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Abstract This paper addresses a search planning
and task allocation problem for a Unmanned Aer-
ial Vehicle (UAV) team that performs a search
and destroy mission in an environment where
targets with different values move around. The
UAVs are heterogeneous having different sensing
and attack capabilities, and carry limited amount
of munitions. The objective of the mission is to
find targets and eliminate them as quickly as pos-
sible considering the values of the targets. In this
context, there are two distinct issues that need
to be addressed simultaneously: search planning
and task allocation. The search plan generates an
efficient search path for each UAV to facilitate a
fast target detection. The task allocation assigns
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UAVs attack tasks over detected targets such
that each UAV’s attack capability is respected.
We model these two issues in one framework
and propose a distributed approach that utilizes
a probabilistic decision making mechanism based
on response threshold model. The proposed ap-
proach accounts for natural uncertainties in the
environment, and provides flexibility, resulting
in efficient exploration in the environment and
effective allocation of attack tasks. The approach
is evaluated in simulation experiments in compari-
son with other methods, of which results show that
our approach outperforms the other methods.
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1 Introduction

The advanced technologies in Unmanned Aircraft
System (UAS) allow Unmanned Aerial Vehicles
(UAVs) to carry out complex missions that re-
quire UAVs to perform various types of tasks
[1]. One of crucial missions for which multiple
UAVs can be utilized includes a search and de-
stroy mission where a group of UAVs is deployed
into a battlefield in order to search for targets and
destroy identified targets.
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This paper considers simultaneously search
planning and task allocation for a group of UAVs
that performs a search and destroy mission in a
dynamic environment. In the environment, tar-
gets move dynamically and are of various types
that have different value and munition resources
requirement. The value of a target specifies the
criticality of the target and may change over time.
The munition requirement indicates the minimum
amount of munition resources usage required to
destroy the target. Each UAV is assumed to
have: (1) a target sensing device to detect tar-
gets; (2) a communication equipment to exchange
information and cooperate with others; and (3)
munition resources to attack targets. The UAV
team is composed of heterogeneous ones in terms
of sensing and attack capabilities. The munition
resources that a UAV possesses are limited in
quantity and deplete with usage. In a mission, the
UAVs are expected to carry out two different
types of tasks associated with targets: search and
attack. A search task is to search for targets in
a search region and an attack task is to strike
a target with munition resources. When a UAV
detects a target, it either attacks the target single-
handedly if it has proper attack capability or as-
signs it to another UAV if not. The objective of
the mission is to find targets and eliminate them as
quickly as possible taking into account the values
of targets.

In this scenario, there are two important issues
that need to be considered simultaneously; search
planning and task allocation. The search plan pro-
vides each UAV with a search path for fast target
detection so that the following attack task over
a detected target can be shortly performed. It is
inherently impossible to plan an optimal search
path for each UAV throughout the mission be-
cause of unpredictability in the environment, and
hence the search path of each UAV has to be
generated in an on-line fashion. The task alloca-
tion assigns an UAV to a detected target such that
UAV’s attack capability and attack response time
are respected. Though there have been significant
efforts that deal with each issue separately, only
few works study the problem that combines these
two issues [2].

Motivated by this notion, we model the prob-
lem that treats these two distinct issues in one

framework. The problem becomes complicated by
several factors: multiple UAVs, moving targets,
constrained resources, and heterogeneous UAV
capabilities. Moreover, tight coupling of search
planning and task allocation increases the com-
plexity of the problem. Finding globally optimal
solution is computationally impracticable due to
the dynamic nature of the problem. Therefore,
we need to find an efficient procedure to pro-
duce sufficiently good solution to this complex
problem. In our work, presented is a distrib-
uted approach that utilizes a probabilistic decision
making protocol based on the response threshold
model, which is inspired by social insects’ task
assignment behavior [3, 4]. The basic idea is that
an individual’s behavior is not deterministically
but probabilistically determined using a probabil-
ity function conditioned on two factors, so-called
response threshold and stimulus. The response
threshold represents the level of preference or
specialization of an individual UAV to a task and
the stimulus corresponds to the demand, value, or
priority of the task. Based on the threshold level
and the stimulus intensity, the probability func-
tion determines a probability that the individual
accepts the task. This probabilistic action selection
mechanism accounts for natural uncertainties in
the environment and provides flexibility, resulting
in efficient exploration in the environment and
effective task allocation of attack tasks.

The remainder of this paper is organized as
follows. In the next section we present a brief
review of related work. In Section 3, we describe
our problem in detail. The UAV information base
is defined in Section 4, which is followed by ap-
proach we propose in Section 5. We show simula-
tion results comparing our approach to other al-
gorithms in Section 6. Finally, Section 7 discusses
the conclusion and future work.

2 Related Work

The problem of searching for targets in an en-
vironment has been an intensive research area
for several decades. The earliest one has been
addressed in classical search theory [5], which
mainly focuses on the optimal allocation of search
resources to maximize detection probability of
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a stationary target. The basic elements in the
optimal search problem include a prior distrib-
ution on target location, a function associated
with search resource and detection probability,
and a constrained amount of search resource. The
exponential function is a common assumption to
describe the probability of target detection [6, 7].
While the classical search problem concerns a
single stationary target [8–10], modern work on
search problem has extended the area by consid-
ering mobile targets and/or multiple targets. In the
work, the search region is partitioned into a finite
number of cells in which unknown position of the
target is given by a probability distribution. The
movement of the target is modeled as a Markov-
ian motion with transition matrix over cells [11].
The transition probabilities of the Markov chain
can be constructed based on known dynamics of
target, operation strategy of target, and terrain
features of the region.

However, all the work mentioned above deal-
ing with a single searcher may not be suit-
able for modern applications where a team of
multiple agents is adopted in order to ensure
robustness and faster mission accomplishment.
The search problem, when dealing with multiple
agents, needs to address several realistic consid-
erations such as heterogeneity of agents and dis-
tributed decision making. In recent years, there
have been numerous studies on search strategies
for multiple agents. Polycarpou et al. [12] address
a cognitive map-based cooperative search strategy
for a team of UAVs. In their work, each UAV
utilizes a cognitive map regarding a search region
as a knowledge base. Based on the information
newly collected about the environment, the map
is dynamically updated and used to route UAVs.
The objective of the search is to minimize the
total uncertainty in the region. Sujit and Ghose
[13] present a search problem that incorporates an
endurance time constraint on UAVs, and propose
an algorithm that utilizes the k-shortest path algo-
rithm with the objective of minimization of uncer-
tainty in a region. The other works that employ a
cognitive map and use a measure of uncertainty
for the construction of search path can be found
in the literature [14–19].

While the search algorithms designed to mini-
mize uncertainty yields good performance in sta-

tionary target search problems, the algorithms’
performance may deteriorate in dynamic envi-
ronments where targets are assumed to move.
Polycarpou et al. [12] state that the algorithm can
be adjusted by applying a decay factor on uncer-
tainty values in the case of dynamic environments.
However, this model does not fully address the
dynamic environment as reported in [20] since the
uncertainty measure will continuously increase at
all points that are not under direct surveillance.
The other approaches to solve a search problem
for moving targets include probability-map based
search and exhaustive search such as in [21–23].

Other than search path planning, task alloca-
tion over targets is also of great interest to a team
of multiple agents. Some researchers have formu-
lated the task allocation problem in optimization
model and proposed solution approaches based
on centralized control mechanism utilizing mixed
integer linear programming, dynamic program-
ming and genetic algorithms, which can be found
in [24–28]. Though the centralized mechanisms
have good advantages including guaranteeing op-
timal solution, decentralized approaches are more
favored and common in dynamic and uncertain
environments because of robustness, quick re-
sponse to dynamic events, and little computation
overhead. Lemaire et al. [29] present a distrib-
uted task allocation scheme based on contract net
protocol for multiple UAVs. Gurfil [30] investi-
gate the performance of a team of UAVs that
performs a search and destroy mission utilizing
auction based task allocation. Jin et al. [2] address
a search and response problem where a hetero-
geneous team of UAVs performs various tasks
including search, attack, and damage assessment.
The authors propose a predictive assignment algo-
rithm where the UAVs estimate probabilities for
future tasks and incorporate these predictions into
their decision making. Sujit et al. propose a nego-
tiation based task allocation scheme for multiple
UAVs that have communication constraints [31],
and further develop the scheme using sequential
auctions [32].

Most of the work mentioned above study either
the problems that consider separately search and
task allocation issues or the problems that inte-
grates the two issues only for stationary targets.
However, for a complex mission where multiple
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UAVs are supposed to deal with moving targets,
there is a need to develop an efficient task allo-
cation mechanism combined with search planning
in a distributed setting. In the following sections,
we describe the problem in detail and develop a
distributed search and task allocation scheme for
the problem.

3 Problem Statement

We consider a team of UAVs deployed into a
certain battlefield where the team is supposed to
perform search and attack tasks for targets that
move around in the battlefield. The UAVs are
modeled as autonomous distributed agents that
make their own decisions based on the knowledge
about the environment. In the rest of the paper,
we use the general term “agent” to represent a
UAV.

3.1 Mission Space

The continuous battlefield is partitioned into a
collection of identically-sized grid cells, C = {1, 2,
. . . , NC}, as shown in Fig. 1. To describe the move-
ments of agents and targets in this discretized
environment, we define the movement period T
as the time interval that discretizes the movements
of agents and targets. In the model, agents and
targets move among the cells at each discrete time
step t = kT for k = 0, 1, 2, . . .

Fig. 1 Movement of agent in grid environment

In the grid environment, a cell represents a
region where an agent expends its search effort or
strikes a target detected. It is assumed that a cell
is large enough for an agent to maneuver inside
it, performing a search or attack task. At each
time step, an agent determines a cell for search
according to a search mechanism, and a sequence
of cells that the agent chooses constitutes a search
path of the agent.

3.2 Targets

There are NT moving targets in the environ-
ment. The targets are probabilistically located at
time t = 0 and move among cells according to a
Markov process, each occupying one cell at each
time interval. It is assumed that the initial location
probabilities and transition probabilities of each
target are known and independent of others. For
simplicity, we assume that the targets move ac-
cording to a homogeneous Markov chain �.

The targets are of various types and each target
is allotted a value based on its priority or im-
portance level. A target value is time-dependent,
typically discounted in time, and is specified by its
value function,

V j(t) = V0
j · ϕ j(t) (1)

where V0
j is a positive constant representing an

initial value assigned to target j and ϕ j(t) ∈[0,1]
is a function defined to be non-increasing over
time. Each of these targets requires some amount
of munition resources for destruction and the
amount may vary depending on the type of mu-
nition that an agent carries.

3.3 Agents

A team of agents consists of NA heterogeneous
agents. Each agent moves autonomously through
the environment executing tasks such as search
and attack. The agents carry limited fuel resources
and are assumed to have no refueling during
mission. It is assumed that global communication
between the agents is possible and there is no
interruption or delay in communication.
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3.3.1 Movement of Agent

During search, an agent moves from one cell
to another cell or stays in a cell at each time
step. The available location at the next time step
is constrained to one of adjacent cells to the
agent’s current location (See Fig. 1). When con-
ducting a search task in a cell, an agent moves
around searching for targets. We do not explic-
itly model the internal dynamics of the individual
UAV (when maneuvering in a cell) and hence
concentrate on the development of mechanisms
for search planning and task allocation. However,
when an agent needs to move to attack a target
in other location, the agent flies directly from the
current location to a cell where it is supposed to
perform the attack task. We assume that the agent
moves in its optimal speed, vattack, so as to carry
out the attack task in a minimum time.

A target may change its location while an agent
is heading to attack the target, and thus the agent
initially computes its expected travel time based
on the location where the target is spotted. The
distance between two locations is measured in
Euclidean distance from the center of one cell to
the center of the other cell as illustrated in Fig. 2.
Then the expected travel time that agent i in cell
ci takes to arrive cellc j where target j is currently
located is computed as

�tij = dist(ci, c j)

vattack
=

√
�x2(ci, c j) + �y2(ci, c j)

vattack

(2)

Target
Δx 

Δy
 dist

Fig. 2 Euclidean path of agent for attacking a target

In the model, we define the response time for
agent i to attack target j as the minimum number
of time steps to arrive to the current location of
the target, which is computed as

τij =
⌈

�tij
T

⌉
(3)

where �r� denotes the next higher integer of real
number r and T represents the time interval.
While moving to attack a target, an agent ad-
justs its path as it obtains new information about
the target’s location and searches no cells that it
moves through in order to reach the target in a
minimum time.

3.3.2 Capabilities of Agent

An agent is equipped with a sensing device, with
which the agent is assumed to be able to detect
a target with a certain probability provided that
the agent and the target are located in the same
cell. The detection capability of agents might be
different depending on the type of the agent and
the search condition of a region. The detection
capability of agent i is defined by a detection
function,

βi(c, t) = 1 − e−α(c,t) (4)

where α(c, t) ≥0 represents the search effective-
ness of cell c at time t, which is normally used in
search problems. We assume that, once an agent
detects a target, the agent can identify physical
properties of the target such as type, value and
munition resources requirement as well.

In order to destroy a target that has been
identified, the target needs to be serviced by an
agent that holds proper attack capability over the
target. An agent carries some munition resources
limited in quantity and depletes with usage. While
engaged with a target, an agent delivers some
amount of munitions to the target and destroys the
target with kill probability, which is determined
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based on the effectiveness of munitions the agent
carries. The kill probability of agent i over target j
is defined as

δij
(
μij(t)

) = Probability
(
attack destorys

target j
∣
∣ μij(t)

)
(5)

where μij(t) represents the amount of available
munition resources at time t that agent i can use
to destroy target j. The attack capability of agent i
is specified by its kill probability to the target and
defined as follows.

γij(t) =
{

δij
(
μij(t)

)
, if agent δij

(
μij(t)

) ≥ δmin

0, otherwise
(6)

An agent is not eligible to attack target j if its
kill probability is less than some positive number
δmin or it has no sufficient amount of munition
resources required to attack the target. Follow-
ing the attack task on a target, Battle Damage
Assessment (BDA) is instantly performed by the
attacking agent and assumed to be precise. If the
attack task fails, the agent is required to re-attack
the target until the target is successfully destroyed.

3.4 The Objective of Mission

During the mission individual agent collects infor-
mation about targets and environment, and shares
this information via communication with other
agents. Utilizing this information, a team of agent
collaborates to search for and destroy targets.
When an agent successfully destroys a target, the
agent is awarded a reward corresponding to the
value of the target at that time. Then the objective
of the mission for the team is to maximize the
total rewards attained by successfully destroying
targets in a given mission horizon. To accomplish
this goal, the team needs to cooperatively work
in the efficient search planning and effective task
allocation mechanism.

4 The Agent Information Base

In order to effectively search for targets, agents
must keep the state information of the environ-

ment in terms of targets location. To do this, two
information maps are used as knowledge base for
planning search route.

4.1 Target Location Probability Map

Each agent has a target location probability map
Q(t = kT) that contains probability information
regarding targets location. In the map, each cell
i has a value, termed the target location proba-
bility, q(i, j, t) ∈ [0,1] representing the probability
that target j is present in the cell at time t. The
location probability map is constructed with the
initial target location probability distribution of
each target,Q(t = 0) = {q(i, j, 0)}, known in ad-
vance and is updated at each time step according
to a Markov process � as new target location
information is obtained.

In the absence of search, the target location
distribution evolves according to the formula,

Q(t = kT + T) = Q(t = kT) · � (7)

where � = {λij|i, j ∈ C} represents the target tran-
sition probability matrix. However, incorporated
with the likelihood of overlooking targets in a
search, the probability of target j being present in
cell i is computed as

q(i, j, t + T) =
∑

k=adj(i)

λki · q(k, j, t) · ψa(k, t) (8)

where adj(i) represents a set of adjacent cells to
cell i including the cell itself and ψa(k,t) is the
probability that agent a overlooks targets in cell
k ∈adj(i), which is defined as

ψa(k, t) =
{

1 − βa(k, t), if agent a searches cell k
1, at time t otherwise

(9)

Agents cooperatively build a target location prob-
ability map, utilizing new information each agent
gathers during each time interval. As an agent car-
ries out a task in a cell, it obtains some information
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about targets, e.g. targets detected, undetected, or
destroyed. The agent propagates this information
to other agents via communication and updates
the target location probability map according to
the formula (7) and (8). For example, if a target
is detected in a cell, the location probability of the
target is set to 1.0 in the cell and 0 for all other cells
in the map. Once a target is destroyed, the target’s
location information is removed from the location
probability map.

Since all information is shared among agents
through global communication, every agent keeps
the same target location probability map at any
time. Each agent utilizes the target location prob-
ability map and a certainty map detailed in the fol-
lowing section, as a guide for autonomous decision
making in its own search path planning.

4.2 Certainty Map

In the target location probability map, each cell
contains estimated probabilities of targets’ exis-
tence. However, in general, the probabilities may
not precisely reflect real probabilities of targets’
location due to inherent uncertainty in the prob-
abilities. For example, if agents have detected no
target for a long period of time, the probabilities
of targets’ existence, which have been developed
from Eqs. 7 and 8 over the time, come out with
only a small value. It implies that the location
probability distribution is un-normalized through
the entire environment and thus there may be a
high uncertainty in the probabilities. Therefore,
using only the target location probability map may
not provide sufficiently good information that ac-
count for targets location. For this reason, in our
model another measure, called certainty, is used
to capture the moment information describing
ambiguity in the location probabilities as used in
[14–16].

We define a certainty variable, h(i,t) ∈ [0,1],
for each cell i, which quantifies information
deficiency about target location probabilities in
the cell. This certainty value corresponds to the
degree to which the cell has been searched and
drives agents to explore un-searched region. The
certainty value h(i,t) = 0 implies that the cell has
not been searched for a long time and thus the

location probabilities in the cell is quite uncertain.
As the cell is searched repeatedly, its certainty
value approaches 1.0. The map that stores this
information is called the certainty map, H(t =
kT), which begins with an initial certainty value
in each cell and is updated at each time step as
the cells are searched. Each time an agent visits a
cell and performs a search, the certainty value of
the cell changes according to the rule described in
[15, 16];

h(i, t + T) = h(i, t) + 0.5 (1 − h(i, t)) (10)

However, in a dynamic environment where tar-
gets move, if no search is performed in a cell, the
cell’s certainty level decays with time in cope with
a changing environment so that cells scanned in
recent search have more weight on the certainty
level. In our model, the certainty value of a cell
with no search decreases using a discount factor
ε∈[0,1] as

h(i, t + T) = ε · h(i, t) (11)

This update rule is a simple way for agents to
track the number of searches recently conducted
on each cell and capture the notion of uncertainty
in location probability information of targets. The
certainty map constantly changes over a mission
horizon and is shared among all agents through
communication.

5 Proposed Approach

The approach proposed in this paper utilizes a
probabilistic decision making protocol based on
the response threshold model described in [3, 4].
In the response threshold model, each agent is
given a set of thresholds and each task is as-
signed a stimulus. The threshold represents the
preference or specialization of an agent toward
a task and can be updated in regard with the
change of state. The stimulus of a task indicates
the demand or value of the task itself and is used
to attract agents’ attention. A probability function
is defined using the threshold and the stimulus, by
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which an agent determines the probability that it
takes a task.

In our model, tasks include a set of search
tasks, each for searching an individual cell, and
a set of attack tasks, each for attacking an indi-
vidual target detected. To each set of search and
attack tasks, the response thresholds of individ-
ual agent i are given as 
S

i = {
θ S

i1(t), · · · , θ S
i,NC

(t)
}

and 
A
i =

{
θ A

i1 (t), · · · , θ A
i,NT

(t)
}
, respectively. The

stimulus of a task is determined based on total
expected values of targets. While the response
threshold of agents and the stimulus of tasks are
defined differently for the search and attack tasks
as detailed in the following sub-sections, agents
are designed to operate in a similar manner; the
agent selects probabilistically its action by eval-
uating task according to a probability function.
Though there are a couple of different forms of
the probability function used in the literature,
we adopt a function in3, i.e., given threshold θ ij

and stimulus S j, agent i will take task j with prob-
ability:

P(S j, θij) =
S2

j

S2
j + a · θ2

ij + �τ 2·b
ij

(12)

where �τ ij is the time period taken until agent
i starts task j, and a and b are parameters. The
lower an individual’s threshold or the higher a
task’s stimulus, the more likely the agent accepts
the task.

The task allocation framework we propose con-
sists of two mechanisms; search planning mecha-
nism for search tasks and target assignment mech-
anism for attack tasks. At each time step, every
agent is introduced search tasks, each of which
is to search one of adjacent cells. An agent se-
lects one search task through the search planning
mechanism. During search, attack tasks would be
introduced if targets are detected. In our model,
attack tasks have higher priority over search tasks.
An agent that detects a target runs the target
assignment mechanism through which an attack
task over the target is assigned. The overall flow of
the task allocation framework is shown in Fig. 3.

End

Initiate target
assignment mechanism

Initiate search
planning mechanism

BC 

Start

A

Begin a search

Detect a target?

Yes 

No Update maps

Fig. 3 Task allocation framework flowchart

5.1 Search Planning Mechanism

An agent performs a search (as a default task)
if no target is detected at the time or the agent
is not eligible to any of attack tasks announced.
At each time step, an agent selects one search
task from available search tasks for the next time
interval. The response threshold to and the stimu-
lus of an individual search task are defined using
the environment state information at the time
such as target location probabilities in the location
probability map, Q(t), and certainty values in the
certainty map, H(t).

In the mechanism, the response threshold of
agent i to a search task in cell j, is given by the
cell’s certainty valueh( j,t) at the time and bounded
in [0,θmax], which is defined as:

θ S
ij (t) = θmax ·

(
1 − e−ω·h( j,t)) (13)

where ω>0 is a parameter. Note that agents have
all common response thresholds to search tasks
since the thresholds are determined only with
cells’ certainty value. The response thresholds are
updated every time step as certainty value of cells
changes. A stimulus of a search task in cell j is
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defined based on potential possibilities to detect
targets in the cell and values of the targets, which
is given by:

SS
j (t) =

∑

k∈NT

q( j, k, t) · βi( j, t) · Vk(t) (14)

In our model, no delay time is required to transfer
to the next search task, which means �τ ij = 0.
Then, according to the Eq. 12, the probability that
agent i accepts a search task for cell j at time t is
computed as:

P̃S
ij(t) =

(
SS

j (t)
)2

(
SS

j (t)
)2 + a ·

(
θ S

ij (t)
)2 (15)

We interpret this probability as the preference
level of an agent to a particular search task. Since
an agent is given multiple search tasks, the agent
needs to pick only one among them for the next
time search. Thus a real probability for an agent
to select a search task is given by a normalized
probability using the preference levels as:

PS
ij(t) =

P̃S
ij(t)

∑

k∈adj(c)
P̃S

ik(t)
(16)

According to the function (15), the lower response
threshold or the greater stimulus is given, the
higher preference level is imposed to a search
task in a cell, which means the cell is more likely
to be visited. In this way, agents are driven to
explore cells not only with high target location
probabilities but also with low certainty value.

However, there might be a case where more
than one agent competes for the same cell to
search. In that case, a conflict resolution rule is
applied to avoid overlap in search efforts; the
cell is given to an agent with higher preference
level and the other one takes other cell with the
second highest preference level. Since there are
no more than one UAV in one cell simultane-
ously, collision-free operation (flight) is guaran-
teed when searching in a cell. Figure 4 shows the

Competing?

No 

Yes 

B 

Move 

A

Apply conflict resolution
rule to avoid overlap 

Compute response
threshold and stimulus 

Compute preference
level and normalized
probability

Select a cell for the next
time search and check
overlap

Fig. 4 Search planning mechanism flowchart

flowchart that details the process of the search
planning mechanism.

5.2 Target Assignment Mechanism

When an agent senses a target, it initiates target
assignment mechanism to select a best suitable
agent to perform the attack task over the target.
If an agent detects multiple targets, it proceeds
with target assignment process in parallel for
each target. Target assignment mechanism in our
model utilizes auction-like protocol. The process
starts with announcement of an attack task along
with information associated with a target such as
type, location, munitions requirement, stimulus,
etc. Each other agent that receives the attack task
information checks its eligibility, i.e., whether or
not the agent holds a proper attack capability
with sufficient munition resources, and if so, re-
spond to the task with a probability given from
function (12).

An agent’s response threshold to attack task is
given based on the agent’s attack capability. If an
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agent has high kill probability over a target, it gets
low response threshold to a corresponding attack
task. Therefore, the response threshold is defined
to be inversely proportional to kill probability as
follows:

θ A
ij (t) = c − d · γij(t) (17)

where c and d are positive constants and θ A
ij is

bounded in [0,θmax]. If the agent has no attack
capability on a target, the response threshold to
the attack task is set to infinity. A stimulus of an
attack task is simply determined as a correspond-
ing target’s value at the time, i.e.,

SA
j (t) = V j(t) (18)

Once the agent decides to respond, it sends a re-
sponse message including some information such
as estimated response time (τ ij), kill probability,
and expected rewards gain to the auctioneering
agent. The expected reward of agent i for destroy-
ing target j is computed as

Eij
(
V j(t + τij)

) = γij(t) · V j(t + τij) (19)
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Fig. 6 The performance of each method by varying the
number of targets when 5 UAVs and ε = 0.90 are used

An agent may have a schedule of attack tasks
previously assigned. Then its response time is the
total time to complete all the attack tasks in the
schedule, plus estimated time to reach the an-
nounced target after finishing the last task in the
schedule. When multiple attack tasks are concur-
rently announced, an agent performs the same
decision making process to select an attack task as
does in the search task selection, i.e., evaluates a
response probability for each of attack tasks, and
selects a task by a normalized probability.
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Fig. 7 The performance of each method by varying the
number of targets when 5 UAVs and ε = 0.95 are used
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Table 1 The capability of
UAV

Detection Kill

Type A Type B Type C Type D Type E
Target Target Target Target Target

Type I UAV 0.9 0.5 0.2 0.9 0.8 0.85
Type II UAV 0.85 0.7 0.95 0.85 0.3 0.4
Type III UAV 0.95 0.9 0.75 0.7 0.75 0.7

After an agent collects all responses from eligi-
ble agents, the agent chooses the best one that can
produce the largest expected reward. The agent
sends a reject message to other agents that are not
selected. In the event that an agent does not get
any response from other agents, then the agent
aborts the attack task and switches to perform
a search task. However, even in this case, the
agent propagates location information about the
detected target so that other agents use this infor-
mation to update a target location probability map
and build a direction in future search plan.

Agents cooperatively perform an attack task.
Once an agent assigns an attack task to other
agent, the agent chases a target until the other
agent reaches the target to attack. While chasing
the target, the agent communicates the target’s
location information with the other agent. This
cooperative attack task execution helps an attack-
ing agent navigate to the final location where the
attack task needs to be conducted. The agents
are released from the attack task and begin other
tasks when the task is completed. The overall
process of the target assignment mechanism is
illustrated in Fig. 5.

6 Simulation Results

In this section we demonstrate the performance
of the proposed approach compared to two other

methods using a simulation environment; tar-
get location probability map based [11] and un-
certainty map based search and task allocation
method [12]. Since these methods are designed
only to address search path planning, we modify
the methods to include deterministic attack task
allocation scheme for comparison with our ap-
proach. In the deterministic task allocation the
two methods use, an agent must respond to an
announced attack task if the agent is eligible to the
task. Each method is described as follows.

Target location probability map based search and
task allocation This approach is a somewhat
greedy method that utilizes only a target location
probability map. At each time step an agent se-
lects one cell for search that has the highest loca-
tion probability weighted by targets’ value. Upon
detecting a target, an agent immediately performs
an attack task over the target if it has proper
attack capability. Otherwise, the attack task is
deterministically assigned to the other agent that
is expected to yield the best reward by destroying
the target.

Certainty map based search and task allocation In
this approach, an agent uses only a certainty map
for routing its search path, that is, an agent moves
to a cell with the lowest certainty level for the next
time search. The certainty value of a cell dynami-
cally changes as described in the previous section.

Table 2 The average number of targets destroyed, total cumulative reward and mission completion time of each method
when ε = 0.90 is applied in case study 1

No. of targets Probability map based method Certainty map based method Response threshold model based

Targets Rewards Completion Targets Rewards Completion Targets Rewards Completion
destroyed gain time destroyed gain time destroyed gain time

5 4.4 299.0 90.3 4.5 298.5 88.8 4.7 319.5 74.7
10 7.6 513.5 120.0 7.8 508.0 114.2 8.6 600.0 114.8
15 11.3 771.0 120.0 11.3 759.0 120.0 12.6 869.0 120.0
20 16.4 1106.5 120.0 15.4 1035.0 120.0 17.6 1200.5 116.9
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Table 3 The average number of targets destroyed, total cumulative rewards and mission completion time of each method
when ε = 0.95 is applied in case study 1

No. of targets Probability map based method Certainty map based method Response threshold model based

Targets Rewards Completion Targets Rewards Completion Targets Rewards Completion
destroyed gain time destroyed gain time destroyed gain time

5 4.4 299.0 90.3 4.3 280.0 97.0 4.8 324.5 65.2
10 7.6 513.5 120.0 7.1 466.0 119.4 8.7 599.5 115.0
15 11.3 771.0 120.0 11.5 773.5 120.0 12.4 855.0 116.5
20 16.4 1106.5 120.0 16.3 1080.5 120.0 17.5 1192.0 120.0

The attack task allocation process is performed in
the same manner as the target location probability
map based method.

6.1 Simulation Scenario

The simulation is conducted with a simulated
UAV team that performs a search and destroy
mission in a battlefield. A battlespace is repre-
sented by 10 × 10 grid cells with the size of 2 km
for each side. In the environment there are five
types of targets that move around. The initial
value of target is given 100, 90, 70, 60 and 40 for
type A, B, C, D, and E, respectively. The value of
a target decreases according to the function

V j(t) = V0
j ·

(
1

1 + η · t

)
(20)

5 10 2015

Number of UAVs

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

Probability map based
Certainty map based
Threshold model based

Fig. 8 The performance of each method by varying the
number of UAVs when 15 targets and ε = 0.90 are used

where η is set to 0.03. We consider three types
of UAVs, of which munition resources is given
between 20 to 60 units. The munitions usage of
UAV to attack a target is varied between 10 to
20 units. For simplicity, the detection and kill
probability of UAV to each type of target are
set as shown in Table 1. The speed of UAV for
moving to attack is identical and constant, which is
assumed to be 300 km/hr. The movement period T
and the mission horizon are set to one minute and
two hours, respectively.

For each simulation run, the initial probability
distribution of target location is randomly gener-
ated and each target is located in one of cells of
which q(i, j, 0)>0. The certainty value of each
cell is initially set to 1.0. The parameters of the
system are set as follows: δmin = 0.7; a = 0.01; b =
1.0; θmax = 100; ω = 3.0; c = 333.33; d = 333.33.
The algorithms are coded in MATLAB, and the
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Fig. 9 The performance of each method by varying the
number of UAVs when 15 targets and ε = 0.95 are used
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Table 4 The average number of targets destroyed, total cumulative rewards and mission completion time of each method
when ε = 0.90 is applied in case study 2

No. of UAVS Probability map based method Certainty map based method Response threshold model based

Targets Rewards Completion Targets Rewards Completion Targets Rewards Completion
destroyed gain time destroyed gain time destroyed gain time

3 5.3 362.0 120.0 4.8 335.0 120.0 5.9 409.0 120.0
5 8.2 567.0 120.0 8.6 559.5 120.0 9.6 678.5 120.0
7 11.8 797.0 120.0 11.4 765.5 120.0 13.2 895.5 116.7
9 13.5 926.3 114.0 13.5 931.5 102.2 13.6 939.5 105.3

simulation results are the average of 50 runs for
each case.

6.2 Results and Discussion

Wetest the response threshold based method com-
paring to the other algorithms by varying simula-
tion environment. The performance is measured
with total cumulative rewards that a UAV team
collects by successfully destroying targets over a
fixed time window. Then the performance is rep-
resented in percentage obtained by dividing the
total rewards gain by total sum of target initial
values.

Case study 1 In the first set of simulation, a UAV
team composed of 5 UAVs (2 of each type A and
B, and 1 of type C) is used given different number
of targets varied from 5 to 20. Figures 6 and 7
demonstrate the performance of each method
with different discount factor values (ε = 0.90 and
ε = 0.95). As seen in the figures, the response
threshold model based method performs the best
in all instances, achieving up to 12.1 % and 12.7 %
more rewards than probability map and certainty
map based method respectively when ε = 0.90,
and 11.9 % and 18.5 % more than probability
map and certainty map based method respectively

when ε = 0.95. We measure the average number
of target destroyed, the total cumulative rewards
and mission completion time as listed in Tables 2
and 3. Obviously, as more targets are injected
into the system, each method obtains more re-
wards by detecting and destroying more targets.
In addition, the response threshold model based
approach completes mission in shorter time since
a UAV team can have better chances to find
targets in the proposed approach. Utilizing state
information including targets location probabili-
ties and certainty variables, our approach reduces
uncertainty in search environment and provides
flexibility for routing a search path. When as-
signing attack tasks, the proposed approach de-
termines the most suitable UAV considering its
attack capability and response time, and hence
produces more rewards.

Case study 2 The second set of simulation com-
pares the performance by varying the number of
UAVs given 15 targets. Figures 8 and 9 illustrate
the performance of each method when discount
factor value ε = 0.90 and ε = 0.95 is applied,
which show that the response threshold model
based method outperforms the other two methods
in both cases. Our method attains at most 10.3 %
more rewards that probability map based method

Table 5 The average number of targets destroyed, total cumulative rewards and mission completion time of each method
when ε = 0.95 is applied in case study 2

No. of UAVS Probability map based method Certainty map based method Response threshold model based

Targets Rewards Completion Targets Rewards Completion Targets Rewards Completion
destroyed gain time destroyed gain time destroyed gain time

3 5.3 362.0 120.0 4.9 331.0 120.0 5.7 408.5 120.0
5 8.2 567.0 120.0 8.1 553.5 120.0 9.6 672.5 120.0
7 11.8 797.0 120.0 12.0 811.0 120.0 12.3 849.5 120.0
9 13.5 926.3 114.0 13.7 940.0 111.3 13.8 947.0 105.1
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when ε = 0.90 and 11.0 % more than certainty
map based method when ε = 0.95. Tables 4 and 5
summarize the average number of targets de-
stroyed, the total cumulative rewards and mission
completion time of each method. The response
threshold model based method detects and de-
stroys more targets in a given time duration and
completes faster a mission. This confirms that the
proposed approach can more efficiently explore
the environment and more effectively allocates
tasks. Notice that the difference in performance is
not so significant when a small or large number
of UAVs is used. This is because a small size
UAV team has a limited amount of munition
resources in total, which is not sufficient to handle
all targets. In contrast, a large size UAV team
has many available UAVs with sufficient munition
resources so that it can immediately react to a
detected target. This suggests that the response
threshold based method would become more su-
perior if a proper number of UAVs are used.

Case study 3 The third set of simulation investi-
gates the effect of certainty discount factor on the
performance of response threshold model based
method. In the first simulation, 5 UAVs given
10 targets and 7 UAVs given 15 targets are tried
with various discount factor values from 0.8 to 1.0.
Figures 10 and 11 illustrate the performance of
each method. Observe that the performance of re-
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Fig. 10 The comparison of performances by varying dis-
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Fig. 11 The comparison of performances by varying dis-
count factor value when 7 UAVs and 15 targets are used

sponse threshold model based method seems not
greatly influenced by discount factor value while
the performance of certainty map based method
fluctuates depending on discount factor value.
This is because the response threshold model
based method more flexibly explores the environ-
ment by probabilistically selecting a search cell
whereas the certainty map based method deter-
ministically chooses a search cell with the highest
uncertainty. It suggests that our method works
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Fig. 12 The performance of the response threshold model
based method with various number of targets and discount
factor values when 5 UAVs are used
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Fig. 13 The performance of the response threshold model
based method with various number of UAVs and discount
factor values when 15 targets are given

well in various situations yielding a stable per-
formance. To verify this, the second simulation
is conducted by varying the number of targets
and UAVs. The results summarized in Figs. 12
and 13 show that the difference in performance is
within only 6.1 %. This confirms that the proposed
approach performs in a stable way better than the
certainty map based method.

7 Conclusion

This paper presents a distributed search planning
and task allocation approach for a heterogeneous
UAV team that performs a search and destroy
mission for moving targets. In the model, the
movement of targets is described by a Markov
process based on which target location probability
information is developed. The certainty is used
as a measure to account for ambiguity in the
target location probability information. Using this
environment state information, the UAV team
cooperatively builds a target location probabil-
ity map and a certainty map, which constitute a
knowledge base for planning search route and
task allocation. In the proposed approach, proba-
bilistic decision making scheme based on response
threshold model is developed to provide flexibility
that enables the UAV team to efficiently explore

an environment and carry out tasks. The proposed
approach has been evaluated in simulation exper-
iments compared to deterministic methods. The
results clearly show that the proposed approach
outperforms the other methods in various condi-
tions. Future research will examine some practi-
cal issues such as targets’ threats, communication
constraints and failures, UAV malfunctions and
shoot-downs, and task failures for the extension
of the problem. Those issues could significantly
affect the system performance in a real battlefield
and hence should be addressed in a model. We
will also investigate the impact of parameters of
the model on the system and develop techniques
to tune the parameters according to the condition
of environment.
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