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Abstract This paper addresses the problem of
path planning for multiple UAVs. The paths are
planned to maximize collected amount of infor-
mation from Desired Regions (DR) while avoiding
Forbidden Regions (FR) violation and reaching
the destination. The approach extends prior study
for multiple UAVs by considering 3D environ-
ment constraints. The path planning problem is
studied as an optimization problem. The problem
has been solved by a Genetic Algorithm (GA)
with the proposal of novel evolutionary operators.
The initial populations have been generated from
a seed-path for each UAV. The seed-paths have
been obtained both by utilizing the Pattern Search
method and solving the multiple-Traveling Sales-
man Problem (mTSP). Utilizing the mTSP solves
both the visiting sequences of DRs and the assign-
ment problem of “which DR should be visited by
which UAV”. It should be emphasized that all of
the paths in population in any generation of the
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GA have been constructed using the dynamical
mathematical model of an UAV equipped with
the autopilot and guidance algorithms. Simula-
tions are realized in the MATLAB/Simulink en-
vironment. The path planning algorithm has been
tested with different scenarios, and the results
are presented in Section 6. Although there are
previous studies in this field, this paper focuses on
maximizing the collected information instead of
minimizing the total mission time. Even though, a
direct comparison of our results with those in the
literature is not possible, it has been observed that
the proposed methodology generates satisfactory
and intuitively expected solutions.
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1 Introduction

Autonomous systems in robotics can be described
as the automation of mechanical systems that
have sensing, actuation, and computation capa-
bilities. One of the fundamental needs in robot-
ics is to have algorithms that convert high-level
specifications of tasks into low-level descriptions
of how to move. The terms motion planning and
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path planning are often used for these kinds of
problems [17]. Path planning is the problem of
designing the path a vehicle is supposed to follow
in such a way that a certain objective is maximized
and a goal is reached.

In our case, the main objective is “maximizing
the collected information about desired regions”.
In [7], the algorithm is proposed for single UAV
case with level-flight assumption. The first part
of the algorithm for determining the visiting se-
quence of DRs has been modified to find the visit-
ing sequence of DRs for each UAV. The essence
of the idea is solving fixed-destination multiple-
Traveling Salesman Problem (mTSP). mTSP is a
generalization of the well-known traveling sales-
man problem (TSP) [4], where more than one
salesman is allowed to be used in the solution [1].
By finding the visiting sequence of DRs for each
UAV, the problem is transformed into multiple
single-UAV-path-planning problems. The mTSP
adaptation also solves the assignment problem of
“which DR should be visited by which UAV”.

Many methods exist for solving the basic tra-
jectory planning problem [16]. Most of them use
a basic kinematic model of an UAV [21, 29], and
[14]. Although it is possible to use de-coupled
equations of motion in path planning problems,
we prefer using fully coupled equations of motion
[29] to be more realistic and to obtain more accu-
rate simulations. To the best our knowledge, none
of the existing methods consider the topic of tra-
jectory planning in its full generality. For instance,
some methods require the workspace to be two-
dimensional. Despite many external differences,
the methods are based on a few different general
approaches: the roadmap methodology [13], cell
decomposition [2, 24–26], the potential field [15],
sampling-based [18] and evolutionary methods
[5, 19, 22, 29]. In [14]—one of the studies closer to
ours—the process of information collection is ex-
pressed by the Signal-to-Noise-Ratio (SNR) value
of a sensor, which is assumed to be on the UAV.
They attempt to minimize the total mission time
instead of maximizing the collected information.
In contrast, in many real-time applications, the
mission duration is given, and the main objective
is to maximize collected information in this fixed

time. In this study, we have concentrated on infor-
mation maximization given the mission time.

In [10] and [11], Shannon information is used
to search for a single stationary target. Their ap-
proach is based on minimizing the entropy of the
target distribution at each time step. Pitre et al.
[23] defines new objective function that utilizes
Fisher information due to its flexibility of handling
multiple targets case. But it is computationally
intensive. It is possible to extend the list of pos-
sible studies, but it is necessary to emphasize that
there is no benchmark problem to compare path
planning algorithms in general. It is in fact difficult
to define a benchmark problem because path
planning is done with respect to many different
criteria, the topology of the scenarios varies, and
the computation times differ significantly.

The Genetic Algorithm (GA) is a search
heuristic that mimics the process of natural evolu-
tion. Genetic Algorithms belong to the larger
class of evolutionary algorithms. Evolutionary
algorithms, which imitate natural selection and
survival of the fittest, are efficient and effective
ways to solve the optimization problem associated
with path planning in general. The major advan-
tage of evolutionary algorithms is that there is
no need to compute the gradient of the cost or
the constraint functions. These algorithms have
already been used to solve different UAV path-
planning problems, including optimizing the paths
of UAVs flying over a given terrain [5, 9, 20–22]
and searching for optimal UAV paths in military
missions [29]. All of these studies formulated the
problem as finding the trajectory that minimizes
and fulfils a set of optimization indices and con-
straints. Besada-Portas et al. [5], which is one of
the most recent studies among those, studies a
path planning algorithm for a multi-UAV prob-
lem that can run both online [27] and offline. Sim-
ilar to our study, forbidden regions are defined,
though, in our case, the Regions of Interest (ROI)
are more complex. The discussion of the complex-
ity level of the ROI is given in [7]. In [5] and [29],
multiple objectives are considered at the same
time, as in our case. However, we are attempting
to maximize the information gathered from the
desired regions. In doing so, instead of using a



J Intell Robot Syst (2014) 73:737–762 739

simple kinematical model, we use a full dynamical
model. Studies based on kinematical models re-
quire extra processes such as curve fitting and
guidance algorithms. It has been observed in our
study that the path associated with the kinemat-
ical model is different than that of the maximum
information collection path. The main novelties of
this is study are listed below;

– Our algorithm consists of three main steps.
In the first step, the problem is reduced to
the multiple single-UAV-path-planning prob-
lems by solving the assignment problem of
“which DR should be visited by which UAV”.
In this step, the DR visiting sequence for each
UAV is also determined. PatternSearch algo-
rithm is utilized to find the distances between
the centers of DRs. The simplified form of
the problem is modelled as an mTSP (see
Section 5.3.2). By solving mTSP, both problem
mentioned above are solved.

– In the second step, instead of using randomly
generated population for path search as in
previous studies [5, 22, 28, 29], and [19], seed
paths are formed, for each UAV, to satisfy the
physical constraints of the problem as much as
possible (see Sections 5.1 and 5.4). It provides
a good starting point for path search.

– Two new mutation operators (different from
those in [7]) are defined and implemented:
Ascend-to-EScape (ATES), and Change AL-
Titude (CALT). These operators also mimic
the thinking process of a human path planner
as the operators defined in [7].

– The main difficulty of the problem is due
to the dynamic constraints of the UAVs.
Otherwise, the first step (PatternSearch and
mTSP step) of the algorithm might have been
sufficient to solve the problem. Even though
using a full dynamic model introduces much
more complex constraints to the problem,
it makes the simulations more realistic, and
it guarantees that the generated path does
not violate dynamic limitations of UAV. In
addition, the outputs of the controllers are
saturated to handle the physical constraints of
UAV actuators.

Our study contributes to the UAV path
planning literature considerably for the reasons
below:

– Because an mTSP solver used for the sim-
plified form of the actual problem, it is almost
a guarantee that our path planning algorithm
produces a global or a nearly global optimum
solution.

– The topology of the scenarios in our simula-
tion studies have been chosen intentionally to
be very complicated. The degree of success
of our algorithm with respect to the existing
algorithms was considered qualitatively.

– Our algorithm is intelligent not only because
very special evolutionary operators are used
but also because the weights in the construc-
tion of the cost function change according to
what has been obtained at a given generation
(see Section 3).

2 Problem Description

Path planning can be defined as finding a route
to visit a given set of points or areas under some
constraints. In our case, the critical constraints
are “Desired Region(s)” (DR) and “Forbidden
Region(s)” (FR), as shown in Fig. 1. There is a
camera at the bottom of each UAV to capture
images from regions of interest. The regions in red
are FR, and the blue regions are DR. Our goal
is to design an algorithm that finds an optimal
route from a given starting point to a given final
point within a certain mission time for each UAV.
The mission time may be different for each UAV.
The assumptions used to define the problem are
as follows:

• There is a camera at the bottom of each UAV
to capture images from the region of interest.

• There is no overlap between the regions.
• The tilting angle of the camera is neglected

during turning.
• The starting and final positions are neither in

DR nor in FR.
• Masking effect of the terrain has been

neglected.
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Fig. 1 Region of interest,
desired regions (blue),
forbidden regions (red)

• Each DR, should be visited by one UAV is
enough for information collection. For a DR,
visited by more than one UAV is preferable,
and the total contribution to the collected
amount of information is taken into account.

• Each UAV has limited energy, therefore the
maximum number of DR assigned to each
UAV should be stinted. This assumption
raises the lower limit of the number of visited
DRs. Also, the path length for each should
have an upper limit.

• To use the advantages of multi-UAV, an-
other limitation is adopted to the problem. For
an UAV, to minimize the control effort, the
heading angle change should be minimized.
This limitation also provides less time spent in
the region outside the DRs and FRs.

The construction of the objective function is
described briefly in the following section.

3 Objective Function Construction

There is a camera at the bottom of the UAV to
capture images from the region of interest. The
camera is fixed to the UAV. The dimensions of
the region of interest are 20,000 (ft) × 20,000 (ft).
The region of interest has been divided into 20 ft
by 20 ft cells to perform the calculations.

3.1 Definition of Collected Information
and FR Violation Penalty

The captured images from desired regions are
evaluated as the collected information with special
regards to the resolution in a methodology similar
to what has been discussed in [8].

How these captured images are evaluated as
information will be described briefly. First, the
floor area of a square based pyramid, of which the
camera is the vertex, is calculated.

There are three different areas in Fig. 2, which
we call different resolution cells associated with
three different view angles (10◦, 20◦, and 30◦),

Fig. 2 Information collection, resolution cells (the inner
3-by-3 area is the highest resolution cell)
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where the view angle of a square based pyramid
is the maximum angle between two generatrix
lines.

When the UAV flies over a DR, the intersected
area between the base of the pyramid and the
DR is evaluated as information. The informa-
tion from the three different resolution cells is
different.

r1 = cos (10◦) ∗ altitude (1)

r2 = cos (20◦) ∗ altitude (2)

r3 = cos (30◦) ∗ altitude (3)

CI = b
(
α1

∗4r2
1 +α2

∗4 (r2 −r1)
2 +α3

∗4 (r3 −r2)
2)

hUAV − hterrain

(4)

α1 ≥ α2 ≥ α3 (5)

b =
{

1 if UAV is f lying over DR

0 otherwise
(6)

where r1, r2, and r3 are half of the base edge
of the pyramid corresponding to viewing angles
of 10◦, 20◦, and 30◦, respectively. CI represents
Collected Information, and b is the binary value
that represents whether the UAV is in a DR or
not. When the UAV descends the area of the base
of the pyramid will be smaller, but the resolution
will be increased.

If the UAV flies over the same location of a DR
more than once, the collected information from
this region will be evaluated by comparing the
resolution of the previously captured images. If
the UAV captures higher resolution images than
the previously captured images, then the former
one will be ignored and latter will contribute to
the objective function. Figure 2 illustrates the res-
olution of captured images.

The UAV should not fly over FRs. Entering
an FR has a penalty. The penalty value increases
from the borders of FRs towards their center by
considering the 4-connectivity relation between
pixels (see Fig. 3a), and also increases while the
difference between the altitude of UAV and the

(a)

(b)

Fig. 3 Penalty function of FR violation for scenario 3

height of the terrain decreases. In Fig. 3b, penalty
function for scenario is given. In Fig. 3a, calcula-
tion of penalty values is illustrated.

3.2 Attractive and Repellent Forces

While the UAV flies over the region outside of
DRs and FRs there should be some contribution
or penalty to the objective function to direct its
flight to maximize the objective function (i.e.,
maximize the collected information). Otherwise,
the objective function value remains constant
when the heading angles of the UAV are changed.
To handle this problem, two kinds of forces have
been suggested: attractive forces and repellent
forces. Attractive forces pull the UAV to the DR,
and repellent forces push the UAV away from the
FR. These forces have been calculated as propor-
tional to the areas of the regions and inversely
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proportional to the distance to the center of the
regions [7].

During our preliminary studies, it was observed
that, once the UAV entered a DR, it remained
inside or might enter repeatedly into this DR
instead of flying to other DRs and the final point.
To eliminate this unacceptable situation, the at-
tractive force of this particular DR is used now as
a repellent force. However, this remedy was not
a complete solution for the case where the UAV
enters and exits a particular DR close to a corner.

In this case, it may still be preferable to re-enter
the same DR when a very small area of the DR
is captured. Instead of using attractive forces as
repellent forces after leaving the region, attractive
forces are re-calculated by updating the area that
has been used in the calculation of these forces.
The area from which the UAVs have collected
information is extracted from the entire area of
this DR. Therefore, when the collected informa-
tion from one DR increases, the attractive force
of this DR decreases.

3.3 The Final Point Constraint

The UAV must be at a given coordinate at the
end of the simulation. The final point requirement
is incorporated into the problem as follows. Let
(eastf, northf) be the final position of the UAV at
the end of a simulation, and let (eastfinal, northfinal)

be the desired final point.
The distance between these two points is cal-

culated and inserted into the objective function
as a penalty. Initially, the weight of this distance
penalty is taken as the mean value of the areas of
the DRs.

3.4 Calculation of Dissipated Energy

The dissipated energy has been calculated for
each UAV. At each time step of the simulation,
the energy of the UAV, the sum of its potential
and kinetic energy, is calculated. If the energy
difference between successive time periods is pos-
itive, this energy is supplied by the UAV’s motor,
the energy difference, taking into account a cer-
tain coefficient of efficiency, be considered as the
energy consumed.

Then, the problem can be formulated as;

“max
#UAV∑

j

{
w∗

1CIj
} −

w2
∗F RPenaltyj(χj, Vj, hj)−w3

∗Distance_To_FinalPosition j
− w4

∗Dissipated_Energy j
(χj : heading angles of jth UAV) j = 1 . . . #UAV
(Vj : velocity values of jth UAV) j = 1 . . . #UAV
(hj : altitude values of jth UAV) j = 1 . . . #UAV

Subject to :
0 ≤ χ j ≤ 2π j = 1 . . . #UAV

30 f t/s ≤ Vj ≤ 90 f t/s j = 1 . . . #UAV
min _altitude ≤ hj ≤ max _altitude j = 1 . . . #U AV

Given
(
eaststart,northstart,altitudestart

)

Given
(
eastfinal,northfinal,altitudefinal

)

Fly inside the region of interest.
Simulation time is constant.
The dynamics of UAVs.”

where χi are the heading angles of the UAV to
the North and w1, w2, w3, and w4 are the problem
weights. The weight w4 is increased from its nom-
inal value if the best path at the end of a certain
number of generations requires too much energy
dissipation. The weight w3 is increased from its
nominal value if the best path at the end of a
certain number of generations is not sufficiently
close to the final point. The weight w2 is increased
from its nominal value if the best path at the end
of a certain number of generations still passes
through an FR. The weight w1 is increased from
its nominal value if the best path at the end of a
certain number of generations does not enter all
of the DRs.

4 Autopilot Design

The twelve equations of motion [12], which are
non-linear, fully coupled ordinary differential
equations, are used to completely and accurately
model the true motion of an aircraft, which moves
with six degrees of freedom along three axes.
The motion caused by gravity, propulsion, and
aerodynamic forces contributes to the forces and
moments that act upon the body. These ordinary
differential equations were constructed in [12] by
using four major assumptions. First, the aircraft
is rigid. Although aircrafts are truly elastic in na-
ture, modeling the flexibility of the UAV will not
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contribute significantly to our research. Second,
the earth is an inertial reference frame. Third, the
aircraft mass properties are constant throughout
the simulation. Finally, the aircraft has a plane of
symmetry. The first and third assumptions allow
for the treatment of the aircraft as a point mass.

A system of twelve state variables, expressed
in terms of stability, or flight path components
are obtained at the end. As explained in [12], the
flight path components are defined by an inertial
system. With these equations of motion, the UAV
response to any command input is accurately
modeled.

Before developing the path planning algo-
rithms, we must design the autopilot for each
UAV. The autopilot is required to have the abil-
ities of altitude controller, speed controller, and
turn controllers.

Our UAVs have four control inputs: the
thruster, elevator, aileron, and rudder. The con-
trollers are designed using the approximating lin-
ear model, since dealing with non-linear models
is too complicated. Design of the autopilot for
UAV is started with the linearization of the model
around trim points. For different velocity values
of between 30–90 ft/s trim points are determined.
The linear approximations of the UAV model
around these trim points are constructed. The
controllers are designed using linear models and
are combined using “Gain Scheduling” to con-
struct autopilot. The autopilot has been designed
using the “Linear Quadratic Regulator (LQR)”
[6] method.

The first controller is the altitude-hold con-
troller. First, only the elevator control input is
used. Then, the altitude-hold controller is de-
signed using only the thrust control input. The
coupling between the control responses to the
control input is optimized.

5 Path Planning of the UAV Using Evolutionary
Computations

5.1 The Discretization of the Mission Time
for Updating Heading Angles

To simulate the flight path of the UAV, the mis-
sion time is discretized. The total mission time

[t0, tf] has been subdivided into N > 0 subintervals
[t0; t1]; [t1; t2]; . . . ; [tN−1; tf] of an equal duration
of 1 second. That is, the heading angle of the
UAV is assumed to be changing in 1 second time
intervals. In each subinterval, the control inputs
are assumed to be constant. Thus, the UAV is as-
sumed to fly with the same heading angle in each
subinterval. During our studies we try different
time intervals. It is very obvious that using the
shorter time intervals gives flexibility to design a
path. But, our studies have shown that in time
intervals shorter than 1 s UAV has not the ability
to perform the command.

5.2 The Discretization of the Mission Time
for Velocity and Altitude Commands

The total mission time [t0, tf] has been subdivided
into M (0<M<N) subintervals [t0; t1]; [t1; t2]; . . . ;
[tM−1; tf] of an equal duration of 5 s. That is, the
velocity and altitude of the UAV are assumed to
be changing in 5 s time intervals. In each subinter-
val, the control inputs are assumed to be constant.
The rapid changes in velocity and altitude cause
phugoid mode. The phugoid has a nearly constant
angle of attack but varying pitch, caused by a
repeated exchange of airspeed and altitude. We
notice also the time intervals shorter than 5 s do
not contribute to the creation of better paths.

5.3 Determining the Visiting Sequence of DRs

5.3.1 Calculation of Distance Matrix

In this step, the distances between the centers of
DRs have been calculated. This calculation does
not find the Euclidean distance between any two
points directly. FRs have also been taken into ac-
count [7]. The algorithm works on 2D projection
of the ROI and controls whether the sub-path
intersects any FR. It is possible to run the algo-
rithm on a 3D terrain and to take the possibility
of flying over FRs into account; but it would not
change the order of DRs in the following step of
the algorithm.

If the path intersects any FR, then the algo-
rithm will try to find a point to connect the cen-
ters of DRs with two line segments. The distance
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Fig. 4 The illustration of angle between lines connecting
the centers of DRs

between these DRs is the sum of the lengths of
the line segments. The PatternSearch algorithm
[2] has been used to find the end points of the
line segments [7]. The maximum number of line
segments connecting any two DRs is (#FR + 1).

5.3.2 Visiting Sequence Determination
and DR Assignment by Solving mTSP

Even with evolutionary algorithms, it is very
important to initialize the optimization from a
“good” initial solution. We have produced the
initial population of our GA algorithm using the
mTSP. The DISTANCE matrix which is found
in the previous step, is used to represent the dis-
tances between the cities in the mTSP problem.
The definition of the mTSP as an optimization
problem is given below.

PathLength j = 0.5∗
#DR∑

k

#DR∑

i

Dki
∗Xkj

∗Xij

j = 1..#UAV (7)

min
X

⎧
⎨

⎩

#UAV∑

j

PathLength j + α.θ j

⎫
⎬

⎭

Subject to:

miDRs j ≤
#DR∑

i

Xij ≤ maDRs j j = 1 . . . #UAV

#UAV∑

j

Xij = 1 i = 1 . . . #DR

PathLength j ≤ mPLU AV j j = 1 . . . #U AV

Xij ∈ {0, 1}

where Xij represents whether UAVj visits DRi

it is 1 when UAVj visits the UAVi, and 0 oth-
erwise. miDRs and maDRs represent the lower
and upper bound of the visited number of DRs
by each UAV, respectively. mPLUAVj represents
the upper bound of the path length for the UAVj.
θi is the angle between two lines connecting to
DR centers, see Fig. 4. The parameter α is an
input parameter that is used to adjust the degree
of importance of sharp turns. If sharp turns are
not desired then the value of α should be entered
high. Depending on the problem PathLength can
take a wide range of values. Therefore the value
of α is entered as a percentage to the PathLength.
The binary variables Xij represent whether UAVj

visits DRi.
The mTSP is solved using a Genetic Algorithm.

The chromosome structure is shown in Fig. 5.
Genetic operators used in this step are explained
in the following section.

5.3.3 Chromosome Structure for Solving mTSP:

Each desired region has a unique label starting
from 2. The chromosome is encoded using these
labels. The label “1” represents the starting point.
In the figure below the sample chromosome used
in GA is presented. The chromosome encodes
the number of UAVs (salesmen) implicitly. The

Fig. 5 Chromosome structure for solving mTSP with GA
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Fig. 6 Changing the
assigned number of DR

number of “1”s in a chromosome is the number of
UAVs in scenario. Each UAV is assigned to DRs
starting by the label “1” to the next “1”, except for
the last UAV. The last UAV is assigned to DRs
from right-most “1” to end of the chromosome. In
Fig. 6, there are 3 UAVs and the number of DRs
is 11. The DR-x is labeled as (x + 1). The UAV-
1 is assigned to DRs of labels (12, 5, 6, and 10),
UAV-2 is assigned to DRs of labels (8, 7, and 4),
and UAV-3 is assigned to DRs of labels (11, 3, 9,
and 2).

5.3.4 GA Operators for Solving mTSP: Changing
the Assigned Number of DRs

This operator changes the DR assignments be-
tween UAVs, as shown in Fig. 6. In this figure, the
input chromosome (upper one) of the operator
DR-7 (of label 8) is assigned to the UAV-2, in
the output chromosome (lower one) the DR-7
is assigned to the UAV-1. Using this operator
provides correct assignment of DRs to UAVs.

The Fig. 7 illustrates the action of this operator.
The output chromosome seems to be not good
enough, but it is better than the input chromo-
some. This will be seen more clearly after the
application of other operators.

5.3.5 GA Operators for Solving mTSP: Changing
the Sequence of DRs for each UAV

This operator swaps the DRs for each UAV at
the same time. The visiting sequence of the DRs
is changed at the output chromosome. In Fig. 8,
the input chromosome (upper one) represents the
visiting sequence of DRs for UAV-1 which is
{12, 5, 6, and 10}, then in the output chromosome
DR of label 5 and DR of label 6 are swapped.

This operator is used in TSP also. This is the
parallel version of it, and provides solution rapidly
with slight changes. In Fig. 9. the illustration of the
operator is given.

5.3.6 GA Operators for Solving mTSP: Swap DRs

This operator realizes similar action as previous
one, but the difference is that the swapped DRs
are assigned to different UAVs (Figs. 10 and 11).

5.3.7 GA Operators for Solving mTSP: TSP for
Sub-paths

This operator actually tries to solve the problem of
TSP for each UAV. This operator, using crossover

Fig. 7 Illustration of the
operator “changing the
assigned number of DR”



746 J Intell Robot Syst (2014) 73:737–762

Fig. 8 Changing the
sequence of DR for each
UAV

Fig. 9 Illustration of the
operator “changing the
sequence of DR for each
UAV”

Fig. 10 Swap DRs

Fig. 11 Illustration of the
operator “Swap DRs”
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Fig. 12 2D view of the
visiting sequence of DRs
for 2 UAVs

and mutation operators, optimizes the sequence
of DRs allocated for a UAV. Here, the use of
crossover operator requires some attention. In
TSP, each city must be visited once. In an un-
controlled application of the classical crossover
operator it is possible that invalid chromosomes
will be generated. For this reason, the operator

should be applied in a controlled manner and
invalid chromosomes must be disposed of.

Since the number of cities is comparably small,
the time required to find the shortest path is short.
We try to find the shortest path to avoid navigat-
ing too much in areas outside of DRs. When such
a sequence is not known, at the points where the

Fig. 13 3D view of the
visiting sequence of DRs
for 2 UAVs
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attractive force is the same for different DRs, the
UAV is unable to decide which direction to turn,
and the UAV may move along any curve that has
an equal effect. The resultant sequence of visit for
each UAV has been shown in Figs. 12 and 13.

5.4 Finding SEED_PATH

The population generation for GA is accom-
plished by changing the randomly selected head-
ing angles of one path. This path is called the
seed-path. To find the seed-path, a GA has been
used based on the output of the mTSP algo-
rithm. The chromosome construction and opera-
tors used in this step are different than those in
Section 5.5.

5.4.1 Population Generation

In this section, the population generation proce-
dure will be explained briefly. First of all, each

chromosome of the population has three main
parts: the first part is encoded for heading angles,
the second part is encoded for the velocity, and
the third part is encoded for the altitude of UAV.
Each main part also has three parts.

For the heading part of the chromosome; the
first part designates how many steps (i.e., sec-
onds, time step = 1 s) that the UAV flies with
the heading angle values in the second part. The
second part contains heading angles to be used for
periods of time in the first part. Finally, the third
part is the time values at which the UAV starts
to change its heading angles towards the next
destination (DR or the final point). The structure
of a chromosome is shown in Fig. 14. According to
the example in the figure, the UAV flies with the
heading angle of pi/2 for 120 * (1 – 0.15) = 102 s
and starts to turn from pi/2 (East) to pi/4 (North-
East) at the 103rd second.

Each of the straight paths connecting to the
centers of DRs is divided into four equally spaced
sub-paths between two consecutive points (points:
The starting position, center of DR, and the final

Fig. 14 Chromosome
structure for the
SEED_PATH finding
step
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position). Then, the total length of the tour is
calculated.

The altitude and velocity values of each chro-
mosome is obtained by the same procedure and
then filtered to guarantee the velocity and al-
titude of the UAV do not change in 5 s time
intervals.

5.4.2 Genetic Operators: Crossover

New chromosomes are obtained from two ran-
domly selected chromosomes using the crossover
operation. Two new offspring paths are obtained
by crossing over the parts of parents, as shown
in Fig. 15. The same operation is valid for sub-
parts also. For a chromosome, the probability of
being a parent of a crossover operation is propor-
tional to its evaluation function value. A higher

evaluation function value means a higher proba-
bility of selection.

5.4.3 Genetic Operators: Mutation

The mutation rate is fixed to 5 %. For the first
main block (i.e., heading angle block), randomly
selected heading angles (the second part of the
main block) are changed by adding random
numbers between pi/5 and pi/10 rad. The first
part of the main block is changed by an amount
that is selected randomly between the minimum
and maximum of this part in each chromosome.
Then, the normalization procedure is executed
to keep the total number of steps between each
point constant. The last part of the main block is
changed by a number that is selected randomly
between 0 and 0.1.

Fig. 15 Crossover
operators (a) for
sub-parts, (b) for main
blocks

(a)

(b)
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For the velocity part of the chromosome, ran-
domly selected velocity values (the second part
of the main block) are changed by adding ran-
dom numbers between −20 ft/s and 20 ft/s. For
the altitude part of the chromosome, randomly
selected altitude values are changed by adding
random numbers between −200 ft and 200 ft.
Other parts of the second and third main blocks
are changed in the same way as the first main
block.

5.5 Final Path Finding with the Proposed GA
Operators

This step is the third and the final step of our path
planning algorithm. At this step, the path of the
UAV is planned using the proposed operators in
addition to the classical GA operators. The pro-
posed operators are described briefly and by pre-
senting illustrations. The chromosomal structure
used in this step is different than that of used in
the previous step. The chromosome is composed
of only the heading angles of the UAV.

5.5.1 Population Generation

The population in this step is created by changing
the randomly selected position of SEED_PATH,
which is calculated in the previous step.

5.5.2 Proposed GA Operators:
Push-From-Forbidden-Region (PFFR)

The purpose of these operators is to modify the
undesirable parts of a path intersecting any FR
[7]. Depending on how much the UAV enters a
particular FR, more than one PFFR operator is
recommended. This process changes the heading
angles, which are the parameters of the optimiza-
tion algorithm. One sample is shown in Fig. 16.
The operators in this sample work as follows:
First, any chromosome (path) that enters any FR
is detected. Second, the entrance point of that
chromosome to the FR is detected. Third, the co-
ordinates (eastbeforeFR, northbeforeFR) and heading

Fig. 16 Push-From-Forbidden-Region (PFFR)

angle χbeforeFR b steps before that particular FR
is entered (to remove the UAV from the FR) are
calculated. The value of b is calculated (1 ≤ b ≤ 8)
by using the length of the diagonal of the FR and
the length of the path inside the FR. The angle
between the NORTH axis and the line segment
passing through these coordinates and the center
of the FR (eastcenter_of_FR, northcenter_of_FR) is cal-
culated as

χd = arctan
(

eastcenter_of_FR − eastbeforeFR

northcenter_of_FR − northbeforeFR

)

(8)

The heading angle of the UAV before entering
the FR is χbeforeFR. The UAV is prevented from
entering the FR by changing the angle χd to
χd + � (where π /2 ≤ � ≤ π). However, there is
another step to be performed: due to this special
“mutation”, unintended changes in the remaining
path should be corrected. This part of the path
should be as close to the path before the mutation
operation as possible. We find the point that the
UAV exits from the FR and the heading angle
at the position of {f loor (b/2)} steps before it is
changed by subtracting χd + �. Thus, the UAV
becomes closer to the rest of the path before the
mutation operation, as illustrated in Fig. 16. As
we have stated before, the strength of the pushing
force depends on the length of path intersecting
with the FR. In addition, it depends on � as
well. Another parameter of the operator is b. This
parameter determines how many points before
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the entry point the UAV should be pushed from
the FR. It increases if the UAV becomes closer
to the center of the FR because, when it flies near
the center, the length of the path intersecting the
FR increases, and the UAV is forced to make a
turn with a greater radius.

5.5.3 Proposed GA Operators:
Pull-to-Desired-Region (PTDR)

This operator is proposed to shove the UAV to-
wards the DR in cases when it flies close to a DR
without entering it [7]. For each DR, the PTDR
operator searches for paths that do not enter the
DR. Then, for each path, the closest point of the
path to the center of the DR is found. Among
these points, the closest to the center of the DR
is selected for mutation. For this individual and
mutation point, the heading angles are changed
to pull the UAV to the center of the DR, as
illustrated in Fig. 17.

Let the minimum distance between the center
of a DR and the mutation point on the path be
distcenter_of_DR. The number of heading angles to
be changed is calculated as

NoHeadingAngles

= f loor
(
distcenter_of_DR

/
VelocityUAV

)
(9)

where VelocityUAV is the constant velocity of the
UAV. Afterward, the starting index for the angle

Fig. 17 Pull-To-Desired-Region (PTDR)

mutation should be calculated. This point is calcu-
lated using the point closest to the center of the
DR, as shown in Fig. 17, and the heading com-
mand at this point (χcommand) (Eq. 10). The critical
idea here is the use of the heading command at
this coordinate instead of the heading angle of the
UAV. It is necessary to use this heading command
because of the dynamical constraints of the UAV.
In the case where a simple kinematic model is
used, it will not be an issue because the head-
ing command and the heading responses of the
model UAV are similar. However, in real life
applications, they are not similar, especially for
rapidly changing heading commands. Let the
angle between the North axis and the line pass-
ing through the closest point and center of the
DR be χc.

f loor ((rmin ∗ (abs (χc − χcommand))

+distcenter_of_DR
))

/ VelocityUAV) (10)

where rmin is the minimum turning radius of our
UAV.

5.5.4 Proposed GA Operators:
Pull-to-Desired-Region2 (PTDR2)

This operator is defined to pull the UAV to the
next DR as soon as possible when it exits another
DR [7]. It finds the point that the UAV leaves a
DR and determines the angle at this point. Then,
it changes this heading angle and the consecutive
K (1 ≤ K ≤ 4) heading angles to pull the UAV to
the next DR, as illustrated in Fig. 18.

If the next DR is the first DR to be visited,
then, starting from the first heading angles, K
heading angles are mutated. K is calculated using
the distance between the starting point and the
center of the next-DR, and the velocity of the
UAV in a similar calculation given in Eq. 4.

5.5.5 Proposed GA Operators: Ascend-to-EScape
(ATES)

This operator is defined to increase altitude of the
UAV to avoid hitting terrain. There is a critical
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Fig. 18 Pull-To-Desired-Region (2)

altitude limit for the UAV, if the altitude of the
UAV falls below this value, ATES operator de-
cides on ascending by controlling the heights on
the route. Since the ascending decision increases
energy dissipation, there is trade-off between crit-
ical altitude level and energy. Our algorithm ad-
justs the weight of energy dissipation and weight
of the critical altitude penalty according to what
has been obtained. If ascending decision is not
feasible due to the energy dissipation then oper-
ator decides on heading around to escape possible
obstacles.

5.5.6 Proposed GA Operators: Change ALTitude
(CALT)

This operator is defined to change the altitude of
the UAV to ensure the optimal flight level. The
operator is utilized with the other operators to
adjust the altitude. For example if the UAV flying
over FR and it is not possible to avoid FR or flying
over it increases the collected amount of informa-
tion then operator will carry out UAV to ascend.
When the operator is called with the PTDR then it
decides on ascending or descending, firstly. Since
descending increases the resolution of the images
taken, and ascending provides the image of the
wider area. The energy dissipation is also taken
into account when deciding on changing altitude.
The operator is utilized with the PTFP operator
to achieve final altitude constraint also. It starts to
change the altitude of the UAV A steps before

the destination point. The parameter A is an
integer which is selected randomly between 1
and 9.
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Fig. 19 2D view of the
path of UAV1 in
scenario1

5.5.7 Description of the Algorithm

The path planning algorithm and autopilot are
implemented in MATLAB/Simulink. The con-
troller and UAV dynamic model are constructed
in Simulink and heading angles, speed and altitude
inputs are given determined using the algorithm
implemented in MATLAB. The pseudo code of
the main algorithm is given below. As shown in

this code, the proposed operators are applied to
the path at most three times successively. The
reason for this repetitive loop is that the proposed
operators may cause unintentional effects. For
example, the path that does not enter any FR may
enter to one of them after applying PTDR even if
there is a correction part in the operator.

The specific iteration number throughout the
experiments has been decided by trial and error,

Fig. 20 3D view of the
path of UAV1 in
scenario1
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Fig. 21 The
East-Altitude view of the
path of UAV1 in
scenario1

e.g., [3]. These successive applications of opera-
tors should be limited; otherwise, there will be
an infinite loop for unfeasible paths. Our exper-
iments show that three successive iterations are
sufficient to make remarkable changes in the path.
The operator is utilized with the other operators
to adjust the altitude, so in lines of 30, 38, and 42
call statement has two function references.

6 Results

The Region of Interest has been generated by
using the diamond-square algorithm defined in
[11]. It is also known as the random midpoint dis-
placement fractal, the cloud fractal or the plasma
fractal, because of the plasma effect produced
when applied. The algorithm starts with a 2D grid

Fig. 22 The velocity and
the altitude of UAV1 in
scenario1
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Fig. 23 2D view of the
path of UAV2 in
scenario1

then randomly generates terrain height from four
seed values arranged in a grid of points so that the
entire plane is covered in squares.

We have tested our algorithm on three dif-
ferent scenarios. In the first scenario there are
three UAVs, 14 DRs, and 13 FRs. The minimum
number of the DRs for each UAV is selected as
3. In the Figs. 19, 20 and 21 the resultant path for
UAV1 has been presented from different views.

In Fig. 19, the 2D projection of the path has
been shown. In this figure there are three datatip

points. Both these marked points and the notice-
able parts of the path (such as U turns) help
observing the effects of the proposed operators.
For example, the UAV flies over the right-most
FR after making U turn close to the North-East
of the ROI. But, we can easily observe from
Fig. 20, the UAV climbs over this FR to de-
crease violation penalty. The starting and finish
points are (East, North, Altitude) = (0, 0, 2000)
ft, and (East, North, Altitude) = (0, 0, 2500) ft,
respectively.

Fig. 24 3D view of the
path of UAV2 in
scenario1
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Fig. 25 3D view of the
path of UAV2 in
scenario1

The Fig. 22 presents the altitude and velocity of
UAV1 in scenario 1.

In the Figs. 23, 24 and 25 the resultant path for
UAV2 has been presented from different views.
In Fig. 23. the 2D projection of the path has
been shown. In this figure there are three datatip
points. Both five marked points and the noticeable
parts of the path helps observing the effects of
the proposed operators. The starting and finish

points are (East, North, Altitude) = (0, 0, 2000)
ft, and (East, North, Altitude) = (0, 0, 2300) ft,
respectively.

In the Figs. 26 and 27 the resultant paths for
all UAVs have been presented in 2D and 3D,
respectively. The path of each UAV has been
indicated in the same figures.

In the second scenario there are two UAVs,
11 DRs, and 10 FRs. The minimum number of

Fig. 26 2D view of the
paths of all UAVs in
scenario1
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Fig. 27 3D view of the
paths of all UAVs in
scenario1

Fig. 28 The result of the
mTSP step for scenario2

Fig. 29 2D view of the
path of UAV1 in
scenario2
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Fig. 30 3D view of the
path of UAV1 in
scenario2

Fig. 31 2D view of the
path of UAV2 in
scenario2

Fig. 32 3D view of the
path of UAV2 in
scenario2
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Fig. 33 2D view of the
paths of all UAVs in
scenario2

Fig. 34 3D view of the
paths of all UAVs in
scenario2

Fig. 35 The result of the
mTSP step for scenario3
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Fig. 36 2D view of the
paths of all UAVs in
scenario3

the DRs for each UAV is selected as 3. The
result of the mTSP step for second scenario
has been shown in Fig. 28. In the Figs. 29,
30, 31, 32, 33 and 34 the resultant paths have
been presented from different views. The starting
and final points are the same for both UAVs.
The starting point is (East, North, Altitude) =
(0, 0, 2000) ft, and the final point is (East,
North, Altitude) = (0, 0, 2400) ft. Both 2D
projections of the path and 3D views are pre-
sented.

In the third scenario there are four UAVs,
24 DRs, and 4 FRs. The topology of this scenario
is the most complex even if the number of FRs
is less. The complexity is affected by the num-
ber of regions, the area of the regions, and the
locations of regions with respect to each other
[7]. The minimum number of the DRs for each
UAV is selected as 5. The output of the mTSP
step is shown in Fig. 35. In the Figs. 36 and 37 the
resultant paths have been presented in 2D and 3D
views, respectively.

Fig. 37 3D view of the
paths of all UAVs in
scenario3
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7 Conclusions

The paper presents an algorithm for the path
planning problem for a multiple Unmanned Air
Vehicles (UAVs) in 3D environment. This algo-
rithm is an extension of our previous algorithm
[7] with the proposal of additional novel evolu-
tionary operators and the utilization of mTSP.
The overall algorithm and the proposed opera-
tors are applied to the multi-UAV case. Multiple
UAVs may be used when the mission time is not
sufficient to visit all DRs. In such a case, more
than one UAV should fly to collect information.
The mission time of each UAV is different for
the fact that each UAV has a limited energy. In
this case, the path planning operation starts with
finding the DISTANCE matrices for each UAV
by considering its mission time constraint. The
second and the third steps of the algorithm are
adopted to use both velocity and the altitude of
UAVs to optimize the path for information col-
lection. In the second step, the mTSP adaptation
also solves the assignment problem of “which DR
should be visited by which UAV”. In the third step
of the algorithm two novel mutation operators
are defined and implemented: Ascend-To-EScape
(ATES), Change ALTitude (CALT). As demon-
strated by the results, to obtain satisfactory solu-
tions for these types of problems, problem-specific
evolutionary operators should be defined. These
operators should imitate a human path planner’s
experience. Furthermore, to increase the chance
of the overall algorithm reaching the global op-
timum solution, initialization using the mTSP
and the construction of an intelligently seeded
initial population using the SEED-PATH algo-
rithm are among the additional original contrib-
utions.

In the future, 3D path planning can also be
studied for online path planning to maximize the
collected amount of within certain period of time.
There may be additional new operators, and con-
straints. The region of interest may not be known
exactly and there may be pop-up DRs or FRs.
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