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Abstract The Cross-Entropy (CE) is an efficient
method for the estimation of rare-event proba-
bilities and combinatorial optimization. This work
presents a novel approach of the CE for optimiza-
tion of a Soft-Computing controller. A Fuzzy con-
troller was designed to command an unmanned
aerial system (UAS) for avoiding collision task.
The only sensor used to accomplish this task was
a forward camera. The CE is used to reach a
near-optimal controller by modifying the scaling
factors of the controller inputs. The optimization
was realized using the ROS-Gazebo simulation
system. In order to evaluate the optimization a
big amount of tests were carried out with a real
quadcopter.
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1 Introduction

When addressing real-world applications, we typi-
cally have to deal with systems that are either not-
well defined, not-modelled or with a huge solution
space. Imprecision, uncertainty, partial truth, and
approximation are some of the issues that are well
handled by Soft Computing approaches. These ca-
pability seems very attractive in real world scenar-
ios, where uncertainty and unmodelled dynamic
seems predominant, gaining more and more im-
portance in controlling real systems. Its original
definition provided by Zadeh [1] denote systems
that “. . . exploit the tolerance for imprecision, un-
certainty, and partial truth to achieve tractability,
robustness, low solution cost, and better rapport
with reality”.

These techniques are also of interest when deal-
ing with highly non-linear (and unmodelled) dy-
namics, very common in aerospace applications.
In particular, they are very well suited to deal
with non-linearities that makes some of the prob-
lems in the field of aerial robotics intractable.
In this work, we propose the use of Soft Com-
puting techniques to address the sense-and-avoid
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problem [2] for unmanned aerial systems (UAS).
Before UASs are allowed to routinely fly in civil
airspace, several technological hurdles need to be
addressed. For example, sense-and-avoid or safe
termination systems are some of the technologies
that UAS require before they share the airspace
and fly over populated areas [2]. The UAS sector
is gaining considerable predominance among re-
searchers nowadays. Industry, academia and gen-
eral public are placing more attention in UASs
to understand the potential benefits UAS could
provide to society.

The onboard sense-and-avoid capability can be
provided by the use of single or multiple on-
board sensors [3–5]. Furthermore, self-contained
and passive electro optical (EO) sense-and-avoid
systems have the capability to address non-
cooperative scenarios at the same it provide an
alternative to the Size, Weight and Power (SWaP)
limitations of many small-medium size UAS. On-
board EO or cameras have not only the capability
to perform sense-and-avoid [6–8] but also they can
be used for state estimation [9–11] among others
applications.

This paper is structured as follows. In Section 2
the related work is presented. In Section 3 we
describe the image processing front-end used in
our approaches. In Section 4 we explain the visual
servoing approach using fuzzy logic for heading
control. The cross-entropy theory is introduced
in Section 5. All the software implementation is
explained in Section 6. The results of the opti-
mization using the simulator and a comparison of
the optimized and non-optimized controller with
real tests are presented in Section 7. Finally, con-
cluding remarks and future work are presented in
Section 8

2 Related Work

The two of most common application of SC tech-
niques are Fuzzy systems and neural networks.
In Hunt et al. [12] a survey of Neural Networks
for control systems is presented. In the same
way the work of Precup and Hellendoormn [13]
presents a survey of industrial control applica-
tions with Fuzzy Control. Similar to other types
of controllers, SC controllers need to be tuned or

optimised manually. In 1992 Zheng [14] defined
a tuning sequence for manual tuning of Fuzzy
controllers (FC). The optimisation process can
be performed at three different scales based on
the effects caused to the controller behaviour:
The Macroscopic effects are caused by the mod-
ification of the scaling factors (SF), which are
defined as gains of the inputs and outputs. Medium-
size effects which impact the controller when the
membership functions (MF) are modified, and
Microscopic effects which are present when we
modify the output or the weight of each rule. This
sequence of effects could be easily understood is
we visualize the rule base of the FC as a rule table.
A modification of one scaling factor affects the
entire rule table. A modified set of membership
functions affects one row, one column, or one
diagonal in the table. A modified rule only affects
one cell of the rule table.

Malhorta et al. [15] presents a macroscopic op-
timization of PID and PI Fuzzy controllers using
genetics algorithms. In [16] Bonissone presents
the use of Genetics Algorithms for macroscopic
and medium-size optimization of a PI Fuzzy con-
troller. Wei Li [17] presents a medium-size scale
optimization using neural networks. In [18], Jang
presents an adaptive neural based Fuzzy inference
system (ANFIS) that was used to refine the Fuzzy
if-then rules, being in this case a microscopic op-
timization. The learning algorithm is based on
the gradient descent and the chain rule proposed
by Werbos [19] in the 1970’s. Also of interest
to the reader is the work of Bonissone et al. in
[20], who presents a deep discussions of SC hy-
brid systems and optimization methodologies with
very clear examples of industrial and commercial
applications.

In this work, we present a Macroscopic opti-
mization of a Fuzzy controller using the Cross-
Entropy method. This novel optimization method
is a general Monte Carlo approach to combina-
torial and continuous multi-extremal optimization
and importance sampling. This method was mo-
tivated by an adaptive algorithm for estimating
probabilities or rare events in complex stochastic
networks [21], which involves variance minimiza-
tion. A simple modification of the initial algo-
rithm allows to apply it to solve difficult com-
binatorial optimization problems. Several recent
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applications demonstrate the power of the CE
method like [22] for power system reliability eval-
uation, and [23] to find the optimal path planning,
and [24] use this method for a antenna selection
to improve the radio channel capacity, and [25]
for motion planning. The uses of this optimization
method in control is reduced to two works in the
literature. In [26] Bodur presents the use of the
CE method to optimize the gains of a classic PID
controller to manage the invert pendulum prob-
lem in a simulated environment. Haber et al. [27]
use the CE method to optimize the scaling factors
of a Fuzzy PD controller for cutting force regu-
lation of a drilling process. Experimental results
are presented in this work for this high controlled
environment process. In our work, we present
an optimization of the scaling factors of a Fuzzy
PID controller to command a quadrotor for a see-
and-avoid task. In comparison with the previous
work of [27] we have to face a highly dynamic
environment of a flying quadcopter in indoor tests
for avoiding collision task using vision.

3 Image Processing Front-End

Visual awareness is achieved by using an onboard
forward-looking camera. Images from the cam-
era are then sent for off-board processing in a
laptop ground-station. The outcome of the visual
processing (and servoing commands) are then sent
back to the vehicle using a wifi link.

The avoidance task aims to keep the target in
the image plane at constant bearing, either right
or left (as seen from image centre). When the
object is first detected it is pushed to the edge of
the image (far left or right side), and kept at a
fixed position that represents a constant relative
bearing.

The target is detected by pre-defining a color
and then designing an algorithm to highlight
this color. The color will be tracked along the
image sequence. The tracking is performed by
using the Continuously Adaptive Mean Shift
[28] (CamShift). This algorithm is based on the
mean shift originally introduced by Fukunaga and
Hostetler [29]. This algorithm accounts for the
dynamic nature of changes in lighting conditions

Fig. 1 Image captured with the onboard camera

by dynamically adapting to changes in probability
distributions of color.

Using the Camshift algorithm we track and es-
timate the centre of the color region that describes
the object. Figure 1 shows an example of the
tracking processes on a red colored object. Using
the location of the target in the image we generate
desired yaw commands (while keeping forward
velocity constant) which in turn will modify the
trajectory of the vehicle in order to keep the
object at constant relative bearing.

4 Fuzzy Controller

The controller was designed using Fuzzy Logic
techniques. The aim of the controller is to gener-
ate desired yaw commands for the aerial vehicle
based on the location of the target in the image
plane. With the commands generated by the con-
troller, the aircraft must avoid the obstacle that is
in its trajectory.

The Fuzzy PID controller was implemented
using our self-developed library MOFS (Miguel
Olivares’ Fuzzy Software) [30]. This library has a
hierarchical class definition for each part of the
fuzzy-logic environment (variables, rules, mem-
bership functions, and defuzzification modes) in
order to facilitate future updates and make easier
the development of controllers based on Fuzzy
Logic. These routines have been used in a wide va-
riety of control applications such as autonomous
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Fig. 2 PID-fuzzy
controller: membership
function of the first input,
the error

Fig. 3 PID-fuzzy
controller: membership
function of the second
input, the derivative of
the error

Fig. 4 PID-fuzzy
controller: membership
function of the third
input, the integral of the
error

Fig. 5 PID-fuzzy
controller: membership
function of the output,
heading degrees to turn

Table 1 Base of rules
with value for the third
input (integral of the
error) equal to zero

Dot Error

Big left Left Zero Right Big right

Negative Big left Left Little left Zero Little right
Zero Left Little left Zero Little right Right
Positive Little left Zero Little right Right Big right
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Table 2 Base of rules
with value for the third
input (integral of the
error) equal to negative

Dot Error

Big left Left Zero Right Big right

Negative Left Little left Zero Little right Right
Zero Little left Zero Little right Right Big right
Positive Zero Little right Right Big right Great right

landing [31], and autonomous road following
[32], etc.

The inputs and the outputs were defined using
triangular membership functions. The product t-
norm is used for the conjunction of the rules and
the Height Weight method has been selected for
the defuzzification phase (Eq. 1).

y =
∑M

l=1 yl ∏(
μB′(yl)

)

∑M
l=1

∏(
μB′(ȳl)

) (1)

The Fuzzy controller was defined using three
inputs and one output. The first input measures
the error in degrees between the quadrotor, the
object to avoid minus the reference (Fig. 2). The
second, is the derivative of the error, as is shown
in Fig. 3, and third input, shown in Fig. 4 repre-
sents the integral of the error. The output is the
commanded yaw that the vehicle needs to turn to
keep the object at the desired relative bearing, see
Fig. 5. First and second outputs are equivalent to
the inputs of the first approach.

The definition of the fuzzy variables uses 45
rules. By the reason that the system have 3 inputs
the base of rules has a cube disposition of 5 × 3 ×
3. To be easy to the reader to understand the base
of rule, we present three matrix of 5 × 3 with the
relation between the first two inputs, error and
dot (derivative of time) of the error. Each matrix
has a static value of the third input, the integral
of the error. Table 1 shows the output values for
the variables error and dot, with the integral of
the error value equal to zero. The Table 2 shows
the output values for the variables error and dot,
with the static value for the third variable equal to
negative. And finally the Table 3 shows the output

values for the variable error and dot, with the
static value for the third variable equal to Positive.

5 Cross-Entropy Optimization Method

The Cross-Entropy (CE) method is a new ap-
proach in stochastic optimization and simulation.
It was developed as an efficient method for the
estimation of rare-event probabilities. The CE
method has been successfully applied to a number
of difficult combinatorial optimization problems.
We present an application of this method for op-
timization of the gains of a Fuzzy controller. Next,
we present the method and the Fuzzy controller
optimization approach. A deeper explanation of
the Cross-Entropy method is presented on [33].

5.1 Method Description

The CE method is iterative and based on the
generation of a random data sample (x1, ..., xN)

in the χ space according to a specified random
mechanism. A reasonable option is to use a prob-
ability density function (pdf) such as the normal
distribution. Let g(−, v) be a family of probability
density functions in χ parameterized by a real
value vector v ∈ �: g(x, v). Let φ be a real function
on χ , so the aim of the CE method is to find the
minimum (like in our case) or maximum of φ over
χ , and the corresponding states x∗ satisfying this
minimum/maximum: γ ∗ = φ(x∗) = minx∈χ φ(x).

In each iteration the CE method generates a
sequence of (x1, ..., xN) and γ1...γN levels such that
γ converges to γ ∗ and x to x∗. We are concerned

Table 3 Base of rules
with value for the third
input (integral of the
error) equal to positive

Dot Error

Big left Left Zero Right Big right

Negative Great left Big left Left Little left Zero
Zero Big left Left Little left Zero Little right
Positive Left Little left Zero Little right Right
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with estimating the probability l(γ ) of an event
Ev = {x ∈ χ | φ(x) ≥ γ }, γ ∈ �.

Defining a collection of functions for x ∈ χ,

γ ∈ �.

Iv(x, γ ) = I{χ(xi)>γ } =
{

1 if φ(x) ≤ γ

0 if φ(x) > γ
(2)

l(γ ) = Pv(χ(x) ≥ γ ) = Ev · Iv(x, v) (3)

where Ev denotes the corresponding expectation
operator.

In this manner, Eq. 3 transforms the optimiza-
tion problem into an stochastic problem with very
small probability. The variance minimization tech-
nique of importance sampling is used, in which
the random sample is generated based on a pdf
h. Being the sample x1, ..., xN from an importance
sampling density h on φ and evaluated by:

l̂ = 1
N

·
N∑

i=1

I{χ(xi)>γ } · W(xi) (4)

where l̂ is the importance sampling and W(x) =
g(x,v)

l is the likelihood ratio. The search for the
sampling density h∗(x) is not an easy task be-
cause the estimation of h∗(x) requires that l be
known h∗(x) = I{χ(xi)>γ } · g(x,v)

l . So the referenced
parameter v∗, must be selected such the distance
between h∗ and g(x, v) is minimal, thereby the
problem is reduced to a scalar case. A way to
measure the distance between two densities is the
Kullback–Leibler, also known as cross-entropy:

D(g, h) =
∫

g(x) · ln g(x)dx −
∫

g(x) · ln h(x)dx

(5)

The minimization of D(g(x, v), h∗) is equiva-
lent to maximize

∫
h∗ln[g(x, v)]dx which implies

that maxv D(v) = maxv Ep
(
I{χ(xi)>γ } · ln g(x, v)

)
,

in terms of importance sampling it can be rewrit-
ten as:

maxv D̂(v) = max
1
N

N∑

i=1

I{χ(xi)>γ } · px(x)

h(xi)
· ln g(xi, v)

(6)

Note that h is still unknown, therefore the CE
algorithm will try to overcome this problem by

constructing an adaptive sequence of the parame-
ters (γt | t ≥ 1) and (vt | t ≥ 1).

5.2 Fuzzy Control Optimization Approach

This approach is based on a population-and-
simulation optimization [34]. The CE algorithm
generates a set of N fuzzy controllers xi = (xKE,
xKD, xKI) with g(x, v) = (g(xKE, v), g(xKD, v),
g(xKI, v)) and calculates the cost function value
for each controller. The controllers parameters
KE, KD, KI correspond to the gains of the first,
second and third input of each controller (Figs. 2–
4). Then updates g(x, v) using a set of the best
controllers. This set of controllers is defined with
the parameter Nelite.The process finish when the
minimum value of the cost function or the maxi-
mum number of iterations is reached, as is shown
in the Algorithm 1.

Algorithm 1 Cross-Entropy algorithm for Fuzzy
controller optimization
1. Initialize t = 0 and v(t) = v(0)

2. Generate a sample of N controllers:
(xi(t))1≤i≤N) from g(x, v(t)), being each
xi = (xKEi, xKDi, xKIi)

3. Compute φ(xi(t)) and order φ1, φ2, ..., φN

from smallest ( j = 1) to biggest ( j = N).
Get the Nelite first controllers γ (t) = χ[Nelite].

4. Update v(t) with v(t + 1) = argv min 1
Nelite

∑Nelite

j=1 I{χ(xi(t))≥γ (t)} · ln g(x j(t), v(t))
5. Repeat from step 2 until convergence or end-

ing criterion.
6. Assume that convergence is reached at t = t∗,

an optimal value for φ can be obtained from
g(., v(t)∗).

For this work the Normal (Gaussian) distri-
bution function was selected. The mean μ and
the variance σ are estimated for each itera-
tion h = 1, 2, 3 parameters (Ke, Kd, Ki) as μ̃th =
∑Nelite

j=1
x jh

Nelite and σ̃th = ∑Nelite

j=1
(x jh−μ jh)2

Nelite where 4 ≤
Nelite ≤ 20.

The mean vector ¯̃μ should converge to γ ∗ and
the standard deviation ¯̃σ to zero. In order to ob-
tain a smooth update of the mean and the variance
we use a set of parameters (β, α, η), where α is a
constant value used for the mean, η is a variable
value which is applied to the variance to avert the
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occurrences of 0s and 1s in the parameter vectors,
and β is a constant value which modify the value
of η(t).

η(t) = β − β · (1 − 1
t )

q

μ̂(t) = α · μ̃(t) + (1 − α) · μ̂(t − 1)

σ̂ (t) = η(t) · σ̃ + (1 − η) · σ̂ (t − 1)

(7)

Where μ̂(t − 1) and σ̂ (t − 1) are the previous
values of μ̂(t) and σ̂ (t). The values of the smooth-
ing update parameters are 0.4 ≤ α ≤ 0.9, 0.6 ≤
β ≤ 0.9 and 2 ≤ q ≤ 7. In order to get an opti-
mized controller different criterion could be cho-
sen, such as the Integral time of the absolute error
(ITAE) or the Integral time of the square error
(ITSE) or the root mean-square error (RMSE).

6 Software Implementation

The simulation tests were performed using the
ROS (Robotics Operative System) and the 3D
simulation environment Gazebo [35]. In simula-
tions, a quadcopter model of the starmack ros-pkg
developed by Berkeley University [36] was used.
The obstacle to avoid was defined by a virtual
yellow balloon.

Two external software routines in C++ were
developed for accomplish these tests. One is the
implementation of the Cross-Entropy method,
which is responsible of the optimization process.
This program generates a set of controllers, selects
the controller to test and when all the controllers
are tested, update the pdf with the results to ob-
tain new values of mean and variance of each pdf
to generate the new set of controllers to test in
the next iteration. The other one is responsible
to execute iteratively the ROS-Gazebo system.
In order to test all the controllers in the same
conditions, the ROS-Gazebo is restarted for each
test getting same initial state for all the tests. In
each iteration the program send a kill command to
close the ROS-Gazebo and start it again loading
all the initial parameters needed by the simulator.
The Fig. 6 shows the tests flowchart, in which
the tasks performed by the Cross-Entropy pro-
gram are represented with green boxes. The tasks
performed by the iteration program are those
which are represented by blue diamonds. The blue

Fig. 6 Flowchart of the optimization process

box titled Simulation represents the ROS-Gazebo
process.

Additionally, two nodes were added to the
ROS-Gazebo, visual algorithm and Fuzzy con-
troller nodes, respectively (Fig. 7). The visual al-
gorithm which gets the image from the simulated
camera onboard the quadcopter and converts it to
an OpenCV image for further processing. After

Fig. 7 Interaction between the ROS-Gazebo 3D simulator
and the two other process developed for this work
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Fig. 8 Control loop with
the optimization of the
Cross-Entropy method

the image is processed the information obtained is
sent to the Fuzzy controller node. The controller
evaluates this data to obtain the correct yaw value.
Finally, this command is sent to the simulated
aircraft in the 3D simulator. One advantage of
this simulation environment is that the detection
algorithm used in this phase is the same that was
used in the real tests.

7 Results

In this section we present the results of the op-
timization process in simulation and a set of real
flight tests to compare the behaviour of the opti-
mised and the non-optimized Fuzzy controllers.

7.1 Optimization Process Using the Simulation
Environment

In order to obtain an optimal parameters for a
controller we should generally test a large number

of different controllers. Testing these controller
in the same conditions is challenging. To do this
we defined a type of test based on some fixed
parameters such as fixed time for each simulation
cycle; the quadcopter positioned in front of the
object to avoid in a defined starting location and
each test is performed sending a constant pitch
command to the aircraft of 0.03 m/s. To evaluate
the performance of each test we used the Integral
Time Absolute Error (ITAE) criterion. Figure 8
shows the control loop during the optimization
process. We also used the Root Mean Square
Error (RMSE) criterion but similar results. We
choice the ITAE error estimator is motivated by
the error penalization it imposes at the end of the
test. Being more important estimator during a op-
timization process. The RMSE criterion was used
with the real tests because is easier to understand
what the performance of the test was, because the
result is given in the same unit that is used by the
first input of the controller (the error). The cross-

Fig. 9 Evolution of the
probability density
function for the first input
gain. The standard
variance converge in 12
iterations to a value of
0.0028 so that the
obtained mean 0.9572 can
be used in the real tests
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Fig. 10 Evolution of the
probability density
function for the second
input gain. The standard
variance converge in 12
iterations to a value of
0.0159 so that the
obtained mean 0.4832 can
be used in the real tests

Fig. 11 Evolution of the
probability density
function for the third
input gain. The standard
variance converge in 12
iterations to a value of
0.0015 so that the
obtained mean 0.4512 can
be used in the real tests

Fig. 12 Evolution of the
ITAE error during the 12
Cross-Entropy iterations.
The ITAE value of each
iteration correspond to
the mean of the first 5 of
30 controllers of each
iteration
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Fig. 13 Evolution of the
gains of each input. The
value of the gain
correspond to the first 5
of 30 controllers of each
iterations

entropy system generates N = 30 controllers per
iteration based on the last update of the probabil-
ity density function for each gains. From this set
of controllers the five with the lowest ITAE value
are selected (Nelite = 5) to update the next pdf
parameters. The initial values for the pdf of all
the gains are μ(0) = 0.5, σ(0) = 0.5. The rest of
the parameters of the cross-entropy method are
q = 2, η(0) = 0, β = 0.92, α(0) = 0. Those values
are based on values reported in [27] and [34].

A number 330 tests were performed to ob-
tain the optimal controller. This process corre-
sponds to 11 updates of the pdf for the gains.
Figure 9 shows the evolution of the probability
density function of the first input of the controller.
The initial mean and sigma for the three gains
were 0.5 for both parameters. The final values of
the pdf were mean = 0.9572 and sigma = 0.0028.
Figure 10 shows the evolution for the second in-
put with the final values of mean = 0.4832 and
sigma = 0.0159. In the same way Fig. 11 shows
the evolution of the pdf for the third input, which
finalize with mean = 0.4512 and sigma = 0.0015.
Figure 12 presents the evolution of the mean of
the ITAE value of the 5 winners from each set of
30 controllers. The Fig. 13 shows the evolution of
the different gains of the controller during the 330
tests.

7.2 Flight Tests

In order to validate and compare the behavior of
both controllers we conducted real flights tests.

We used a AR.Drone-Parrot [37] platform with
our own software routines developed for this pur-
pose [38]. Figure 14 shows the AR.Drone air-
craft. A typical orange traffic cone was used as
the object to avoid. We recorded the quadro-
tor trajectory with the maximum precision using
the VICON position detection system [39]. The
VICON system was used for data logging, no data
was used for the control of the quadrotor.

The quadcopter system used in these tests is a
commercial-off-the-shelf Parrot AR.Drone. This
is an aircraft with two cameras onboard, one
forward-looking which has been used in this work,
and one downward-looking. The aircraft is con-
nected to a ground station via WiFi connection. A
extended explanation of this platform is presented
at [37].

Figure 15 shows the control loop of the system
once the Cross-Entropy process was remove.

For both controllers the flight tests were per-
formed with predefined constant forward speed
(constant pitch angle) during the test. No roll

Fig. 14 Parrot-AR.Drone, the platform used for the real
tests
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Fig. 15 Control loop with
the optimization of the
Cross-Entropy method

Fig. 16 Explanation of the avoiding task approach. The
quadcopter starts at point 0.0 (1. Motor ignition) and flies
0.5 m keeping the obstacle to avoid in the center of the
image (2. Avoiding task. Start). Then the reference to one
of the edge of the image is added to the position of the

obstacle in the image plane until 3.5 m (3. Avoiding task.
Finish). The quadrotor continues. The last yaw command
is send after the avoiding task is finished. The obstacle to
avoid is at point (0, 4.5)

Fig. 17 Onboard images
during the execution of
the test

(a) (b)

(c)
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commands were sent during the experiments. The
altitude was set to a constant value of 0.8 m and is
was controlled by the internal altitude controller
of the aircraft. The position of the quadcopter is
calibrated at the beginning of the test, being the
initial position the point (0, 0, 0) m in the VICON
system. The obstacle to avoid was located in front
of the initial position of the quadcopter at 4.5 m of
distance and at 1.1 m from the floor (4.5, 1.1) m.

Once the quadrotor take-off, it flies 0.5 m to-
wards the obstacle using the same controller with
a reference value equal to 0 to keep the obstacle
in the centre of the image. Once the aircraft flies
the first half meter the reference for the control
system it change to keep the obstacle in one of
the edge of the image to try to avoid the obsta-
cle. Until the aircraft does not reaches 3.5 in the
forward direction it will continue trying to avoid
the obstacle. Once this distance was reached by
the aerial vehicle, a constant yaw (last yaw com-
manded) will be send. In that way we can compare
how the optimization improve the behavior of the
controller. Keeping the obstacle in one of the edge
of the image tracking it with yaw commands imply
lateral deviation of the trajectory of less than
2 m but keeping the same direction when the test
finishes successfully. It must be take into account
that the aim of this work is the optimization of
the controller and not the way to starts and ends
the avoiding obstacle task, as is shown in Fig. 16.
The Fig. 17 shows some images captured from the
onboard camera during the execution of one of
these tests. The Fig. 17a shows the beginning of
the test during the first 0.5 m keeping the obstacle
in the center of the image. The Fig. 17b shows
the capture image at the middle of the test and
at the Fig. 17c can be seen when the quadrotor is
overtaking the obstacle.

To compare the improvements of the optimiza-
tion process we test both controllers at different
speeds. Table 4 shown all the tests done. We test
from 0.02 m/s speed until 1.4 m/s and avoiding
the obstacle keeping it on the right side and on
the left side. In this table is shown, also, the Root
Mean Squared Error (RMSE) of each test. When
no number is shown on this box it represents
that the aircraft could not keep the obstacle to
avoid on one edge of the image, losing it before
the aircraft has covered the distance of 3 m. This

Table 4 Comparison between the non optimized and the
Cross-Entropy optimized fuzzy controllers at different
speeds

Type of controller RMSE Speed Obstacle
(degrees) (m/s) position

Non-optimized 7.848 0.02 Left
fuzzy controller

CE-fuzzy controller 6.4048 0.02 Left
Non-optimized 9.0081 0.04 Left

fuzzy controller
CE-fuzzy controller 5.2714 0.04 Left
Non-optimized – 0.06 Left

fuzzy controller
CE-fuzzy controller 7.4886 0.06 Left
Non-optimized – 0.08 Left

fuzzy controller
CE-fuzzy controller 9.8207 0.08 Left
Non-optimized – 0.1 Left

fuzzy controller
CE-fuzzy controller 11.3606 0.1 Left
Non-optimized – 0.12 Left

fuzzy controller
CE-fuzzy controller 9.4459 0.12 Left
Non-optimized – 0.14 Left

fuzzy controller
CE-fuzzy controller – 0.14 Left
Non-optimized – 0.14 Right

fuzzy controller
CE-fuzzy controller – 0.14 Right
Non-optimized – 0.12 Right

fuzzy controller
CE-fuzzy controller 10.3514 0.12 Right
Non-optimized – 0.1 Right

fuzzy controller
CE-fuzzy controller 11.4794 0.1 Right
Non-optimized – 0.08 Right

fuzzy controller
CE-fuzzy controller 10.5684 0.08 Right
Non-optimized – 0.06 Right

fuzzy controller
CE-fuzzy controller 8.1564 0.06 Right
Non-optimized 12.7498 0.04 Right

fuzzy controller
CE-fuzzy controller 8.6037 0.04 Right
Non-optimized 7.1514 0.02 Right

fuzzy controller
CE-fuzzy controller 6.3117 0.02 Right

kind of situations imply that the quadrotor change
too much the trajectory or goes very close to the
obstacle to avoid. Definitively the optimized con-
troller has obtained better results. More tests have
been finished successfully by this controller and
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Fig. 18 Evolution of the
error during a real test at
0.04 m/s forward speed
using the non optimized
fuzzy controller. A
RMSE of 9.0081 has been
obtained

Fig. 19 Evolution of the
error during a real test at
0.04 m/s forward speed
using the fuzzy controller
optimized using the
Cross-Entropy method. A
RMSE of 5.271 has been
obtained, more than 40 %
reduction

Fig. 20 2D
reconstruction of the
trajectory defined during
a real test at 0.04 m/s
forward speed using the
non optimized fuzzy
controller

Fig. 21 2D
reconstruction of the
trajectory defined during
a real test at 0.04 m/s
forward speed using the
fuzzy controller
optimized using the
Cross-Entropy method



202 J Intell Robot Syst (2013) 69:189–205

Fig. 22 Evolution of the
error during a real test at
0.08 m/s forward speed
using the non optimized
fuzzy controller. A
RMSE of 9.0081 has been
obtained

Fig. 23 2D
reconstruction of the
trajectory defined during
a real test at 0.08 m/s
forward speed using the
non optimized fuzzy
controller

Fig. 24 Evolution of the
error during a real test at
0.08 m/s forward speed
using the fuzzy controller
optimized using the
Cross-Entropy method. A
RMSE of 5.271 has been
obtained, more than 40 %
reduction

Fig. 25 2D
reconstruction of the
trajectory defined during
a real test at 0.08 m/s
forward speed using the
fuzzy controller
optimized using the
Cross-Entropy method
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the RMSE is lower when both controller finished
the same test. In order to do a more reliable
comparison no tests have been done at the same
speed of the optimization process (0.03 m/s).

Following the most significant tests are pre-
sented. The first test shown is keeping the obstacle
on the left edge of the image at 0.04 m/s. In this
test both controllers past it successfully with a
RMSE of 9.0081 for the non-optimized controller
versus a RMSE of 5.271 of the optimized con-
troller. These RMSE values represent a reduc-
tion of 41.5 %. Figure 18 shows the evolution of
the error during this test for the non optimized
controller. The Fig. 19 shows the same test for
the optimized controller using the Cross-Entropy
method. In both figures the red step represents the
moment in which the avoiding task is done. Once
the obstacle is out of the image no more error
information has been obtained. The black circle
with the white cross represents the position of the
obstacle to avoid. In the first case the aircraft has
to modify

A 2D reconstruction of the flight that the air-
craft has done is presented in the next figures. For
these figures we use the information obtained with
the VICON, which has not used to control the
vehicle for the avoiding obstacle task. Figure 20
shows the trajectory defined by the non opti-
mized controller, and Fig. 21 shows the trajectory
defined by the aircraft using the Cross-Entropy
optimized controller. Comparing both figures is
possible to appreciate that the non-optimized con-
troller is slower than the optimized one, as is
shown, also, in the error evolution figures.

Because of its slowness can happens to different
situations. The aircraft will hit the obstacle to
avoid or the trajectory change too much to the
initial one. This last situation is the one what
happens in the next test. In this case the speed
doubles the one of the previous test. Figure 22
shows how the non optimized controller can not
keep the obstacle to avoid on the edge of the
image and loose it. This is appreciate, also, in
Fig. 23, in which the trajectory defined by the
aircraft is totally different to the previous test. The
evolution of the error finish when the detected
obstacle to avoid is out of the image. In less
than 1.5 seconds the controller loose the obstacle.
However the optimized controller could finish this

test successfully. Figure 24 shows the evolution of
the error, and Fig. 25 shows the movements of the
aircraft to avoid the obstacle.

A video and more information of these and
other tests can be found at [40, 41].

8 Conclusions

This work presents a macroscopic optimization
of a PID Fuzzy controller. The optimization of
the scaling factors of the controller were done us-
ing the novel optimization method named Cross-
Entropy. The optimization is focused on improv-
ing a controller that commands an aerial vehicle
to avoid possible obstacles in its trajectory. This
optimization method has few uses in the literature
for control, but never has been used in such a
dynamic environment like the one presented in
this work. The optimization process was done
with the simulator environment of ROS-Gazebo
at fixed vehicle speed. A software implementa-
tion of the Cross-Entropy method and different
programs to inter-actuate with the simulator have
been done. The optimization method just needs
11 iterations to obtained good enough results to
use them in a real environment. The low number
of controllers tested (just 330) remarks the power
of this optimization method. A big amount of
tests at different speed were done to determine
the improvement of the controller. The optimized
controller could successfully finish the avoiding
tasks in more situations than the non optimized
controller. The use of the Cross-Entropy method
to optimize the controller allows tripling the speed
of the non optimized controller. The faster test of
the optimized controller was 4 times faster than
the speed used to train it.

After the successful results obtained a compari-
son with other optimization method have be done.
An extension to the two other scale magnitude
of optimization of Fuzzy control will be done, in
order to modify the membership functions and the
base of rules.
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