
J Intell Robot Syst (2014) 73:51–66
DOI 10.1007/s10846-013-9909-4

Robust Backstepping Control Based on Integral Sliding
Modes for Tracking of Quadrotors

Heriberto Ramirez-Rodriguez ·
Vicente Parra-Vega · Anand Sanchez-Orta ·
Octavio Garcia-Salazar

Received: 5 September 2013 / Accepted: 12 September 2013 / Published online: 27 September 2013
© Springer Science+Business Media Dordrecht 2013

Abstract Modern non-inertial robots are usu-
ally underactuated, such as fix or rotary wing
Unmanned Aerial Vehicles (UAVs), underwa-
ter or nautical robots, to name a few. Those
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systems are subject to complex aerodynamic or
hydrodynamic forces which make the dynamic
model more difficult, and typically are subject
to bounded smooth time-varying disturbances. In
these systems, it is preferred a formal control
approach whose closed-loop system can predict
an acceptable performance since deviations may
produce instability and may lead to catastrophic
results. Backstepping provides an intuitive so-
lution since it solves underactuation iteratively
through slaving the actuated subsystem so as to
provide a virtual controller in order to stabilize
the underactuated subsystem. However it re-
quires a full knowledge of the plant and deriva-
tives of the state, which it is prone to instability
for any uncertainty; and although robust slid-
ing mode has been proposed, discontinuities may
be harmful for air- or water-borne nonlinear
plants. In this paper, a novel robust backstepping-
based controller that induces integral sliding
modes is proposed for the Newton–Euler un-
deractuated dynamic model of a quadrotor sub-
ject to smooth bounded disturbances, including
wind gust and sideslip aerodynamics, as well
as dissipative drag in position and orientation
dynamics. The chattering-free sliding mode com-
pensates for persistent or intermittent, and pos-
sible unmatched state dependant disturbances
with reduced information of the dynamic model.
Representative simulations are presented and
discussed.
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1 Introduction

Unmanned Aerial Vehicles (UAVs) provides a
mobility which cannot be covered by humans,
for instance, in cluttered or dangerous environ-
ments where the human being is at risk. These ro-
bot devices are high-end system with outstanding
capabilities to accomplish task in remote or
human-denied environments. UAVs are expen-
sive and require additional associated systems to
operate them safely, typically under human sur-
veillance or in fact under human command be-
cause control design for these systems are still
subject of research. For the automatic control
of UAVs, the closed-loop performance depends
implicitly on the quality of the controller, which
assumes certain specifications on its associated
sensor-feedback, actuation and embedded subsys-
tems. However, apart from the technological side,
there are some structural problems that make
them very difficult to control, among them: highly
coupled nonlinear models, underactuation, possi-
bly non-minimum phase, as well as aerodynamic
forces and moments. All these factors claim for
a powerful control design, establishing the need
to resort on sound control theories to deal with
underactuation as well as stabilization under dis-
turbances and model uncertainties.

There are some approaches to deal with those
problems, the backstepping approach highlights
among them, [1, 2]. Backstepping entails an it-
erative approach to solve underactuation such
that actuated dynamics are surrogated of under-
actuated dynamics. Unfortunately, this systematic
approach requires full knowledge of dynamics,
which stands for an extremely difficult assumption
to meet in practice for UAVs, [3]. To undertake
a partially uncertain underactuated system, exten-
sion of backstepping with other schemes has been
proposed, such as regressor-based adaptation in
[4, 5], function approximation techniques in [6],
first or adaptive/second order sliding modes in
[7–10]. These schemes exploit the backstepping
method to introduce additional stability prop-

erties in order to deal with uncertainty, conse-
quently, however resulting in an entangled algo-
rithm that adds complexity to the already involved
backsteping algorithm. Other way to deal with
underactuation circumventing backstepping is the
novel approach to shape iteratively sliding sur-
faces, or extended error frames, such as [11,
12], or exploiting the high order nonholonomic
constraint of a particular plant, [13], however
those modified sliding surfaces depend on explicit
knowledge of the plant, then it is not evident
the typical advantageous of invariance of sliding
modes, though its main drawback such as dis-
continuous control action is still in there. Ro-
bust control schemes have been designed based
on second order sliding modes in order to esti-
mate the unmatched disturbances [14]. Also, exact
differentiation have been proposed to deal with
derivatives required to implement backstepping,
[15, 16].

In this paper, we are interested in the chal-
lenge of resorting on backstepping without adding
significant complexity to deal with uncertainties
and using a piecewise continuous controller for
this purpose. It is proposed a backstepping ro-
bust controller, based on integral sliding modes,
that shapes a change of coordinates wherein
chattering-free sliding mode is enforced, [17],
This allows an inner control variable to han-
dle smooth and bounded uncertainties and time-
varying disturbances. Simulations are presented
for the complete standard quadrotor system in
Euler-Lagrange coordinates subject to unknown
aerodynamic disturbances such as wind gust and
sideslip aerodynamic forces as well as dissipative
drag effects, [18–20]. As suggested in [21–23],
quadrotor dynamics is written in a convenient
canonical form which represents three intercon-
nected subsystems and full details of our proposed
approach are presented and discussed.

2 The Quadrotor

Modern lightweight quadrotors, show a maneu-
verability unknown for fixed wing robotic air-
crafts, which make them suitable for tasks where
human being is inconvenient, risky, dangerous or
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costly, besides that their associated infrastructure
is minimum in comparison to other UAVs.

The quadrotor is considered as a highly under-
actuated nonlinear system with fast orientation
and slow coupled position dynamics. Having four
thrusters for performing hovering and navigation
flight, the quadrotor is a challenge for the sta-
bilization in regulation and tracking. Moreover,
its low inertia mechanical design is rather simple
but tends to instability even when subject to small
disturbances in typical flying conditions, such as
wind gust and sideslip effects, disturbances on the
thrust generation, or other inherent aerodynamic
conditions such as ground effect to depart or land.

The position control problem of quadrotors
entails solving the underactuation such that ori-
entation dynamics tracks desired position dynam-
ics in order to deliver positioning capabilities at
the expense of orientation angles. This establishes
the need to resort on sound control theories to
design robust automatic controllers that deal with
underactuation of the nonlinear dynamic model of
the quadrotor under parametric uncertainty and
disturbances.

3 Control Design

Consider a class of nonlinear underactuated sys-
tems subject to smooth bounded disturbances
di(t) ∈ Cn−i, where n is the number of state vari-
ables and n − i is the relative degree of the distur-
bance with respect to the physical control signal,
for i = 2, 4, . . . , n. This class of system can be
written as follows

ẋ1 = x2 (1)

ẋ2 = f2(x)+ g2(x)ϕ2(x3)+ d2(t) (2)

...

ẋi = xi+1 (3)

ẋi+1 = fi+1 + gi+1(x)ϕi+1(xi+2)+ di+1(t) (4)

...

ẋn−1 = xn (5)

ẋn = fn(x)+ gn(x)u + dn(t) (6)

where xi ∈ Rni stands for the state space represen-
tation of the system, fi(x) ∈ Rni stands for the flow
dynamics of the xi coordinate, gi(x) ∈ Rni×ni is a
non singular matrix, ϕi(x) ∈ Rni is a smooth vector
field, for i = 2, 4, . . . , n, such that its Jacobians,
Ji(x) � ∂ϕi−1(xi)

∂xi
are nonsingular (this assumption is

fulfilled by the dynamic model of quadrotor [23]),
with n an even number.1

3.1 Problem Statement

The control problem can be stated as follows

Given a desired function xd for the unactuated
coordinate x1, design an exogenous piecewise
continuous control input u so as to ‖xd −
x1‖, ‖ẋd − ẋ1‖ → 0 as t → ∞ locally asymp-
totically, subject to parametric uncertainties in
fi(x) and unknown time-varying disturbances
di(t) for the system (1–6), with all coordinates
stabilized.

We will design u using the backstepping scheme
parameterized in a novel error coordinate sys-
tem, useful to induce integral sliding modes to
compensate for uncertainties and disturbances, in
order to satisfy the above problem. This novel ex-
tension of backstepping becomes fundamental to
compensate for unmatched uncertainties as well
as matched ones.

3.2 Design of the Integral Sliding Mode
Controller Based on Backstepping

The system (1–6) can be regarded as a chain of
interconnected second order subsystems of the
form (3–4), coupled by virtual controls �i+1 that
converge to the desired value ϕi+1(xi+2); in this
way, if the error variables are defined as

ζi � �i−1 − ϕi−1(xi) (7)

ζi+1 � �i − xi+1 (8)

with �0 = xd and ϕ0(x1) = x1, then �i−1 becomes
the desired reference for ϕi−1(xi) and �i+1 be-
comes the control input of the unactuated subsys-

1If n were odd, the control scheme is valid with a straight-
forward modification, as will be shown in the main result at
the end of this section.
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tem, such that ζi, ζi+1 → 0. We aim at writing an
equivalent representation of the system in error
coordinates Sri = ζ̇i − ζ̇ir , where ζ̇ir is a nominal
reference. We show that this can be obtained by
defining a virtual control �i+1 = ϕi+1(xi+2), over a
novel parametrization, such that a sliding surface
depends on the error tracking variables �x and
�ẋ. In this way, for each subsystem it is proposed
the following lemma:

Lemma 1 Let Eqs. 3–4 be a subsystem of Eqs. 1–
6, for i = 1, 3, ..., n − 1. Consider the following vir-
tual controllers

�i = J−1
i (x) ˙̄�i−1 (9)

�i+1 = [
Ji(x)gi+1

]−1
(

KdiSri − Yri

)
(10)

where the Jacobian matrices Ji(x) � ∂ϕi−1(xi)

∂xi
and

gi+1(x) were assumed nonsingular, the nominal
variable Yri = Yri − δi(d) does not contain infor-
mation about the bounded disturbances, given by
δi(d) ≤ δi, for δi ∈ R +. The derivative of i-th vir-
tual control ˙̄�i−1 does not contain the disturbance
terms. Yri is given by

Yri = ζ̈ir − �̈i−1+ Ji(x) fi+1(x)+δi(d)− J̇i (ζi+1 − �i)

(11)

where the nominal variable ζ̇ir is def ined by

ζ̇ir = −αiζi + Sdi − γiσi (12)

σ̇i = sign(Sqi) (13)

Sqi = Si − Sdi (14)

Si = ζ̇i + αiζi (15)

Sdi = Si(t0)e−κi(t−t0) (16)

where sign(·) stands for the signum function, for
positive feedback gains αi, γi and κi. Then, local
exponential tracking is obtained such that xi → xdi

and ẋi → ẋdi, with all closed-loop signals bounded.

Proof (Boundedness of closed-loop signals) De-
fine a virtual control �i = xi+1, such that the fol-
lowing subsystem is obtained:

ζ̇i = �̇i−1 − �i (17)

Now, let ζi+1 = �i − xi+1 define an error variable
useful to write an equivalent system for Eqs. 3–4
as follows

ζ̇i = �̇i−1 − Ji(x) (�i − ζi+1) (18)

ζ̇i+1 = �̇i − fi+1(x)− gi+1(x)�i+1 − di+1(t) (19)

Then, Eqs. 18–19 can be written in terms of error
coordinate Sri as follows

Ṡri = −Ji(x)gi+1(x)�i+1 − Yri − Ji(x)di+1(t) (20)

Substituting Eq. 10 into Eq. 20, one obtains the
following closed loop equation

Ṡri = −KdiSri − δi(d)− Ji(x)di+1(t) (21)

That is, first subsystem has been written in error
coordinates Sri. Then, it remains to proof that
Eq. 21 is bounded and for certain tuning of feed-
back gains and initial conditions, an sliding mode
is induced at Sqi = 0 for all time. To this end, and
following [17], let Vi+1 = 1

2 ST
ri Sri be a quadratic

function, whose time derivative along Eq. 21
becomes

V̇i+1 = ST
ri (−KdiSri − δi(d)− Ji(x)di+1(t))

≤ −‖Sri‖
(
λmin{Kdi}‖Sri‖ − δi − J̄di

)
(22)

where ‖Ji(x)di+1(t)‖≤ J̄di > 0 and ‖δi(d)‖≤ δ̄i,
for δ̄i > 0. Then, for a large enough Kdi,
such that λmin{Kdi}‖Sri‖ > δ̄i + J̄di, there ex-
ists a finite time ti such that ‖Sri‖ ≤ Csri =((
δi + J̄di

)
/λmin{Kdi}

)
. Moreover, Ṡri is bounded

by Cṡri = λmax{Kdi}Csri + δi + d̄i+1. So far, we have
proved only that all closed-loop signals are
bounded for the subsystem (21). ��

Proof (Integral Sliding Mode) Using Eqs. 12, 14
and 15, variable Sri becomes

Sri = Sqi + γiσi (23)

In order to prove that Eq. 23 yields a sliding mode
at Sqi = 0, consider the time derivative of Vqi =
1
2 ST

qiSqi along the derivative of Eq. 23:

V̇qi = −ST
qiγisign(Sqi)+ ST

qi Ṡri

≤ −λmin{γi}|Sqi| + |Sqi||Ṡri|
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≤ −λmin{γi}|Sqi| + Cṡri|Sqi|
≤ −μi|Sqi| (24)

where μi = λmin{γi} − Cṡri. If Kdi and γi are chosen
such that μi > 0, then the sliding mode condition
ST

qi Ṡqi < −μi|Sqi| is fulfilled for a sliding mode
at Sqi = 0 ∀t ≥ tsi ≤ |Sqi(t0)|/μi. Moreover, Sqi = 0
for all time due to the reaching phase is removed
by the exponentially vanishing term Sdi. This leads
to conclude the asymptotic convergence of ζi

and ζ̇i, implying by Eqs. 9 and 18 that ζi+1 → 0
asymptotically. ��

Based on the backstepping approach and
Lemma 1, the following k-step procedure is pro-
posed for the subsystem (1–6):

Step 1: Define the virtual control �2 = ϕ2(x3)

and let xd1 be the desired reference for
x1, for the subsystem:

ẋ1 = x2 (25)

ẋ2 = f2(x)+ g2(x)�2 + d2(t) (26)

According to Lemma 1, subsystem (25–
26) can be represented in error coordi-
nates as follows:

Ṡr1 = −g2(x)�2 − Yr1 − d2(t) (27)

Defining

�1 = ẋdi (28)

�2 = g−1
2 (x)

(
Kd1Sr1 − Yr1

)
(29)

the asymptotic convergence x1 → xd1,
ẋ1 → ẋd1 and x2 → �1 is ensured.

Step 2: Let �4 = ϕ4(x5) be a virtual control and
�2 the reference for x3, in the subsystem:

ẋ3 = x4 (30)

ẋ4 = f4(x)+ g4(x)�4 + d4(t) (31)

Lemma 1 suggests that the subsystem
(30–31) can be written as follows:

Ṡr3 = −J3(x)g4(x)�4 − Yr3 − J3(x)d4(t)

(32)

Now, consider the virtual control

�3 = J−1
3 (x) ˙̄�2 (33)

�4 = [
J3(x)g4(x)

]−1 (
Kd3Sr3 − Yr3

)
(34)

that stabilizes states x3 and x4. In order
to analyze the stability of subsystem (27)
and (32), with control law (28), (29), (33)
and (34), it is proposed the quadratic
function V2 = 1

2 ST
r1Sr1 + 1

2 ST
r3Sr3. Notice

that actually in Eq. 27, we have �2 − ζ3

instead of �2, so taking this into account,
the time derivative of V2 becomes,

V̇2 = ST
r1(−Kd1Sr1 + g2(x)ζ3 − δ1(d)

− d2(t))+ ST
r3(−Kd3Sr3 − δ3(d)

− J3(x)d4(t))

≤ − ‖Sr1‖
(
λmin{Kd1}‖Sr1‖ − Cg2 − δ1

− d̄2
)− ‖Sr3‖

(
λmin{Kd3}‖Sr3‖

− J̄d3 − δ3
)

(35)

where it is assumed that ‖g2(x)ζ3‖ ≤
Cg2, ‖J3(x)d4(t)‖ ≤ J̄d3 for Cg2, J̄d3 > 0.
If we consider that ζ3(t0) belongs to
a bounded set with radius r > 0 cen-
tered in the origin (Sr1, Sr3) = (0, 0), and
given that xd3 is smooth, there exist large
enough feedback gains Kd1 and Kd3 such
that, λmin{Kd1}‖Sr1‖ > Cg2 + δ̄1 + d̄2 and
λmin{Kd3}‖Sr3‖ > J̄d3 + δ̄3, then V̇2 < 0.
In this condition, we can assume that
ζ3 remains into the bounded set af-
terwards. In this way Sr1 and Sr3 re-
main bounded and the second part of
the proof of Lemma 1 is valid for i =
1, 3. This guarantees the convergence
of x1 → xd1, ẋ1 → ẋd1, x2 → �1, x3 → �2

and x4 → �3.
Step k: Define the virtual control �2k =ϕ2k(x2k+1)

and let �2k−2 be the reference for
ϕ2k−2(x2k−1) of the following subsystem:

ẋ2k−1 = x2k (36)

ẋ2k = f2k(x)+ g2k(x)�2k + d2k(t) (37)
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for k = 1, 2, . . . , n/2. According to Lem-
ma 1, subsystem (36–37) can be written
as follows:

Ṡr2k−1 = −J2k−1(x)g2k(x)�2k − Yr2k−1

− J2k−1(x)d2k(t) (38)

such that by considering the following
virtual control

�2k−1 = J−1
2k−1(x) ˙̄�i−1 (39)

�2k = [
J2k−1(x)g2k(x)

]−1

×
(

Kd2k−1 Sr2k−1 − Yr2k−1

)
(40)

the closed loop stabilizes the states x2k−1

and x2k. To show this, consider the
subsystem given by Sr1, Sr3, . . . , Sr2k−3

and Sr2k−1 , with the control law �2, �4,
. . . , �2k−2 and �2k. Now, let V2k−2 =
1
2

∑k
m=1 ST

r(2m−1)Sr(2m−1) be a quadratic
function. Taking the time derivative of
V2k−2 along its solution (38), one obtains

V̇2k−2 = ST
r1

(− Kd1Sr1 + g2(x)ζ3 − δ1(d)

− d2(t)
)+ST

r3

(−Kd3Sr3 +g4(x)ζ5

− δ3(d)− J3(x)d4(t)
)+ . . .

+ ST
r2k−3

(− Kd2k−3 Sr2k−3

+ g2k−2(x)ζ2k−1 − δ2k−3(d)

− J2k−3(x)d2k−2(t)
)

+ ST
r2k−1

(− Kd2k−1 Sr2k−1 − δ2k−1(d)

−J2k−1(x)d2k(t)
)

≤ −‖Sr1‖
(
λmin{Kd1}‖Sr1‖

− Cg2 − δ1 − d̄2
)

−‖Sr3‖
(
λmin{Kd3}‖Sr3‖

− Cg4 − J̄d3 − δ3
)−

...

−‖Sr2k−3 ‖
(
λmin{Kd2k−3}‖Sr2k−3 ‖

− Cg2k−2 − J̄d2k−3 − δ2k−3
)

−‖Sr2k−1 ‖
(
λmin{Kd2k−1}‖Sr2k−1 ‖

− J̄2k−1 − δ2k−1
)

(41)

where it is assumed that ‖gm(x)ζm+1‖ ≤
Cgm, ‖Jm−1(x)dm(t)‖ ≤ J̄dm−1 for
Cgm, J̄dm−1 > 0 and m = 2, 4, . . . , 2k − 2.
Assuming small initial errors of ζ3,
ζ5, . . . , ζ2k−3, ζ2k−1 such that, this initial
state belongs to a bounded set with
radius r > 0 centered in the origin Sr1,

Sr3, . . . , Sr2k−3 , Sr2k−1 = 0. There exists
large enough feedback gains Kd1, Kd3,
. . . ,Kd2k−3 and Kd2k−1 , such that, λmin{Kd1}‖
Sr1‖>Cg2 +δ̄1+d̄2,λmin{Kdm−1}‖Srm−1‖>
Cgm + J̄dm−1 + δ̄m−1 for m = 4, 6, . . . ,
2k−2 and λmin{Kd2k−1}‖Sr2k−1‖> J̄d2k−1+
δ̄2k−1, then V̇2k−2 < 0. Now, this shows
that ζ3, ζ5, . . . , ζ2k−3, ζ2k−1 remain into
the bounded set afterwards such that
Sr1, Sr3, . . . , Sr2k−3 , Sr2k−1 and Sr3 remain
bounded. Now, provided that the second
part of the proof of Lemma 1 is valid
for i = 1, 3, . . . , 2k − 3, 2k − 1, then it
guarantees locally exponentially the con-
vergence of x1 → xd1, ẋ1 → ẋd1, x2 →
�1, x3 → �2, x4 → �3, . . . , x2k−1 → �2k−2,
x2k → �2k−1.

3.3 Main Result

Now we are ready to present the main result.

Theorem 1 Consider the system (1–6) subject to
parametric uncertainty and smooth continuous
bounded disturbances di(t). Let d̄i ∈ R + be the
bounds of the disturbances, such that, ‖di‖ ≤ d̄i for
i = 2, 4, . . . , n. Then, with a chain of n/2 virtual
controls based on Integral Sliding Mode Control
given by Eqs. 9 and 10, the error variables converge
locally asymptotically to the origin.

Proof Based on the result of the k-th step proce-
dure when k = n/2, the following control is ob-
tained:

�1 = ẋd1 (42)

�2 = [
J1(x)g2(x)

]−1 (
Kd1Sr1 − Yr1

)
(43)

�3 = J−1
3 (x) ˙̄�2 (44)

�4 = [
J3(x)g4(x)

]−1 (
Kd3Sr3 − Yr3

)
(45)

...
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�n−3 = J−1
n−3(x) ˙̄�n−4 (46)

�n−2 = [
Jn−3(x)gn−2(x)

]−1 (Kdn−3 Srn−3 − Yrn−3

)
(47)

�n−1 = J−1
n−1(x) ˙̄�n−2 (48)

u = [
Jn−1(x)gn(x)

]−1 (
Kdn−1 Srn−1 − Yrn−1

)
(49)

The chain of virtual controls (42–49) clearly guar-
antees the convergence of ζ1, ζ̇1, ζ2, ζ3, ζ̇3, ζ4, . . . ,
ζn−3, ζ̇n−3, ζn−2, ζn−1, ζ̇n−1, ζn → 0. ��

Remark 1 Notice that although time-varying boun-
ded smooth disturbances are not affine to the
control input u, a class of disturbances are rejected
with a chattering-free controller. Now, let us con-
sider the case when there is an additional state
xn+1 as follows,

ẋ1 = x2 (50)

ẋ2 = f2(x)+ g2(x)ϕ2(x3)+ d2(t) (51)

...

ẋn−1 = xn (52)

ẋn = fn(x)+ gn(x)ϕn(xn+1)+ dn(t) (53)

ẋn+1 = v (54)

The, system (50–54) can be stabilized by the vir-
tual controls (42–49), with �n = u, such that v
can be designed with the classical backstepping
approach as follows

v = J−1
n+1(x)

(
An+1ζn+1 + gT

n (x)Srn−1 + ρ̇n

)
(55)

where ρ̇n does not depends on the disturbances.
This controller guarantees, in virtue of Theo-
rem 1, the convergence of ζi, i = 1, 2, ..., n to zero,
with all closed-loop signals bounded, despite un-
matched disturbances di(t).

Remark 2 Notice that in Eq. 10, the term Yri im-
plies the second time derivative of reference �i−1,
necessary for i = 3, 5, . . . , n − 1, which involves
the time derivative of signum function, which evi-
dently does not exist, this arises as consequence
of introducing a signum function to induce a slid-
ing mode, which is typical in particular for back-
stepping sliding modes. This fact is present in a

number of relevant contribution in the literature,
however it lacks of a proper study, or it is simply
overlooked. In our case, the first derivative of
xdi can be computed, since the integral of signum
function is involved, but not the second one. In or-
der to overcome this drawback, or essentially this
pitfall, a signum function approximation can be
used. That is sign(Sqi) ≈ tanh (βSqi), with β > 0 in
�̈i−1, but sign(Sqi) is used in �i−1, �̇i−1 to preserve
a quasi-sliding mode to guarantee prescribed pre-
cision. To show this, let V̇qi become

V̇qi = − ST
qiγitanh(βSqi)+ ST

qi Ṡri

= − ST
qiγisign(Sqi)+ ST

qi Ṡri

− ST
qiγi

(
tanh(βSqi)− sign(Sqi)

)

≤ − λmin{γi}|Sqi| + |Sqi||Ṡri| + λmax{γi}�s|Sqi|
≤ − (μi − μ0)|Sqi| (56)

where μ0 = λmax{γi}�s and 0 <| �s |< 1 ∀ Sqi.
When μ0 > μi, V̇qi > 0 and Sqi increase and�s →
0, such that there exist a time t�s where V̇qi < 0,
thus Sqi remains on a vicinity of the origin, the
size of this vicinity is determined by the parameter
β, in this case it is said that a quasi-sliding mode
is induced. However, notice that this problem is
not present in control law u, because its time
derivative is not needed, so in this case the signum
function can be implemented.

4 Application to a Quadrotor

4.1 Quadrotor Dynamics

Consider the following dynamic model of the
quadrotor rotorcraft,

mRT
t ξ̈ + kt RT

t ξ̇ + mRT
t G = F + dξ (t) (57)

IT Rrη̈ + IT

(
∂Rr

∂φ
φ̇ + ∂Rr

∂θ
θ̇

)
η̇ + kr Rrη̇

+ (Rrη̇)× (Ir Rrη̇) = τ + dη(t) (58)

where m and IT = diag
(
Ix, Iy, Iz

)
are the mass

and the inertia matrix of the quadrotor, re-
spectively; matrices kt > 0 and kr > 0 contain
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aerodynamic dissipative friction coefficients. Vec-
tor G = [

0 0 g
]T

stands for the acceleration due to

the gravitational field of Earth, ξ = [
x y z

]T and
η = [φ θ ψ]T represent position and orientation in
world coordinates, respectively. Exogenous F and
τ are the control forces and moments generated
by the rotors of the aerial vehicle,

F =

⎡

⎢⎢⎢
⎣

0
0

4∑

i=1

Fi

⎤

⎥⎥⎥
⎦
, τ =

⎡

⎢⎢⎢
⎣

d (F2 − F4)

d (F3 − F1)

c
4∑

i=1

(−1)i+1 Fi

⎤

⎥⎥⎥
⎦

where d is the distance from the center of mass
to the rotor shafts and c is the drag coefficient.
Rotation matrices are defined as follows, for the
usual notation of ca = cos(a) and sb = sin(b),

Rt =
⎡

⎣
cφcψ sφsθ cψ − cφsψ cφsθcψ + sφsψ
cθ sψ sφsθ sψ + cφcψ cφsθ sψ − sφcψ
−sφ sφcθ cφcθ

⎤

⎦

Rr =
⎡

⎣
1 0 −sθ
0 cφ cθ sφ
0 −sφ cφcθ

⎤

⎦

which stand for the transformation and ro-
tation velocity matrices, respectively, between
the inertial reference frame and the body ref-
erence frame. Terms dξ (t) = [

dx dy dz
]T

and

dη(t) = [
dφ dθ dψ

]T
model smooth bounded dis-

turbances, possibly time-varying and state depen-
dant. Now, the aerodynamic forces, moments and
state-dependant aerodynamical disturbances are
presented.

4.1.1 Aerodynamic Disturbance Force

Consider axes according to the wind direction
velocity vector as the aerodynamic frame, then
two axes arises from the rotation matrix W : B →
A where B represents the frame attached to the
body, and

W =
⎛

⎝
cαcβ sβ sαcβ

−cαsβ cβ −sαsβ
−sα 0 cα

⎞

⎠

where α is the angle of attack and β stands for
the sideslip angle, [18]. The aerodynamic forces

produced during the hovering flight are written as
follows

dξ = WT

⎛

⎝
L
Y
D

⎞

⎠ = WT

⎛

⎜⎜⎜⎜⎜⎜
⎝

1

2
ρav

2
r ScL

1

2
ρav

2
r ScY

1

2
ρav

2
r ScD

⎞

⎟⎟⎟⎟⎟⎟
⎠

for L, Y, and D the lift, side force, and drag
coefficients of aerodynamic forces, respectively. S
represents the platform area of one blade of the
vehicle, and cD, cY , cL stand for the aerodynami-
cal non-dimensional coefficients of drag, sideforce
and lift, respectively, [20].

4.1.2 Gyroscopic and Aerodynamic Moment
Disturbances

The moments acting on the vehicle from aerody-
namical disturbances are defined as follows

dη = dηg + dηa

where dηg stands for the Gyroscopic Moment gen-
erated by the rotation of the airframe and the four
rotors, described by

dηg =
4∑

i=1

(−1)i+1 Iri [�× ezωi)]

=
⎛

⎝
q(Ir1ωr1 − Ir2ωr2 + Ir3ωr3 − Ir4ωr4)

p(−Ir1ωr1 + Ir2ωr2 − Ir3ωr3 + Ir4ωr4)

0

⎞

⎠

for Iri the moment of inertia of i-th rotor, ez =
[0 0 1]T , and ωi denote the angular velocity of the
rotor i, with i=1, 2, 3, 4, respectively.

The Aerodynamic Moment dηa is modeled by

dηa =
⎛

⎝
�l

�m

�n

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1

2
ρav

2
r Sbcl

1

2
ρav

2
r Sc̄cm

1

2
ρav

2
r Sbcn

⎞

⎟⎟⎟⎟⎟⎟
⎠

where �l , �m and �n stand for the aerodynamic
rolling, pitching and yawing moments, respec-
tively; coefficients c̄ and b are the chord and the
span of a blade, respectively, and cl, cm and cn

are aerodynamical non-dimensional coefficients



J Intell Robot Syst (2014) 73:51–66 59

of the aerodynamic rolling, pitching and yawing
moments, respectively, [20]. Finally, α, νr and
β as well as the yaw moment, due to sideslip,
are derived along the longitudinal and directional
motions.

4.1.3 Longitudinal Motion

From Fig. 1, the quadrotor turns in the direction
of the wind gust, for vo is the freestream velocity,
vi represents the induced velocity and is directed
opposite to the thrust, αo stands for the freestream
angle of attack, and α is the angle of attack, and vr

is the resultant velocity in the propeller slipstream,
[19]. Analyzing the wind velocity vectors from
Fig. 1, it can be established that the resultant wind
velocity in forward flight, results an angle of attack
as follows

vr =
√
(vo sin αo)2 + (vo cosαo + vi)2 (59)

α = arctan

(
vo sin αo

vo cosαo + vi

)
(60)

For hover flight, thrust is T = ṁvv, for ṁ = ρa Avr

the mass flow rate where A stands for the rotor
disk area, ρ denotes the air density, and vv = 2vi

the velocity in the vena contracta. Taking vo = 0
and (59), the induced velocity in hover regime

becomes vh =
√

T
2ρa A .

4.1.4 Directional motion

In flight conditions, it is desired to maintain the
sideslip angle at zero to avoid yawing moment
(Fig. 2). Nevertheless, it arises in presence of wind

Fig. 1 Quadrotor cruise in presence of wind gust disturbance

Fig. 2 Sideslip angle and yawing moment

gust, [18], for a freestream velocity vo. In this
condition, the sideslip angle can be described as

β = arcsin

(
v

vo

)
(61)

In virtue of (61), it results a yawing moment
given by

�n = cnβ
ρav

2

2
Sbβ (62)

where cnβ ≈ (
cnβ

)
Propellers + (

cnβ

)
Fuselage, [18].

4.2 State Space Representation and Synthesis
of the Algorithm

Defining the control input u = [
Ḟ1, Ḟ2, Ḟ3, Ḟ4

]
,

the dynamic model of the quadrotor can be writ-
ten as two subsystems of the form (1–6) which are
coupled by the new control variable u [23]. These
subsystems are respectively the underactuated,
the fully actuated and the propeller subsystem.
Let x = [x1, . . . , x7] be the state for the quadrotor
system:

x1 =
[

x
y

]
, x2 =

[
ẋ
ẏ

]
x3 =

[
φ

θ

]
, x4 =

[
φ̇

θ̇

]
,

x5 =
[
ψ

z

]
, x6 =

[
ψ̇

ż

]
, x7 = [F1, F2, F3, F4]T

(63)
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Using Eq. 63, let the system (57–58) be rewritten
as in state-space form as follows

ẋ1 = x2 (64)

ẋ2 = f2 (x2, x3, x5, x6)+ g2 (x5, x7) ϕ2 (x3)+ d2

(65)

ẋ3 = x4 (66)

ẋ4 = f4 (x3, x4, x6, x7)+ g4 (x3) ϕ4 (x7)+ d4 (67)

ẋ5 = x6 (68)

ẋ6 = f6 (x3, x4, x6, x7)+ g6 (x3) ϕ2 (x7)+ d6 (69)

ẋ7 = u (70)

where flow fi, input vectors gi, virtual controls ϕi

and disturbances di, for i = 0, 1, 2, are given by

f2 =
[

fx

fy

]
, f4 =

[
fφ
fθ

]
, f6 =

[
fψ
fz

]
, (71)

g2 = 1

m

4∑

i=1

Fi

[
sψ cψ

−cψ sψ

]
, g4 =

[
1
Ix

1
Iy

sφτθ
0 1

Iy
cφ

]

(72)

g6 =
[ cφ

Izcθ
0

0 1
m cφcθ

]
, (73)

ϕ2 =
[

sφ
cφs

θ

]
, ϕ4 =

[
d (F2 − F4)

d (F3 − F1)

]
, (74)

ϕ6 =
[

c (F1 − F2 + F3 − F4)

F1 + F2 + F3 + F4

]
, (75)

d2 =
[

dx

dy

]
, d4 =

[
dφ
dθ

]
, d6 =

[
dψ
dz

]
. (76)

where:
⎡

⎣
fx

fy

fz

⎤

⎦ = − 1

m
Rt Kt RT

t ξ̇ − G (77)

⎡

⎣
fφ
fθ
fψ

⎤

⎦ = −(IT Rr)
−1

(
IT

(
∂Rr

∂φ
φ̇ + ∂Rr

∂θ
θ̇

)
η̇

+ Kr Rrη̇ + (Rrη̇)× (IT Rrη̇))

+

⎡

⎢⎢⎢⎢⎢⎢
⎣

− c
Iz

cφ tθ
4∑

i=1
(−1)i+1 Fi

c
Iz

sφ
4∑

i=1
(−1)i+1 Fi

d
Iy

sφ
cθ
(F3 − F1)

⎤

⎥⎥⎥⎥⎥⎥
⎦

(78)

The first subsystem includes Eqs. 64–67 which has
the form of Eqs. 1–6 with n = 4, then according
to the Theorem 1, this subsystem can be stabilized
for a position tracking task given by xd1 in 2 steps.
That is, let following virtual controls be

�1 = ẋd1 (79)

�2 = g−1
2 (x)

(
Kd1Sr1 − Yr1

)
(80)

�3 = J−1
3 (x)�̇2 (81)

�4 = [
J3(x)g4(x)

]−1
(

Kd3Sr3 − Yr3

)
(82)

It is important to emphasize that g2(x) is nonsin-
gular for Fi �= 0, g4(x) and J3(x) are nonsingular
matrices when φ, θ �= ±π

2 . The second subsystem
consists of Eqs. 68–69 which also has the form of
Eqs. 1–6, with n = 2, then Theorem 1 suggests that
this subsystem can be stabilized at desired refer-
ence xd5 in one step by the algorithm proposed. In
this way, one obtains the following virtual controls

�5 = ẋd5 (83)

�6 = g−1
6

(
Kd5Sr5 − Yr5

)
(84)

Finally, the physical control law that stabilize both
systems is obtained with the classical backstepping
as it is suggested in Remark 1, as follows

u =
[

J4

J6

]−1
(

A7ζ7 +
[

J3g4 0
0 g6

]T [
Sr3

Sr5

]
+
[
�̇4

�̇6

])

where [JT
4 JT

6 ]T is a constant nonsingular matrix,
therefore u is well posed.

5 Simulations

In order to prove the effectiveness of the proposed
scheme, three simulation studies are presented to
verify the tracking characteristics and robustness
against disturbances and parametric uncertainty,
as established in Theorem 1.

5.1 The Simulator

Simulations are programmed in Matlab® platform
with a fixed step numerical Euler integrator, at
1ms of step size, in an Intel®-based PC equipped
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with CoreTM i7-2670QM CPU @ 2.2 GHz × 8 run-
ning OS Ubuntu 12.04 and 6Gb of RAM memory.

5.1.1 System Parameters

The parameters of quadrotor considered for si-
mulations are shown in Table 1, which represents
approximate conditions found in real flying condi-
tions in a controlled environment.

5.2 Simulation Subject to Sideslip Disturbance

5.2.1 Desired Trajectory, Feedback Gains,
and Sideslip Aerodynamic Ef fect

For this simulation, a circumference is considered
as desired trajectory,

[
xd, yd, zd

]T =0.25
[
sin(π t/

20)−1, cos (π t/20), 0.4
]T

m, ψd =−0.016t with

initial conditions at
[
x(t0), y(t0), z(t0)

]T =[− 0.25,

0.25, 0
]T

m, [φ(t0), θ(t0), ψ(t0)]T = [0, 0, 0]T rad.
Feedback gains are A7 = diag(60, 60, 60, 60),
Kd1 = Kd3 = diag(8, 8), Kd5 = diag(12, 12),
the sliding mode gains are γ1 = γ3 = γ5 =
diag(0.01, 0.01), with α1 = α3 = α5 = diag(1, 1)
and κ1 = κ3 = κ5 = 3. Aerodynamic sideslip
effect, which is modeled as a saturated smooth
piecewise disturbance σ5(t − 10) for t ≥ 10s, with
a magnitude of 5m/s and sideslip angle β = π/4

Table 1 Parameters of quadrotor

Parameter Value Units

m 2 Kg
(Ix, Iy, Iz) (0.1241,0.1241, 0.2483) Kg m2/rad
d 0.2 m
c 0.01 –
g 9.81 m/s2

� 1.19 kg/m3

Kt 0.01 Ns/m
Kr 0.001 Nms/rad
cl 0.15 –
cm 0.25 –
cn 0.8 –
cL 0.4 –
cY 0.2 –
cD 0.1 –
S 0.5 m2

b 0.05 m
c̄ 0.02 m

rad, which represents a strong aerodynamic
disturbance for this such lightweight quadrotor.

5.2.2 Results

Tracking of position shows rejection of distur-
bances from the invariance of the sliding surface,
despite the underactuation structure, with imper-
ceptible errors in the vicinity of the origin, and
convergence of attitude coordinates, where the
actual yaw angle tracks satisfactorily the desired
time-varying reference (Fig. 3). Chattering free
thrust is shown in Fig. 4, where it can be seen the
effort to compensate disturbance at t ≥ 10s.

5.3 Simulation Study Subject to Wind Gust

5.3.1 Desired Trajectory, Feedback Gains,
and Wind Gust Ef fect

It is considered a smooth displacement of 2m
at z-axis with ψd = 0 and zero initial conditions.
All feedback gains are the same as those in
Section 5.2. Wind gust is simulated by 3 distur-
bances at time 3 s, 5.5 s and 8 s as Gaussian
functions with standard deviation of 0.15, with a
wind vector vwind = [2.5, 2.5, 1.25]T m/s.

5.3.2 Results

Wind gust does not affect significantly the track-
ing of position, as shown in Fig. 5, with attitude
coordinates in a vicinity of the origin. Figure 6
shows thrust of each actuator, reduced when the
wind gust is present due to its z component and
the chattering free activity remains despite the
disturbance.

5.4 Simulation Study under Parametric
Uncertainty

5.4.1 Desired Trajectory, Feedback Gains,
and Parametric Uncertainty

It is considered a desired trajectory ψd = −0.1t,
[
xd, yd, zd

]T = 0.5
[

sin (2π t/15)− 1,

cos (2π t/15), 0.1t
]T m
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Fig. 3 Desired and actual Cartesian position of quadrotor under sideslip effect
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Fig. 4 Thrust of each actuator are chatterless, and smooth at t ≥ 10s, when disturbances is present
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Fig. 5 Error variables of tracking task for quadrotor. Control maintains the error variables enough small under wind gust
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Fig. 6 Thrust of each actuator is chatterless, and smooth. At t = 3s, 5.5s and 8s the thrust is reduced due to the positive z
component of the wind
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Fig. 7 Position of quadrotor under parametric uncertainty

with initial conditions at
[
x(t0), y(t0), z(t0)

]T =
[−0.25, 0.25, 0]T , [φ(t0), θ(t0), ψ(t0)]T = [0, 0, 0]T .
Feedback gains are A7 =diag(60,60,60,60), Kd1 =

diag(1.6,1.6), Kd3 =diag(4,4), Kd5 =diag(24,24),
the sliding mode gains are γ1 = γ3 = γ5 =
diag(0.05, 0.05), with α1 = α3 = α5 = diag(1, 1)
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Fig. 8 Attitude of quadrotor under parametric uncertainty
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Fig. 9 Thrust of each actuator is chatterless, and smooth under parametric uncertainty

and κ1 = κ3 = κ5 = 1. In this simulation a para-
metric uncertainty of −25% was considered for
parameters m, Ix, Iy, Iz, d, c, Kt, Kr and g, while
the quadrotor is subject to a wind disturbance with
the velocity vwind = sin (0.8π t)+ cos (0.2π t)+
sin (0.4π t)+ cos (0.6π t) [1, 1, 0]T m/s after 5.5 s.

5.4.2 Results

In Fig. 7, the position of the quadrotor is shown,
the tracking task is accomplished satisfactorily,
that is, the neglected dynamics given by the para-
metric uncertainty and unmatched disturbances
are rejected by the proposed control law, while
the attitude parameters of the quadrotor remain
stable as is shown in Fig. 8.

The control signals for each actuator are shown
in Fig. 9, these signals are smooth and the greater
effort is at the beginning in order to compensate
the parametric uncertainty and after 5.5 s when
the aerodynamic disturbance is present.

6 Conclusions

A constructive approach based on backstepping
and a novel error frame that involves the inte-

gral of the signum of the sliding surface are pro-
posed to solve the underactuation problem with-
out chattering for nonlinear underactuated plants.
It resorts on the systematic backstepping control
design, yet the proposed modification allows an
inner control loop to compensate for bounded
disturbances and parametric uncertainties with
a chattering-free control effort through integral
sliding modes. This approach can be applied to
a number of plants that can be converted into
the cannonical forms under consideration, which
covers a wide number of plants, however it has
been motivated by the quadrotor problem. Stabil-
ity in the sense of Lyapunov is derived and invari-
ance, to output error dynamics, is proved based
on the usual concepts of variable structure sys-
tems. An illustrative simulation study is discussed
in detail for the quadrotor aerial underactuated
robot system under various conditions, subject to
aerodynamic disturbances. It is shown that this
plant in particular can be written as the intercon-
nection of three subsystems, similar to Unmanned
Underwater Vehicles. This backstepping-based
controller conveys an intuitive solution for un-
deractuation by commanding the actuated subsys-
tem in a extended error coordinate system, where



66 J Intell Robot Syst (2014) 73:51–66

uncertainties are compensated. The integral slid-
ing mode for the actuated block provides realiza-
tion of the virtual controller needed to stabilize
the underactuated subsystem, which shows the vi-
ability of the proposed approach for a wide variety
of plants.
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