figure 16 shows the evolution of the PDF for
the SF of first input in FLC, its optimized value
is 4.6739. Similarily, the optimal scaling factors
for second and third input, as shown in Figs. 17

Fig. 16 The evolution of the PDF for the Scaling Factor
of first input (Kp) in FLC using CE method. The optimal
Scaling Factor for first input is 4.6739

Fig. 17 The evolution of the PDF for the Scaling Factor of
second input (Kd) in FLC using CE method. The optimal
Scaling Factor for second input is 0.03

and 18, are 0.03 and −0.5003, respectively. In the
SFs optimization stage, its winner iteration is the
85th iteration in 100 iterations.

6.2.2 Membership Functions Optimization Results

After obtained the optimal SFs (Kpo, Kdo, Kio)

for FLC, the Membership Functions should be

Fig. 18 The evolution of the PDF for the Scaling Factor
of third input (Ki) in FLC using CE method. The optimal
Scaling Factor for third input is −0.5003
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Fig. 19 Cross-Entropy
optimization for
Membership Functions
based on the optimized
Scaling Factors in FLC

optimized. Figure 19 shows the control loop dur-
ing the membership functions optimization stage.
Considering the membership functions are sym-
metric, any position modification of the left side
of each variable (input and output) can be applied
to the right side directly.

Figure 20 shows the evolution of the PDF for
the membership functions of first input (Left)
of FLC, its optimized value is −89.6960, thus,
the optimal membership function for first input
(Right) is 89.6960. Similarily, the optimal mem-
bership function for second input (Negative), third
input (Negative) are −8.1166 and −9.9782, respec-
tively. Thus, the optimal membership function for

Fig. 20 The evolution of the PDF for the Membership
Function of first input (Left) in FLC using CE method. The
optimal Membership Function for Left is −89.6960, then,
the optimal Right is 89.6960

second input (Positive), third input (Positive) are
8.1166 and 9.9782, respectively. The evolution of
the PDF for second and third input have been
shown in Figs. 21 and 22.

Figure 23 shows the evolution of the PDF for
the membership functions of output (Big Left) of
FLC, its optimized value is −88.974, thus, the opti-
mal membership function for output (Big Right) is
88.974. Similarily, the optimal membership func-
tion for output Left and Little Left are −88.191
and −74.952, respectively. Hence, the optimal
membership function for output Right and Little
Right are 88.191 and 74.952, respectively. The
evolution of the PDF for output Left and Little

Fig. 21 The evolution of the PDF for the Membership
Function of second input (Negative) in FLC using CE
method. The optimal Membership Function for Negative
is −8.1166, then, the optimal Positive is 8.1166
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Fig. 22 The evolution of the PDF for the Membership
Function of third input (Negative) in FLC using CE
method. The optimal Membership Function for Negative
is −9.9782, then, the optimal Positive is 9.9782

Left also have been shown in Figs. 24 and 25. In
the MFs optimization stage, its winner iteration is
the 93th iteration in 100 iterations.

After CE-based optimization for MFs, the new
MFs have been generated for FLC, as shown in
the Figs. 26, 27, 28 and 29, where, some sets
of membership functions are nearly overlapped

Fig. 23 The evolution of the PDF for the Membership
Function of output (Big Left) in FLC using CE method.
The optimal Membership Function for Big Left is −88.974,
then, the optimal Big Right is 88.974

Fig. 24 The evolution of the PDF for the Membership
Function of output (Left) in FLC using CE method. The
optimal Membership Function for Left is −88.191, then,
the optimal Right is 88.191.

Fig. 25 The evolution of the PDF for the Member-
ship Function of output (Little Left) in FLC using CE
method. The optimal Membership Function for Little Left
is −74.952, then, the optimal Little Right is 74.952

Fig. 26 Membership functions for the First input (Yaw
Error), after CE optimization, where, the Left (Right) has
been optimized to −89.6960 (89.6960) compared to the Fig. 6
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Fig. 27 Membership functions for Second input (Deriv-
ative of Yaw Error), after CE optimization, where, the
Negative (Positive) has been optimized to −8.1166 (8.1166)

Fig. 28 Membership functions for Third input (Integral of
Yaw Error), after CE optimization, where, the Negative
(Positive) has been optimized to −9.9782 (9.9782)

Fig. 29 Membership functions for Output (Yaw Com-
mand), after CE optimization, where, the Big Left, Left,
Little Left (Big Right, Right, Little Right) have been
optimized to −88.974, −88.191, −74.952 (88.974, 88.191,
74.952)

Table 6 Rules based on the Zero in the third input (inte-
gral of the error), after CE optimization

Dot error/error Left Zero Right

Big Negative Left Left Little Left
Negative Left Little Left Zero
Zero Little Left Zero Little Right
Positive Zero Little Right Right
Big Positive Little Right Right Right

Table 7 Rules based on the Negative in the third input
(integral of the error), after CE optimization

Dot error/error Left Zero Right

Big Negative Left Little Left Zero
Negative Little Left Zero Little Right
Zero Zero Little Right Right
Positive Little Right Right Right
Big Positive Right Right Right

between each other, therefore, some sets can be
deleted. Two sets of membership functions has
been reduced in Figs. 26 and 28, and four sets are
deleted in Fig. 29.

These reductions lead to the cancellation of
rules directly. Table 6, 7 and 8 shows the final rule
base, 64 % of rules has been cancelled from 125
rules to 45 rules, where, Tables 5 (25 rules) and 3
(25 rules) have been cancelled, 10 rules have been
reduced in Tables 1, 2 and 4, respectively.

7 Real Fights and Discussions

In the Section 6, we have obtained the optimal
SFs and MFs for FLCs, thus, a large number of
real flight tests should be done. A quadcopter, i.e.
AR.Drone Parrot, is used to test with the FLCs, it
connects to the ground station via wireless LAN.
In this paper, we use two different types of CE
optimized FLCs: (I) only SF is optimized in FLC
(called SF-FLC) [33, 35]; (II) both SF and MF are
optimized in FLC (named SFMF-FLC). And the
flight speeds, i.e. 0.4 m/s, 0.6 m/s and 0.8 m/s, are
selected to compare their control performances,
the size of Safe Avoiding Area (SAA) is 3 meters.
Thus, the collision avoidance process is that the
Fail-Safe UAV flies one meter toward the ob-
stacle in Normal Fly Area (NFA), then it should
turn 90◦ in SAA to avoid the collision, the visual

Table 8 Rules based on the Positive in the third input
(integral of the error), after CE optimization

Dot error/error Left Zero Right

Big Negative Left Left Left
Negative Left Left Little Left
Zero Left Little Left Zero
Positive Little Left Zero Little Right
Big Positive Zero Little Right Right
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Fig. 30 Measurements of Fail-Safe UAV’ heading in the
whole collision avoidance task, flight speed is 0.4 m/s

fuzzy servoing is activated in the whole collision
avoidance task. Additionally, we set a threshold,
e.g. 5 meters, to the X-axis movements in order
to compare all the tests in the same conditions, as
shown in the Figs. 32, 35 and 38.

7.1 Test 1: Comparison with Flight Speed: 0.4 m/s

Figure 30 shows the measurements of yaw angle
in the whole collision avoidance task with flight
speed 0.4 m/s, and Fig. 31 is the enlarged image
to show its performance in the steady state. With

Fig. 31 Enlarged image for steady state performances

Fig. 32 2D and 3D recontructions for Fail-Safe UAV’
trajectories and dynamic changes of heading angle, where,
along with Y-axis, NFA: 0–1 m . SAA: 1–4 m. DAA: 4–5 m.
Obstacle: 5 m

this flight speed, SF-FLC and SFMF-FLC avoided
the obstacle successfully and did not fly into the
Dangerous Alarm Area (DAA). However, the
average RMSE is 4.812◦ for SF-FLC, while the
average RMSE is 2.583◦ for SFMF-FLC in all
the tests. The SFMF-FLC’s control performance
is better than the one in SF-FLC.

Figure 32 shows the 2D and 3D reconstruc-
tions of trajectories and the corresponding dy-
namic heading angles for Fail-Safe UAV using the
SFMF-FLC.

Fig. 33 Measurements of Fail-Safe UAV’ heading in
whole collision avoidance task, flight speed is 0.6 m/s
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Fig. 34 Enlarged image for steady state performances

7.2 Test 2: Comparison with Flight Speed: 0.6 m/s

Figure 33 shows the heading of Fail-Safe UAV
in the whole see-and-avoid task with flight speed
0.6 m/s, and Fig. 34 is the enlarged image to
show its performance in steady state. Similar-
ily, with this flight, both controllers also avoided
the obstacle successfully and did not fly into the
DAA. However, the average RMSE is 6.060◦ for
SF-FLC, while the average RMSE is 3.218◦ for
SFMF-FLC in all the tests. For the control perfor-
mances, the SFMF-FLC outperforms the SF-FLC.

Figure 35 shows the 2D and 3D reconstructions
of trajectories and the corresponding dynamic

Fig. 35 2D and 3D recontructions for Fail-Safe UAV’
trajectories and dynamic changes of heading angle

Fig. 36 Measurements of Fail-Safe UAV’ heading in the
whole collision avoidance task, flight speed is 0.8 m/s

Fig. 37 Enlarged image for steady state performances

Fig. 38 2D and 3D recontructions for Fail-Safe UAV’
trajectories and dynamic changes of heading angle
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Fig. 39 Fail-Safe UAV in collision avoidance task, where,
the f irst column: forward flight (yaw estimation: 0.068◦),
the second column: avoiding with little turning (yaw esti-

mation: 32.585◦), the third column: avoiding with big turn-
ing (yaw estimation: 57.557◦) and the last column: finish the
see-and-avoid task (yaw estimation: 90.506◦)

heading angles for Fail-Safe UAV using the
SFMF-FLC.

7.3 Test 3: Comparison with Flight Speed: 0.8 m/s

Figure 36 shows the Fail-Safe UAV’s yaw angle
in the whole collision avoidance task with flight
speed 0.8 m/s, and Fig. 37 is the enlarged image to
show the performance in steady state. Similarily,
both controllers avoided the obstacle successfully
and did not fly into the dangerous alarm area.
However, the average RMSE is 7.427◦ for SF-
FLC, while the average RMSE is 4.069◦ for SFMF-
FLC in all the tests. For the control performances,
the SFMF-FLC is superior to the SF-FLC.

Figure 38 shows the 2D and 3D reconstruc-
tions of trajectories and the corresponding dy-
namic heading angles for Fail-Safe UAV using the
SFMF-FLC.

In general terms, all the tests show that by
adopting a SFMF-FLC, the Fail-Safe UAV can
obtain the better control performances.

Figure 39 shows the external images and real-
time processing images in the tests. The related
videos and more information of these tests can be
found at the CVG-UPM and ColibriProjectUAV9

websites.

9http://www.youtube.com/colibriprojectUAV

8 Conclusions and Future Works

In this paper, the Scaling Factor (SF) and Mem-
bership Function (MF) of a Fuzzy Logic Con-
troller (FLC) are optimized by Cross-Entropy
(CE) for Fail-Safe UAV, which obtains the bet-
ter control performance compare to only SF
optimization-based FLC [33, 35], therefore, this
new FLC is more suitable for collision avoidance
applications. And this novel CE optimization not
just improves the behavior of FLC, but also re-
duces 64 % of the initial rule base.

The monocular visual-inertial SLAM-based
strategy provides the real-time and accurate local-
ization information for Fail-Safe UAV to control
and navigate. Compared to other approaches, this
strategy do not need external aids, such as ar-
tificial markers, user-specified points/circles, and
much computation cost.

For future works, as the field study [36] recom-
mended, the omnidirectional sensor capabilities
are needed for obstacle avoidance. For camera,
the fisheye lense will be used. In addition, with
the development of camera, those cameras with
High Dynamic Range (HDR) functions are more
promising.

Finally, the optimization to rule weights of FLC
will be done, which will casue Microscopic effects
to the behavior of FLC to further improve the
control peformances.

http://www.youtube.com/colibriprojectUAV
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