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Abstract Scan matching is one of the oldest
and simplest methods for occupancy grid based
SLAM. The general idea is to find the pose of
a robot and update its map simply by calculat-
ing the 2-D transformation between a laser scan
and its predecessor. Due to its simplicity many
solutions were proposed and used in various sys-
tems, the vast majority of which are iterative. The
fact is, that although scan matching is simple in
its implementation, it suffers from accumulative
noise. Of course, there is certainly a trade-off
between the quality of results and the execution
time required. Many algorithms have been in-
troduced, in order to achieve good quality maps
in a small iteration time, so that on-line execu-
tion would be achievable. The proposed SLAM
scheme performs scan matching by implementing
a ray-selection method. The main idea is to reduce
complexity and time needed for matching by pre-
processing the scan and selecting rays that are crit-
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ical for the matching process. In this paper, several
different methods of ray-selection are compared.
In addition matching is performed between the
current scan and the global robot map, in or-
der to minimize the accumulated errors. RRHC
(Random Restart Hill Climbing) is employed for
matching the scan to the map, which is a local
search optimization procedure that can be easily
parameterized and is much faster than a tradi-
tional genetic algorithm (GA), largely because of
the low complexity of the problem. The general
idea is to construct a parameterizable SLAM that
can be used in an on-line system that requires low
computational cost. The proposed algorithm as-
sumes a structured civil environment, is oriented
for use in the RoboCup - RoboRescue compe-
tition, and its main purpose is to construct high
quality maps.

Keywords SLAM · Scan matching ·
Random restart hill climbing · Critical rays ·
Occupancy grid map

1 Introduction

The Simulataneous Localization and Mapping
(SLAM) problem is one of the most important
aspects of robotics, as it provides a robot with
a representation of the environment it is moving
in. The most usual way for a robot to perform
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SLAM, is via sensors that measure distance, such
as sonars and LRFs (Laser Range Finders). In our
approach, we assume that the robot is equipped
with an LRF, which can measure 270 distinct dis-
tances by sending laser pulses (rays), measuring
the time needed to reflect back to the sensor.
These kind of sensors provide a very important
tool for the SLAM problem, as they are highly
accurate and extract information from a large part
of the environment in the vicinity of the robot.

The proposed SLAM method is called CRSM
SLAM, which stands for Critical Rays Scan Match
SLAM. Its goal is to suggest a method of using
only a part of the LRF’s information, but in the
same time produce high quality maps. We propose
three ways of ray selection, a uniform one, one
based on scan density and one that splits the scan
in segments and employs their local density. An
early implementation of CRSM SLAM was SMG
SLAM, which was firstly presented in [1]. CRSM
SLAM is an evolution of SMG SLAM, as it uses
a hill climbing algorithm instead of a genetic al-
gorithm, in order to increase the execution speed.
Also a more sophisticated method of scan selec-
tion is employed in comparison with the uniform
sampling (which is also described here) performed
in SMG SLAM.

CRSM SLAM’s main characteristic is that it
uses an occupancy grid map [2] in order to de-
pict the environment, i.e. each pixel represents a
small fraction of the environment, and its value
is proportional to the probability of that space
being unoccupied. So, if the map is illustrated as
a gray-scale image, the unoccupied space will be
white with pfree = 1, the obstacles will be black
with pfree = 0, and the unexplored space will have
a gray color with pfree = 0.5. An example of an
occupancy grid map is depicted in Fig. 1.

Its second characteristic is that the matching is
not performed between two successive laser scans,
as in the standard implementation, but between
the current scan and the map being obtained by
that moment. Scan to scan matching, even for
trivial errors leads to large cumulative errors as
time passes, even if the robot constantly navigates
in the same area. In scan to map matching this
problem is surpassed with the current scan being
matched to the global map having many of the
previous scans as potential reference. Therefore,

Fig. 1 Occupancy grid map

the overall quality of the map is increased and the
accumulated errors are decreased.

Another important feature, and the main nov-
elty, of CRSM SLAM is the ray selection. The
main idea is to reduce the complexity and the
time needed for the matching, by pre-processing
the scan and selecting rays that are critical for
it. Critical means that the remaining ray informa-
tion is redundant to the matching process, since
critical rays act as features of the scan, even if
they are found from heuristics and not from any
feature extraction method. This is an advantage
of this method as it can work on unstructured
and non-static environments. In this paper four
different ray selection methods are presented and
compared on different environments.

The method used for the matching, is a search
algorithm called Random Restart Hill Climbing.
This method was chosen, since it is highly flexible
and many of its parameters can be altered leading
to various SLAM behaviours. This is crucial, as
the main problem of SLAM algorithms is that
they are not global, that is they cannot be applied
to any environmental conditions and produce the
same results. Since the algorithm is highly para-
metrizable, the transition between different envi-
ronments can become easier.

It must be stated, that the algorithm makes ab-
solutely no use of odometry or robot kinematics,
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in order to compute the robot’s pose. This deci-
sion was taken, as in rescue environments these
types of inputs are highly unreliable due to the
robot’s drifting, because of the existence of debris.
In addition, no analysis of the errors brought by a
kinematic model is made.

The proposed algorithm’s execution flow is il-
lustrated in Fig. 2. First, the algorithm performs
initialization of the structures needed to store the
map and all acquired scans. Consequently a repet-
itive procedure follows, by which the Laser Range
Finder (LRF) scan is acquired, the redundant
ray information is eliminated by the ray selection
module, the scan matching is performed via the
Hill Climbing algorithm and the final module up-
dates the map’s possibilities for each cell to be free
or occupied.

In chapter 2, some previous work regarding
scan matching is presented. In chapter 3, the per-
formance measures used in this paper, regarding
map quality, are presented. In chapter 4, four
different methods of ray selection are presented,
and their philosophy is explained. Furthermore,
their performance is illustrated in custom made
environments, created with the USARSim simu-
lator. In chapter 5, the hill climbing method used
for the matching process is explained in depth.
In chapter 6, map update, the last phase of the
SLAM iteration is presented. In chapter 7, the
experimental results are presented and analysed.
Finally in chapter 8, the proposed algorithm is
tested in scan log files hosted in the robotics data
set repository (Radish), conclusions are given and
future work is presented.

Fig. 2 Diagram of the proposed SLAM

2 Related Work

Due to its simplicity, scan matching has been used
in a number of SLAM algorithms, and numer-
ous suggestions have been made on the match-
ing process or the data association between two
successive laser scans. A collection of methods is
described in [3, 4], such as Classic ICP, Metric
Based ICP, Point-to-Line ICP and others. In [5],
the Classic Iterative Closest Point (ICP) algorithm
is presented for the first time by Besl and Mckay,
which is vastly used in many SLAM solutions,
because of its computational advantages, as it
performs a recursive method of minimizing the
mean square errors between two successive LRF
scans. ICP is a fundamental algorithm in many
scientific areas, such as image processing or 3D
modelling. For example, a common use of it, is
the matching of 3D cloud points, as Zhang did
in [6]. Unfortunately one of its main drawbacks
is that it is prone to local minima and as far as
SLAM is concerned, to accumulative errors in
the produced map. So different approaches and
modifications were proposed from the scientific
community.

For example, in [7], Lu and Milios proposed the
Iterative Dual Correspondence (IDC) method,
that uses two algorithms combined. The first is
based on matching data points with the use of
the curvature of the scans, whereas the second
uses point to point correspondence, in order to
improve the results produced by the first. IDC
resulted in a faster, and more accurate matching
than the classical ICP. Another alteration over
the classical ICP, is presented in [8] and is called
Polar Scan Matching (PSM). The main idea is
to use point to point matching approaches and
polar transformation of the rays, instead of the
traditional Cartesian system used by the ICP. This
modification enabled more accurate point to point
matching and therefore increased the quality of
the resulting map.

In [9], Cai Ze-Su, Hong Bing-Rong and Li
Hong, suggested an improved version of the PSM,
that uses a genetic algorithm to perform the
matching, in order to avoid the step of data as-
sociation, which is the most tricky in ICP. This
suggestion is also made by this paper, where we
use Random Restart Hill Climbing instead of
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GAs. Hill climbing is used in many scan matching
approaches. One of them is the Vasco scan match-
er, which performs brute-force search in the so-
lutions space using hill climbing, and is part of
the Carnegie Mellon Robot Navigation Toolkit
(CARMEN) [10]. This approach was also used in
the GMapping proposal by Grisetti, Stachniss and
Burgard in [11]. Avoiding data association, in [12],
a real-time correlative scan matching is proposed.
A ’scan to scan’ matching is performed, using the
cross-correlation of two successive scans and by
searching over the entire space of solutions, in
order to avoid local maxima. This method assumes
large use of computational power, in order to
produce more accurate results. In [13], Martinez,
Gonzalez et al, proposed the combination of the
ICP method and a genetic algorithm, by applying
a rough optimization in the search space and then
by using the ICP to refine the result. In that man-
ner they tried to decrease the possibility of ICP
falling in local minima, and simultaneously reduce
the GA’s execution time by not requiring a precise
result.

There are also other methods that take advan-
tage of the correlation concept of ICP. In [14],
Nieto, Bailey and Nebot, proposed the Recursive
scan matching SLAM, which is a hybrid of EKF
SLAM and scan correlation methods, where the
landmarks are formed by patterns of raw data.
The contribution of scan correlation methods is
that they improve the feature association module
of the EKF SLAM algorithm. On a different con-
text in [15] Lakaemper and Alduru extended the
matching concept by proposing a map alignment
method (Force Field Simulation—FFS), with the
use of a gradient descent algorithm, that is moti-
vated by simulation of dynamics of rigid bodies
in gravitational fields. There constraints derived
from human perception are introduced instead of
the laws of physics. The proposed method per-
forms the SLAM in two steps. Initially, a low-
precision pre-alignment is performed, but each
scan remains independent, i.e. not merged in the
map. The second step, is to apply FFS in the pre-
aligned scans, in order to produce a more ac-
curate matching. Another method that surpasses
the point association problem, is proposed in [16]
and is called the Normal Distributions Trans-
form. There, a normal distribution transforma-

tion in space is applied. This is a continuous and
differentiable probability density, which models
the probability of measuring a point. Then, with
Newton’s algorithm help the matching with the
next scan is done without establishment of explicit
correspondences.

An approach similar to ours, is presented in
[17]. There, Nunez, Vazquez-Martin et al, pro-
posed the procedure of matching between two
consecutively acquired scans to be achieved by
using their associated curvature based represen-
tations, which are extracted from a scan segmen-
tation module. So, instead of performing point to
point matching, the characteristic points of the
current curvature functions are matched to the
ones extracted from the prior scan, in order to
obtain the best local alignment between them.
This method’s concept is similar to ours, as we also
try to find “important” points of each scan, albeit
not using curvature, but scan density. As far as
scan segmentation is concerned, Hee Jin Sohn and
Byung Kook Kim in [18], proposed VecSLAM
which is based on the extraction of “vectors”,
another name for scan segments, with the help of a
sequential segmentation algorithm. Subsequently
the vectors are matched to recent map vectors and
stored. The aligned scan vectors are merged into
map vectors, that are also used in loop detection
and closing. Another concept similar to ours, is
presented in [19]. There, the position estimation
of the robot Blanche, consists of a matching al-
gorithm, that registers the range data with the
map (of line segments), and makes a calibrating
estimation based on odometry readings. The sim-
ilarity to our method, is limited to the scan to
map matching, although we don’t use odometry or
line features. Finally, the concept of “important”
points is used in the proposed method (ICE) in
[20], which describes the utilization of a different
set of scan features than a simple segmentation,
such as Intersections, Corners and End of wall.
The difference from our method, is that we do not
classify the important points but these are com-
puted analytically with just two passes through the
LRF scan.

To conclude, in [21], methods of establishing
a benchmark evaluation framework for compar-
ing and analysing different SLAM techniques are
described.
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The contribution of our paper is twofold. First
of all, novel techniques are used in order to
select the “crucial” points of each LRF scan.
This is done to cope with less data, and there-
fore reduce the computational complexity of the
matching algorithm. We also prove, that besides
the complexity reduction, the proposed method
produces best maps in terms of quality, in com-
parison with the use of the whole information,
as there exists a considerable amount of highly
correlated data. The second contribution is the
low level modifications inserted in the map up-
date procedure. Specifically, we propose a) a dy-
namically changing map update intensity, based
on the density characteristics of the scan, and
b) the increased update intensity of the obstacle
cells, in order for the scan matching algorithm to
have a better reference. These contributions are
demostrated via a set of experiments in different
environments.

As far as the technical details are concerned,
the matching approach is not scan-to-scan match-
ing, but scan-to-map matching. This results in the
elimination of the accumulative errors of classi-
cal ICP, as the reference (map) remains almost
unchanged during each matching. In comparison
between our method and scan to scan matching,
the error accumulation is reduced since one error
in alignment plays insignificant role to the overall

procedure, as the mean of errors is close to zero
due to the common reference. Finally, we use a
hill climbing algorithm, in order to perform the
scan matching, instead of ICP or GAs. The hill
climbing algorithm manages to find the solution
more accurately than the ICP but faster than GA,
as the problem is simple enough.

3 Performance Measures

Before analysing the proposed SLAM method, it
is essential to present the performance measures,
with which the quality of each map will be de-
cided. These measures are calculated based on a
reference map, which is no other than the ground
truth. The proposed algorithms were tested in
three environments of distinct characteristics, the
ground truth of each is presented in Fig. 3. The
first environment is characterized as sparse with
many features (Environment 1), the second as one
with narrow corridors (Environment 2), and the
third as a single twisted corridor (Environment 3).

The first metric used, is the mean square error
of the resulting map’s obstacles, with reference to
the obstacles of the ground truth map. If M is the
produced map by the proposed method, and MGT

Fig. 3 Ground truth for each testing environment. Left: Environment 1, center: Environment 2, right: Environment 3
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the ground truth map, the Obstacle Mean Square
Error (OMSE) is defined as

OMSE = 1

|oi| ·
∑

∀oi∈M

Dist(oi, o′)2 ,

o′ ∈ MGT ∧ argmino′ Dist(oi, o′)

where oi is one cell that represents an obsta-
cle in the resulting map, o′ the obstacle cell in
the ground truth map that is closest to oi, and
Dist(oi.o′) the Euclidean distance between the
two cells. This performance measure is an indi-
cator of how similar is the resulting map to the
ground truth.

The second metric is called Corner Mean
Square Error (CMSE). A number of distinct cor-
ners were selected in each map as features, (Fig. 4)
and are used in order to calculate the precision of
the SLAM result, as far as topology is concerned.
CMSE is calculated as follows.

CMSE = 1

| fi| ·
∑

∀ fi∈M

Dist( fi, f ′)2 ,

f ′ ∈ MGT ∧ f ′ → fi

where fi is a corner-feature in the resulting map,
and f ′ is the same topological corner as fi in the
ground truth map.

It must be noted, that the first metric measures
the obstacle similarity between the result and the
ground truth map, whereas the second, is an in-
dicator of the structural similarity between the
two. The metrics OMSE and CMSE are measured
in square pixels (cells), px2, as they are sums of
square distances.

4 Ray Selection

Ray selection methods were developed, in or-
der to reduce the number of rays, used in the
calculation of hill climbing. The initial concept
was to keep the critical rays only by means of
specific heuristics. A feature extraction method
was not chosen, because of its complexity and
time requirements in comparison with the ray
selection. It must be noted, that the proposed
SLAM algorithm consists of three main mod-
ules: the ray-selection, the hill-climbing, which
performs the scan matching, and the map update
module (Fig. 2). In the current chapter, different
ways of ray-selection are assumed, whereas the
hill-climbing and map update parts remain un-
changed, in order for the comparison to be valid.

For safety reasons, rays with a distance greater
than 95 % of the laser’s nominal maximum dis-
tance are discarded. Without loss of generality, it

Fig. 4 Selected corners/features in each environment for structural comparison. Left: Environment 1, center: Environment
2, right: Environment 3
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is assumed that all the rays have measurements
below that threshold.

The experiments using the selection methods,
were performed with the help of the open source
robot simulator USARSim [22], in cooperation
with Player/Stage project [23]. Three different flat
maps were used for validation: one that has large
rooms with enough obstacles in them (area of
420 m2), one with narrow and long corridors and
junctions (area of 264 m2), and one with a twisted
corridor (area of 170 m2). The simulated LRF had
270◦ field of view, 270 rays, and could take mea-
surements up to 9.5 meters. The robot’s maximum
linear and rotational speed was 0.15 m/sec and
0.12 rad/sec respectively.

The most common practice in scan matching, is
to select all rays. In this method, all the scan rays
are selected in order to perform the hill climbing.
The results of the “all rays selected” experiments
are displayed in Figs. 5, 6 and 7.

The figures indicate that good results are ob-
tained, except for the environment with narrow
corridors, where SLAM failed. The obvious ad-
vantage of this method, is that all information
available is used to make an estimation of the
robot’s translation and rotation. On the other
hand, the main drawback is that the hill climbing’s
iteration time is so long, due to the large number

Fig. 5 Sparse environment with many features—all rays
selected method

Fig. 6 Environment with narrow corridors—all rays se-
lected method

of the rays. Consequently, the method cannot be
used for on-line SLAM. Next, the ray selection
methods are presented.

Fig. 7 Single twisted corridor—all rays selected method
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4.1 Uniform Sub-sampling

In order to reduce the computation time, a uni-
form selection of the scans was made, which in
fact is a down-sampling of the input data. Here,
the number of the selected rays is constant and
equal to N = LaserRays/SkipStep. Their indices
are computed by formula Eq. 1:

PickedIndicesi = SkipStep · i , 0 ≤ i ≤ N (1)

where LaserRays is the number of the LRF rays,
and SkipStep is the rate of down-sampling.

This method is SkipStep times faster than the
all-rays selection method, as far as the hill climb-
ing method is concerned. The results of the exper-
iments for SkipStep = 5 are displayed in Figs. 8, 9
and 10.

The results are of acceptable quality except for
the environment with narrow corridors, although
the overall quality was decreased in comparison
with the all rays selected method. The main defect
of this method is that it tends to choose many
rays whose measurements are small (meaning that
many rays are selected which lay in obstacles close
to the robot). This is logical, due to the fact that in
nearby obstacles the ray density is large and the
displacement between adjacent rays is extremely

Fig. 8 Sparse environment with many features—uniform
sub-sampling method

Fig. 9 Environment with narrow corridors—uniform sub-
sampling method

Fig. 10 Single twisted corridor—uniform sub-sampling
method
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small. An error is introduced in scan matching, in
cases where the environment is narrow and has a
small number of features (distinct obstacles). In
that case, the hill climbing tries to match many
similar points, ignoring the more important ones
which are the sparser measurements.

4.2 Density Based Selection

In an effort to fix the previous problem, a density
based selection method of the rays was imple-
mented. Here an attempt is made in order to keep

a fixed space between two successive selections,
by means of real distance and not by index dis-
tance, as in the uniform sub-sampling method.
A matrix is constructed (RaysDisplacement) with
the displacements between successive LRF rays as
elements. Then, the total outline of the current
scan is calculated (TotalDist), which is the sum of
the individuals RaysDisplacement[i].

Each element of the RaysDisplacement matrix
is calculated using the cosine law, in the triangles
formed by the pairs of successive rays, as can be
seen in Fig. 11 with formulas Eqs. 2 and 3.

RaysDisplacement[i] =
√

S[i]2 + S[i + 1]2 − 2 · S[i] · S[i + 1] · cos(Laser Angle/LaserRays) ,

0 ≤ i ≤ LaserRays − 1 (2)

TotalDist =
∑

RaysDisplacement[i] ,

0 ≤ i ≤ LaserRays − 1 (3) (3)

Here, LaserRays is the number of the LRF
rays, S[i] an element of the matrix containing the
LRF measurements S, and Laser Angle the field
of view of the LRF. Then, the mean ray distance
is calculated by dividing the total scans distance
by the number of rays: TotalDist/(LaserRays −
1) . As in the previous method, the number of
selected rays N is constant. To select the correct
rays based on density, a uniform sampling of the
one dimensional density space was implemented.
An illustration of the procedure is in Fig. 12.

The indices of the selected rays are computed
with formula Eq. 4:

PickedIndicesi = index , (TotalDist/N) · (i − 1)

≤ RaysDisplacement[index]
≤ (TotalDist/N)·(i), 1≤ i≤ N (4)

Fig. 11 Cosine law—rays displacement

The result is that the selected rays are uni-
formly placed in the outline of the LRF scan by
means of density. So, the problem of the uniform
selection method has been overcome, as a decre-
ment was made in the selected rays lying at close
obstacles. On the other hand, the rays that were
cast in distant objects were selected more often,
because of the greater sparseness.

The experimental results for the density-based
selection method can be seen in Figs. 13, 14
and 15.

The results indicate that the density based
method failed in two out of three environments
and specifically where corridors were in exis-
tence. The main drawback of this method, is that
when the robot moves in corridors, where a small

Fig. 12 Construction of 1-D density space out of the LRF
outline
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Fig. 13 Sparse environment with many features—density-
based selection method

Fig. 14 Environment with narrow corridors—density-
based selection method

Fig. 15 Single twisted corridor—density-based selection
method

number of rays are cast at its end, the vast majority
of the selected rays lay at the corridor walls. So
because of lack of depth reference SLAM fails.

4.3 Scan Segments and Density Based Selection

In order to fix the deficiency of the density based
method, the overall philosophy of the ray selec-
tion was reconsidered. The main goal should be to
select the critical rays of the laser scan. As critical,
are denoted the rays, whose use will be essential
to the hill climbing matching. These rays are the
distinct features of the laser scan, for example two
rays which have a large displacement difference
between them. Also, the rays that have larger
measurements than others are considered more
essential in comparison to the hill climbing proce-
dure, as their local ray density is smaller relatively
to the rays correspondent to obstacles close to the
robot.

Thus, a segmentation of the laser scan into its
parts is performed, according to their detection in
relation to distance of successive rays. An example
can be seen in Fig. 16.

The first step is the detection of the edges of
the scan segments, which are the most essential
and easy to detect features of the scan. This is
done, simply by checking if the elements in the
RaysDisplacement matrix are greater than a pre-
defined threshold, which is declared as DTHRES.
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Fig. 16 Segmentation example of a laser scan

So, if RaysDisplacement[i] > DTHRES, the rays se-
lected are i and i + 1. An example of the first step
in the scan of Fig. 16, is depicted in Fig. 17.

The selected rays are stored in a matrix defined
as FeatureEdges. A scan segment is the ensemble
of the scan rays between two successive elements,
stored in FeatureEdges. It can be seen that the
rays contained at FeatureEdges are the limits of
the scan segments with the property that their
density is extremely small. Usually, these rays
are the ones with measurements near LaserMax,
where LaserMax is the maximum nominal dis-
tance of the LRF.

The second step is to perform the density ray
selection, described previously, on every scan seg-

Fig. 17 Elements of FeatureEdges matrix

ment. To apply the density ray selection in a part
which begins at Start = FeatureEdges[i] and ends
at End = FeatureEdges[i + 1], the mean sparse-
ness Sspar, which was used for the sampling in the
local density space, must be computed. This is
calculated by formula Eq. 5:

Sspar =
End∑

j=Start

RaysDisplacement[ j]/M (5)

where M = End − Start. Then, the rays are se-
lected by applying the next pseudo-code.

1. localD = 0
2. f or i = Start : End
3. localD = localD + RaysDisplacement[i]
4. i f localD ≥ P·Sspar

eS[i]√
Max

5. pick ray
6. localD = 0
7. end if
8. end f or
9. f or each i

10. i f (PickedIndicesi+1 − PickedIndicesi) >

RAYTHRES

11. pick ray with index = PickedIndicesi+1+PickedIndicesi
2

This method is different from the classical den-
sity based selection, as it introduces two new
concepts in the clause at line 4 of the pseudo-
code. Before explaining the necessity of intro-
ducing these concepts, we must note that in its
simple form, the if clause would be i f localD ≥
Sspar. By using this form, the low density (and
high sparseness) rays, over the high density ones,
would be selected, which is desired, although their
number would be close to End − Start. As it has
been mentioned before, it is desirable to give
more credit to scans with measurements close to
End − Start, and at the same time avoid the rays
close to the robot. This is achieved by inserting the
ray measurement in the if clause: i f localD ≥ Sspar

eS[i] .
By doing this, if the measurement is large, the

second part of the inequality becomes small, al-
lowing more rays to be selected. On the other
hand, if S[i] is small, rays are selected more
sparsely. To intensify the results, the exponential
clause was inserted. The laser measurements addi-
tion, had a good performance to large and rich in
features spaces, but led to extremely small number
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of selected rays in narrow places. That is why the
measurement of each ray was replaced by the rel-
ative measurement. The latter is the one divided
by the square root of the maximum measurement
of the scan (Max) : i f localD ≥ Sspar

eS[i]√
Max

.

In addition, the parameter P was inserted in
the formula, in order to make the algorithm more
adaptive to various environments, as well as to
maintain a constant performance. P is a parame-
ter that changes its value autonomously according
to the number of selected rays of the previous
iteration. If the number of the selected rays is
small, it means that the robot is in a featureless
environment and is sufficient to select a larger
number of rays, by decreasing the value of P. On
the other hand, if the number of selected rays is
large, there is a need to select less rays, in order
to lower the execution time, which is achieved by
increasing the value of P. For the experiments
presented, the minimum number of rays was 30,
the maximum 50 and a typical initial value for P
is 100.

The final step of the method, is to patch the re-
sults of the uniform sub-sampling method where is

Fig. 18 Sparse environment with many features—density-
based with scan segments method

Fig. 19 Environment with narrow corridors—density-
based with scan segments method

needed. Specifically in narrow environments like
corridor corners, this method selects only the rays
that have large measurements, resulting in a lack

Fig. 20 Single twisted corridor—density-based with scan
segments method
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of reference of the objects near the robot. So to
overcome this problem, we select some extra rays
produced by the code in lines 10 and 11, where
RAYTHRES is a predefined index step.

The experimental results for the scan segments
and density-based selection method are illustrated
in Figs. 18, 19 and 20.

It is clear that the quality of the maps produced
by this method is excellent in all three cases. To
conclude, this method fixes the corridor problem
that the density method suffered from, as it selects
many distant rays along with simultaneous selec-
tion of some close-up ones, in order to maintain
high reference.

5 Scan Matching-Hill Climbing Method

Hill climbing is a very popular and efficient local
search optimization method for finding optimal
solutions to complex problems. In principle hill
climbing algorithm executes iterations in which
the currently known best solution individual is
used to produce one offspring. If this new indi-
vidual is better than its parent, it replaces it and
the procedure is performed again. In this sense,
it is similar to an evolutionary algorithm with a
population size of one. Therefore, in the current
chapter, the algorithm will be described using
genetic algorithm terminology. The hill climbing
method is used to find the correct transformation
between the current scan and the global map
(which is the inverse of the robot translation and
rotation). Next, the genome of the individual, the
fitness function and the genetic operators used,
are described.

5.1 Genome

The individual’s genome is the following: Genome =
[Dx, Dy, Dtheta] , where Dx, Dy, Dtheta are the
changes in the robot x, y and angle coordinates.
The objective is to find the genome, that fits best
the current scan with the global map.

5.2 Fitness Function

The fitness function must be maximized for the
correct transformation of the robot, that is for

the exact alignment of the current scan to the
global map’s obstacles. The robot’s pose is defined
as [RX, RY , Rth], the coordinates of a random
laser ray in the robot’s reference system as
[Rayi

X, Rayi
Y ], the ray’s angle to the robot’s ori-

entation Rayi
Theta, the global coordinates of the

ray as [GRayi
X, GRayi

Y ],the genome of a random
individual as [Dx, Dy, DTheta] and the 2-D map
matrix as Map. Map is a two dimensional matrix of
type unsigned character, that holds the possibility
of each cell to be free. The value of the cell is 255,
0 or 127, if the cell is free, occupied or unexplored
respectively.

The fitness value for a scan is calculated as
follows:

1. f itnessValue = 0
2. f or each PickedIndices as i
3. Rayi

X = S[i] · cos(Rayi
Theta)

4. Rayi
Y = S[i] · sin(Rayi

Theta)

5.
[

GRayi
X

GRayi
Y

]

=
[
cos(Rth + DTheta) − sin(Rth +DTheta)

sin(Rth + DTheta) cos(Rth +DTheta)

]
·

[
Rayi

X
Rayi

Y

]
+

[
RX + Dx
RY + Dy

]

6. i f Map[GRayi
X][GRayi

Y ] = 127
7. f itnessValue = f itnessValue − 100
8. continue to next i
9. end if

10. f itnessValue = f itnessValue
+ 10 · (255 − Map[GRayi

X][GRayi
Y ])

+ (255 − Map[GRayi
X − 1][GRayi

Y ])
+ (255 − Map[GRayi

X + 1][GRayi
Y ])

+ (255 − Map[GRayi
X][GRayi

Y − 1])
+ (255 − Map[GRayi

X][GRayi
Y + 1])

11. end f or

As it can be seen, the fitness value is calculated
by summing the possibilities of occupancy in the
selected laser rays according to the transformation
of the hill climbing individual. In lines 3 and 4,
the local coordinates of the scan are calculated,
and in line 5 they are transformed to global co-
ordinates, by applying the transformation stored
in the genome of the individual. If this point on
the map is unknown (value 127), the algorithm
punishes the individual by decreasing its fitness
value. If not, the fitness value is increased by the
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possibility of that point to be occupied. Also the
possibilities of four neighbouring points are taken
into consideration, but with a smaller weight than
the point itself.

5.3 Genetic Operators and General Functionality

The method selected for hill climbing is RRHC
(Random Restart Hill Climbing), or Shotgun Hill
Climbing [24]. At random restart hill climbing the
individual’s genome is initialized at the presumed
new robot transformation, based on the speed
or the kinematic model, and a mutation is per-
formed. The mutation consists of a random small
change in the genome’s elements, resulting in a
new proposed robot pose. If the fitness value of
the individual is higher than the previous one, a
similar mutation is applied at the new individual.
This procedure continues, until one individual has
a lower fitness value than its previous one. Then,
the best global result is updated if needed, and
the individual is randomly reinitialized. The above
process is performed for NHC iterations, or till the
best fitness value reaches a satisfying threshold.
Finally, when the best transformation is found, the
robot pose is updated by formula Eq. 6:

Rx = Rx + BestDx

Ry = Ry + BestDy

Rtheta = Rtheta + BestDTheta (6)

where BestDx, BestDy and BestDTheta are the
output values of the Hill-climbing module.

As far as the algorithm technical details are
concerned, we assume that the robot has a max-
imum linear speed of 0.2 m/sec and a maximum

Table 1 Performance for different values of NHC – Envi-
ronment 1

NHC MFV OMSE (px2) CMSE (px2)

100 0.3668 410.22 12032.44
500 0.576 15.68 1562.26
1000 0.6544 5.53 8.04
5000 0.7079 6.42 10.14
10000 0.7223 5.40 4.48
20000 0.7304 3.87 3.03
30000 0.7374 3.93 4.17

Table 2 Performance for different values of NHC – Envi-
ronment 2

NHC MFV OMSE (px2) CMSE (px2)

100 0.4400 216.67 13012.42
500 0.5713 39.78 4641.84
1000 0.6075 32.67 807.14
5000 0.6541 28.45 1227.52
10000 0.6730 24.23 14.16
20000 0.6770 18.24 11.36
30000 0.6817 16.34 8.08

rotational speed of 0.2 rads/sec. Based on this,
on each iteration, the robot’s new position is lo-
cated in a circle of maximum radius of 0.2 m. In
the experiments, we suppose that one pixel has
a side of 0.02 m, so the correct transformation
must be searched within a disk of 10px radius.
The mutations consist of altering the genome’s
values by a number bounded in [−5, 5] pixels for
the x and y coordinates, and [−0.1, 0.1] radians
for the orientation of the robot. Also, the random
reinitialization takes place in the vicinity of the
robot’s presumed pose, and the difference from it,
is bounded in [−20, 20] pixels for the x,y coordi-
nates and [−0.25, 0.25] for the robot’s orientation.
These limits were specified after experiments, and
are proposed to ensure the correct functionality
of the algorithm, as the search space is larger
than the expected one. Also, the distribution of
sampling in each of these intervals is uniform.

One major problem is to determine the value
of the maximum number of hill climbing iterations
NHC, as the HC algorithm is the major computa-
tional bottleneck of the algorithm. So, if a large
value is selected, the results will be qualitative

Table 3 Performance for different values of NHC – Envi-
ronment 3

NHC MFV OMSE (px2) CMSE (px2)
100 0.4312 21.27 12639.03
500 0.5398 21.35 6195.25
1000 0.6204 2.22 21.00
5000 0.6788 0.71 6.17
10000 0.6916 0.76 4.82
20000 0.6939 0.70 5.15
30000 0.6949 0.62 5.92
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Fig. 21 MFV in the three
environments for
different values of NHC

but the execution time large, while with a small
value the opposite is achieved. To determine the
“correct” value of the maximum iterations, a se-
ries of experiments were performed in each of
the three environments, with different values of
NHC, where OMSE and CMSE were measured,
as well as the mean fitness value (MFV) of the
experiment. It must be clarified that the bigger
the MFV, the better the hill climbing algorithm

manages to match the scan to the map. The results
are illustrated in Tables 1, 2 and 3 and graphically
at Figs. 21, 22 and 23.

In addition, experiments were made, in order
to determine in which iteration the hill climbing
algorithm finds the maximum fitness value. The
result is depicted in Fig. 24.

The conclusion which can be reached, is that
above the 10000 maximum iterations of the hill

Fig. 22 OMSE in the
three environments for
different values of NHC
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Fig. 23 CMSE in the
three environments for
different values of NHC

climbing algorithm the performance metrics re-
main almost the same. Also, the diagram of Fig. 24
indicates that the vast majority of the solutions
are computed in less than 5000 HC iterations.
Conclusively, and to include a margin of error, the
value of maximum HC iterations is chosen to be
NHC = 10000.

6 Map Update

The last step of the SLAM iteration is the map
update. Up to this point, the correct new pose of
the robot has been found by performing the ray
selection and the hill climbing algorithm. Then
the map must be updated based on this robot

Fig. 24 Distribution of
the number of hill
climbing iteration number
where the best fitness
value was discovered i.e.
at what iteration the
algorithm found the
solution
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pose, and the current laser scan. The pixel update
method of the map chosen is the asymptotic one,
that is a specific pixel can never have a possibility
of 1 or 0, but if for example the pixel is unoccupied,
its possibility will asymptotically increase to 1.

The pixels that are updated are the ones that
are in the laser scan’s field of view. The update
method is based on the ray casting concept, initi-
ating from the robot. The intensity of the update
is defined as the rate at which the update is done.
If the intensity is big, the change of a pixel’s value
is bigger than the nominal. In the proposed algo-
rithm, the intensity of the update is proportionate
to the mean sparseness of the current scan. If the
robot is in a confined space, the update of the map
has small intensity, as the ray density is big. This
is done, in order to eliminate the accumulative
errors due to the lack of features.

Finally at the map update module, the pixels
that are occupied are updated in a more intense
way than the pixels of the unoccupied space. The
goal of this decision is to enhance the obstacles, so
that the Hill climbing algorithm can have a better
reference to match the scan. The mathematical
notation of the update is as follows.

f or each cell in each LRF ray′s f ield of view
i f cell is obstacle free

c′ = c + (1.0 − c) · Sspar

else i f cell is occupied
c′ = c − c · Sspar · Densoccu , Densoccu > 1

Table 4 Experimental results – OMSE

OMSE (px2) Environment Environment Environment
1 2 3

All rays 4.94 54.41 0.89
selected

Uniform 4.48 50.29 0.89
subsampling

Density 7.26 25.74 3.76
Density 5.04 17.56 0.76

with segments

Here, c is the previous value of the cell, Sspar

is the mean sparseness of the scan and Densoccu

a coefficient larger than 1, which increases the
intensity of the update of the occupied cells. In
Fig. 25, three results are illustrated for different
approaches in the update map functionality. The
map on the left was produced with the method
described above and its performance measures are
OMSE = 17.56px2 and CMSE = 14.16px2. The
map in the middle is the result of the algorithm,
where the update module does not use any in-
tensity adjustments, in which OMSE = 21.97px2

and CMSE = 31.09px2. The resulting map has
almost the same structure as the ground truth,
but contains larger errors in overall quality as the
increase in OMSE indicates. Finally the map in
the right was produced by performing the sparse-
ness intensity adjustment, but the occupied and

Fig. 25 Experiments with different map update intensity settings
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Table 5 Experimental results – CMSE

CMSE (px2) Environment Environment Environment
1 2 3

All rays 5.35 3994.91 4.50
selected

Uniform 4.78 4459.27 3.37
subsampling

Density 6.14 10425.36 5832.5
Density 4.57 10.45 3.75

with segments

unoccupied cells were updated with the same in-
tensity. Here, OMSE = 27.59px2 and CMSE =
411.9px2, something that indicates a structural
loss. The conclusion is that both of these adjust-
ments are useful in maintaining the map’s struc-
tural and overall quality.

7 Experiments

In order to determine which of the ray selection
methods produces the best results, the perfor-
mance metrics described in chapter 3 of each of
the three testing environments for each method
are presented in Tables 4 and 5, as well as the
execution time measurements in Table 6.

The proposed SLAM algorithm was also
tested with the autonomous robot of the team
P.A.N.D.O.R.A. [25], which participates in the
RoboCup-RoboRescue competitions.

The P.A.N.D.O.R.A. robot (Fig. 26) is equipped
with the URG-04LX laser range finder, which
has 726 rays, 240◦ field of view and a maximum

Fig. 26 The P.A.N.D.O.R.A. vehicle at RoboCup-
RoboRescue 2011, Turkey, Istanbul

measurement distance of 4 meters. In addition it
employs various sensors for victim identification,
such as a stereo camera to perform face, skin
and motion detection, as well as many other
image related algorithms related to RoboCup-
RoboRescue, thermal sensors, a CO2 sensor and
an array of microphones for sound detection. Also
a 5-DOF robotic arm is attached to the robot’s
main body.

The experiment was performed in the Robot-
ics Lab at Aristotle University of Thessaloniki
(AUTH) (Environment 4), which is a complex en-
vironment with many small obstacles like chairs,
desks etc. The results are illustrated in Figs. 27,
28, 29 and 30.

For an exact comparison between the different
ray selection methods a laser scan log was stored
from each map and was used off line. The exper-
iments were performed only once, since the input
was obtained from the log files, and therefore

Table 6 Experimental results – execution times

Environment 1 Environment 2 Environment 3 Environment 4
Mean time Mean selected Mean time Mean selected Mean time Mean selected Mean time Mean selected
(ms) rays (ms) rays (ms) rays (ms) rays

All rays 241,7 247,24 248,54 266,26 253,23 268,4 658,96 555,54
selected

Uniform 62,14 49,43 61,74 53,26 63,86 53,66 57,65 38,02
subsampling

Density 44,67 30,85 44,27 32,6 46,53 34,27 55,16 33,82
Density with 66,8 49,33 54,2 45,78 55,53 42,57 86,78 54,04

segments
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Fig. 27 All rays selected method

no randomness or noise of any kind was intro-
duced. The system on which the algorithms were
executed, is a PC with Intel Core i7 CPU at 2.80
GHz, 4 GB RAM, running Ubuntu 9.10 Karmic
distribution. The described system is equipped
with 4 cores and hyper-threading, but as the pro-
posed algorithms have no parallel procedures,
only one core was used.

The results concerning the OMSE, are consis-
tent with the visual feeling of the exported maps.
All algorithms achieved a relatively low OMSE in
Environment 1, as it is not that challenging, due
to the existence of multiple spatial features. In
contrast, the Density with segments method had

Fig. 28 Uniform sub-sampling method

Fig. 29 Density based method

the smallest error in the second environment, as
for it maintained the correct environment struc-
ture. Finally in the third environment all methods
succeeded except for the Density based, which lost
reference at the middle of the corridor, producing
a poor map.

Fig. 30 Density based with scan segments method
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CMSE measurements are in concurrence with
the prior results, with the exception that the erro-
neous maps receive a much bigger mean square
error than the OMSE metric. This is expected,
as the CMSE takes into account selected fea-
tures of the environment and compares them with
the same structural features, having one to one
correspondence. On the other hand OMSE has
an obstacle correspondence based on a proximity
measure. So even if a map is deformed, there is a
chance that OMSE returns a low error, something
that CMSE does not. To conclude, as far as map
quality is concerned, the “density-based and scan
segments” method has the best performance com-
pared to the other three proposals, since it creates
a more precise map in comparison to the ground
truth, as it has achieved the lowest errors in all
three environments. It must be noted that unfortu-
nately OMSE and CMSE were not computed for
the Environment 4, as a ground truth map could
not be acquired.

Regarding execution times the results indicate
that the mean iteration times of the All rays se-
lected method are considerable higher than the
desired one, which is approximately 100 ms (since
the refresh rate of URG-04LX is 10 Hz). In
conclusion a ray selection method is encouraged,
as it outperforms the “all rays selected” method
by means of execution time and computational
resources. Also it is obvious, that the ray selec-
tion must be done in a clever way, in order to
make a good use of the critical rays and discard
the redundant information. Although the average
number of selected rays of the density and scan
segments method is slightly larger than the density
based method, the experimental results indicate
that the difference in performance is in favor of
the scan segments density method, both in simple
and complex environments, a crucial feature for
on-line SLAM applications.

8 Conclusions—Future work

In this paper we proposed a novel approach
for the SLAM problem in a structured in-
doors environment. This SLAM scheme performs
scan matching by implementing a ray-selection

method, in order to reduce the computational cost
of the algorithm. Also a scan-to-map matching
technique was used in order to reduce the accumu-
lative errors and an RRHC algorithm was applied
for computation of the proper robot transforma-
tion between two iterations of the algorithm. Fi-
nally, several novel modifications were created,
such as dynamic intensity map updates, aiming at
increasing the map’s quality.

To conclude the proposed CRSM SLAM pro-
duces high quality maps while requiring low exe-
cution time and small computational power. The
interesting result of this paper is that we proved,
based on the experimental results, that using the
full amount of information available does not al-
ways improve the results, but depending on the
problem it can lead to reduction of quality. That’s
because in the specific problem, the LRF’s infor-
mation contains redundant data, as many adjacent
rays measure the same distance.

It must be noted, that this method was used
to produce the maps of the autonomous robot
of the team P.A.N.D.O.R.A., in the RoboCup-
RoboRescue competition in Istanbul, where the
resulting maps were described as “crisp and of
good quality”. The proposed method was also
tested on two LRF data sets from Radish: The
Robotics Data Set Repository [26]. The first set
was recorded in the Interior of the Intel Research
Lab in Seattle, and the second in the University of
Freiburg, building 079, AIS-Lab. The results are
depicted in Figs. 31 and 32 respectively.

The obvious problem of the proposed method
is that it is inferior in the loop closure domain,
as it failed (although not in a large degree) to
close the loop successfully in the Intel Research
Lab data. On the other hand the performance in
multi-featured environments, such as the building
079, AIS-Lab in University of Freigburg, can be
characterized as more than satisfying.

Finally a comment about scalability, is that the
proposed algorithm is highly scalable, as its parts
make use of information in the vicinity of the
robot, regardless of the map’s size. Of course the
same does not apply for the memory needed,
as the occupancy grid map grows linearly to
the explored environment’s area. Conclusively, if
enough memory is provided, the SLAM algorithm
has constant execution time.
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Fig. 31 Intel lab in Seattle

Various alterations can be made in the future
towards the improvement of the proposed SLAM
method. The most crucial of them, is to employ
a method aiming to solve the problem of loop-
closure, which is a major field of research in
robotic intelligent systems. The solution can be
chosen from a variety of algorithms such as parti-
cle filters, classification of ray scans by extracting
parameters, insertion of features (lines, corners)
and use of Kalman filters. Finally one of the future
plans is to increase the method’s efficiency and
quality of the map by periodically processing the
occupancy grid using filters, in order to eliminate
the obstacles pixel noise.

Fig. 32 University of Freiburg, building 079, AIS-Lab
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