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Abstract In this paper, we apply a hierarchical
tracking strategy of planar objects (or that can
be assumed to be planar) that is based on direct
methods for vision-based applications on-board
UAVs. The use of this tracking strategy allows
to achieve the tasks at real-time frame rates and
to overcome problems posed by the challenging
conditions of the tasks: e.g. constant vibrations,
fast 3D changes, or limited capacity on-board. The
vast majority of approaches make use of feature-
based methods to track objects. Nonetheless, in
this paper we show that although some of these
feature-based solutions are faster, direct methods
can be more robust under fast 3D motions (fast
changes in position), some changes in appearance,
constant vibrations (without requiring any specific
hardware or software for video stabilization), and
situations in which part of the object to track is
outside of the field of view of the camera. The
performance of the proposed tracking strategy on-
board UAVs is evaluated with images from real-
flight tests using manually-generated ground truth
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information, accurate position estimation using a
Vicon system, and also with simulated data from a
simulation environment. Results show that the hi-
erarchical tracking strategy performs better than
well-known feature-based algorithms and well-
known configurations of direct methods, and that
its performance is robust enough for vision-in-the-
loop tasks, e.g. for vision-based landing tasks.

Keywords UAVs visual tracking ·
Direct methods · Vision-based landing ·
Pose estimation · Hierarchical tracking

1 Introduction

Robust visual estimation at real-time frame rates
is one of the main problems when addressing
the visual tracking task on-board UAVs. If the
difficulties to obtain it are overcome, the recov-
ered visual information can be used in a variety of
vision-based control tasks, allowing to expand the
vehicle’s capabilities (e.g. vision-based landing, vi-
sual inspection), or to cope with vulnerabilities of
other on-board sensors (e.g. GPS fallouts, Inertial
Navigation System -INS- drift).

In previous works [1–3], we have used features-
based methods [4] to track planar scenes on-board
UAVs (Unmanned Aerial Vehicles). We have
seen that in the application of tracking on-board
UAVs (see Fig. 1), the adopted feature-based
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Fig. 1 Tracking on-board
UAVs. Robust real-time
tracking allows to expand
the vehicle’s capabilities
by using the tracking
algorithm in vision-based
control tasks, such as
landing, visual inspection,
etc.; or by using it to cope
with vulnerabilities of
other on-board sensors,
such as GPS drop-outs
or INS drift

strategies are very sensitive to strong motions (e.g.
vehicle vibrations and fast 3D changes), being it
difficult to find a compromise between achiev-
ing real-time and accurate estimations (defining a
specific number of good features to track without
increasing the processing time). Although multi-
resolution (MR) approaches (e.g. [5]) can help
coping with strong and large motion problems,
constant vehicle vibrations, a low computational
capacity available on-board, and delays in the
communication (when images are processed on
the ground), are problems that make the MR
strategies insufficient to properly perform the
tracking task. Additionally, it has also been ob-
served that when using feature-based methods
under strong motions, the accumulation of er-
rors make the tracking algorithm fail after just
a few frames, affecting and making on-line tests
difficult.

In this paper, we present a hierarchical tracking
strategy based on direct methods [6] for tracking
on-board UAVs. Direct methods have the advan-
tages of solving, without intermediate steps, the
motion of the camera and the matching of the
pixels using the intensity information of all the
pixels of the object to track, without identifying
a special set of features. However, in most situ-
ations, feature-based methods are preferable to
direct methods. This is because direct methods
are based on some constraints [6] that are, in
some cases, very difficult to preserve, and their

speed is dependent on the number of pixels in the
image template (the one that contains the object
to track), being it sometimes difficult to achieve
real-time frame rates.

Nonetheless, the tracking strategy used in this
paper (based on direct methods) is robust under
long frame-to-frame motions, and under constant
vibrations. This permits to obtain a robust object
tracking without compromising the real-time op-
eration required in on-line applications.

In the literature, different strategies have been
presented to solve the tracking problem in aer-
ial images. Most of the strategies are based on
feature-based methods [3, 7–10], and just a few
have explored the use of direct methods [1, 11].

In this paper, a hierarchical strategy in terms
of image resolution and number of parameters
estimated in each resolution is used. This strategy
permits to improve the tracking task in situations
where MR approaches are not enough to cope
with long frame-to-frame motions. In the liter-
ature, to the authors’ knowledge, this strategy
has not been presented for solving the on-line
tracking problem on-board autonomous vehicles.
For this reason, the intention of this paper is also
to expand the use of direct methods in real-time
applications (e.g. vision-based landing).

Our strategy uses the efficient Inverse Com-
positional Image Alignment Algorithm ICIA [12]
in a Hierarchical Multi-Parametric and Multi-
Resolution framework (HMPMR-ICIA), that
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makes use of two hierarchical structures: the
multi-resolution (MR) and the multi-parametric
(MP) ones. We have successfully applied this
strategy to solve our tracking problem on-board
a UAV. We have found that if this strategy is
adopted, it is possible to obtain robust estimations
at real-time frame rates with complex motion
models.

The paper is organized as follows: in Section 2,
we give a general idea of the visual tracking task
based on direct methods. Section 3 describes the
hierarchical strategy for tracking. In this section,
we describe the advantages of using at the same
time the MP and the MR structures. We also show
the different parameters that the HMPMR strat-
egy requires, and we present the HMPMR-ICIA
algorithm used for tracking on-board UAVs. The
performance of the HMPMR-ICIA algorithm is
analyzed under different conditions in Section 5.
In this section, the hierarchical tracking strat-
egy is compared with well-known feature-based
methods: the KLT [5] (pyramidal Lucas Kanade)
and the SIFT [13] (Scale-Invariant Feature Trans-
form), and also with ground truth data generated

both manually and with a Vicon system (a vision-
based motion capture system) [14]. Additionally,
in this section, the HMPMR-ICIA algorithm is
used to track a helipad in order to conduct a
vision-based landing task. Finally, in Section 6,
conclusions and the direction of future work are
presented.

2 Visual Tracking Based on Direct
Image Registration

The 2D visual tracking task consists in determin-
ing the position of an object in the image plane
in each frame of the sequence, assuming that the
3D displacements of the object can be modeled
by a 2D transformation (e.g translation, affine,
homography [15]).

This tracking task can be formulated as an
incremental image registration task, as shown in
Fig. 2. Therefore, using direct methods (i.e. direct
image registration), the 2D position in the image
plane can be found using the intensity values of
the pixels that belong to the object, assuming

Fig. 2 Tracking as an
incremental image
registration task
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that an initial position of the object is known
(found manually or automatically by detection
algorithms), that the motion between frames is
small, that the pixels that belong to the object
move similarly, and that the appearance of the
object does not change over time (the direct meth-
ods’ constraints [6]).

In the case of image registration the inputs
are the two images to be registered: the template
image T, and the current image I. These images
must overlapped; and the output is a geometrical
transformation, which transforms points in one
image to points in the other image. Nonetheless,
in the case of tracking based on image registration,
the inputs are also two images, with the slight
difference that in this case the reference image
T is an image or a sub-region of an image that
contains the object we want to track, and the cur-
rent image corresponds to a frame of a sequence.
Therefore, the registration is conducted between
the template image (fixed image) and the current
image of the sequence, using an initial estimation
of the motion model: the one that corresponds to
the location of the object to track in the previous
frame, so that the images are close enough to be
registered. The output, in the case of tracking, for
every frame analyzed, is also a transformation that
relates the reference image and the image of the
sequence, but in this case that transformation is
used to identify the position of the template image
in each frame of the sequence.

As shown in Fig. 2, a reference image (the ob-
ject to track) is defined in the first frame (template
T, Fig. 2, frame 0, upper left image). This refer-
ence image corresponds to a sub-image or ROI
(Region of Interest), called image template (T),
defined in the first frame I0 (the subscript represents
the number of the frame), and is found either
manually or automatically by detection algorithms.

When a new frame is analyzed I1 (Fig. 2,
frame 1, upper right image), the motion between
the reference and the current images W1 (Fig. 2,
frame 1, green arrow) is found by an image reg-
istration technique, assuming that an initial esti-
mation of the motion Winit = W0 is known (Fig. 2,
frame 1, yellow arrow). When an initial estimation
is not know, this initial estimation can be assumed
as the identity matrix, assuming that the frame-to-
frame motion is small.

Therefore, the image registration algorithm is
in charge of estimating the incremental motion
model (�W) in every iteration. Thus, the motion
W1 is estimated, and as a consequence of this,
the position of the object to track is found in the
current frame.

Then, the estimation found between frame 0
and frame 1 (W1) is propagated to the next frame,
as an initial estimation of the motion (Winit = W1

yellow arrow, Fig. 2, frame 2, button left image).
The process is repeated with each frame of the
sequence: the image registration technique finds
�W, the motion between the reference and the
current frames W2 is also found (Fig. 2, green
arrow, button left image), and the estimated mo-
tion continues being propagated to the following
frames.

In the previously mentioned process, the mo-
tion model W represents the trajectory of the ob-
ject in the image plane while it moves around the
scene. It is a 3 × 3 matrix (1) parameterized by the
vector of parameters p = (p1, ...pn)

T in such a way
that W is the identity matrix when the parameters
are equal to zero.

x′ = W x = W(x; p)

W =
⎡
⎣

1 + p1 p2 p3

p4 1 + p5 p6

p7 p8 1

⎤
⎦ (1)

As shown in Eq. 1, W is the motion model that
transforms the 2D pixel coordinates x (where x =
(x, y, 1)T) in image T into the 2D coordinates x′ =
(kx′, ky′, k)T in image I.

W can model different 2D transformations with
different numbers of parameters [15], e.g. trans-
lation (2 parameters), rotation + translation (3
parameters), similarity (4 parameters), affine (6
parameters), and homography (8 parameters). If
W represents the homography, then k = x p7 +
y p8 + 1. Otherwise, k = 1.

In our application, the assumption of 2D mo-
tion models is enough, considering that the track-
ing algorithm will be used for tracking planar
surfaces (building inspection, helipad for land-
ing) or non planar surfaces that can be assumed
planar when flying at high altitudes, as shown
in [16].



J Intell Robot Syst (2013) 72:517–539 521

3 The Hierarchical Tracking Strategy

The tracking strategy used on-board UAVs,
based on direct methods, is a hierarchical
multi-parametric and multi-resolution strategy
(HMPMR). It makes use of two hierarchical struc-
tures: the multi-resolution (MR) and the multi-
parametric (MP) ones, as shown in Fig. 3. The MR
structure is created by downsampling the images
[17, 18]. The MP estimation takes place inside this
pyramidal structure in resolution.

For each level of the pyramid, as shown in
Fig. 3, a specific motion model is recovered
(different motion models are estimated in each
level). The idea is that the number of estimated
parameters increases (i.e. the complexity of the
motion model increases) with the resolution of the
image, as shown in Fig. 3.

There are different advantages of integrating
the MP and the MR strategies. As pointed out in
[19], the MR strategy has been focused on com-
putational efficiency and accuracy, suggesting the
idea that at low resolutions, the vector of motion

is smaller and long displacements can be better
approximated by improving the estimation using
higher resolution information.

In a strategy using only a MR approach, the
same motion model is estimated in each level
of the pyramid. The higher the frame-to-frame
motion is, the bigger the number of levels the
MR structure requires to be able to cope with the
large displacement. Nonetheless, if many levels
are required, it may be possible that due to the
subsampling of the image, the information at low
resolutions could be insufficient (depending on
the quality and size of the images) to find a robust
estimation of a motion model with a high number
of parameters, presenting an unstable behavior
when estimating motion models with a high num-
ber of parameters.

If, on the contrary, less pyramid levels are con-
sidered in order to avoid the loss of information
due to the low resolution, then this reduction of
levels will cause a reduction in the range of motion
the algorithm can tolerate. For these reasons, for
our application, sometimes MR approaches fail
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Fig. 3 Hierarchical Tracking Strategy. A multi-parametric
(MP) structure inside a multi-resolution (MR) scheme is
used to improve the tracking problem on-board UAVs,
especially when the range of motion between frames is
large. The MR structure is created by downsampling the
images. Inside this pyramidal structure in resolution, the

MP estimation takes place. Different motion models with
different numbers of parameters are estimated in each
level. The motion model found in the lowest level of the
pyramid (level 0) permits to find the position of the tem-
plate image in the current image. Additionally, this motion
model is propagated as initial guess to the next frame
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to solve the tracking problem. Nevertheless, by
integrating the MR and the MP structures, the
HMPMR approach will allow to continue taking
advantage of the low resolution information to
find a large range of motion even when motion
models with a high number of parameters are
estimated.

The HMPMR strategy requires the definition
of different parameters, such as the number of
levels (pL) of the MR structure and the motion
models in the MP structure.

The different levels in the MR pyramid (pL)
are defined as a function of the size of the tem-
plate image T, so that in the lowest resolution
level, i.e. the jmax level (where j represents the
level), an image with not less than a defined num-
ber of pixels (minPixels) will be used. Therefore,
pL is defined as follows, taking into account that
the images are downsampled by a factor of 2:

2pL = lowS
minPixels

(2)

Where lowS represents the lowest size between
the width and height values of image T (the
ROI that contains the object of interest), and
minPixels is defined as the minimum size the
template must have in the lowest resolution image
(e.g. 5 pixels).

On the other hand, the MP structure is defined
according to the motion model selected at the
lowest level of the pyramid W0—the highest
resolution level—(the superscript represents the
level). In this level, W0 must be chosen as the
best transformation that represents the motion of
the object or the motion of the camera in the
image plane.

Additionally, in order to ensure the detection
of large frame-to-frame motion, the translation
motion model is chosen for the highest level of
the pyramid W jmax (the level that has the lowest
resolution image), while for the other levels the
motion models are selected, so that a smooth
transition of the number of parameters from the
highest to the lowest level of the pyramid is
achieved.

If a camera is moving in the 3D space, then
a possible combination of motion models can be
8-4-3-2 in a pyramidal structure with four lev-

els. The first number corresponds to the motion
model that will be estimated in the lowest pyra-
mid level—highest resolution image—W0, in this
case the homography. The last number corre-
sponds to the motion model that will be estimated
in the highest pyramid level—lowest resolution
image—W jmax , in this case the translation; and the
other numbers correspond to the motion mod-
els estimated in the intermediate levels, in this
case the similarity (4 parameters) and the trans-
lation+rotation motion model (3 parameters).

3.1 HMPMR-ICIA Algorithm

The image registration process consists in aligning
two images, a reference image or image template
(T) and the current image (I), by finding the trans-
formation (W) that best aligns them. This trans-
formation or motion model (W) is normally found
iteratively, by minimizing the sum of squared
differences (SSD) between the reference image
and the current image [20].

Different minimization algorithms have been
used in different fields: pose estimation [21],
tracking [22], motion segmentation [23], and mo-
saics [24]. However, the gradient descent opti-
mization (based on a first order Taylor series
approximation of the SSD) is one of the most used
approaches because of its efficiency [25–27]. In
[25], gradient descent approaches were classified
according to the update rule of the parameters
of the motion model as: forwards additive [26],
forwards compositional [24], inverse additive [27],
and inverse compositional [12].

The image registration algorithm we use for
tracking is the Inverse Compositional Image
Alignment algorithm (ICIA) proposed in [12].
It is considered an efficient algorithm for image
registration (or image alignment) that permits an
efficient estimation of the parameters that define
the motion of the object W.

The goal of the ICIA consists in finding the
vector of parameters p of the motion model (1)
by minimizing:

∑
x

[T(W(x; �p)) − I(W(x; p))]2 (3)
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The increment of the parameters (�p) is found
after a first-order Taylor series expansion of Eq. 3.
Then, the motion model is updated, as follows:

W(x; p) ← W(x; p) ◦ W(x; �p)−1 (4)

The increment in the parameters �p of the
motion model (1) is estimated iteratively until
stopping criteria are reached, denoting the best
local alignment solution.

The efficiency of the ICIA algorithm comes
from the change of roles of images I and T in Eq. 3,
and the way the motion model is updated (Eq. 4).
This change of roles makes the Hessian matrix
be constant, calculated at the beginning of the
tracking task, and so a fast alignment is achieved.

Nonetheless, this iterative algorithm relies on
the assumption that a previous estimation of the
parameters of the motion model is known, and
that after a linearization of the cost function (3),
the algorithm iteratively solves the increment of
the parameters. Nevertheless, this linearization is
valid only when the range of motion is small.

In our application (tracking on-board UAVs)
as well as in other ones, this constraint can not
be always ensured (limited capacity on-board, and
so low processing units on-board; fast 3D motions;
etc), and although MR approaches were proposed
to help dealing with this problem, the use of a
HMPMR strategy instead of only a MR will help
increasing the range of motion that the algorithm
can tolerate.

Therefore, by using the ICIA algorithm, an
efficient tracking algorithm can be achieved using
direct methods; and by integrating it with the
HMPMR structure, robust motion estimations are
achieved, allowing to track objects during long
periods of time at real-time frame rates.

Algorithm 1 describes the different steps of
the HMPMR-ICIA algorithm. As input, the al-
gorithm requires the information of I0 (the first
frame), and the coordinates (x) in I0 of the ob-
ject to track. These coordinates can be found
manually or automatically using detection algo-
rithms, e.g using template matching approaches
[28]. Additionally, the algorithm requires the
definition of the levels of the MR structure (pL)
defined using Eq. 2, and the definition of the
different motion models in the MP structure W j.

The definition of the motion models depends
on different criteria: the complexity of the task,
the application (building inspection, landing), and
the configuration of the camera in the UAV
(forwards-looking or downwards looking). As ex-
plained previously, according to these criteria W0,
must be defined as the best transformation that
represents the motion of the object or the motion
of the camera.

Algorithm 1 HMPMR-ICIA tracking algorithm
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Once this information is known, I0 is downsam-
pled according to the different levels (pL) of the
MR structure, thus creating the template image T j

for each level, as shown in Fig. 3. Additionally,
in this initialization stage, for each level of the
pyramid, the Hessian matrix and its inverse are
calculated, as shown in more detail in Algorithm
1, steps 1–6. These steps are carried out only once,
at the beginning of the tracking task.

When a new frame I is analyzed, it is first down-
sampled to create the MR structure, as shown
in Fig. 3. The motion model at the highest level
(lowest resolution) (W jmax ) is initialized. Because
this is the first frame, W jmax is the identity matrix.

For each level of the pyramid, the HMPMR-
ICIA algorithm is applied as follows:

1. The coordinates x in T are warped us-
ing W j; and ∀x, the error between T(x)

and I j(W j(x; p)), is calculated (steps 9–11,
Algorithm 1).

2. The increment of the parameters is found us-
ing step 12, Algorithm 1.

3. The motion model is updated using Eq. 4, step
3, Algorithm 1.

4. In each level of the pyramid, the minimization
is done only with respect to parameters of the
motion model defined for that level. When the
stopping conditions have been reached, the
parameters are propagated to the next level
of the pyramid as follows, taking into account
that the images have been scaled by a factor
of two:

pj−1
i = pj

i for i = {1, 2, 4, 5}
pj−1

i = 2 pj
i for i = {3, 6}

pj−1
i = pj

i

2
for i = {7, 8} (5)

being,

j = { jmax, jmax − 1, . . . , 0}
= {pL − 1, pL − 2, . . . , 0}

Where the subscript i represents the parame-
ters defined in Eq. 1, and j represents the
level of the pyramid. j is initialized as j = jmax,

where jmax = pL − 1, where pL is the number
of levels the pyramid has, as defined in Eq. 2.

At the lowest level of the pyramid (i.e the one
that has the image with the highest resolution),
the motion model W0 will contain the parameters
that minimize the differences between the tem-
plate and the current images. This motion model
is the best approximation to the motion of the
object in the image plane. With this information,
the position of T (i.e. the object to track) in the
current image I can be determined (steps 15 and
16, Algorithm 1).

The motion model found in this frame is prop-
agated as initial guess to the highest level of the
pyramid, jmax, of the next frame, as follows:

pjmax
i = p0

i for i = {1, 2, 4, 5}

pjmax
i = p0

i

s
for i = {3, 6}

pjmax
i = s p0

i for i = {7, 8} (6)

Where s = 2 jmax (step 8, Algorithm 1).
This propagation of the parameters from the

lowest level of the pyramid in the previous frame
to the highest level of the pyramid in the new
frame permits to validate the linearization of Eq. 3
done by the image registration algorithm, so that
when a new frame is analyzed, by using the esti-
mation of W in the previous frame, images T and I
are close enough to each other to find a minimum.

The pseudocode of the HMPMR-ICIA algo-
rithm is presented in Algorithm 1.

4 3D Position Estimation

In this section a pose estimation algorithm, widely
used in the literature [2, 29, 30], is used to estimate
the 3D position of the object to track. The method
is based on the “world homography”, which trans-
forms points on the world plane to points in the
image plane [29].

Assuming that the visual tracking algorithm is
capable of obtaining the ROI where the object to
track is located, the position estimation algorithm
uses that ROI in order to calculate the “world
homography”, and then from this homography to
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extract the position between the world and the
camera coordinate systems.

Therefore, the 2D position in the image plane
of the object to track (see Fig. 4) obtained by
the visual tracking algorithm are transformed into
3D positions assuming that the dimensions of the
object to track are known, that the 3D points
of the object to track lie on a plane, and that
the camera calibration parameters [31] are also
known.

Using the pinhole camera model [15], 3D co-
ordinates can be related to the 2D image coordi-
nates, as follows:

xf = λK[R | t]xw (7)

Where xf = (xf, yf, 1) are the 2D image coordi-
nates of a point; xw = (xw, yw, zw, 1) are the 3D
world coordinates of the same point; λ is a scale
factor; R and t are, respectively, the orientation
and position of the world reference frame in the
camera coordinate system; and K is the camera
calibration matrix found by an off-line calibration

process [31] using the camera calibration toolbox
for Matlab [32].

As shown in Fig. 4, the known dimensions of
the object to track can be used to define four 3D
points (xi

w) that lie on the ground plane where the
world coordinate system is located. Additionally,
assuming that the tracking algorithm robustly es-
timates the location of the ROI of the object to
track in each frame; then with the four 3D points
and the four 2D points of the ROI that defines the
object to track in the image plane, expression (7) is
simplified for the planar case (zi

w = 0), as follows:

⎛
⎝

xi
f

yi
f

1

⎞
⎠ = λK[r1 r2 | t]

⎛
⎝

xi
w

yi
w

1

⎞
⎠

xi
f = Hwxi

w

(8)

where xi
w represents the coordinates of one of the

four points that lie on the ground plane, the index
i represents each corner of the ROI that inscribes
the object in the image and in the world planes
(i = {1, 2, 3, 4}), and Hw is the planar homography

Fig. 4 Position
estimation strategy. The
2D positions of the object
to track in the image
plane are transformed
into 3D positions
assuming that dimensions
of the object are known,
that the known 3D points
lie on a plane, and that
the camera calibration
parameters are known xf
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(a 3 × 3 matrix) that transforms points in the
world plane into points in the image plane, as
shown in Fig. 4.

Therefore, with the point-to-point (2D-3D)
correspondence of the four corners of the object,
and reorganizing Eq. 8, a system of equations
of the form Ahw = b can be created in order to
estimate Hw, where hw corresponds to the compo-
nents of Hw stacked into a vector.

Once Hw is estimated, the translation vector t
is estimated using the method described in [33],
assuming that the camera parameters are known.
Thus, t is found based on Eq. 8, and taking into
account that ‖r1‖ = ‖r2‖ = 1, as follows:

Hw = [hw1 hw2 hw3] = λK[r1 r2 t]
λ = ‖K−1hw1‖ = ‖K−1hw2‖

t = 1

λ
K−1hw3 (9)

Using Eq. 9, the 3D position of the object to
track with respect to the camera coordinate sys-
tem is found.

5 Results

Tests are conducted using different types of im-
ages under different conditions, in which the most
complex of the 2D transformation (the homogra-
phy) is estimated.

In the first test, a comparison of different
configurations of the ICIA algorithm is conducted:
the ICIA without hierarchies, the MR-ICIA, and
the HMPMR-ICIA (all of them based on direct
methods). In this test, we analyze the advantages of
using, simultaneously, the MP and MR hierarchies
during the tracking task on-board UAVs.

A second test is conducted in order to com-
pare the performance of the HMPMR-ICIA with
feature-based tracking algorithms when track-
ing objects on-board UAVs. In this test, the
HMPMR-ICIA tracking strategy based on direct
methods is compared with well-known feature-
based methods: the SIFT [13] and the pyramidal
Lucas Kanade [5] (KLT) algorithms.

Finally, in a third test, the information that
is recovered by the HMPMR strategy is used to

estimate vision-based position information of the
state of the UAV, which can be used later for au-
tonomous landing and take-off tasks. We present
results comparing the vision-based position esti-
mations with the estimation recovered by a Vicon
system [14] in a laboratory test where the move-
ments and visual conditions of a landing and take-
off tasks are simulated. Additionally, we present
results of using the 2D and the 3D positions of the
object to track to conduct a vision-based landing
task.

Different criteria, explained in each experi-
ment, are used to evaluate the performance of
the different tested algorithms. The evaluation
is based on a visual examination of the tracking
results, based on a comparison with ground truth
data, and also based on a comparison of the speed
reached by the algorithms.

Videos of the tests can be seen in [34].

• Experimental setup

The data used in tests 1 and 2 correspond to
different flights conducted with the Rotomotion
SR20 electric helicopter (the Colibri III system
[35]), shown in Fig. 1. The images used in test 3
correspond: to a laboratory test conducted using
the Vicon system (a vision-based motion capture
system) and a FireWire camera; and to simulation
tests conducted using a virtual environment that
uses the ROS (Robot Operating System) frame-
work [36], the 3D simulator Gazebo [37], and the
Starmac aircraft model [38].

The HMPMR-ICIA and the MR-ICIA algo-
rithms were developed in C++ and the OpenCV
libraries [28] were used for managing image data.

On the other hand, the KLT feature-based al-
gorithm used in the second test is based on the ver-
sion of the algorithm implemented in the OpenCV
libraries. The maximum number of features was
defined as 100, a window size of 5 was used,
and four pyramid levels were used in the multi-
resolution structure of the algorithm. The SIFT
algorithm used in test 2 is the implementation
developed by Rob Hess [39, 40]. The values of the
different parameters the algorithm requires cor-
respond to the standard values that come with the
implementation of the algorithm that was used.
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5.1 Test 1: Comparison with Direct Methods

In this test, we evaluate the performance of the
HMPMR strategy tracking part of a structure
affected by the 3D motion of the UAV. We com-
pare the proposed HMPMR-ICIA algorithm with
other configurations of the ICIA algorithm: with
the ICIA without hierarchies, and also with a MR-
ICIA. In this test, we analyze the advantages of
using, at the same time, the MR and MP hierar-
chies during the tracking task when large frame-
to-frame motions are presented.

The object to track in the image sequence used
in this test corresponds to a flat section of a 3D
structure. The UAV is flying around the structure
during the task. The size of the images is 640 × 480
pixels, and the size of the template is 84 × 170
pixels; so according to Eq. 2 pL = 4, consider-
ing that the minimum size the template should
have is minPixels = 5. The camera on-board the
UAV is in a forwards-looking configuration, and
the homography (8 parameters) is chosen as the
transformation that best describes the changes of
the scene due to the UAV movements.

Therefore, the ICIA recovers 8 parameters
(the homography), i.e. no hierarchical structure is
used. The MR-ICIA recovers the same number of

parameters in the different levels of the pyramid.
Thus, the combination of motion models used is in
the form 8-8-8-8, and the HMPMR-ICIA recovers
different motion models in its structure 8-4-3-2:
the homography in the lowest level of the pyramid
(8 parameters), the translation in the highest level
(2 parameters), and the similarity (4 parameters)
and rotation+translation (3 parameters) in the in-
termediate levels.

The selected image sequence contains jumps
of the visual information, so that long frame-to-
frame motions affect the object to track (some-
times 5 and 10 pixels from frame-to-frame). This
characteristic makes this sequence challenging
from the visual tracking point of view.

In this first test, the evaluation of the results
obtained with the different algorithms is based on
a visual examination of the tracking results (if the
green/light box is covering the tracked area during
the sequence).

Figure 5 presents the result of the tracking task
using the ICIA algorithm without any hierarchy,
recovering 8 parameters (the homography). The
green/light box indicates the result of the tracking
task.

As can be seen in Fig. 5, the ICIA was not able
to continue tracking the template after frame 360.

Fig. 5 Visual
examination of the
tracking results: ICIA.
The green/light box
indicates the result of the
tracking task. Without
using any hierarchy, the
ICIA is not able to track
the template when there
are large motions in the
sequence (> 20 pixels)

Frame 369Frame 296

Frame 1 Frame 98
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The large frame-to-frame motion in some parts of
the sequence violates one of the main constraints
of direct methods (small motion), and so the ICIA
is not able to track the template in this sequence.

Figure 6 presents a collection of images that
shows the performance of the MR-ICIA dur-
ing the tracking task (8 parameters are found in
the four levels of the hierarchical structure). A
green/light box indicates the results in each frame.

Analyzing Fig. 6, we can see that the MR-
ICIA 8-8-8-8 configuration fails after frame 20.
The MR-ICIA is not able to track the template in
the image sequence. As mentioned in Section 3,
a multi-resolution hierarchy is not always enough
in our application to solve the tracking problem
when large frame-to-frame motions are presented.

Additionally, as it was also mentioned in
Section 3, one of the problems with MR ap-
proaches is that at low resolutions the quality
and quantity of the available information is not
good enough to find a good estimation of motion
models with a high number of parameters. For this
reason, it can be seen that the MR-ICIA fails ear-
lier than the ICIA algorithm without hierarchies.

Finally, the proposed HMPMR strategy using
the ICIA algorithm is tested. Figure 7 presents a
collection of images illustrating the performance

of the tracking task using the HMPMR-ICIA al-
gorithm. As can be seen, the HMPMR strategy
is able to track the template in all the frames in
spite of the jumps the sequence has and of the 3D
changes of the sequence.

As a result of the different algorithms tested,
we can conclude that the MR approach is not
enough to overcome frame-to-frame motions that
are >5 pixels, whereas a well-configured HMPMR
strategy can deal with large frame-to-frame mo-
tions >5 pixels. Additionally, we could see that the
HMPMR is more robust than the MR approach
recovering motion models with high numbers of
parameters.

5.2 Test 2: Comparison with Feature-Based
Methods

In the previous test, it was shown that by
configuring the direct method with MR and MP
hierarchies, the results of the tracking task present
a more robust behavior than when using only
MR hierarchy or none of the hierarchies. As a
consequence, using the ICIA algorithm with a
HMPMR strategy is more robust than using only
a MR approach in our application.

Fig. 6 Visual
examination of the
tracking results:
MR-ICIA. The
green/light box indicates
the result of the tracking
task. As can be seen, the
MR-ICIA strategy can
not track the template
in all the sequence

Frame 1 Frame 12

Frame 20 Frame 23
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Fig. 7 Visual
examination of the
tracking results:
HMPMR-ICIA. The
green/light box indicates
the result of the tracking
task. The HMPMR-ICIA
tracks the template
throughout the sequence

Frame 1 Frame 26

Frame 98 Frame 296

Frame 342 Frame 516

This second test compares the performance of
the HMPMR-ICIA algorithm with two feature-
based algorithms: the SIFT and the KLT (pyra-
midal Lucas Kanade). The comparison is also per-
formed in the most difficult situation: when track-
ing planar objects that are affected by perspective
effects due to the 3D movements of the UAV.

In this test, a UAV is flying around a “house”
with a forwards-looking camera configuration.
The front of the “house” is used as template im-
age T. The size of the images is 320 × 240 pixels,
and the size of the template is 213 × 123 pixels.
Therefore, pL = 4 (4 pyramid levels).

The selected sequence was chosen due to some
particular features found in it that help testing the
performance of the algorithms. First, the images

contain constant changes in positions because of
the UAV’s vibrations. Additionally, the sequence
includes: changes in the appearance of the object
to track (due to 3D movements), low texture
information, and loss of information when the
object goes out of the field of view (FOV) of the
camera.

Taking into account the different changes in
perspective throughout the sequence, the homog-
raphy (8 parameters) is chosen as the transfor-
mation that best describes the changes of the
scene due to the UAV movements. Therefore,
the combination of motion models used in the
HMPMR-ICIA algorithm is 8-4-3-2: the homog-
raphy in the lowest level of the pyramid (8 pa-
rameters), the translation in the highest level (2
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parameters), and the similarity (4 parameters) and
rotation+translation (3 parameters) in the inter-
mediate levels.

The evaluation of the results is based on a
visual examination of the tracking results, based
on the analysis of the transformation recovered by
the tracking algorithms using ground truth data,
and also based on the frame rate reached by the
algorithms.

Ground truth data is used to analyzed the ho-
mography recovered by the algorithms. Figure 8
shows the ground truth data. As can be seen in
the image located on the left, 10 different ground
truth points (GT) can be used. Nonetheless, tak-
ing into account that due to the movements of
the UAV the front of the “house” goes out of
the FOV of the camera, only 4 GT points (Fig. 8,
right images) well distributed over the template
are manually selected in each frame in order to
calculate a ground truth homography, as follows:

xi
n = HGTxi

1

This GT homography (HGT) relates points in
the first frame (template image) to points in each
frame of the sequence.

Figure 9 shows a collection of images illus-
trating the performance of the tracking task and

comparing the results obtained by the three al-
gorithms: two feature-based methods (SIFT and
KLT), and one based on direct methods the
HMPMR-ICIA.

In this figure, it can be seen that the
feature-based algorithms (Fig. 9, first and second
columns) failed tracking the template almost at
the same time. The multi-resolution structure of
the KLT tracker is not enough to help the algo-
rithm track this sequence. Nonetheless, in Fig. 9,
third column, it can be seen that the HMPMR-
ICIA with the 8-4-3-2 configuration tracked the
template in all the frames of the sequence (third
column).

Additionally, when comparing the parame-
ters estimated by each algorithm with the ones
of the GT homography, the same results are
found. Figure 10 shows the comparison among
some parameters of the homographies found by
the HMPMR-ICIA (blue/dark solid line), the
KLT (red/dark dashed line), the SIFT (cyan/light
dashed line), and the GT homography (green/light
solid line).

In Fig. 10, it can be seen that the SIFT algorithm
(cyan/light dashed line) fails earlier than the KLT
algorithm (red/dark dashed line). However, in the
figure, it can be seen that the KLT also fails in
the first frames of the sequence. None of the

Fig. 8 Ground Truth
Data. Four points (right
images) of the possible 10
points (left image) are
selected to calculate a
ground truth homography
that relates points in the
first frame to points in
each frame of the
sequence

Ground Truth Points (GT)

Four GT points are selected in each image
to calculate a GT homography
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SIFT (feature-based method)

0001 emarF966 emarF624 emarF0 emarF

KLT (feature-based method)

HMPMR-ICIA (direct method)

Fig. 9 Visual examination of the tracking results: SIFT,
KLT, and HMPMR. The red polygons indicate the tem-
plate estimated by the feature-based methods (SIFT, f irst
column, and KLT, second column). The green polygon

indicates the position of the template estimated by the
direct method HMPMR-ICIA. As can be seen, the latter
is the only one that tracks the template in all the sequence
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Fig. 10 Homography comparison with ground truth data.
The parameters of the homography (p3, p4, and p8, shown
in Eq. 1) estimated by each algorithm (HMPMR-ICIA,
blue/dark solid line; KLT, red/dark dashed line; and SIFT,
cyan/light dashed line) when tracking the front of the
“house” are compared with the parameters of the ground

truth homography (green/light solid line). Each graphic
shows the comparison of each parameter shown in Eq. 1.
The HMPMR-ICIA (blue/dark dark line) is the only algo-
rithm in which the parameters show behavior and values
that are similar to the ones of the ground truth homography
(green/light solid line)
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parameters of the homographies recovered by the
tested feature-based algorithms show a behavior
similar to the parameters of the ground truth ho-
mography (green/light solid line).

On the other hand, comparing the parameters
of the homography estimated by the HMPMR-
ICIA (blue/dark solid line) with the ones of the
ground truth homography (green/light solid line)
in Fig. 10, it can be seen that the values of
the parameters estimated by the HMPMR-ICIA
(blue/dark solid line) have behavior and values
that are similar to the ones of the ground truth
data (green/light solid line).

The comparison of the parameters of the ho-
mography recovered by each algorithm shows that
after a few frames the feature based algorithms
failed detecting a correct transformation in spite
of the different features that were found (an aver-
age of 80 features in the KLT, and 30 in the SIFT).
Nonetheless, the low texture information of the
object to track (the template), and the previously
mentioned characteristics of this sequence, made
the trackers fail.

Finally, Table 1 shows the average speed of
the three algorithms, expressed in FPS (frames
per second). As expected, the KLT feature-based
algorithm (red box) tracks the template faster
(average speed 27 FPS matching ≈ 85 features per
frame) than all the other methods. This algorithm
is widely used in different applications because
of its efficiency, although we have shown that its
performance is not robust enough in our appli-
cation to track the template appropriately. The
SIFT algorithm has an average speed of 3 FPS,
obtaining the slowest speed of the different tested
algorithms (this is due to the high computational
overheads in the different steps of the algorithm:
e.g the calculation of the descriptor for each point,
matching of points, etc.).

On the other hand, we can see that in this
test the direct method HMPMR-ICIA algorithm

Table 1 Speed comparison. The average frame rate of the
different tested algorithms

Algorithm Frame-rate (FPS)

KLT 27
SIFT 3
HMPMR-ICIA 16

reaches an average speed of 16 FPS. This speed
is fast enough to use the visual information for a
vision-in-the-loop application.

It is also important to consider that the direct
method analyzes each pixel of the template in
each level of the pyramid (around 26,000 pixels
must be analyzed only in the highest resolution
level). Despite the amount of information the
algorithm analyzes, we can see that by using the
MP and MR strategies at the same time a robust
real-time tracking algorithm is obtained.

5.3 Test 3: Visual Estimation for Take-Off
and Landing Maneuvers

The previous tests have shown that the proposed
tracking strategy HMPMR-ICIA has been able
to track objects from a UAV, recovering com-
plex motion models with a performance that is
better than the one obtained with feature-based
methods, and is able to track the object in the
sequences that were used.

Another test is conducted: with it, we want to
analyze the performance of the HMPMR-ICIA
algorithm tracking a template for landing and
take-off. We analyze its behavior under the vi-
sual conditions present in these applications: e.g.
large frame-to-frame motions and rapid changes
in scale.

Two experiments are conducted. In the first
one, the vision-based position estimation ex-
plained in Section 4 is tested experimentally in
a laboratory facility using a Vicon system. In
the second experiment, the information recovered
by the HMPMR-ICIA algorithm is used for a
vision-based landing task, based simultaneously
on image-based and position-based visual servo-
ing strategies.

(1) Position estimation

As can be seen in Fig. 11, a scaled helipad
is used as template (the object to track) for the
experiment. A FireWire camera moves forwards
and backwards simulating the take-off and landing
processes (from the image point of view). This
camera captures the image data used in the test.
It captures images of size 1024 × 740 pixels at a
frame rate of 7.5 FPS in order to generate image
data with a large frame-to-frame motion.
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Fig. 11 Experimental
setup. A FireWire camera
that is moved manually
simulates the UAV
during take-off and
landing tasks. This
camera captures images
of a scaled helipad.
Ground truth data is
generated using a Vicon
system that tracks
infrared landmarks
located on the FireWire
camera and the helipad

Template

Vicon
landmarks

Vicon infrared
camera

Coordinate Systems
Vicon

Coordinate
System

Camera
Coordinate System

Z c

X c

Yc

Z viconX vicon

Yvicon

FireWire
camera

Helipad

The Vicon system [14], composed of five in-
frared cameras, is in charge of detecting the po-
sition and orientation of the template image (the
helipad) and the FireWire camera, by detecting
and tracking infrared landmarks (see Fig. 11). The
system provides accurate 3D position information
(with sub-milimeter and sub-degree precision) of
the helipad and the FireWire camera with respect
to the Vicon coordinate system shown in Fig. 11,
at real-time frame rates (100 Hz). This informa-
tion is used as ground truth data in order to ana-
lyze the visual estimation obtained with the posi-
tion estimation algorithm described in Section 4.

Figure 12 presents a collection of images il-
lustrating the performance of the tracking task.
The green/light box indicates the results of
the HMPMR-ICIA algorithm. The helipad was
tracked during the entire task, in spite of the
different changes in scale (e.g. see Fig. 12, frames:
0, 95, 168), the quality of the images (dark im-
ages), vibrations (the camera was moved manu-
ally), and the large frame-to-frame motion of the
sequences (images were acquired at 7.5 FPS)

In order to compare the data, the 3D position
of the FireWire camera is estimated using the
method presented in Section 4, assuming that the
camera is calibrated and that the dimension of the

25 emarF0 emarF

Frame 81 Frame 95

Frame 125 Frame 168

Fig. 12 Visual examination of the tracking results:
HMPMR-ICIA. The green/light box indicates the esti-
mated 2D position and extent of the helipad
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helipad is known. The vision-based positions are
obtained with respect to the camera coordinate
system, and then transformed to the Vicon coor-
dinate system shown in Fig. 11.

Figure 13 (upper left and right plots, and bot-
tom left plot) shows the comparison of the po-
sition estimation obtained by the Vicon system
(green/light line) with the position estimated us-
ing the homography recovered by the HMPMR-
ICIA algorithm (red/dark line). As can be seen,
the position estimated by the HMPMR-ICIA al-
gorithm (red/dark line) shows a behavior that
is similar to the position estimated by the Vi-
con system (green/light line). The RMSE (Root
Mean Squared Errors) obtained in the three axes
are < 6 cm.

The bottom-right plot of Fig. 13 shows the
errors in each axis. We can see that during the
whole sequence, the errors were always below 10
cm, and only in one point an error of 25 cm was
obtained in the Y axis (the one that corresponds to

the UAV height estimation). Nonetheless, these
errors are low considering that errors in GPS-
based position estimations are around 1 m under
good conditions.

Thumbnail images in Fig. 13 show the cor-
relation of the visual data with the estimated
data. These images have been manually enhanced
(compared with the real ones shown in Fig. 12) to
allow a clear distinction of the template image and
the result of the tracking algorithm.

From this test, we can see that the information
obtained by the HMPMR-ICIA algorithm can
be used for obtaining robust important informa-
tion (position information) for vision-in-the-loop
tasks.

(2) Vision-based landing

In this second experiment, the 2D position in
the image plane of the object to track obtained
with the HMPMR-ICIA algorithm and the al-
titude of the UAV obtained with the position
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Fig. 13 Comparison with Ground Truth Data. The posi-
tion of the FireWire camera estimated by the Vicon system
(green/light line) is used as ground truth data and is com-
pared with the position estimated using the homography

recovered by the HMPMR-ICIA algorithm (red/dark line).
The bottom-right plot shows the errors obtained in each
axis. Both data are expressed with respect to the Vicon
coordinate system
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estimation algorithm presented in Section 4 are
used to send vision-based control commands to
the UAV in order to perform a vision-based land-
ing task.

The test is conducted using a virtual environ-
ment that uses the ROS (Robot Operating Sys-
tem) framework. In the test, a helipad is located
on the ground of the simulation environment, a
camera located on-board a quadrotor is used to
capture images of the helipad, and the HMPMR-
ICIA algorithm is used to find the 2D position of
the helipad in the image plane (i.e. is used to track
the helipad). The control task of this test consists,
first, in placing the quadrotor over the helipad at
a fixed altitude (10 m). In this first stage, we use
image-based control commands in order to locate
the helipad in the center of the image plane, i.e. in
the coordinate (320, 240), taking into account that
the image is 640 × 480 pixels size.

When the helipad is close to the center, we
use the vision-based altitude of the quadrotor,
estimated using the method described in Section 4
to send altitude commands to the flight controller
in order to make the quadrotor descend to a
defined position (1 m from the ground). In this last
stage, both the control in the image plane and the
altitude control operate simultaneously.

In Fig. 14, it is possible to see the trajectory
of the quadrotor during the task. The blue line

corresponds to the position data obtained by the
Starmac-ros package [38]. In the figure, the posi-
tions to which the quadrotor was commanded to
move to can be seen. It can be seen that first the
quadrotor moves towards the helipad in order to
locate the helipad in the center of the image plane
(Setpoints: Sp Xf = 320 pixels and Sp Yf = 240
pixels), and then starts to decend until reaching
the altitude setpoint (Sp Z = 1 m). When the
quadrotor is decending, it continues maintaining
the helipad centered with respect to the image
plane.

Figure 15 shows the first stage of the landing
approach. As mentioned previously, this stage is
conducted based on the information recovered by
the HMPMR-ICIA algorithm. In the graphic, it
can be seen that the helipad is centered in the
Xf and Yf axes (i.e. in the center of the image
plane) and remained centered during the task, i.e.
the red/dark solid line reached the Sp Xf = 320
pixels, and the magenta/light solid line reached
the Sp Yf = 240 pixels (green/light dashed lines).
The blue/dark dashed line is a control flag that
indicates when the visual control in the Xf and
Yf axes (i.e. in the image plane) is operating. It
can be seen that the image-based control was also
operative during the descent process.

In the thumbnail images of Fig. 15, it can be
seen how the helipad is centered in the first part

Fig. 14 3D trajectory
of the UAV during the
positioning and
landing tasks
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Fig. 15 Image-based
control for landing. When
the control flag is active
(blue/dark dashed line),
the 2D position of the
helipad in the image
plane (red/dark solid line
and the magenta/light
solid line) is used to send
control commands to the
quadrotor in order to
center the helipad in the
image plane (the
green/light dashed lines
represent the setpoints)
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of the task (frames 300–4871) and then remained
centered when the quadrotor was descending
(frames 4872–7338).

On the other hand, Fig. 16 shows the results
of the position-based visual control task. When
the helipad is centered (after frame 4871), a

Fig. 16 Position-based
control for landing. When
the quadrotor is over the
helipad, a control flag is
activated (blue/dark
dashed line), and the
vision-based height
estimations (red/dark
solid line) are used to
command the quadrotor
to an altitude of 1 m
(green/light dashed line)
with respect to to the
ground. The cyan/light
solid line corresponds to
the altitude estimated by
the state estimator of the
quadrotor
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control flag is activated (blue/dark dashed line)
and position-based control commands, based on
the vision-based altitude estimation, are sent to
the flight controller in order to make the quadro-
tor descent over the helipad (frames 4872–7338).
In Fig. 16, it can be seen that the vision-based
altitude estimations (red/dark solid line) have val-
ues and behavior that are similar to the altitude
estimated by the flight controller of the quadro-
tor (cyan/light solid line). The thumbnail images
show that the HMPMR-ICIA algorithm tracked
the template throughout the task, and that when
the quadrotor is descending the helipad remains
centered in the image plane.

This test reveals that the visual information
recovered by the HMPMR-ICIA algorithm can be
used for an image-based and/or a position-based
landing task.

6 Conclusions and Future Work

Our goal was to present a tracking strategy for
tracking planar structures (or structures that can
be assumed to be planar) on-board UAVs, that
can deal with large frame-to-frame motions, that
can recover complex motion models (e.g. the
homography), that can obtain real-time frame
rates, and that recovers information that can be
used for different vision-based applications on-
board UAVs (e.g. building inspection, landing,
take-off).

In this paper, we have presented a hierarchical
tracking algorithm HMPMR-ICIA for tracking
on-board UAVs using direct methods, thus ex-
tending the use of direct methods for real-time ap-
plications. Previous works in this area have often
been based on feature methods. Nonetheless, we
have shown that our tracking strategy performs
better than well-known feature-based algorithms
(SIFT and KLT) and well-known configurations
of direct methods (MR-ICIA), in the presence of
strong changes in position, fast changes in appear-
ance, in situations where part of the template is
out the FOV of the camera, and under constant
vibrations. Concerning the latter aspect, this is
accomplished without requiring any specific hard-
ware or software for video stabilization.

Different evaluation mechanisms were used to
analyze the performance of the HMPMR-ICIA
algorithm: images from real-flights, manually gen-
erated ground truth data, accurate position es-
timation using the Vicon system, and a simula-
tion environment for a vision-based landing task
were used.

The results show a good performance of the
algorithm tracking planar structures affected by
perspective effects, and also show a good correla-
tion of position data estimated using the informa-
tion obtained by the visual tracking algorithm, that
validates the proposed strategy and makes it use-
ful to provide valid vision-based data for UAV ap-
plications, as was demonstrated in the landing test.

Due to the amount of information that direct
methods have to evaluate, these kinds of meth-
ods are not commonly used for real-time applica-
tions. Nonetheless, we have shown that by using
the proposed strategy and without optimizing the
code in any way, direct methods can be employed
for real-time tracking, and are able to achieve
frequencies of 16 fps when estimating 8 parame-
ters. It is important to notice that the speed is
highly dependent on the number of parameters
estimated (faster responses −30 and 50 fps- are
achieved when estimating motion models with a
lower number of parameters). Additionally, the
speed of the algorithm is dependent on the size
of the template and the parameters estimated in
each level of the pyramid.

Taking this into account, future work will focus
on creating criteria to control the performance
of the alignment task inside the MR structure, in
order to create a dynamic strategy that decides
which levels of the MR and MP structure are eval-
uated. This dynamic strategy can help speeding up
the algorithm.

Finally, considering the inherent appearance
changes in our application when conducting out-
doors operations (illumination changes), and tak-
ing into account the UAV 3D movements, future
work will focus on establishing criteria in aspects
as the the update of the template and outliers
rejection in order to deal with possible drift prob-
lems that may emerge due to the propagation of
the parameters throughout the image sequence,
especially when the template’s appearance noto-
riously changes in the sequence.
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