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Abstract Rapid development of underwater tech-
nology during the last two decades yielded more
affordable sensors and underwater vehicles, and,
as a result, expanded their use from exclusively
offshore industry towards smaller interdiscipli-
nary research groups. Regardless of application,
knowing the location of the vehicle operating un-
derwater is crucial. Relatively inexpensive solu-
tion is sensor fusion based on a dynamic model
of the vehicle aided by a Doppler Velocity Log
and a Ultra-Short Base Line position system. Raw
data from the sensors are highly asynchronous and
susceptible to outliers, especially in shallow water
environment. This paper presents detailed sen-
sor analysis based on experimental data gathered
in shallow waters, identifies outliers, presents an
intuitive and simple sensor fusion algorithm and
finally, discusses outlier rejection. The approach
has been experimentally verified on medium size
remotely operated vehicle.
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1 Introduction

Where am I? The underwater robot leaves the
ship and disappears into the sea. Once in the
water, it cannot be seen anymore and an operator
should rely solely on sensors to obtain its location.
Accurate localization enables easier navigation,
helps avoiding dangerous situations such as colli-
sion with ship, provides position feedback for the
control algorithms and is a basis for subsequent
smoothing algorithms used for accurate georefer-
encing. Good localization is required for all the
underwater activity.

Unfortunately, a Global Positioning System
(GPS) cannot be used for the underwater loca-
lization. Electromagnetic waves do not propa-
gate well through the water causing the GPS to
become practically useless. As a result, the un-
derwater localization relies on inertial and espe-
cially, acoustic sensors. As accurate inertial nav-
igation systems (INS) are extremely expensive,
low cost applications are restricted to the use of
attitude heading reference systems (AHRS). As
the AHRS provide only accurate vehicle orienta-
tion, i.e. roll, pitch and yaw angles, with respect to
the Earth reference frame, positioning itself is ob-
tained through acoustic systems based on several
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spatially distributed acoustic nodes. The distance
between these nodes differentiates the type of
the acoustic positioning systems. Typical examples
are a long baseline (LBL), short baseline (SBL)
and an ultra short baseline (USBL) system. The
USBL system is characterized with the lowest
accuracy, lowest acquisition cost and its easy de-
ployment results in low-cost operations. On the
other hand, the LBL system provides the highest
accuracy but is more expensive to acquire and
deploy. Besides providing position, the acoustic
sensors are also used to measure velocity of the
vehicle. Doppler Velocity Log (DVL) measures
relative velocity over a bottom or a water column.
Good overview of underwater navigation sensors
is provided in [1].

Acoustic sensors are far from ideal. Both USBL
and the DVL are susceptible to outliers, especially
USBL in shallow waters. Bad alignment and inad-
equate calibration can result in unacceptably large
errors. Proper preparation of sensors is there-
fore crucial for achieving specified performance.
Furthermore, the USBL provides position mea-
surements with bounded error at low data rate
while DVL provides the velocity measurements
at higher data rate. Although the subsequent inte-
gration of velocity provides smoother position es-
timate it suffers from drift. Nonetheless, it is possi-
ble to combine USBL and DVL outputs through
a sensor fusion algorithms yielding an improved
performance of the position estimate [2–8].

The objective of this paper is to present the
experimentally verified localization scheme for
the underwater vehicle. The approach includes
analysis of the USBL and DVL sensors, intuitive
and simple sensor fusion design and, finally, dis-
cussion on a three-level strategy for outlier rejec-
tion. At the end, the experimental results are pro-
vided and discussed before the final conclusions
are given.

2 Sensor Performance Analysis

The localization approach described in this paper
involves AHRS, pressure sensor, GPS, USBL and
DVL. Together, they provide attitude, depth, po-
sition and linear velocities of the vehicle. AHRS,
GPS and pressure sensor are only briefly de-

scribed, while majority of the section focuses on
the functionality, specifications, calibration and
outliers associated with the acoustic sensors.

Magnetic compass is one of the most common
sensors found in marine equipment. It usually
comprises three magnetometers measuring the
Earth’s magnetic field. Both scale factor and offset
of the sensor are affected by its pre-magnetization.
Moreover, when compass is installed within the
vehicle, the surrounding material, moving to-
gether with compass, distorts Earth’s magnetic
field around it and causes error called magnetic
deviation. Theoretically, both types of error can
be dealt with by calibration. In practice, however,
the inadequately calibrated compass is a common
source of problems. Furthermore, the magnetic
compass has to be compensated for magnetic
variation, which is the difference between true
and magnetic North. Earth’s magnetic field also
contains a vertical, Z , component allowing three
orthogonal magnetometers to act as an inclinome-
ter, providing roll and pitch angles. Detailed dis-
cussion on magnetometers can be found in [9–11].

Magnetometers can be aided by three ac-
celerometers and three angular rate sensors. Such
multi-axis sensor assembly forms an IMU which,
with addition of on-board processing system, be-
comes a AHRS. The accelerometers improve in-
clination functionality while angular rate sensors
contribute to smoother attitude and faster sensor
dynamics. Unlike traditional INS which provides
both attitude and position, AHRS provide only
estimate of attitude, i.e. roll, pitch and heading
angle. In our application the AHRS can be found
in the USBL, DVL and in the underwater vehicle
itself.

Unlike magnetic, the depth and GPS measure-
ments are not so problematic. Pressure sensors
depend on reliable technology and it is only im-
portant to calibrate them properly. The offset is
minimized at the sea level while the right scale
factor is obtained from the subsequent dive at the
known depth. In this paper, due to its reliability,
the pressure sensor data is taken directly as a
depth estimate, and is extensively used in outlier
rejection scheme. On the other hand, the GPS
does not require any calibration. The accuracy
of the GPS used in experiments was ±2 m. It is
worth noticing that GPS sensor, after prolonged
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inactivity, takes 10 to 20 s to acquire satellite data
and converges to the specified accuracy.

2.1 USBL

USBL comprises a transducer attached to the
platform and a transponder attached to the under-
water vehicle (ROV) as shown in Fig. 1. Acoustic
signal is emitted into the water and is received by
a transponder. The transponder sends a response
which arrives at four receivers R0–R3 embedded
within the transducers head. Total signal travel-
ling time and known speed of sound in the water
determine the distance between the transducer
and transponder, also called a slant range. The
small differences of arrival times between the re-
spective receivers allows for two angles, i.e. target
azimuth and target elevation, to be determined.
The position of the transponder in the trans-
ducer’s frame of reference is then determined
from these two angles and the slant range.

In order to get the absolute position of the
transponder in North–East–Down (NED) refer-
ence frame [12] of the transducer, we need both
absolute position and the attitude of the trans-
ducer. The absolute position of the transducer
is determined from the position of the platform,
measured by the GPS, and the distance, i.e. lever
arms, between the GPS and the USBL transducer
as shown in Fig. 1. For small ships where the
lever arms are short and the GPS is close to the
USBL transducer, it is enough to add the lever
arms to the position measured by the GPS. Errors

Fig. 1 Deployment and basic functionality of USBL

induced by neglecting the attitude of the ship are
insignificant and do not affect USBL accuracy.
For larger ships, however, where the lever arms
can be longer, the attitude of the ship may induce
errors and it has to be taken into account. Good
material on the USBL systems is given in [13–15].

Specifications of the Tritech Micro Nav USBL
used in the paper are: Tracking range: 500 m (typ-
ical horizontal), 150 m (typical vertical). Range
accuracy is ±0.2 m, Bearing accuracy is ±3◦ and
position update rate is 0.5–10 s. In order for the
USBL to meet above specifications it is impor-
tant to carefully set the system up and calibrate
it. This involves compass calibration, alignments
of reference frames, measurements of speed of
sound and the lever arms. For example, only 1◦
of misalignment combined with a slant range of
100 m induces position error of 1.75 m. On the
other hand, a 1 % error in the speed of sound
measurement induces error of 1 m per 100 m of
slant range. Some advanced USBLs use overall
dynamic calibration, as explained in [16], where
the procedure involves maneuvering the vessel
around and over a stationary reference transpon-
der on the seabed to determine the mounting
offsets and the pitch, roll and heading corrections.

By neglecting the lever arm effect because the
ship is small, the projection of the slant range,
R, to the surface, i.e. X–Y plane, can be calcu-
lated as Rxy = √

R2 − Z 2. The Rxy, referring to
Fig. 2, is used directly to determine the relative

Fig. 2 Geometrical relations between the GPS and
USBL transducer mounted on the ship and the USBL
transponder
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Fig. 3 Regular diver position (dots) and outliers (circle)
caused by the reflection from the hull, shown in the XY
plane with respect to the motion of the boat (line)

distance from the transponder to the transducer in
northwards, dNusbl = Rxy cos(ψusbl + φusbl + ψmd),
and the eastwards, dEusbl = Rxy sin(ψusbl + φusbl +
ψmd), direction. Angle ψusbl is the USBL heading,
ψmd corrects magnetic variation and φusbl is the
angle of incoming transponder sound relative to
the heading.

Absolute position of the transponder in Earth’s
NED frame is given as

N = dNusbl + Ngps + dNlever (1)

E = dEusbl + Egps + dElever (2)

where Ngps and Egps are absolute position mea-
sured by the GPS and dNlever and dElever are
projection of the lever arm in the NED reference
system as shown in Fig. 2. Note that later, while
using Eqs. 1 and 2 as an inputs to a filter, we
actually transform the position coordinates into a
“local reference frame” with origin in (E0, N0) for
easier interpretation of results.

Unfortunately, the USBL system is susceptible
to outliers due to the presence of acoustically
reflecting surfaces within the operational envi-
ronment. In order to illustrate typical outliers
some experimental data is provided. The diver
equipped with USBL transponder was following
the rope marking the future route of the pipeline
between the mainland and a nearby island. The
boat equipped with the USBL transducer tracked
the diver. The weather was calm, the maximal
diver’s depth along the transect was about 50 m.

Figures 3 and 4 illustrate several groups of out-
liers in X–Y plane and time domain, respectively.
Group (a) is the beginning of the dive. The diver is
just close to the surface and depth is slightly
negative. Negative depth indicates that the
reflection occurred above the transducer. Poten-
tial reflections from the surface and fact that diver
may be above the transducer yields this data unre-
liable. Group (b) has irregular negative depth like
the group (a), discontinuity in bearing data and do
not have discontinuity in range. The bearing in-
dicates that the acoustic beam hits the transducer

Fig. 4 Bearing (dots top),
slant range (dots bottom)
and depth (diamonds
bottom) showing outliers
caused by the reflection
from the hull of the boat
in the time domain
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Fig. 5 Regular diver position (dots) and outliers (circle)
caused by the reflection from the surface and bottom,
shown in the XY plane with respect to the motion of the
boat (line)

from the opposite side of diver’s position. Finally,
continuity of range indicates that the reflection
occurs close to the transducer. Overall, these out-
liers seem to be reflections from the hull of the
boat. Outliers under (d) are similar in nature but
have discontinuity in range indicating additional
reflection either from the surface or the bottom.
Next, the observations denoted by (c) have pos-
itive depth but there is a 20◦ discontinuity in
bearing between the first and second set of three
observations. At least one of them is a set of
outliers but it is not conclusive whether it is the
first one, second one or both of them. It is likely,

from Fig. 3, that three points closer to the pipeline
are not outliers. Finally, two observations between
regions (c) and (d) seem to be valid data but,
as they stand as isolated data, it is ungrateful to
evaluate them.

Figures 5 and 6 illustrates a group of outliers
characterized by both slant range and depth being
slightly less than two times of expected range and
depth. As the increased slant range is a firm sign of
reflection, the double range indicates the double
reflection, i.e. the reflection from both the surface
and the bottom. Also, it is obvious that bearing
is not affected when the outlier occurs, indicating
that the reflection occurred for the primary beam,
i.e. the one travelling from the transducer to the
transponder.

2.2 DVL

DVL comprises four directional transducers, each
of them capable of transmitting and receiving
sound. Transducers are deployed 90◦ from each
other around the vertical axis of the sensor. Trans-
ducers form a substantially small angle with verti-
cal axis as shown in Fig. 7.

The sound is transmitted from each of the four
beams at frequency f . The sound bounces off the
bottom or water column and comes back with
frequency shift proportional to relative velocity
due to the Doppler effect. Three linear velocities,
u′, v′ and w′ with respect to the x, y and z axis
of the sensor, are determined from four frequency

Fig. 6 Bearing (dots top),
slant range (dots bottom)
and depth (diamonds
bottom) showing outliers
caused by the reflection
from the surface and
bottom in the time
domain
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Fig. 7 Typical DVL sensor with four transducers deployed
90◦ from each other around the vertical axis

shifts. Besides velocity data, the DVL calculates
and provides an altitude above the bottom.

The DVL sensors are typically enhanced with
an AHRS in order to correct vehicle velocities
for roll and pitch, and transform the velocity
vector from sensor to Earth’s reference frame.
Corrected velocities are given as [12]: [u v w]′ =
C[u′ v′ w′]′ with elements of matrix C given
as: C11 = cos θ , C12 = sin θ sin φ, C13 = sin θ cos φ,
C21 = 0, C22 = cos φ, C23 = − sin φ, C31 = − sin θ ,
C32 = cos θ sin φ, C33 = cos θ cos φ, where φ is roll
angle and θ is pitch angle provided by the AHRS
within the DVL.

Operating frequency for the NavQuest 600P
Micro DVL used in this paper is 600 kHz, ac-
curacy is 1 mm/s plus 0.2 % of actual velocity,
minimum and maximum operating altitudes are
0.3 and 110 m, respectively, maximum velocity is
20 kts, and highest update rate is 0.2 s. In addi-
tion, the DVL provides information on whether

measurement was obtained through the bottom or
the water lock. Good reference on DVL is given
in [17].

For example, velocity of 0.5 m/s induces offset
of 1 mm/s + 0.2 % of 0.5 m/s totaling 2 mm/s. This
offset induces error of 7 m after 1 h. Much larger
error may occur when the DVL is physically mis-
aligned with the robot reference frame or when
the compass is not calibrated properly. Only 1 deg
of misalignment, coupled with velocity of 0.5 m/s
causes lateral error of 30 m after 1 h. Finally, the
velocity measurement is directly proportional to
the speed of sound. For example, 1 % or 15 m/s
error in speed of sound, coupled with robot veloc-
ity of 0.5 m/s adds up to 18 m after 1 h.

DVL is also susceptible to outliers. First, when
water lock occurs, our experience shows it is un-
reliable measurement and it is advisable to re-
ject it. Another type of outlier is illustrated in
Fig. 8 where majority of velocity measurements
are wrong for altitudes less than 0.6 m. The prob-
lem is present at smaller scale for altitudes up to
3 m.

2.3 Underwater Vehicle Dynamics

The model of the underwater vehicle is based
on rigid body motion and has a quite complex,
nonlinear and coupled multi-degree of freedom
(DOF) dynamics [18–20] and is given as

Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ + go + w (3)

where M is the 6 × 6 system inertia matrix in-
cluding added mass, C(ν) is the 6 × 6 Coriolis-
centripetal matrix including added mass, D(ν) is
6 × 6 damping matrix, g(η) is the 6 × 1 vector
of gravitational / buoyancy forces and moments,

Fig. 8 Unreliable
velocity measurements at
low DVL altitude taken
for actual velocities
strictly limited to 0.4 m/s



J Intell Robot Syst (2012) 68:373–386 379

τ is the 6 × 1 vector of control inputs, go is
the 6 × 1 vector used for predetermining (ballast
control), w is the 6 × 1 vector of environmental
disturbances, ν is the 6 × 1 velocity vector and
η is the 6 × 1 position and orientation vector in
surge, sway, heave, roll, pitch and yaw degrees
of freedom (DOF). Matrices M, C and D have
off diagonal elements implying that the different
DOFs are coupled. Also, elements of C(ν), D(ν)

and g(η) are generally nonlinear.
At first, the dynamical modeling does not seem

to fit into the sensor section. However, it belongs
to sensor system and is regularly used to assist sen-
sor fusion especially as an integral part of observer
for underwater vehicle navigation [18, 21, 22]. The
dynamical model improves the performance and
reliability of the observer, because the estimate of
the position does not rely on pure kinematics, i.e.
on USBL readings combined with direct integra-
tion of DVL data.

However, poorly formulated models that does
not capture the important characteristics of the
dynamic system, may cause reduced performance
and also stability problems when used in the
closed loop control [22]. It is always better to
include more complete model in order to cap-
ture couplings, nonlinearities and external distur-
bances. The choice of the model has a significant
impact on a position estimate. Unfortunately, as
the model gets more complex, its identification
gets more complicated, time consuming and more
expensive to obtain. In addition, the use of some
underwater vehicles is often very flexible, a pay-
load frequently changes and, consequently, the
dynamics is significantly altered. This presents ad-
ditional burden on keeping the accuracy of com-
plex dynamical models. Typically, the complexity
of the model is adjusted according to application
and required accuracy.

The simplest approach to sensor fusion pre-
sented in this paper would be application of a
pure kinematic model. However, the possibility of
prolonged data outages requires having at least
the simplest form of the dynamical model. On the
other hand, the localization in a horizontal plane,
i.e. surge, sway and yaw DOFs, is of primary in-
terest. Generally, for a slowly moving vehicle with
small magnitudes of roll and pitch, vertical motion
is uncoupled from horizontal motion and can be

dropped out, resulting in reducing Eq. 3 to three
coupled and nonlinear DOF describing horizontal
dynamics. Identification of coupling and nonlinear
parameters was not done due to the lack of re-
sources needed to perform this relatively complex
procedure, limiting the application to the use of
uncoupled and linear three DOF model. The fact
that the model is used only for localization and not
for closed loop control may, up to some point, jus-
tify such severe simplification of the model. Fur-
thermore, as the heading measurement is reliable
and readily available with relatively low noise, i.e.
0.2◦

rms, it was decided to avoid additional filtering.
The Eq. 3 is therefore reduced to surge and sway
DOFs only.

Besides control forces, the underwater vehicle
is subject to external forces such as sea current
and vehicle’s tether. The common assumption in
modeling of the sea current is that it is constant or
slowly varying [18, 22]. This assumptions becomes
questionable in shallow water environment where
the underwater vehicle is operated from a coast
or a boat anchored close to the coast. Rugged
coastline and vehicle position relative to it may
cause current to change rapidly both its direction
and intensity. To make things worse, unlike in
deep water operations where tether is vertical,
in shallow water environment the tether is ex-
tended more or less horizontally. Hence, tether
disturbances are coupled to the vehicle position,
fickle sea current as well as to the actions of a
tether operator. As a result, the external distur-
bances can have both low and high frequency
components making it tough to model external
disturbances accurately, and especially to extract
external disturbances from thruster inputs. Con-
sequently, there are two options. Either to in-
clude the model of external disturbances which,
with its complexity in tether modeling and in-
consistency in sea current direction and intensity,
do not leave us with a lot of confidence in its
accuracy or, on the other hand, to simply ex-
clude it. In both cases prolonged DVL and USBL
outages may cause the localization error to drift
away. In this paper, as the model is used only
for localization and not for closed loop control,
the simple and application-sufficient linear two
DOF model without external disturbances was
implemented.



380 J Intell Robot Syst (2012) 68:373–386

Based on the discussion above, the resulting
model is given as

mu̇m = kτ τu − b uum (4)

mv̇m = −b vvm (5)

where um and vm are modeled surge and sway ve-
locities in vehicle-fixed frame, τu represents thrust
in surge DOF given in % of full scale, b u and b v

are the viscous damping coefficients in surge and
sway DOFs, ku is thruster gain in surge DOF, m
represents mass and added masses of the vehicle
[12]. Parameters of the model are ku = 0.038 N/%,
b u = 6 kg/s, b v = 18 kg/s and m = 30 kg.

3 Sensor Fusion Filter Design

The USBL provides position measurements at low
data rate and with bounded error while the DVL
runs at higher data rate and provides smoother
but drift-susceptible position estimate based on
integration of its velocity measurements. Gener-
ally, both sensors generate asynchronous stream
of data so the dynamic model is introduced to
upsample data at the sensor fusion rate. The pur-
pose of this section is to build a filter fusing the
best from each of these three data sources (USBL,
DVL and the dynamic model) and provide a high-
performance position estimate.

The most common approach to the sensor fu-
sion is Kalman filtering. Extended Kalman Fil-
ter (EKF), characterized with nonlinear system
model, has been applied in large number of ship
and underwater vehicle applications, e.g. [23].
One drawback of the EKF is that kinematic and
kinetic equations must be linearized about varying
velocities and a yaw angle. Also, when used as a
part of the closed loop system, only local expo-
nential stability is ensured [18]. In addition, tuning
of Kalman filters is difficult and time consuming
because it is a stochastic system with large number
of states and covariance equations [18]. Most of
these parameters are non-intuitive and difficult
to relate to physical quantities. These problems
motivate the search for a easy-to-tune nonlinear
fixed gain observer which covers the whole state
space and is Globally Asymptotic Stable (GES)—
a nonlinear passive observers.

Nonlinear passive observers were introduced
into navigation during the last decade, e.g. [24].
An example for underwater application is given
in [21]. Passive nonlinear observers are derived in
deterministic setting but can be used in stochastic
systems. The structure of the passive observer is
essentially full nonlinear model of the vehicle,
including various disturbances. After the model
is established, the fixed observer gains are chosen
such that the error dynamics is GES [24].

The approach presented in this paper is a sim-
ple complementary sensor fusion filter with highly
intuitive insight into its functionality. It resembles
the structure of nonlinear passive observer. It is
nonlinear in kinematic equations and has fixed
gains. Actually, if two filters are compared the
structure of the complementary filter is simply an
incomplete version of the structure of the nonlin-
ear passive observer.

3.1 DVL-Aided Surge Velocity Model

In continuous time domain, the simple aiding of
the surge 4 and sway 5 with the DVL measure-
ments, u and v, yields

˙̂um = (1/m)[kτ τu − b uûm + k f u(u − ûm)] (6)

˙̂vm = (1/m)[−b vv̂m + k fv(v − v̂m)] (7)

where ûm and v̂m are estimated surge and sway
velocities while k f u and k fv are filter gains.

However, the DVL data is generally asynchro-
nous and therefore, before discretization of Eqs. 6
and 7, it is necessary to fill in, or upsample the
DVL measurements with model outputs. This is
done in the way that Eqs. 4 and 5 are discretized
with d/dt = (q − 1)/h

ūm,k+1 = (hkτ τu,k + kmbuūm,k)/m (8)

v̄m,k+1 = kmbvv̄m,k/m (9)

where kmbu = m − hb u, kmbv = m − hb v , h is a
sampling time, q is a forward shift operator
and subscript k defines a discrete system. The
model states, ūm,k and v̄m,k, are updated as ūm,k =
u(tDVL) and v̄m,k = v(tDVL) at the new DVL ac-
quisition instance, tDVL. Consequently, ūm and
v̄m, which are now upsampled and synchronized
with sampling, becomes the discrete version of the



J Intell Robot Syst (2012) 68:373–386 381

DVL measurement u. Subsequent discretization
of Eqs. 6 and 7 yields

ûm,k+1 = (hkτ τu,k + kmbuûm,k + hk f ueum,k)/m

(10)

v̂m,k+1 = (kmbvv̂m,k + hk fvevm,k)/m (11)

where eum,k = ūm,k − ûm,k, evm,k = v̄m,k − v̂m,k,
k f u and k fv are filter gains. In our case k f u =
50 kg/s, k fv = 50 kg/s and h = 0.1 s.

3.2 Position-Aided Velocity Filter

The USBL and DVL-aided velocity model data
are fused through a simple complementary filter
[25] as shown in Fig. 9. Inputs to the filter are
velocities from the dynamic model 10 and 11, ûm

and v̂m, the USBL measurement Eqs. 1 and 2,
and heading ψ . Outputs are position estimates
N̂ and Ê. The estimated velocities, û and v̂, are
transformed from the body-fixed reference frame
to the Earth-fixed reference frame. Integrator in-
tegrates transformed velocities, ˙̂u and ˙̂v in order
to estimate position. Position error is obtained
through comparison of the position estimate and
USBL measurement and is transformed back to
the body-fixed reference frame. The transformed
error is filtered through the filter comprising ad-
justable parameters ku, kv and an integrator.

Both DVL and USBL measurements contain
actual value of the signal, band-limited white noise
and the measurement bias. Integrated DVL bias
represents drift in the position estimate. Assume,
in Fig. 9, that the ψ = 0 and v̂ = 0, hence yield-
ing the position estimate N̂ = ku/(s + ku)N +

Fig. 9 Complementary filter with USBL-aided DVL posi-
tion estimate

ûm/(s + ku). The bias within ûm is constant, i.e.
s = 0 so the estimation error due to DVL bias is
bounded to ûm/ku. Assuming relatively large bias
of 5 mm/s and ku = 0.1s−1 the estimated position
error is negligible, i.e. 5 cm. Effectively, the DVL
output is high pass filtered through GHP = s/(s +
ku) and the USBL signal is effectively low-pass
filtered through GLP = ku/(s + ku). There is no
loss of information because GLP + GHP = 1.

The discrete version of the filter is given as

eN,k = N̄k − N̂k (12)

eE,k = Ēk − Êk (13)

eu,k = eN,k cos ψk + eE,k sin ψk

ev,k = eE,k cos ψk − eN,k sin ψk

ûk = ku,keu,k + ûm,k (14)

v̂k = kv,kev,k + v̂m,k (15)

N̂k+1 = N̂k + h(ûk cos ψk − v̂k sin ψk)

Êk+1 = Êk + h(ûk sin ψk + v̂k cos ψk)

where N̂ and Ê are position estimate in north-
wards and eastwards directions, respectively. Er-
rors 12 and 13 are errors between upsampled
USBL measurement and estimated position. The
upsampled USBL measurements are obtained by
integrating ûm,k and v̂m,k as

N̄k+1 = N̄k + h(ûm,k cos ψk − v̂m,k sin ψk)

Ēk+1 = Ēk + h(ûm,k sin ψk + v̂m,k cos ψk)

When new USBL measurement arrives at time,
tUSBL as shown in Fig. 10, N̄k and Ēk are updated

Fig. 10 Acquisition of the USBL data (large hollow circle)
disrupts upsampled USBL measurement (small hollow cir-
cle with dash-dot line) and generates reference for position
estimate (f illed circle with line)
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to N̄k = N(tUSBL) and Ēk = E(tUSBL), and filter
parameters ku and kv in Eqs. 14 and 15 are reset
at their initial value ku0 and kv0. They decay expo-
nentially as kk+1 = kk(T − h)/T until new USBL
measurement arrives. Filter parameters are ku0 =
kv0 = 0.1 s−1 and T = 0.5 s. When USBL signal
is absent for some time the estimates N̂ and Ê
converge towards N̄k and Ēk, respectively.

3.3 Outlier Rejection Discussion

In metrology, an outlier is measurement that is
numerically distant from the rest of the data. As
such, outliers may seriously compromise the qual-
ity of the underwater position estimate [26] and
have to be rejected. Typical approach to outlier
detection would be a combination of filtering with
change detector [27, 28], a technique well known
from the adaptive filtering and fault detection. Fil-
tering provides a residual of the signal, e.g. noise,
which is fed into the change detector. From a
change detection point of view, it does not matter
which filter we use and modeling phase can be
seen as a standard task [27]. Used filters can be,
for instance, Recursive Least Squares (RLS) or
Kalman filter.

The purpose of the change detector is to de-
termine and average a distance measure to get a
suitable test statistics which is then thresholded
to determine whether the change occurred or not
[27]. Change occurs if residual parameters, e.g.
mean or variance, become “large” in some sense.
The main problem in statistical change detection
is to decide what “large” is. The outlier rejection
is always a compromise between detecting true
changes and avoiding false alarms.

One of the most commonly used change de-
tectors is cumulative sum (CUMSUM) [27, 29],
originally developed for production quality con-
trol. CUMSUM is based on calculation of cumu-
lative sum of the logarithm of the likelihood (log-
likelihood) ratio of residual’s scalar parameters,
e.g. mean or variance. Interquartile range is an
another example of change detector where out-
liers are classified based on a their distance from
a lower and upper quartiles of a set of data. An
overview of change detectors can be found for
instance in [29] or [27].

There are three typical approaches to change
detection [27], one filter, two filters, and multiple-
filter approach. For example, a RLS filter can be
combined with CUMSUM detector resulting in
RLS CUMSUM filter. Two filter approach com-
bines slow and fast filter, e.g. compares a small
set of recent data to a whole set of data, and uses
likelihood approach to determine distance mea-
sure. General likelihood ratio (GLR) is a popular
method based on two filter approach. Finally, the
idea of multiple-model approach is to enumerate
all conceivable change hypotheses and choose one
which has the lowest residual.

In our application the main source of outliers
are USBL and DVL. Especially annoying are out-
liers caused by multiple acoustic paths described
in Section 2.1 and also reported, for instance, in
[26, 30–32]. The systematization of the outliers in
this paper is based on three criteria, (1) whether
particular measurement is possible for a partic-
ular sensor, (2) whether particular measurement
follows the trend in residual for single sensor
and (3) whether relationship between the data
from two or more sensors satisfies specified static
or/and dynamic conditions. If measurement do
not pass all three conditions it is treated as an
outlier. Note that the approaches (2) and (3) are
based on filter/change detector structure.

In the first approach the outliers are rejected
by taking out signals which make no sense itself.
For example, the value of the observation can be
outside predetermined limits. The DVL velocity
measurements shown in Fig. 8 are not reliable for
altitudes below 0.6 m and are directly eliminated.
Furthermore, the vehicle’s velocities in x, y and
z directions are limited by application. For exam-
ple, the surge velocity of the vehicle is limited to
0.5 m/s in forward direction and to 0.3 m/s in back-
wards direction. Next, the USBL data is rejected
if calculated depth is negative (see Fig. 6). In addi-
tion, as the USBL works more reliably when the
transponder is more “below” than “away” from
the transducer, the measurements can be rejected
by setting a limit on a low depth-to-slant-range
ratio.

In the second approach the single sensor signal
which make no sense with respect to neighboring
signals in the time domain are rejected as a outlier.
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In our case, the approach can be used if there is
not prolonged outages of USBL signal as shown,
for example, in Figs. 5 and 6. The continuous
sequence of USBL measurements is suddenly in-
terrupted with a measurement that is substantially
different (see Fig. 10). If (Ē, N̄)k does not fit
within the specified region around (Ê, N̂)k the
measurement is rejected. The difference between
(Ê, N̂)k and (Ē, N̄)k can be seen as a residual.
A single sensor approach for outlier rejection is
described in [33]. The filter is based on causal
moving data window, and is therefore fast and
appropriate for real-time applications.

Similarly, the residual em,k from Eq. 10 is
“small” for several DVL measurements within last
few seconds. If new DVL measurement increases
the error em,k above the threshold, i.e. the noise
level for the DVL, the measurement is an out-
lier. The noise level condition can be expanded
through the limits for expected velocity, ūm,k. If
ūm,k is not within ûm,k ± ûlim,k the measurement is
rejected. Limits ûlim,k are determined from noise
level, the accuracy of velocity model and dynamic
conditions on surge velocity signal.

One could argue that it would be too conser-
vative to exclude the DVL measurements in the
above example if the estimation error that they
produce is too big. Namely, the observer uses both
the DVL and the USBL data and the big estima-
tion error may be due to a problem in the USBL
measurement that influences the velocity estima-
tions as well, while the DVL is nicely working.
Comparing the information from the various sen-
sors will indeed help and is therefore addressed
next. However, single sensor outlier rejection has
an advantage of being quite intuitive and its con-
servative nature can be fine tuned to fit well with
outlier rejection methods based on plurality of
sensors.

The method belonging to the third approach
which is used in this paper is the simple outlier
rejection based on difference between the reli-
able depth measurement provided by the pres-
sure sensor and the outlier-susceptible depth
measurement provided by the USBL. There are
numerous other examples involving simple rela-
tions between multiple sensors addressed else-
where in the literature. In [30] each conceivable

acoustic reflection is modeled and the outliers
are essentially classified based on the model with
minimal residual. In [31], for example, the outlier
rejection is tied to the signal describing propeller
activity, i.e. cavitation.

The approach, however, may include more
complex rejection schemes. For example, a new
USBL measurement can be evaluated against a
region surrounding the present position estimate
which was obtained by integration of the veloc-
ity of the vehicle since the last reliable USBL
measurement. Due to the drift caused by DVL-
aided model, the region in the X–Y plane con-
taining the potential position grows larger with
time, somewhat similar to covariance matrix in
Kalman filter. When new USBL measurement
arrives and falls outside the region, it is consid-
ered to be an outlier and is not processed by
the fusion filter. Above procedure is applicable
even for prolonged outages of the USBL signal.
Similar approaches can be found elsewhere. In
[32] Kalman filter integrates dead reckoning with
the array of pre-deployed acoustic beacons and
outliers are rejected through the time of arrival
for each beacon. Position error is propagated and
position uncertainty is transformed into uncer-
tainty in predicted travel time and outliers are
thresholded using the Mahalanobis distance. In
[31] a new measurement is evaluated through its
reasonableness by checking the Euclidian distance
which depends on the time of last USBL hit. In
[34], diffusion based observers process the whole
segments of trajectory at the time allowing the
consideration of important practical issues such
as outliers in a simple framework. Diffusion term
is interesting, for example, in cases where the
noise in not Gaussian or to explicitly incorporate
outliers into the filtering process.

In conclusion, the outlier rejection can be done
in many ways, ranging from simple sensor cross-
checks to complex filter-based algorithms. The
outlier rejection is always a compromise. There is
a point where rejection of too many observations
become counter-productive and the localization
works worse than without outlier rejection. The
designer’s, and especially user’s objective is ad-
justing the rejection scheme, tightly tied to in-
field conditions, close to this optimal point. The
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intuitive nature of the algorithm greatly simplifies
this task.

4 Experimental Results

Experiments were performed with Seamor 300F
remotely operated vehicle (ROV) shown in
Fig. 11. Maximum operating depth is 300 m and
maximum speed is 3 kt, or around 1.5 m/s. The
ROV dimensions are 472 × 355 × 355 mm and its
weight is around 30 kg. The ROV propulsion com-
prises two horizontal and two vertical thrusters
rated at 150 W and capable of producing 5 kg of
thrust each. The horizontal propulsors allow for
surge and yaw thrust and control while vertical
thrusters allow for depth and lateral motion up to
some level. The ROV is equipped with forward
looking color CCD camera with manual/auto fo-
cus and 2 × 50 W LED lights, both mounted on a
tilt platform. Furthermore, the ROV is equipped
with DVL and USBL transponder described in
Section 2.

In order to evaluate the sensor fusion filter,
two sets of experimental results are provided il-
lustrating the performance of the filter with and
without USBL data. The mission was performed
from the ship anchored close to a small island.
The mission was defined with several straight lines
the operator needed to follow. They were defined
by desired heading, desired velocity and desired
time. The results shown in Fig. 12 show that the
filter performs well when USBL data is taken
into account. However, when DVL-aided surge

Fig. 11 Seamor 300F remotely operated vehicle (ROV)

Fig. 12 Position estimate (line) in X–Y plane behaves well
with the USBL aid (dot) but show large error if only DVL-
aided model (line) is used

model is used, the offset builds up ending up in
inaccurate position estimate.

Next, the sensor fusion filter was evaluated
against its accuracy, the polygon comprising three
lines and four points was created. Three expand-
able ropes were stretched at the bottom between
four points. The length of straight lines between
the polygon were 91, 30 and 105 m, respectively.
Each points was fixed with an anchor and a buoy,
and its position was taken by GPS with σ = 2m
accuracy. The vehicle was piloted along these lines
by following the ropes on video camera as shown
in Fig. 13. Although positioning error can be de-
termined only when the vehicle reaches anchoring
points, the deflection from the desired trajectory
can be determined in any moment. The results are
shown in Fig. 14.

Fig. 13 Camera view from the ROV during the polygon-
following mission
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Fig. 14 The quality of position estimate (line) in X–Y
plane with USBL-aiding (circle) verified over a polygon
(f illed circle with line)

5 Discussion

The first portion of the sensor fusion that was
gradually and intuitively developed in Section 3
includes simple and relatively inaccurate dynamic
velocity model. This simple model is important
because it upsamples the DVL signal by the data
obtained from the model 8 and synchronizes it
with the sampling instances. The DVL measure-
ments can be asynchronous either due to pres-
ence of invalid measurement or the measurement
stamped as an outlier. In addition, the filter based
on the velocity model 10 reduces DVL noise.
Accuracy of the estimate depends on the accuracy
of the DVL.

However, in order to estimate the position,
the resulting velocities have to be transformed
into the Earth fixed reference frame and sub-
sequently integrated. Although the positioning
error is caused mainly by the noise and out-
liers, it can be caused by inadequate preparation
of sensors. For instance, the heading of uncali-
brated compass, uncalibrated DVL offset or mis-
alignment between compass and DVL reference
frames can induce a large position error, as shown
in Fig. 12. Therefore, sensor preparation and cali-
bration need to be done meticulously.

Luckily, the error shown in Fig. 12 is corrected
by the the USBL, which provides absolute po-
sition. Like the DVL data, asynchronous USBL
data is synchronized to the 0.1 s rate through the
upsampler that expands the USBL signal with the
position estimates obtained from the velocity filter
as shown in Fig. 10. The USBL is characterized
with high noise content or abundance of outliers,
as shown in Figs. 3, 5, 12 and 14 and these issues
are addressed with data fusion and outlier rejec-
tion, respectively. The resulting position estimate,
shown in Figs. 12 and 14, is continuous, low noise
and accurate within the boundary of USBL accu-
racy.

In order to implement a well-performing prac-
tical filter, the performance of USBL and DVL
sensors were analyzed with respect to the cir-
cumstances when outliers can occur. The filter
itself provides a good platform for implementa-
tion of outlier rejection scheme due to its simplic-
ity and intuitiveness. It is important to reject as
many outliers as possible before data gets into the
filter. Outliers are rejected through three criteria.
These criteria are static sensor rejection clauses,
dynamic sensor clauses, and clauses related to
combination between signals from different sen-
sors. Again, the outlier rejection is separated
from filtering and occurs asynchronously, in a dis-
cretization step following the new measurement
arrival.

6 Conclusions

This paper presents practical issues and proce-
dures related to design of the fusion filter aimed
at localization of underwater vehicles in the shal-
low water environment. The simple and yet well
performed data fusion filter design is provided
in tutorial-like fashion. Experimental results are
accurate and show robustness of the approach
even in the case some sensor data is missing or
is contaminated with high noise. Special attention
is paid to performance of the USBL and DVL
sensors, associated outliers and their rejection.
Although the provided data fusion performs well
it is necessary to emphasize the significance of
sensor preparation and calibration.



386 J Intell Robot Syst (2012) 68:373–386

Acknowledgements The work was carried out in the
framework of a Coordination and Support Action type
of project supported by European Commission under the
Seventh Framework Programme “CURE—Developing
Croatian Underwater Robotics Research Potential” SP-
4 Capacities (call EU FP7-REGPOT-2008-1) under grant
agreement 229553.

References

1. Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey
of underwater vehicle navigation: recent advances and
new challenges. In: Proc MCMC20067th IFAC Confer-
ence on Manoeuvring and Control of Marine Vehicles,
Lisbon, Portugal, Invited paper (2006)

2. Miller, P., Farrell, J., Zhao, Y., Djapic, V.: Au-
tonomous underwater vehicle navigation. IEEE J.
Oceanic Eng. 35(3), 663–678 (2010)

3. Hegrenaes, O., Hallingstad, O.: Model-aided ins with
sea current estimation for robust underwater naviga-
tion. IEEE J. Oceanic Eng. 36(2), 316–337 (2011)

4. Lee, P.-M., Jun, B.-H., Kim, K., Lee, J., Aoki, T.,
Hyakudome, T.: Simulation of an inertial acoustic nav-
igation system with range aiding for an autonomous
underwater vehicle. IEEE J. Oceanic Eng. 32(2), 327–
345 (2007)

5. Willumsen, A., Hallingstad, O., Jalving, B.: Integra-
tion of range, bearing and doppler measurements from
transponders into underwater vehicle navigation sys-
tems. In: OCEANS 2006, pp. 1–6 (2006)

6. Jalving, B., Gade, K., Hagen, O., Vestgard, K.: A tool-
box of aiding techniques for the hugin auv integrated
inertial navigation system. In: OCEANS 2003. Pro-
ceedings, vol. 2, pp. 1146–1153 (2003)

7. Hegrenaes, O., Berglund, E., Hallingstad, O.: Model-
aided inertial navigation for underwater vehicles. In:
IEEE International Conference on Robotics and Au-
tomation, 2008. ICRA 2008. pp. 1069–1076 (2008)

8. Rigby, P., Pizzaro, O., Williams, S.: Towards geo-
referenced auv navigation through fusion of usbl and
dvl measurements. In: OCEANS 2006, pp. 1–6 (2006)

9. Caruso, M.J.: Applications of magnetoresistive sen-
sors in navigation systems. SAE Technical Paper
970602 (1997). doi:10.4271/970602. Link: http://papers.
sae.org/970602/

10. “Compass heading using magnetometers,” Application
Note 203, Honeywell.

11. Vasconselos, J.F., Elkaim, G., Silvestre, C., Oliveira, P.,
Cardeira, B.: A geometric approach to strapdown mag-
netometer calibration in sensor frame. IEEE Trans.
Aerosp. Electron. Syst. 47(2), 1293–1306 (2008)

12. Fossen, T.I.: Guidance and Control of Ocean Vehicles,
pp. 6–12. Wiley, Chichester, England (1994)

13. McPhail, S., Pebody, M.: Range-only positioning of a
deep-diving autonomous underwater vehicle from a sur-
face ship. IEEE J. Oceanic Eng. 34(4), 669–677 (2009)

14. Philips, D.: An evaluation of usbl and sbl acoustic sys-
tems and the optimisation of methods of calibration—
part 2. Hydrogr. J. 109, 10–20 (2003)

15. Cooper, D.: System manual for fusion usbl navigation
systems. User Manual, pp. 145–148 (2006)

16. Calibration and verification of sonardyne usbl systems:
White paper (2009)

17. Snyder, J.: Doppler velocity log (dvl) navigation for
observation-class rovs. In: OCEANS 2010, pp. 1–9
(2010)

18. Fossen, T.I.: Marine Control Systems, p. 57. Marine
Cybernetics, Trondheim, Norway (2002)

19. Koh, T., Lau, M., Seet, G., Low, E.: A control module
scheme for an underactuated underwater robotic vehi-
cle. J. Intell. Robot. Syst. 46(2), 43–58 (2006)

20. Sebastian, E., Sotelo, M.: Adaptive fuzzy sliding mode
controller for the kinematic variables of an underwater
vehicle. J. Intell. Robot. Syst. 49, 189–215 (2007)

21. Refsnes, J.E., Sorensen, A.J.: Design of control sys-
tem of torpedo shaped rov with experimental results.
In: OCEANS ’04, MTS/IEEE TECHNO-OCEAN ’04,
vol. 1, pp. 264–270 (2004)

22. Refsnes, J.E., Sorensen, A.J., Pettersen, K.Y.: Output
feedback control of an auv with experimental results.
In: Proceedings of the 15th Mediterranean Conference
on Control & Automation, pp. 1–8 (2007)

23. Steinke, D., Buckham, B.: A kalman filter for the nav-
igation of remotely operated vehicles. In: OCEANS,
2005. Proceedings of MTS/IEEE, vol. 1, pp. 581–588
(2005)

24. Fossen, T.I., Strand, J.P.: Passive nonlinear observer
design for ships using lyapunov methods: experimen-
tal results with a supply vessel. Automatica 35, 3–16
(1999)

25. Merhav, S.: Aerospace Sensor Systems and Applica-
tions, p. 396. Springer, New York (1996)

26. Alcocer, A., Oliveira, P., Pascoal, A.: Underwater
acoustic positioning systems based on buoys with gps.
In: Proceedings of 8th ECUA 06 (2006)

27. Gustafsson, F.: Adaptive Filtering and Change Detec-
tion. Wiley, New York (2000)

28. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.:
Diagnosis and Fault-Tolerant Control. Springer, Berlin
Heidelberg (2010)

29. Basseville, M., Nikiforov, I.V.: Detection of Abrupt
Changes: Theory and Application. Prentice-Hall, New
York (1993)

30. Caccia, M., Bono, R., Bruzzone, G., Veruggio, G.:
Bottom-following for remotely operated vehicles. Con-
trol Eng. Pract. 11(4), 461–470 (2003)

31. Augenstein, S., Rock, S.: Estimating inertial position
and current in the midwater. In: Proceedings of the
MTS/IEEE Oceans Conference and Exhibition (2008)

32. Vaganay, J., Bellingham, J.G., Leonard, J.J.: Outlier
rejection for autonomous acoustic navigation. In: Pro-
ceedings of IEEE Int. Conf. Robotics and Automation,
pp. 2174–2181, (1996)

33. Menold, P.H., Pearson, R.K., Allgower, F.: Online out-
lier detection and removal. In: Proceedings of the 7th
Mediterranean Conference on Control and Automa-
tion (MED99), pp. 1110–1133 (1999)

34. Jouffroy, J., Opderbecke, J.: Underwater navigation
using diffusion-based trajectory observers. IEEE J.
Oceanic Eng. 32, 313–326 (2007)

http://dx.doi.org/10.4271/970602
http://papers.sae.org/970602/
http://papers.sae.org/970602/

	Underwater Vehicle Localization with Complementary Filter: Performance Analysis in the Shallow Water Environment
	Abstract
	Introduction
	Sensor Performance Analysis
	USBL
	DVL
	Underwater Vehicle Dynamics

	Sensor Fusion Filter Design
	DVL-Aided Surge Velocity Model
	Position-Aided Velocity Filter
	Outlier Rejection Discussion

	Experimental Results
	Discussion
	Conclusions
	References


