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Abstract The main objective of the present pa-
per is to determine the optimal trajectory of
very flexible link manipulators in point-to-point
motion using a new displacement approach. A
new nonlinear finite element model for the dy-
namic analysis is employed to describe nonlin-
ear modeling for three-dimensional flexible link
manipulators, in which both the geometric elastic
nonlinearity and the foreshortening effects are
considered. In comparison to other large defor-
mation formulations, the motion equations con-
tain constant stiffness matrix because the terms
arising from geometric elastic nonlinearity are
moved from elastic forces to inertial, reactive and
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external forces, which are originally nonlinear.
This makes the formulation particularly efficient
in computational terms and numerically more sta-
ble than alternative geometrically nonlinear for-
mulations based on lower-order terms. In this
investigation, the computational method to solve
the trajectory planning problem is based on the in-
direct solution of open-loop optimal control prob-
lem. The Pontryagin’s minimum principle is used
to obtain the optimality conditions, which is lead
to a standard form of a two-point boundary value
problem. The proposed approach has been imple-
mented and tested on a single-link very flexible
arm and optimal paths with minimum effort and
minimum vibration are obtained. The results il-
lustrate the power and efficiency of the method
to overcome the high nonlinearity nature of the
problem.
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1 Introduction

The research interest in flexible manipulator, i.e.,
light and large dimension robotic manipulator, has
increased significantly during the last few years.
Flexible manipulators have important application
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in space exploration, manufacturing automation,
construction, undersea, nuclear contaminated en-
vironments, and many other areas. Major ad-
vantages of flexible manipulator include, but not
limited to, small mass, fast motion, and large force
to mass ratio, which are reflected directly in the re-
duced energy consumption, increased productiv-
ity, and enhanced payload capacity. However, the
use of structurally flexible robotic manipulators
requires the inclusion of deformation effects due
to flexibility in the dynamic equations which com-
plicates the analysis and the control design. As a
result, analysis of complex systems becomes im-
possible without using powerful computer-aided
numerical methods. In this approach, a new non-
linear finite element model for the dynamic analy-
sis is employed to describe nonlinear modeling for
three-dimensional flexible link manipulators, in
which both the geometric elastic nonlinearity and
the foreshortening effects are considered. This
formulation is particularly efficient in computa-
tional terms and numerically more stable than
alternative geometrically nonlinear formulations
based on lower-order terms. On the other hand,
the cost reduction and increase of productivity are
some of the most important goals of industrial
automation. Therefore, to do an effective use of
robotic systems, it is important to consider the
path planning optimization of the system for a
specific task. The dynamic behavior of the robot
is of key importance in the task execution. Move-
ments that may require high torque in the robot’s
joints shall not be implemented, due to technical
limitations associated with the actuators. From
the economic point of view, an important aspect
is the energy required to perform a given task.
As the movement will be executed repetitively,
a strategy that optimizes energy consumption at
each cycle of time may result in a significant
cost reduction for long term applications. From
a practical point of view, trajectory optimization
for reducing vibration excitation in point-to-point
maneuvers of flexible manipulators is also an im-
portant feature of path planning, since it increases
the applicability of robotic systems. The open loop
optimal control method is a suitable approach in
the cases where the system has a large number of
degree of freedom or optimization of the various
objectives is targeted. Also, because of the offline

nature of the open loop optimal control problem,
many difficulties like system nonlinearities and
all types of constraints may be considered and
implemented easily.

Many approaches have been taken to the de-
velopment of flexible link manipulators [1–3].
The dynamic model for links in most of these
approaches has often based on rigid or small
deflection theory but for applications like light-
weight links, high-precision elements or high
speed, it is necessary to capture the deflection
caused by nonlinear terms.

Bakr presented a method for the dynamic
analysis of geometrically nonlinear elastic robot
manipulators. Geometric elastic nonlinearities are
introduced into the formulation by retaining the
quadratic terms in the strain-displacement rela-
tionships. This leads to the development of a
new stiffness matrix which accounts for the com-
bined effects of rotary inertia and shear defor-
mation [4]. Simo and Vu-Quoc showed that for
rotating structures, the appropriate accounting of
the influence of centrifugal force on the bending
stiffness and proposed a formulation based on
the fully geometrically nonlinear beam theory.
They demonstrated analytically the use of a first-
order linear beam theory cannot account for the
complete inertia effects to predict the influence
of centrifugal stiffening [5]. Korayem and Basu
derived an inverse dynamics and kinematics of a
flexible manipulator in symbolic form based on
the recursive Lagrangian assumed mode method
[6]. Shaker and Ghosal considered nonlinear mod-
eling of planar flexible manipulators with one and
two revolute joints using the nonlinear finite ele-
ment mathematical models. The motion equations
of the systems are derived taking into account
the nonlinear strain-displacement relationship [7].
Korayem and Heidari developed an algorithm for
finding the maximum allowable dynamic load of
flexible manipulators undergoing large deflection.
A complete dynamic model is considered to char-
acterize the motion of a compliant link capable
of large deflection. The accuracy, actuator, and
amplitude of residual vibration constraints and
with imposing the maximum stress limitation as
a new constraint are taken into account for the
proposed algorithm during motion on a given
trajectory [8].
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Damaren and Sharf have presented and clas-
sified the different types of the inertial and geo-
metric nonlinearities in the dynamics equation for
flexible multibody systems. They observed that
for sufficiently fast maneuvers of the flexible-link
manipulators, the ruthlessly linearized approxi-
mation is wholly inadequate [9]. Mayo et al. de-
rived the dynamic equations of flexible multibody
systems considering complete geometrical nonlin-
earity. Their proposed formulation includes the
effect of higher-order geometric elastic nonlin-
earity in the equations of the planar motion on
bending displacements, while it is computationally
very efficient. The stiffness terms in the motion
equations generated by this formulation are exclu-
sively limited to the constant stiffness matrix for
the linear analysis [10].

Kane et al. investigated the beam undergo-
ing large overall motions and reported that the
conventional hybrid co-ordinate approach could
lead to erroneous results such as prediction of
dynamic softening of a rotating structure when dy-
namic stiffening is to be expected. Subsequently,
many valuable researches on rotating beams had
been done to modify the conventional hybrid co-
ordinate approach in order to account for dynamic
stiffening [11]. Absy and Shabana show that the
effect of longitudinal displacement due to bend-
ing, in the equations of motion, would eliminate
the third and higher order terms from the strain-
energy expression if strain energy is written in
terms of axial deformation. This has caused the
nonlinear inertia terms and a constant stiffness
matrix [12]. Omar and Shabana developed an
isoparametric shear-deformable two-dimensional
beam element based on the ANCF in which
the elastic forces are determined using a general
continuum mechanics approach. The use of the
continuum mechanics approach leads to a simple
expression for the elastic forces as compared to
the use of local element frames. While the model
accounts for the combined effects of shear defor-
mation and rotary inertia, the finite element has
zero Coriolis and centrifugal forces and leads to a
constant mass [13].

On the other point of view, some researchers
have studied the path planning problem for rigid
and flexible manipulators. For instance, Wang
et al. have solved the optimal control problem

with direct method using the B-Spline functions
in order to determine the maximum payload of
a rigid manipulator [14]. Wilson et al. formulated
path planning of a flexible manipulator as a dis-
crete time open-loop optimal control problem, the
solution of which is done via discrete dynamic
programming [15]. Korayem and Nikoobin used
the indirect solution of the optimal control prob-
lem to determine the DLCC of mobile manip-
ulators. The Pontryagin’s minimum principle is
employed for path planning of mobile manipula-
tors [16]. Mohri et al. have used indirect method
for trajectory planning of mobile manipulators.
They have proposed an approach to find the op-
timal path for both mobile base and manipula-
tor links in order to achieve the minimum effort
trajectory in point-to-point motion [17]. Park et
al. considered the motion profiles of the joints
as a Spline or polynomial functions. Then, the
functions parameters are obtained in order to re-
duce the residual vibration of flexible manipula-
tors at the end of the motion [18]. Benosman et
al. investigated the problem of rest-to-rest motion
of planar flexible manipulators and developed a
simple method to realize joint motion between
two equilibrium points over a desired time period
as well as to prevent vibrations in the tips when
the desired joint motions cease [19].

Szyszkowski and Youck used the optimal con-
tro1 rule, based on rigid body dynamics, to min-
imize the time of a slewing maneuver of a single
link. The influence of various flexibility parame-
ters on the performance of the optimal control
is investigated [20]. Sarkar et al. presented a sys-
tematic path planning technique to compute input
torques off-line for a two-link flexible manipulator
under gravity. Their method introduced two sim-
ple numerical algorithms to minimize end-point
error for static case and tracking error for dynamic
case [21]. Kojima et al. have proposed a tech-
nique that considers optimal trajectory planning
method for residual vibration reduction of a two-
link flexible robot arm and solves the optimal
trajectory planning algorithm by using the genetic
algorithm [22].

In this paper, first, the equations of motion
are derived taking into account the nonlinear
strain-displacement relationship using a new non-
linear finite element model for three-dimensional
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dynamics analysis. Geometric elastic nonlineari-
ties are introduced into the formulation by retain-
ing the quadratic terms in the strain-displacement
relationships. The strain energy is formulated in
accordance with the slender beam theory and
various non-linear terms are identified, in which
both the geometric elastic nonlinearity and the
foreshortening effects are considered. Then, an
indirect solution of open-loop optimal control
problem is used for path planning of flexible link
manipulator. The necessary conditions for opti-
mality are obtained from the Pontryagin’s mini-
mum principle, which is lead to a standard form
of a two-point boundary value problem. Moreover
by changing the penalty matrices values, one can
obtain various optimal trajectories with minimum
effort and minimum vibration. In order to verify
the effectiveness of the new formulation, several
experiments on a single-link very flexible arm
has been carried out and the results are demon-
strated the performance and merits of the pro-
posed method.

2 Nonlinear Strain-Displacement Relationship

The analysis of flexible link can be modeled by
slender elastic beams. In the classical formulations
of beam elements, the beam cross section is as-
sumed to remain rigid when the beam deforms. In
Euler–Bernoulli beam theory, it is assumed that
the beam cross section remains rigid and perpen-
dicular to the beam centerline. In accordance with
the assumptions of Euler-Bernoulli and neglect
shear effects, the exact non-linear relationship for
three-dimensional beam element of the Cauchy-
Green strain tensor in terms of the displacement
field is [23]:

εxx = ∂u
∂x
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where y and z are measured from the neutral axis
of the beam and u, v, w denote the longitudinal
and transverse displacements, respectively, at y =
0 and z = 0.

Assuming a linear stress-strain relationship, the
potential energy can be obtained as

U = E
2

∫
v

ε2
xx dV (2)

Expanding the above integral, and since y is
measured from the neutral axis, all integrals of the
form

∫
y dA must vanish, it takes the form:

U = E A
2

∫ l

0

(
∂u
∂x

)2

dx + E I
2

∫ l

0

(
∂2v

∂x2

)2

dx

+ E A
2

∫ l

0

(
∂u
∂x

)
×
(

∂v

∂x

)2

dx

+ E A
2

∫ l

0

1

4

(
∂v

∂x

)4

dx

+ E I
2

∫ l

0

(
∂2w

∂x2

)2

dx + E A
2

∫ l

0

(
∂u
∂x

)

×
(

∂w

∂x

)2

dx + E A
2

∫ l

0

1

4

(
∂w

∂x

)4

dx

+ E A
4

∫ l

0

(
∂v

∂x

)2 (
∂w

∂x

)2

dx (3)

where E, A, I, and l denote the Young’s mod-
ulus, cross-sectional area, moment of inertia of
the cross section, and length, respectively. In this
investigation, a more efficient computationally
model is developed, in which both the geometric
elastic nonlinearity and the foreshortening effects
are considered. The proposed formulation takes
into account a distinction between the longitudi-
nal displacement due to axial deformation, de-
noted as s, and the longitudinal displacement can
occur due to the foreshortening effect, denoted by
u f s (Fig. 1). The longitudinal displacement caused
by transverse deflection of the neutral axis of the
beam can be expressed as [11]

u f s = −1

2

∫ x

0
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The assumed field of displacements for u can be
written as follow:

u =
⎡
⎣ u

v
w

⎤
⎦ =

⎡
⎣ s + u f s

v
w

⎤
⎦ (5)
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Fig. 1 Undeformed and deformed configurations of the
Beam Element

If the general expression of the strain energy of
Eq. 3 is rewritten in terms of s, v and w, leading to
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This formulation has caused the nonlinear iner-
tia terms and a constant stiffness matrix in the mo-
tion equations. However, the proposed approach
has exactly the same degree of approximation as
classical formulation, but it is much more efficient
computationally. The FEM will be utilized to dis-
cretize the flexible link. Each flexible link is as-
sumed to be discretized into a finite number of
beam elements, with each element consisting of
two nodes with five degrees of freedom at each
node as shown in Fig. 2.

The global position vector r, can be defined by
appropriately considering the position vector of
the corresponding local coordinate in the global
reference system as follow

0
i r = 0

i−1 r + [R]

⎧⎨
⎩

x + s + u f s

v
w

⎫⎬
⎭ (7)

where [R] is the transformation matrix. The
flexural and axial deformations of any arbitrary

point in the element can be described in terms of
shape functions, S as⎧⎨
⎩

s
v
w

⎫⎬
⎭ = S {qi}T (8)

The vector of nodal coordinates {qi} contains
the displacements and slopes, for element “ij” of
link i (Fig. 2). The shape functions S includes
Hermitian shape function to derive the flexural
deformations and linear shape function to approx-
imate the axial deformations as follows

S =
⎡
⎣N1 0 0 0 0 N6 0 0 0 0

0 N12 0 N14 0 0 N17 0 N19 0
0 0 N23 0 N25 0 0 N28 0 N30

⎤
⎦

(9)

where the shape functions Ni are given by
(
ξ = x

l

)
N1 = 1 − ξ, N6 = ξ

N12,23 = 1 − 3ξ 2 + 2ξ 3, N14,25 = (
ξ − 2ξ 2 + ξ 3

)
l

N17,28 = 3ξ 2 − 2ξ 3, N19,30 = (−ξ 2 + ξ 3
)

l

(10)

The kinetic energy for the overall system is
obtained by computing the kinetic energy for each
element ij and then summing over all the ele-
ments. By derivative of Eq. 7, the global position
vector of point P on the Euler–Bernoulli beam,
the absolute velocity vector can be obtained.

Fig. 2 The Beam Element with five degrees of freedom at
each node
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Using the absolute velocity vector can be defined
the kinetic energy of the ith element of link as [8]

T = 1

2

∫
V

ρ ṙT ṙ dV (11)

where V and ρ are the volume and the mass
density of the beam element respectively.

The potential energy of element ij comprises
two components, Ugj due to gravity and Uej due
to elasticity.
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The strain energy for each beam element can
be expressed using the strain vector ε and the
constitutive equations, σ = E.ε as follows
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The elastic constant of the material, E is
defined for an isotropic homogenous material and
Kj is stiffness matrix of beam element as follows
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Since flexible link comprises n elements, its
total potential energy is:

U =
n∑

j=1

Uj = Ug + 1

2
γ T K γ (17)

where K is the general stiffness matrix.

3 Dynamic Equations Governing the Motion

The Lagrangian method is utilized to formulate
the dynamic equations governing the motion of
the flexible manipulator systems. In order to de-
rive dynamic equations, the kinetic energy and
the potential energy are computed for the entire
system. The kinetic energy for the overall system
is obtained by computing the kinetic energy for
each element ij and then summing over all the
elements. Also, the potential energy of the manip-
ulator is obtained by computing the strain energy
for each element ij due to elasticity and gravity of
any link.

After calculation these energies, by applying
the Lagrangian procedure and performing some
algebraic manipulations, the compact form of the
governing equations of motion can be obtained
from

[
M (q)

] {q̈} + [
C
] {q̇} + [K] {q} + h (q, q̇) = τ

(18)

where [M] is the nonlinear mass matrix, [C] is
the Structural damping matrix, [K] is the stiffness
matrix. h (q, q̇) considers the contribution of other
dynamic forces such as centrifugal, Coriolis and
gravity forces while τ consists of generalized ex-
ternal forces/torques.

4 Optimal Motion Planning Problem

The path planning optimization of the robot for
a specific task is of key importance in industrial
automation. In this section, the off-line global
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trajectory planning for flexible link manipulators
in point-to-point motion is formulated as an op-
timization problem whose solution is obtained
by using the optimal control method. The opti-
mal control approach provides a powerful tool
for designers to create various optimal paths via
defining the proper performance measure. The
computational method to solve the trajectory
planning problem is based on the indirect solu-
tion of open-loop optimal control problem. The
Pontryagin’s minimum principle is applied to ob-
tain the optimality conditions, which is lead to
a standard form of a two-point boundary value
problem. The optimal control can formally be pre-
sented as the minimization of the chosen cost or
objective function specifying precisely the desired
goal. The purpose of the optimal control problem
is to determine the control u(t) that minimizes
the performance index J(u). In this investigation,
the specific objective functional J is to obtain the
optimal paths with minimum effort and vibration,
which can be written as [16]

Minimize J =
t f∫

0

L (X (t) , U (t)) dt = 1

2
‖X1‖2

WP

+1

2
‖X2‖2

WV
+ 1

2
‖U‖2

R (19)

where the integrand L(.) is a smooth,
differentiable function in the arguments, X(t)
and U(t) denote the state space form of the
generalized coordinate and the joint torque,
respectively. ‖X‖2

K = XT K X is the generalized
squared norm, WP, WV are symmetric, positive
semi-definite (k × k) weighting matrix and R is
symmetric, positive definite (k × k) matrix. The
designer can decide on the relative importance
among the angular position, angular velocity,
vibration’s amplitude and control effort by the
numerical choice of penalty matrices WP, WV and
R. In order to minimize the objective function
subjected to the nonlinear dynamic equations,
the well-known Pontryagin minimum principle
is used and by introducing the costate vector ψ ,
the Hamiltonian function of the system can be
defined as:

H (X, U, ψ, t) = L (X, U) + ψT Ẋ (20)

The PMP then implies that a necessary condi-
tion for a local minimum is that H be minimized
with respect to u(t) at all times. If it is assumed
that the set of admissible inputs is bounded U−

i ≤
u∗

i ≤ U+
i , this condition is equivalent to

Ẋ = ∂ H
/
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/
∂ X, 0 = ∂ H

/
∂U (21)

The boundary values can be expressed as:

X (ti) = Xi, X
(
tf
) = X f ; (22)

where X(ti) and X(tf ) represent the positions and
velocities of the links at the beginning and at
the end of the maneuver. The optimal trajectory
is then obtained by solving the 2n differential
equations.
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(23)

The set of dynamic equations, the governing
optimal control problem and the boundary condi-
tions are lead to a standard form of a two-point
boundary value problem, which is solvable with
numerical techniques such as shooting, colloca-
tion, and finite difference methods. In this study,
bvp4c command in MATLAB® which is based
on the collocation method is used to solve the
obtained problem. The details of the numerical
technique used in MATLAB® to solve the TP-
BVP are given in [24]. The method iterates on
the initial values of the costate until the final
boundary conditions are satisfied by the following
desired accuracy

h
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X
(
t f
)
, t f
) = 1

2
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(
t f
)− X1 f

∥∥2
Wp

+1

2
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(
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)− X2 f

∥∥2
WV

≤ ε (24)
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No 

Yes 

h(X(tf), tf) ≤ ε

U− ≤ u ≤ U+

Start

Select the objective function Wp, WV, R and the ε

Obtain the necessary conditions for optimality

Develop and Solve the TPBVP

Obtain nonlinear dynamic model in order
to find the steady-state equations

Select two points in workspace

The Optimal path is found

Fig. 3 Optimal path algorithm

Now, by using the solution of obtained TPBVP,
an algorithm is presented in Fig. 3 in order to find
the optimal paths.

5 Simulation and Experimental Results

In this section, numerical and experimental
results are presented to show the validity
and effectiveness of the geometrically nonlinear
flexible link and computed the optimal trajec-
tory in point-to-point motion. In order to initially
check the validity of the proposed model, the spin-
up manoeuvre problem is considered. A proper
definition of beam deformation for the spinning
beam demands coupling of the axial force with

a bending moment. The capability of capturing
this so-called geometrical or centrifugal stiffening
effect is examined by modeling the rapidly spin-
ning flexible beam in Fig. 4 using the parameters
and angular displacements reported by Wu and
Haug [25].

The beam has a length of 8 m, a width of
1.986e10−3 m, a height of 3.675e10−2 m, a Young’s
modulus of 6.895e1010 N/m2 and a density of
2766.67 kg/m3. The angular displacement θ(t)
about the global Z axis is given as follows:

θ=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ωs

Ts

{
1

2
t2 +

(
Ts

2π

)2 [
cos

(
2π t
Ts

)
− 1

]}
, t < Ts

ωs

(
t − Ts

2

)
, t ≥ Ts

(25)

where Ts = 15 s and ωs = 4 rad/s. The compu-
tational results obtained with the proposed for-
mulation using an implicit Runge—Kutta method
for a simulation time of 20 s are illustrated in
Fig. 5. The classical model [23] is made of 8 and
16 finite Euler–Bernoulli beam elements; the pro-
posed model is discretized with 4 and 8 elements.
It can be seen from the tip displacements given
in Fig. 5 that the both models correctly capture
the geometric stiffening effect, although the rate
of convergence to the solution in the case of pro-
posed model is better than that of classical model.
Furthermore, the convergent solutions agree well
with those given in the literature [25].

More surprisingly, significant saving in com-
puter time was achieved using this model. It was
observed that the proposed model is two times
faster than the classical model.

Fig. 4 Spin-up manoeuvre
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Fig. 5 Vertical tip deflection of the Classical Model (8 and 16 elements)—proposed Model (4 and 8 elements)

A useful indicator of the capability of capturing
the geometrical stiffening effect is the steady-state
axial extension of the beam. The exact solution
for the beam axial extension ux can be written in
following form [5]:

ux = L
(

tan (a ωs)

a ωs
− 1

)
, a =

√
ρ

E
L (26)

The analytical value of the axial extension of
the beam at steady-state phase in this case is
1.0957 × 10−4 m. As can be seen from Fig. 6,

0 2 4 6 8 10 12 14 16 18 20
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

Time (s)

u d
ef

. (
m

)

Axial Deflection

ANC Model
Steady-state Extension

1.0972e-4 

Fig. 6 The difference of the tip axial deflection between
proposed model and the steady-state extension

the steady-state axial extension of the beam corre-
sponds to the analytical value with good accuracy.

Several simulations and experiments on a
three-dimensional flexible link manipulator have
been carried out to illustrate the performance of
the proposed approach and have been obtained
the optimal paths with minimum effort and mini-
mum vibration. Figure 7 shows the flexible manip-
ulator used for the experiments. The experimental
platform is constructed of two DC motors, θ and
φ rotations, that drive a flexible link made of
carbon fiber as shown in Fig. 7. This configuration
allows a spherical motion for flexible link. The
flexible link can be changed with different lengths
and diameters. The sensor systems consist of two
incremental encoders for measuring the motors
angle and a F/T sensor in order to estimate all six
components of force and torque.

An Optotrak motion-measurement system with
three infrared cameras is used to capture x, y and
z coordinate data at a sampling rate of 120 Hz
and precision 0.3 mm. An aluminum sphere at the
tip of the flexible carbon fiber link acts as the
payload. Simulation and experimental results of
two case studies are presented to determine the
extent to which the generated trajectory improves
the actual performance of the manipulator with
respect to other trajectories and the given objec-
tive functional.

Through the use of the model, the optimal
trajectory is generated and compared, both in
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Fig. 7 Experimental setup and schematic view of the robot

simulation and experimentally, to a fourth-order
polynomial trajectory designed in [26] in order to
evaluate the results. One of the main advantages
of this trajectory is that the tip vibrations reduce
during robot maneuver, and achieving the fastest
performance possible without saturating the mo-
tor. Also, the trajectory profile is symmetrical
and invertible which the boundary conditions are
zero velocity and acceleration at each end of the
trajectory.

5.1 First Case Study: Optimal Path for Minimum
Effort

The motion planning problem is to find the op-
timal trajectory with minimum effort. The path
with minimum effort is a path in which the min-
imum torque is exerted by each motor in point-to-

Table 1 Physical properties of the flexible manipulator
and payload

Parameter Value Unit

Length of links L = 0.3 m
Link mass ml = 1.44 gram
Diameter D = 2 × 10−3 m
Young’s modulus of E = 125 × 109 N/m2

material
Tip mass mt = 33.8 gram

point motion. Therefore, penalty matrices can be
considered as R = diag (1) and Wp = WV = [0].
This cost function is typical of systems that need
to conserve energy during a particular operation.
The parameters of the flexible manipulator are
given in Table 1. The system is initially at rest,
thus the initial conditions are θ(0) = 0, φ(0) =
0 (point A in Fig. 8). The final time is set to
t f = 0.5 s and the final conditions are θ(tf ) =
60◦, φ(tf ) = 40◦ (point B in Fig. 8) and also

-200
0

200

-200-1000100200
-300

-200

-100

0

100

200

300

X (mm)

B

Position of End effector

Y (mm)

AZ
 (

m
m

)

Rigid
Small Def
Large Def
Test

Fig. 8 The optimal paths between point A and B via
minimum effort
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Fig. 10 Minimum effort of the θ and φ motors in compar-
ison with fourth order trajectory

the remaining boundary conditions are equal to
zero.

A comparative study is carried out between
the simulation results (small and large models)
and experimental result as shown in Fig. 8. The
optimal angular positions of link, corresponding
to the minimum effort are shown in Fig. 9. The
experimental results presented in Fig. 10 show
that the generated trajectory improves the actual
performance of the manipulator actuators with
respect to other trajectory. It can be seen, the
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Fig. 11 The optimal paths between point A and B via
minimum vibration
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Table 2 Physical parameters used for second case study

Parameter Value Unit

Length of links L = 1 m
Link mass ml = 4.73 gram
Diameter D = 2 × 10−3 m
Young’s modulus of E = 125 × 109 N/m2

material
Tip mass mt = 5.74 gram

flexibility of link will increase the oscillation of
torque curves.

Although the solution trajectory exhibited
some sensitivity to nonlinear modeling of flexible
system, the interpretation of the optimal joint
paths provided, corresponding to the minimum
effort is relatively insensitive to variations in
the flexible model parameters. The same opti-
mal path would be expected for any flexible
manipulator with different transverse bending
stiffnesses.

5.2 Second Case Study: Minimum Vibration
Trajectory

An important path planning problem for flexible
manipulators studied by many researchers is to
obtain the minimum vibration trajectory. The
optimization objective is to minimize the vibra-
tion excitation during the motion. Hence, the

proper penalty matrices are selected to be R =
diag (1) and Wp = WV = [10]. The task is con-
sidered to move the joints from an initial point
(θ(0) = 0◦, φ(0) = 0◦ point A in Fig. 11) to final
configuration θ(tf ) = 45◦, φ(tf ) = 45◦ (point B in
Fig. 11) for a rest-to-rest maneuver during the
overall time tf = 1 s. Table 2 lists the physical
properties of the flexible manipulator.

The robot configuration allows spherical rota-
tion for flexible arm, which it can lead to couple
between the transverse vibrations and it makes
difficult for obtaining the optimal path. The sim-
ulation results (small and large models) compared
to experimental result as shown in Fig. 11. The
obtained optimal joint paths, corresponding to
the minimum vibration are shown in Fig. 12. The
oscillation amplitudes in the flexural responses of
the system for the minimum vibration trajectory,
has been reduced considerably.

As expected, the experimental results show that
a significant reduction in manipulator vibration
can be achieved by employing trajectory optimiza-
tion. The optimization procedure improves the
performance of the flexible arm in comparison
with the fourth order trajectory. Figure 13 shows
the tip position of the flexible arm in x, y and
z coordinates. Also, it is observed that applying
the proper input torque can decrease the tip vi-
bration significantly. It means that for achieving a
smoother path, minimum effort must be applied
because of the inertia effects on the system.
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Fig. 13 The experimental results of the tip position in X, Y
and Z directions, corresponding to the minimum vibration

6 Conclusions

In this paper, a new displacements approach is
developed to determine the trajectory optimiza-
tion for geometrically nonlinear flexible-link ma-
nipulators in point-to-point maneuver, based on
the indirect solution of optimal control problem.
The complete dynamic model using the combined
Euler–Lagrange formulation and finite element
method is derived, in which both the geometric
elastic nonlinearity and the foreshortening effects
are considered. This model leads to a constant
stiffness matrix and makes the formulation par-
ticularly efficient in computational terms and nu-
merically more stable than alternative geomet-
rically nonlinear formulations based on lower-
order terms. The Pontryagin’s minimum princi-
ple is used to obtain the optimality conditions,
which is lead to a standard form of a two-point
boundary value problem. The proposed approach
has been implemented and tested on a single-link
very flexible arm and optimal paths with mini-
mum effort and minimum vibration are studied.
Through the use of the model, the obtained results
are compared, both in simulation and experimen-
tally, to a fourth-order polynomial trajectory de-
signed in [26] in order to evaluate the results. The
Numerical and experimental results indicate the
effect of employing trajectory optimization in the
performance improvement of the flexible manip-
ulator. As it can be seen, the flexibility of link and
adding the payload will increase the oscillation
of torque curves and the amplitude of the vibra-
tions. Finally, the minimum vibration problem is
shown that applying the proper input torque can
decrease the tip vibration significantly. Moreover
by changing the penalty matrices values, various
optimal trajectories with different specifications
can be obtained which able the designer to select a
suitable path through a set of obtained paths. The
obtained results illustrate the power and efficiency
of the model to overcome the high nonlinearity
nature of the large deflection and optimization
problem which with other methods may be very
difficult or impossible. The optimal trajectory and
corresponding input control obtained using this
method can be used as a reference signal and feed-
forward command in control structure of flexible
manipulators.
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